
Common Mistakes in Online

and Real-time Contests

by Shahriar Manzoor

10 Summer 2008/ Vol. 14, No. 4 www.acm.org/crossroads Crossroads

This article is for beginning programmers who are new to program-
ming contests. I will discuss the common problems faced in contests,
the University of Valladolid online judge, and the USU online judge.
The suggestions are divided into three parts: General Suggestions,
Online Contest Suggestions, and Valladolid-Specific Suggestions.
Throughout this paper, please note that in real-time contests, the
judges are human and in online contests, the judges are computer pro-
grams, unless otherwise noted.

Different Types of Programming Contests
Many programming contests take place throughout the year, such as ACM
regional contests, International Olympiad in Informatics (IOI), Cen-
trinës Europos Informatikos Olimpiados (CEOI), and Pro gram mer of the
Month (POTM) contest. The most prestigious live programming contest
is the ACM International Collegiate Programming Contest (ICPC), and
the most prestigious online contest is the Internet Problem Solving Con-
test (IPSC). In this section, I will discuss some of the contests.

ACM International Collegiate Programming Contest (ICPC)
ICPC, first held in 1977, is now held yearly [4]. The contest lasts five
hours and generally contains eight problems. (However, the 2001
World Finals contained nine problems.) Three person teams are allot-
ted a single computer. The teams submit their solutions to a judging
software named PC2 developed at California State University, Sacra -
mento (CSUS). The permitted programming languages are C/C++,
Pascal, and Java.

Online Contests
Online contests require no travel and are often less tense [1]. The sub-
mission rules for the online contests at the Valladolid site and the
USU online judge site are the same: the contestants must mail their so-
lutions to a certain e-mail address. The IPSC rules are quite different.
The IPSC Contest Organizer provides inputs for the problems. Instead
of e-mailing their solutions, the contestants have to e-mail their outputs.

Some Tips for Contestants
A good team is essential to succeeding in a programming contest. A
good programming team must have knowledge of standard algorithms
and the ability to find an appropriate algorithm for every problem in
the set. Furthermore, teams should be able to code algorithms into a
working program and work well together.

The problems presented in programming contests often fall into
one of five categories including search, graph theoretic, geometric,
dynamic programming, trivial, and non-standard. Search problems
usually require implementing breadth-first search or depth-first search.
Graph theoretic problems commonly include shortest path, maximum
flow, minimum spanning tree, etc. Geometric problems are based on
general and computational geometry. Dynamic programming problems
are to be solved with tabular methods. Trivial problems include easy
problems or problems that can be solved without much knowledge of
algorithms, such as prime number related problems. Non-standard
problems are those that do not fall into any of these classes, such as
simulated annealing, mathematically plotting n-queens, or even prob-
lems based on research papers. To learn more about how problems are
set in a contest you can read Tom Verhoeff ’s paper [6].

What You Should Do to Become a Good Team
There is no magic recipe to becoming a good team, however, by observ-
ing the points below (some of which were taken from Ernst et al. [3])
you can certainly improve. When training, make sure that every member
of the team is proficient in the basics, such as writing procedures, debug-
ging, and compiling. An effective team will have members with special-
ties so the team as a whole has expertise in search, graph traversal,
dynamic programming, and mathematics. All team members should
know each other’s strengths and weaknesses and communicate effec-
tively with each other. This is important, for deciding which member
should solve each problem. Always think about the welfare of the team.
Solving problems together can also be helpful. This strategy works when
the problem set is hard. This strategy is also good for teams whose aim

Introduction

Each year the Association for Computing Machinery (ACM) arranges a worldwide programming con-
test. This contest has two rounds: the regional contests and the World Final. The teams with the
best results in the regional contests advance to the World Final. The contest showcases the best

programmers in the world to representatives of large companies who are looking for talent. When prac-
ticing for programming competitions, remember that all your efforts should be directed at improving
your programming skills. No matter what your performance is in a contest, do not be disappointed. Suc-
cess in programming contests is affected by factors other than skill, most importantly, adrenaline, luck,
and the problem set of the contest. One way of getting immediate feedback on your efforts is to join the
Valladolid Online Programming Practice/Contest or the online judge hosted by Ural State University
(USU). Successfully solving problems increases your online ranking in the respective competitions.

