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�� Introduction

The �x� � problem� also known as the Collatz problem� the Syracuse problem� Kakutani�s

problem� Hasse�s algorithm� and Ulam�s problem� concerns the behavior of the iterates of the

function which takes odd integers n to �n�� and even integers n to n�� The �x�� Conjecture

asserts that� starting from any positive integer n� repeated iteration of this function eventually

produces the value ��

The �x�� Conjecture is simple to state and apparently intractably hard to solve� It shares

these properties with other iteration problems� for example that of aliquot sequences �see Guy

��	�� Problem B	
 and with celebrated Diophantine equations such as Fermat�s last theorem�

Paul Erd�os commented concerning the intractability of the �x � � problem� �Mathematics is

not yet ready for such problems�� Despite this doleful pronouncement� study of the �x � �

problem has not been without reward� It has interesting connections with the Diophantine

approximation of log� � and the distribution �mod �
 of the sequence f���

k � k � �� � � � �g�

with questions of ergodic theory on the �adic integers Z�� and with computability theory �

a generalization of the �x � � problem has been shown to be a computationally unsolvable

problem� In this paper I describe the history of the �x�� problem and survey all the literature

I am aware of about this problem and its generalizations�

�I was �rst exposed to the �x� � problem in ���� as a high school student working at the National Bureau
of Standards� Afterwards I worked on it from time to time� Out of curiosity and frustration I gradually became
a historian of the problem	 accumulating a collection of papers about it� This survey is a happy consequence� I
obtained a Ph�D� 
����� in analytic number theory at M�I�T� under the supervision of Harold Stark� I have been
on the sta of AT�T Bell Laboratories since then	 and have held visiting positions at the University of Mary�
land 
mathematics� and Rutgers University 
computer science�� My research interests include computational
complexity theory	 number theory	 and cryptography�

�



The exact origin of the �x � � problem is obscure� It has circulated by word of mouth

in the mathematical community for many years� The problem is traditionally credited to

Lothar Collatz� at the University of Hamburg� In his student days in the �����s� stimulated

by the lectures of Edmund Landau� Oskar Perron� and Issai Schur� he became interested in

number�theoretic functions� His interest in graph theory led him to the idea of representing

such number�theoretic functions as directed graphs� and questions about the structure of such

graphs are tied to the behavior of iterates of such functions ���� In his notebook dated July ��

���� he considered the function

g�n
 �

�����������
����������
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which gives rise to a permutation P of the natural numbers

P �

�
�  � � � 	 � � �
� �  � � � � �� 	 � � �

�
�

He posed the problem of determining the cycle structure of P � and asked in particular whether or

not the cycle of this permutation containing � is �nite or in�nite � i�e�� whether or not the iterates

g�k� ��
 remain bounded or are unbounded ���� I will call the study of the iterates of g�n


the original Collatz problem� Although Collatz never published any of his iteration problems�

he circulated them at the International Congress of Mathematicians in ���� in Cambridge�

Massachusetts� and eventually the original Collatz problem appeared in print ����� ����� �	�
�

His original question concerning g�k� ��
 has never been answered� the cycle it belongs to is





believed to be in�nite� Whatever its exact origins� the �x � � problem was certainly known

to the mathematical community by the early �����s� it was discovered in ��� by B� Thwaites

����

During its travels the �x�� problem has been christened with a variety of names� Collatz�s

colleague H� Hasse was interested in the �x � � problem and discussed generalizations of it

with many people� leading to the name Hasse�s algorithm ����� The name Syracuse problem

was proposed by Hasse during a visit to Syracuse University in the �����s� Around ��	��

S� Kakutani heard the problem� became interested in it� and circulated it to a number of

people� He said �For about a month everybody at Yale worked on it� with no result� A similar

phenomenon happened when I mentioned it at the University of Chicago� A joke was made that

this problem was part of a conspiracy to slow down mathematical research in the U�S� ������

In this process it acquired the name Kakutani�s problem� S� Ulam also heard the problem and

circulated the problem at Los Alamos and elsewhere� and it is called Ulam�s problem in some

circles ������ ���
�

In the last ten years the �x�� problem has forsaken its underground existence by appearing

in various forms as a problem in books and journals� sometimes without attribution as an

unsolved problem� Prizes have been o�ered for its solution� ��� by H� S� M� Coxeter in �����

then ���� by Paul Erd�os� and more recently ����� by B� Thwaites ���� Over twenty research

articles have appeared on the �x� � problem and related problems�

In what follows I �rst discuss what is known about the �x � � problem itself� and then

�



discuss generalizations of the problem� I have included or sketched proofs of Theorems B� D�

E� F� M and N because these results are either new or have not appeared in as sharp a form

previously� the casual reader may skip these proofs�

�� The �x�� problem�

The known results on the �x�� problem are most elegantly expressed in terms of iterations of

the function

T �n
 �

�����
����

�n� �


� if n � ��mod 
 �

n


� if n � ��mod � 
 �

���


One way to think of the �x�� problem involves a directed graph whose vertices are the positive

integers and that has directed edges from n to T �n
� I call this graph the Collatz graph of T �n


in honor of L� Collatz ���� A portion of the Collatz graph of T �n
 is pictured in Fig� �� A

directed graph is said to be weakly connected if it is connected when viewed as an undirected

graph� i�e�� for any two vertices there is a path of edges joining them� ignoring the directions on

the edges� The �x� � Conjecture can be formulated in terms of the Collatz graph as follows�

�x�� Conjecture �First form
� The Collatz graph of T �n
 on the positive integers is

weakly connected�

We call the sequence of iterates �n� T �n
� T ����n
� T ����n
� � � �
 the trajectory of n� There are

three possible behaviors for such trajectories when n � ��

�i
� Convergent trajectory� Some T �k��n
 � ��

�



�ii
� Non�trivial cyclic trajectory� The sequence T �k��n
 eventually becomes periodic and

T �k��n
 �� � for any k � ��

�iii
� Divergent trajectory� limk�� T �k��n
 ���

The �x� � Conjecture asserts that all trajectories of positive n are convergent� It is certainly

true for n � � that T �k��n
 � � cannot occur without some T �k��n
 � n occurring� Call the

least positive k for which T �k��n
 � n the stopping time ��n
 of n� and set ��n
 � � if no k

occurs with T �k��n
 � n� Also call the least positive k for which T �k��n
 � � the total stopping

time ���n
 of n� and set ���n
 �� if no such k occurs� We may restate the �x�� Conjecture

in terms of the stopping time as follows�

�x�� Conjecture �Second form
� Every integer n �  has a �nite stopping time�

The appeal of the �x � � problem lies in the irregular behavior of the successive iterates

T �k��n
� One can measure this behavior using the stopping time� the total stopping time� and

the expansion factor s�n
 de�ned by

s�n
 �
supk�� T

�k��n


n
�

if n has a bounded trajectory and s�n
 � �� if n has a divergent trajectory� For example

n � � requires �� iterations to arrive at the value � and

s��
 �
supk�� T

�k���


�
�
�	�	

�
� ��� �

Table � illustrates the concepts de�ned so far by giving data on the iterates T �k��n
 for selected

values of n�

�



Table �� Behavior of iterates T �k��n
�

n ��n
 ���n
 s�n


� �  
� � �� ���
� �� �� ����

�� � � ��� ��� 	���� ���

�� � �� �
�� � �  � ����
��� � � ��� ���� ����� ����

��� � �  �� ����

The �x� � Conjecture has been numerically checked for a large range of values of n� It is

an interesting problem to �nd e�cient algorithms to test the conjecture on a computer� The

current record for verifying the �x � � Conjecture seems to be held by Nabuo Yoneda at the