Common Mistakes in Online and Real-time Contests

11Crossroads www.acm.org/crossroads Summer 2008/ Vol. 14, No. 4

is to solve one problem very well. On the other hand, the most efficient
way to write a program is to write it alone, avoiding extraneous commu-
nication and the confusion caused by different programming styles.

As in all competitions, training under circumstances similar to con-
tests is helpful. During the contest make sure you read all the problems
and categorize them into easy, medium and hard. Tackling the easiest
problems first is usually a good idea. If possible try to view the current
standings and find out which problem is being solved the most. If that
problem has not yet been solved by your team, try to solve it immedi-
ately, odds are it is an easy problem to solve. Furthermore, if the your
solution to the easiest problem in the contest is rejected for careless mis-
takes, it is often a good idea to have another member redo the problem.
When the judges reject your solution, try to think about your mistakes
before trying to debug. Real-time debugging is the ultimate sin, you do
not want to waste too much of your time with a single problem. In a five-
hour contest you have 15 person-hours and five computer-hours. Thus,
computer-hours are extremely valuable. Try not to let the computer sit
idle. One way to keep the computer active is to use the chair in front of
the computer only for typing and not for thinking. You can also save
computer time by writing your program on paper, analyzing it, and then
using the computer. Lastly, it is important to remember that the scoring
system of a contest is digital. You do not get any points for a 99%-solved
problem. At the end of the contest you may find that you have solved all
the problems 90%, and your team is at the bottom of the rank list.

Different Types of Judge Responses
The following are the different types of judge replies that you can
encounter in a contest [2]:

Correct
Your program must read input from a file or standard input according
to the specification of the contest question. Judges will test your pro-
gram with their secret input. If your program’s output matches the
judges’ output you will be judged correct.

Incorrect Output
If the output of your program does not match what the judges expect, you
will get an incorrect output notification. Generally, incorrect output
occurs because you have either misunderstood the problem, missed a
trick in the question, did not check the extreme conditions or simply are
not experienced enough to solve the problem. Problems often contain
tricks that are missed by not reading the problem statement very carefully.

No Output
Your program does not produce an output. Generally this occurs
because of a misinterpretation of the input format, or file. For example,
there might be a mixup in the input filename, e.g., the judge is giving
input from “a.in,” but your program is reading input from “b.in.” It is
also possible that the path specified in your program for the input file
is incorrect. The input file is in most cases in the current directory.
Errors often occurs because of poor variable type selection or because
a runtime error has occurred, but the judge failed to detect it.

Presentation Error
Presentation errors occur when your program produces correct output
for the judges’ secret data but does not produce it in the correct for-
mat. Presentation error is discussed in detail later in this article.

Runtime Error
This error indicates that your program performs an illegal operation
when run on judges’ input. Some illegal operations include invalid
memory references such as accessing outside an array boundary. There
are also a number of common mathematical errors such as divide by
zero error, overflow, or domain error.

Time Limit Exceeded
In a contest, the judge has a specified time limit for every problem.
When your program does not terminate in that specified time limit you
get this error. It is possible that you are using an inefficient algorithm,
e.g., trying to find the factorial of a large number recursively, or per-
haps that you have a bug in your program producing an infinite loop.
One common error is for your program to wait for input from the stan-
dard input device when the judge is expecting you to take input from
files. A related error comes from assuming wrong input data format,
e.g., you assume that input will be terminated with a “#” symbol while
the judge input terminates with end-of-file.

General Suggestions for Contests
Maximum Memory
The maximum memory allowed on the Valladolid site is 32MB. This
includes memory for global variables, the heap, and the stack. Even if
you find that you have allocated much less than 64K memory, you will
find that the judge often shows that more memory has been allocated.
Also, you should not allocate 32 MB of global memory because 32MB
is maximum for all types of memory. The maximum memory for real
contests varies; for the World Final, it is greater than 128MB.

Problems with DOS Compilers and Memory Allocation
Many of us like to use DOS compilers like Turbo C++ 3.0 and Borland
C++, which do not support allocating more than 64K memory at a time.
It is always a good idea to allocate memory with a constant so that your
test runs use less than 64K memory. Before the submit run, the size of
memory can be increased by just changing the value of the constant. If you
do not practice this, it is very likely that you will face problems like “Run
time error,” “Time limit exceeded,” and “Wrong answer.” An example:

int const SIZE =100;
int store[SIZE][SIZE];
void initialize(void)
{

int i, j;
for (i = 0; i < SIZE;i++)

for (j = 0; j < SIZE; j++)
store[i][j] = 0;

}

“Time Limit Exceeded” is Not Always “Time Limit Exceeded”
When you submit a program to the judge, the judge gives you a
response, but this response is not always accurate. For example, if you
allocate less memory than is required, the program may not terminate
(it may not even crash), and the judge will tell you “Time limit
exceeded.” On seeing this message, if you try to optimize your program
rather than correcting the memory allocation problem, your program
will never be accepted. The following example illustrates this problem.
The skeleton of your program is as follows:

Shahriar Manzoor

12 Summer 2008/ Vol. 14, No. 4 www.acm.org/crossroads Crossroads

#include <stdio.h>
int const MAX =100;
int array[MAX], i;
void main(void)
{

for (i = 0; i < =100;i++)
{

if (array[i] = =100)
{

array[i] = –10000;
– – – – – –
– – – – – –
– – – – – –

}
}

}

In this example, you have allocated a 100 element array. Your pro-
gram attempts to access array element 100, which is out of the range
[0..99], because of an error in the for loop statement. It will instead
access the address of counter variable i. Because the value array[100]
is set to –10000, the counter value will be set to –10000, so your loop
will take a much longer time to terminate and may not even complete
at all. So, the judge will give you the message “Time limit exceeded”
even though it actually is a memory allocation error.

Test the Program with Multiple Datasets
There is always a sample input and output provided with each contest
question. Inexperienced contestants get excited when one of their pro-
grams matches the sample output for the corresponding input, and
they think that the problem has been solved. So they submit the prob-
lem for judgment without further testing and, in many cases, find they
have the wrong answer. Testing only one set of data does not check if
the variables of the program are properly initialized because by default
all global variables have the value zero (integers = 0, chars = '\x0',
floats = 0.0 and pointers = NULL). Even if you use multiple datasets
the error may remain untraced if the input datasets are all the same
size, in some cases descending in size or ascending in size. So, the size
of the dataset sequence should be random. It is always a good idea to
write a separate function for initialization.

Take the Input of Floats in Arrays
Consider the following program segment:

#include <stdio.h>
float store[100];
void main(void) {

int j;
for (j = 0; j <100; j++)

scanf("%f", &store[j]);
}

When this program is run, many C/C++ compilers show the error
“Floating point format not linked.” To get rid of this type of error, just
change it to take the input into a normal floating point variable then
assign that variable to the array, as follows:

#include <stdio.h>
float store[100];
void main(void)
{

int j;
float temp;
for (j = 0; j <100; j++)
{

scanf("%f", &temp);
store[j] = temp;

}
}

Mark Dettinger’s Suggestions on Geometric Problems
Mark Dettinger was the coach for the team from the University of
Ulm. He suggested to me that sometimes it is a good idea to avoid geo-
metric problems unless one has prewritten routines. The routines that
can be useful are:

• Line intersection.