University of Tokyo� who has reportedly checked it for all n � 	� � ��� ���� ��� In several

places the statement appears that A� S� Fraenkel has checked that all n � �� have a �nite total

stopping time� this statement is erroneous ����

���� A heuristic argument�

The following heuristic probabilistic argument supports the �x�� Conjecture �see ���
� Pick an

odd integer n� at random and iterate the function T until another odd integer n� occurs� Then

�
� of the time n� � ��n���
��

�
	 of the time n� � ��n���
���

�
� of the time n� � ��n���
���

and so on� If one supposes that the function T is su�ciently �mixing� that successive odd

integers in the trajectory of n behave as though they were drawn at random �mod k
 from the

set of odd integers � mod k
 for all k� then the expected growth in size between two consecutive

odd integers in such a trajectory is the multiplicative factor

�
�



������
�

���	��
�

����

� � � �
�

�
� � �

	



Consequently this heuristic argument suggests that on average the iterates in a trajectory tend

to shrink in size� so that divergent trajectories should not exist� Furthermore it suggests that

the total stopping time ���n
 is �in some average sense
 a constant multiple of log n� �Click

here for more�


From the viewpoint of this heuristic argument� the central di�culty of the �x� � problem

lies in understanding in detail the �mixing� properties of iterates of the function T �n
�mod k


for all powers of � The function T �n
 does indeed have some �mixing� properties given by

Theorems B and K below� these are much weaker than what one needs to settle the �x � �

Conjecture�

���� Behavior of the stopping time function�

It is Riho Terras�s ingenious observation that although the behavior of the total stopping time

function seems hard to analyze� a great deal can be said about the stopping time function� He

proved the following fundamental result ��	��� �	��
� also found independently by Everett �����

Theorem A �Terras
� The set of integers Sk � fn � n has stopping time � kg has

limiting asymptotic density F �k
� i�e�� the limit

F �k
 � lim
x��

�

x
 fn � n � x and ��n
 � kg

exists� In addition� F �k
 	 � as k 	 �� so that almost all integers have a �nite

stopping time�

�



The ideas behind Terras�s analysis seem basic to a deeper understanding of the �x � �

problem� so I describe them in detail� In order to do this� I introduce some notation to describe

the results of the process of iterating the function T �n
� Given an integer n� de�ne a sequence

of �� � valued quantities xi�n
 by

T �i��n
 � xi�n
 �mod 
 � � � i �� ���


where T ����n
 � n� The results of �rst k iterations of T are completely described by the parity

vector

vk�n
 � �x��n
� � � � � xk���n

 ����


since the result of k iterations is

T �k��n
 � �k�n
n� �k�n
 ����


where

�k�n
 �
�x��n�
���
xk���n�

k
���


and

�k�n
 �
k��X
i��

xi�n

�xi���n�
���
xk���n�

k�i
���	


Note that in ���
� ��	
 both �k and �k are completely determined by the parity vector v �

vk�n
 given by ���
� I sometimes indicate this by writing �k�v
� �k�v
 �instead of �k�n
� �k�n

�

The formula ���
 shows that a necessary condition for T �k��n
 � n is that

�k�n
 � � ����


�



since �k�n
 is nonnegative� Terras �	�� de�nes the coe�cient stopping time 	�n
 to be the least

value of k such that ���
 holds� and �� if no such value of k exists� It is immediate that

	�n
 � ��n
 ����


The function 	�n
 plays an important role in the analysis of the behavior of the stopping time

function ��n
� see Theorem C�

The formula ��
 expresses the parity vector v � vk�n
 as a function of n� Terra�s idea is

to reverse this process and express n as a function of v�

Theorem B The function Qk � Z	 Z�kZ de�ned by

Qk�n
 �
k��X
i��

xi�n

i

is periodic with period k� The induced function !Qk � Z�
kZ	 Z��Z is a permu�

tation� and its order is a power of ��

Proof B �sketch
� The theorem is established by induction on k� using the inductive

hypotheses�

��
 xi�n
 is periodic with period 
i
� for � � i � k � �� In fact

xi�n� 
i
 � xi�n
 � � �mod 
���


for � � i � k � ��

�
 Qk�n
 is periodic with period 
k�

��
 �k�n
 and �k�n
 are periodic with period 
k�

�



��
 !Qk is a permutation whose order divides 
k� Also

!Qk�n� 
k��
 � !Qk�n
 � 

k�� �mod k
 �����


I omit the details� �

The cycle structure and order of the �rst few permutations !Qk are given in Table � �One�

cycles are omitted�
 It is interesting to observe that the order of the permutation !Qk seems to

be much smaller than the upper bound k proved in Theorem B� Is there some explanation of

this phenomenon"

Table � Cycle structure and order of permutation !Qk�

k !Qk order

� identity �
 identity �

� ����
 
� ����
����
�����
 
� ����
����
����
�����
����
���������
����	
 �
	 ����
���
�����
����
�����������


����
�����
���������
������

����������	
������
�����
������

��	��
�����
����	�������
 �

Theorem B allows one to associate with each vector v � �v�� � � � � vk��
 
 �Z�Z

k of length

k a unique congruence class S�v
 �mod k
 given by

S�v
 � fn � v � �x��n
� � � � � xk���n

g �

The integer

n��v
 � � !Qk

��

�
k��X
i��

vi
i

�
�mod k


��



with � � n��v
 � 
k is the minimal element in S�v
 and S�v
 is the arithmetic progression�

S�v
 � fn��v
 � 
ki � � � i ��g �

Now I consider the relation between a vector v and stopping times for integers n 
 S�v
�

De�ne a vector v � �v�� v�� � � � � vk��
 of length k to be admissible if

��
 �v� � � � �� vk��
 ln � � k ln �

�
 �v� � � � �� vi
 ln � � �i� �
 ln � when � � i � k � �

Note that all admissible vectors v of length k have

v� � � � �� vk�� � �k
� �����


where 
 � ln� ln � � �log� �

�� � �	���� and �x� denotes the largest integer � x� The following

result is due to Terras�

Theorem C �Terras
� �a
 The set of integers with coe�cient stopping time k are

exactly the set of integers in those congruence classes n �mod k
 for which there

is an admissible vector v of length k with n � n��v
�

�b
 Let n � n��v
 for some vector v of length k� If v is admissible� then all

su�ciently large integers congruent to n �mod k
 have stopping time k� If v is not

admissible� then only �nitely many integers congruent to n �mod k
 have stopping

time k�

��



Proof C The assertions made in �a
 about coe�cient stopping times follow from the

de�nition of admissibility� because that de�nition asserts that

�i
 �k�v
 � ��

�ii
 �i�v
 � � for � � i � k � ��

To prove �b
� �rst note that if v is admissible of length k� then

T �i��n
 �
�v�
���
vi��

i
n � n for � � i � k � � �

and so all elements of S�v
 have stopping time at least k� Now de�ne �k � � by

�k � ��
��k�

k
����


where 
 � �log� �

��� and note that ����
 implies that

�k � �� �k�v
 � ��
�v�
���
vk��

k

for all admissible v� Now for n 
 S�v
 for an admissible v� ���
 may be rewritten

as

T �k��n
 � n� ��k�v
� �kn
 �����


Hence when v is admissible� those n in S�v
 with

n � ���k �k�v
����


have stopping time k� and 	�n
 � ��n
 � k in this case�

Now suppose v is not admissible� There are two cases� depending on whether or

not some initial segment �v�� � � � � vi
 of v is admissible� No initial segment of v is