• Line segment intersection.

• Line and line segment intersection.

• Convex hull.

• If a point is within a polygon.

• From a large number of points what is the number of maximum
points on a single line.

• Closest pair problem. Given a set of points you have to find out the
closest two points between them.

• Try to learn how to use C’s built-in qsort function to sort integers
and records.

• Area of a polygon (convex or concave).

• Center-of-gravity of a polygon (convex or concave).

• Minimal circle, a circle with the minimum radius that can include
the coordinates for a given number of points.

• Minimal sphere.

• Whether a rectangle fits in another rectangle even with rotation.

• Identify where two circles intersect. If they do not, determine
whether one circle is inside another or if they are far away.

• Line clipping algorithms against a rectangle, circle, or ellipse.

Judging the Judge!
Judges often omit information. For example, judges in my country give
the error “Time limit exceeded” but never say what the time limit is.
In Valladolid, often the input size is not specified (e.g., problem 497-
Strategic defense initiative).

Suppose that the maximum number of inputs is not given. This is
often vital information because if the number is small, you can use
backtracking, and if it is large, you have to use techniques like dynamic
programming or backtracking with memorization. In problem 497, the

Common Mistakes in Online and Real-time Contests

13Crossroads www.acm.org/crossroads Summer 2008/ Vol. 14, No. 4

maximum possible number of missiles to intercept is not given.
Suppose that the loop for(j = 0; j < I*100000000; j++) takes one
second to run for the judge, and an unknown N is the number of
inputs given by the online judge. Send the following program with your
code. Place it just after you have read the value of N.

for (I =1;I < = 20;I++)
{

if (I*1000 > = N)
{

for(j = 0; j < I*100000000; j++);
}

}

From the runtime of the program you will know the number of
input N. Using this method you can also determine how fast the
judge’s computer is compared with yours and thus find out the approx-
imate time limit for any problem on your computer. Most of the live
contests have a practice session prior to the contest. On this day you
should try to determine the speed of the judge computer by sending
programs consisting of many loops and nested loops.

Did you know that there was a mistake in a problem of the World
Final 2000? The culprit problem was Problem F. The problem specifi-
cation said that the input graph would be complete but not all inputs
by the judge were complete graphs. At least one of the teams sent a
program that checked if the input graph was complete. If the input
graph was incomplete, then their program entered an infinite loop. So,
the response from the judge was “Time limit exceeded.” From this
response they were able to know that some of the input graphs were
not complete and solved the problem accordingly.

Use Double Instead of Float
It is always a good idea to use double instead of float because double
gives higher precision and range. Always remember that there is also a
data type called a long double. In Unix/Linux C/C++, there is also a
long long integer. Sometimes it is specified in the problem statement
to use float type. In those cases, use floats.

Advanced Use of printf and scanf
Those who have forgotten the advanced use of printf and scanf,
recall the following examples:

scanf("%[ABCDEFGHIJKLMNOPQRSTUVWXYZ]", &line);
//line is a string

This scanf function takes only uppercase letters as input to line and
any other characters other than A..Z terminates the string. Similarly
the following scanf will behave like gets:

scanf("%[^\n]", line); //line is a string

Learn the default terminating characters for scanf. Try to read all the ad-
vanced features of scanf and printf. This will help you in the long run.

Using New Line with scanf
If the content of a file (input.txt) is

abc
def

and the following program is executed to take input from the file:

char input[100], ch;
void main(void)
{

freopen("input.txt", "rb", stdin);
scanf("%s", &input);
scanf("%c", &ch);

}

What will be the value of input and ch?
The following is a slight modification to the code:

char input[100], ch;
void main(void)
{

freopen("input.txt", "rb", stdin);
scanf("%s\n", &input);
scanf("%c", &ch);

}

What will be their value now? The value of ch will be “\n” for the first
code and “d” for the second code.

Memorize the Value of Pi
You should always try to remember the value of pi as far as possible,
3.1415926535897932384626433832795, certainly the part in italics.
The judges may not give the value in the question, and if you use val-
ues like 22/7 or 3.1416 or 3.142857, then it is very likely that some of
the critical judge inputs will cause you to get the wrong answer. You
can also get the value of pi as a compiler-defined constant or from the
following code: Pi = 2*acos(0).

Problems with Equality of Floating Point (Double or
Float) Numbers
You cannot always check the equality of floating point numbers with
the = = operator in C/C++. Logically their values may be same, but
due to precision limit and rounding errors they may differ by some
small amount and may be incorrectly deemed unequal by your pro-
gram. So, to check the equality of two floating point numbers a and b,
you may use codes like:

if (fabs(a – b) < ERROR) printf("They are equal\n");

Here, ERROR is a very small floating-point value like 1e –15. Actually,
1e–15 is the default value that the judge solution writers normally use. This
value may change if the precision is specified in the problem statement.

The Cunning Judges
Judges always try to make easy problem statements longer to make
them look harder and the difficult problem statements shorter to make
them look easy. For example, a problem statement can be “Find the
common area of two polygons”—the statement is simple, but the solu-

Shahriar Manzoor

14 Summer 2008/ Vol. 14, No. 4 www.acm.org/crossroads Crossroads

tion is very difficult. Another example is “For a given number find two
such equal numbers whose multiplication result will be equal to the
given number.” Though the second statement is longer than the first,
the second problem statement is only asking to find the square root of
a number, which can be done using a built-in function.

Use the Assert Function
It is always nice to use the C/C++ assert function, which is in the
header file assert.h. With the assert function you can check for a pre-
defined value for a variable or an expression at a certain stage of your
program. If for some reason the variable or expression does not have the
specified value, assert will print an error message. See your C/C++ doc-
umentation for further details.

Avoid Recursion
It is almost always a good idea to avoid recursion in programming con-
tests. Recursion takes more time, recursive programs crash more fre-
quently especially in the case of parsing, and, for some people,
recursion is harder to debug. But recursion should not be discounted
completely, as some problems are very easy to solve recursively (DFS,
backtracking), and there are some people who like to think recursively.
However, it is a bad habit to solve problems recursively if they can be
easily solved iteratively. In live programming contests, there is no point
in writing classic code, or code that is compact but often hard to
understand and debug. In programming contests, classic code serves
only to illustrate the brilliance of the programmer. For example, the
code for swapping two values can be written classically as:

#define swap(xxx, yyy) (xxx) ^= (yyy) ^= (xxx) ^= (yyy)

But in a contest you will not get extra points for this type of code writing.

Improve Your Understanding of Probability and Card Games
Having a good understanding of probability is vital to being a good pro-
grammer. If you want to measure your grasp of probability, just solve
problem 556 of Valladolid and go through a statistics book on proba-
bility. Know about probability theorems, independent and dependent
events, and heads/tails probability. You should also be able to solve
common card game-related problems.

Be Careful About Using gets and scanf Together
You should also be careful about using gets and scanf in the same pro-
gram. Test it with the following scenario. The code is:

scanf("%s\n", &dummy);
gets(name);

And the input file is:

ABCDEF
bbbbbXXX

What do you get as the value of name? “XXX” or “bbbbbXXX” (Here,
“b” means blank or space.)

Suggestions for UNIX-based Online Judges
and Contests
Function Portability
Not all C/C++ functions available in DOS are available in UNIX.
Check the documentation for the portability among operating systems.
If a function is portable to UNIX, you can use it to solve problems on
the Valladolid and USU sites. Use only standard input and output
functions for taking inputs and producing outputs.

itoa, the Important Function that UNIX Does Not Have
UNIX does not support the important function itoa, which converts an
integer to a string. The replacement for this function can be:

char numstr[100];
int num =1200;
sprintf(numstr, "%d", num); //to decimal
sprintf(numstr, "%X", num); //to uppercase hexadecimal

Try to find replacements for other functions that are not available in
UNIX/ LINUX.

Problems with the Settings of Mailer Programs
Some problems do not get accepted even if they are solved correctly.
Such problems from Valladolid are 371–Ackermann Function, 336–
A node too far, 466–Mirror, mirror, etc. It is because our e-mail programs
(e.g., Outlook Express, Eudora) break longer lines, and these problems
have long lines in their output. So in Outlook Express you should go to
Tools —> Options —> Send —> Send text setting and change the Auto-
matically Wrap Text from 76 (default) to 132. Similar options can be
found in other mailer programs. The Ural State University online judge
has a program submission form with which you can directly submit your
program without sending an e-mail. Remember that problems with
mailer settings can cause both wrong answers and compile errors.

Presentation Error
Presentation errors are neither caused by algorithmic nor logical mis-
takes. There is a difference between the presentation error of online
judges and that of live judges. The latter are able to detect mistakes
such as misspellings, extra words, extra spaces, etc., and differentiate
them from algorithmic errors, such as wrong cost, wrong decisions,
etc. These mistakes are the presentation errors as graded by the
human judges. On the other hand, online judges in most cases com-
pare the judge output and the contestant output with the help of a file
compare program so that even spelling mistakes can cause a “wrong
answer.” Generally, when the file compare program finds extra new
lines, these are considered to be presentation error. Human judges,
though, do not typically detect these mistakes. But now computers are
becoming more powerful, larger judge inputs are being used and larger
output files are being generated. In live contests, special judge pro-
grams are being used that can detect presentation errors, multiple cor-
rect solutions, etc. We are advancing towards better judging methods
and better programming skills. The recent statistics of the ACM shows
that participation in the ACM International Collegiate Programming
Contest is increasing dramatically, and in the near future the compe-
tition in programming contests will be more intense [5]. So the
improvement of the judging system is almost a necessity.

Common Mistakes in Online and Real-time Contests

15Crossroads www.acm.org/crossroads Summer 2008/ Vol. 14, No. 4

A Common Mistake of Contestants
Recently, I arranged several contests with Rezaul Alam Chowdhury
and in collaboration with the University of Valladolid, and have seen con-
testants make careless mistakes. The most prominent mistake is taking
things for granted. In a problem I specified that the inputs will be inte-
gers (as defined in mathematics) but did not specify the range of input
and many contestants assumed that the range will be 0 —> (2^32–1).
But in reality many large numbers were given as input. The maximum
input file size was specified from which one could assume what was the
maximum possible number. There were also some negative numbers in
the input because integers can be negative.

The Causes of Compile Error
Compile error is a common error on the Valladolid site. It may seem
annoying to compile and run a program, then send it to the online
judge and get a compile error. Generally these errors occur because
contestants omitted #include files. Some compilers do not require
including the header files even when we use functions under those
header files. However, the online judge never allows this. For example,
some functions exist both in math.h and stdlib.h. For the online judge,
you need to include both of the header files if you want to use them.
Compiler errors also occur commonly when contestants do not spec-
ify the correct language. Often C code implemented in some compil-
ers inadvertently takes advantage of C++ features. When the language
specified to the judge is C, a compile error is generated. For example,
the following may be compiled as a C program in a DOS/Windows
environment but not in UNIX/LINUX.

for (int i = 0;i <100;i++)
{

printf("Compile Error\n");
}

E-mail Sending Format. Mail sent to the online judge should be
in plain text format. If the mail is in Rich Text or HTML, the program
will not compile. You should not send your program as an attachment.

Mysterious Characters. When I first started programming for
Valladolid, I used Turbo C++. After a program was successfully com-
pleted, I opened the source code in Notepad, selected the whole text,
copied and pasted it in my mail editor, and sent the program to the
Valladolid site. I got a Compile error message but could not discover
the cause. One day, I pasted it in my email editor, saved it as a text file,
and then opened it in my DOS text editor. I discovered some mysteri-
ous characters in the file, which were invisible in Windows. If you
receive a Compile error message and cannot discover the cause, check
if your mail or text editor is adding extra symbols to your code.

Using Nonportable Functions. Compile errors are caused by
the use of the functions which are only available in DOS and not in
LINUX, such as strrev, itoa, etc.

Using C++ Style Comments. C++ allows a comment style that
starts with //. If the mailer wraps a comment to two lines, you may get
a compile error.

Valladolid-specific Suggestions
The next section provides suggestions for solving problems for the
Valladolid online judge.

Types of Input in the Valladolid Online Judge
There are four types of input in the online judge:

• Nonmultiple input without special correction program (red flag)

• Nonmultiple input with special correction program (orange flag).

• Multiple input without special correction program (blue flag).

• Multiple input with special correction program (green flag).

What is a Special Correction Program?
There are some problems that have one unique output for a single in-
put, and other problems with multiple output for the same input. For
example if you are asked to find the maximum appearing string of
length 3 in the string “abcabcabci jki jki jk,” unfortunately the answer
can be both “abc” and “i jk.” So, if your program gives the output “abc,”
it is correct, “i jk” is also correct. The judge program cannot determine
the correctness of your program by simply comparing your output to the
judge program output. The judge must write a special program, which
will read your answer and determine if it is right or wrong. This special
program is described as a special correction program in the Valladolid
online judge. For the problems with special correction programs, (Prob-
lem 104, 120, 135, etc., or the problems with orange or green flag), you
cannot be sure that your program is incorrect even if your program out-
put does not match the sample output for the given sample input.

“Multiple input programs” are an invention of the online judge. The
online judge often uses the problems and data that were first pre-
sented in live contests.

Many solutions to problems presented in live contests take a single
set of data, give the output for it, and terminate. This does not imply
that the judges will give only a single set of data. The judges actually
give multiple files as input one after another and compare the corre-
sponding output files with the judge output. However, the Valladolid
online judge gives only one file as input. It inserts all the judge inputs
into a single file and at the top of that file, it writes how many sets of
inputs there are. This number is the same as the number of input files
the contest judges used. A blank line now separates each set of data.
So the structure of the input file for multiple input program becomes:

Integer N //denoting the number of sets of input
—blank line—-
input set 1 //As described in the problem statement
—blank line—-
input set 2 //As described in the problem statement
—blank line—-
input set 3 //As described in the problem statement
—blank line—-
.
.
.
—blank line—-
input set n //As described in the problem statement
—end of file—

Note that there should be no blank after the last set of data. Some -
times there may be, so always check. The structure of the output file
for a multiple input program becomes:

Shahriar Manzoor

16 Summer 2008/ Vol. 14, No. 4 www.acm.org/crossroads Crossroads

Output for set 1 //As described in the problem statement
—blank line—-
Output for set 2 //As described in the problem statement
—blank line—-
Output for set 3 //As described in the problem statement
—blank line—-
.
.
.
—blank line—-
Output for set n //As described in the problem statement
—end of file—

The USU online judge does not have multiple input programs like Val -
la dolid. It prefers to give multiple files as input and sets a time limit for
each set of input.

Problems of Multiple Input Programs
There are some issues that you should consider differently for multiple
input programs. Even if the input specification says that the input ter-
minates with the end of file (EOF), each set of input is actually termi-
nated by a blank line, except for the last one, which is terminated by the
end of file. Also, be careful about the initialization of variables. If they
are not properly initialized, your program may work for a single set of data
but give incorrect output for multiple sets of data. All global variables are
initialized to their corresponding zeros. Thus, for a single set of input, the
initialization may not be necessary, but for multiple inputs, it is a must.

The Fixing Mistake Section
Always be sure to see the Fixing Mistake section of the Valladolid
online judge. Some of the problems in the Valladolid online judge have
errors, which are corrected on this page.

Read the Message Board
Always try to read the message board of the Valladolid site. You will
learn many things from other programmers. The USU online judge
also has a message board. You can also submit your own views and
problems via these boards.

Conclusion
Many people believe that the best programmer is the one with greatest
knowledge of algorithms. However, problem-solving skills contribute to
programming success as much as raw knowledge of algorithms. Do not
lose your nerve during a contest, and always try to perform your best.

Acknowledgements
I am grateful to Prof. Miguel A. Revilla for letting me arrange online contests
and to Prof. William B. Poucher for asking people to participate in the World
Final Warm-up Contest. I am also grateful to Ciriaco Garcia, Antonio Sanchez,
F. P. Najera Cano, Fu Zhaohui, Dr. M. Kaykobad, Rezaul Alam Chowdhury,
Munirul Abedin, Tanbir Ahmed, Reuber Guerra, and above all my family.

Useful Links
ACM Home Page: http://www.acm.org/

ACM International Collegiate Programming Contest Problem Set
Archive: http://www.acm.inf.ethz.ch/ProblemSetArchive.html

ACM International Collegiate Programming Contest Web Page:
http://acm.baylor.edu/acmicpc/

American Computer Science League (ACSL) Homepage:
http://www.acsl.org/

Centrinës Europos informatikos olimpiados (CEOI) Resource Page:
http://aldona.mii.lt/pms/olimp/tarpt/ceoi.html

Informatics Competitions Link Page:
http://olympiads.win.tue.nl/ioi/misc/other.html

Internet Problem Solving Contest (IPSC) Web Page:
http://ipsc.ksp.sk/

International Olympiad in Informatics (IOI) Web Page:
http://olympiads.win.tue.nl/ioi/index.html

Mark Dettinger’s Home Page:
http://www.informatik.uni-ulm.de/pm/mitarbeiter/mark/

New POTM Master’s Home Page: http://contest.uvarov.ru/

PC2 Home Page: http://www.ecs.csus.edu/pc2/

POTM Master’s Home Page:
http://members.tripod.com/~POTM/fah_home.html

Ural State University (USU) Problem Set Archive with Online Judge
System: http://acm.timus.ru

University Waterloo Contest Page: http://plg.uwaterloo.ca/~acm00/

Valladolid 24-hour Online Judge: http://acm.uva.es/problemset

Valladolid Online Contest Hosting System: http://acm.uva.es/contest

References
1. Astrachan, O., Khera, V., and Kotz, D. 1990. The Duke Internet pro-

gramming contest. Tech. rep. TR-1998-21, Duke University.

2. Chowdhury, R. A. and Manzoor, S. Orientation: National Computer
Programming Contest 2000, Bangladesh National Programming Con-
test 2000.

3. Ernst, F., Moelands, J., and Pieterse, S. Teamwork in programming
contests: 3 * 1 = 4. Crossroads 3, 2.

4. Kaykobad, M. Bangladeshi Students in the ACM ICPC and World
Championships. Computer Weekly.

5. Poucher, W. B. ACM-ICPC 2001, RCD Remarks, RCD Meeting of
World Finals 2001.

6. Verhoeff, T. Guidelines for producing a programming-Contest problem
set. http://wwwpa.win.tue.nl/ wstomv/ publications/ guidelines. html.

Biography
Shahriar Manzoor (shahriar@neksus.com) is a BSc student of Bangladesh
University of Engineering & Technology (BUET). He participated in the
1999 ACM Regional Contest in Dhaka, and his team was ranked third. He
is a very successful contest organizer. He has arranged six online contests for
the Valladolid online judge including the "World Final Warm-up Contest."
His research interests are contests, algorithms, and Web-based applications.

This article originally appeared in Crossroads 7.5
(Midsummer 2001), “Tools Tutorial.”