�



admissible if and only if

�v� � � � �� vi��
 log � � i log  for � � i � k � � �����


and when ����
 holds say that v is in	ating� If v is in#ating� �k�v
 � � so that

T �k��n
 � n for all n in S�v
 by ���
� so that no elements of S�v
 have stopping

time k or less� In the remaining case v has an initial segment w � �v�� v�� � � � � vi


with i � k � � which is admissible� Now S�v
 � S�w
 and all su�ciently large

elements of S�w
 have stopping time i� � � k by the argument just given� �

Theorem C asserts that the set of integers Ik with a given coe�cient stopping time k is a

set of arithmetic progressions �mod k
� which has the immediate consequence that Ik has the

asymptotic density

d�Ik
 � lim
x��

�

x
 fn � n � x and n 
 Ikg

which is given by

d�Ik
 �
�

k
 fv � v is admissible and of length kg �

Furthermore Theorem C asserts that the set

Sk � fn � n has stopping time k g

di�ers from Ik by a �nite set� so that Sk also has an asymptotic density which is the same as

that of Ik� Consequently� Theorem C implies the �rst part of Theorem A� that the set of all

��



integers with stopping time at most k have an asymptotic density F �k
 given by

F �k
 �
X

v admissible
length �v
 � k

weight �v
 ����	


where

weight �v
 � � length �v� �

Now the formula ���	
 can be used to prove the second part of Theorem A� and in fact to

prove the stronger result that F �k
 approaches � at an exponential rate as k 	��

Theorem D For all k � ��

�� F �k
 � lim
x��

�

x
 fn � n � x and ��n
 � kg � ��k �����


where

� � ��H�

 � ������ � � � �����


Here H�x
 � �x log� x����x
 log����x
 is the entropy function and 
 � �log� �

���

Proof D Let C � C� � C�� where

C� � fv � v is admissible and length �v
 � kg

and

C� � fv � v is in#ating and length �v
 � kg �

Then C has the property that for any binary word w of length k there is a unique

v 
 C with v a pre�x of w� Now for any v with length �v
 � k

weight �v
 �
X
weight�w
 �

��



where the sum is over all w of length k for which v is a pre�x of w� Hence

X
v�C

weight�v
 �
X

length�w��k

weight�w
 � � �

From ���	
 this implies that

X
v�C�

weight�v
 � �kjC�j � �� F �k
 �

where jC�j denotes the number of vectors in C�� The already proved �rst part of

Theorem A shows that

�� F �k
 � lim
x��

�

x
 fn � n � x and ��n
 � kg �

so that to prove ����
 it su�ces to bound jC�j from above�

Now the de�nition ����
 of an in#ating vector implies that

C� �

	
v �

k��X
i��

vi � k




�

so that

jC�j �
X
j�k�

�
k

j

�
�����


The right side of ����
 is just the tail of the binomial distribution� It is easily

checked using Stirling�s formula that for any constant  � �
� and any � � � the

bound

X
j�k�

�
k

j

�
� k

�
k

�ka�

�
� �H���
��k

��



holds for all su�ciently large k� With more work one can obtain the more precise

estimate �Ash ���� Lemma ����
 that for any  � �
�

X
j�k�

�
k

j

�
� H���k �

which used in ����
 implies ����
� �

Theorem D cannot be substantially improved� it can be proved that for any � � � we have

jC�j � 
�H������k

for all su�ciently large k depending on �� Hence for any � � �

�� F �k
 � ���
��k

holds for all su�ciently large k depending on ��

���� What is the relation between the coe�cient stopping time and the stop�

ping time�

Theorem C shows that generally they are equal� For any �xed k at most a �nite number of

those n having coe�cient stopping time 	�n
 � k have ��n
 �� 	�n
� Terras �	�� and later

Garner ���� conjecture that this never occurs�

Coefficient Stopping Time Conjecture� For all n � � the stopping time ��n
 equals

the coe�cient stopping time 	�n
�

The Coe�cient Stopping Time Conjecture has the aesthetic appeal that if it is true� then

the set of positive integers with stopping time k is exactly a collection of congruence classes

�	



�mod k
� as described by part �i
 of Theorem C� Furthermore� the truth of the Coe�cient

Stopping Time Conjecture implies that there are no nontrivial cycles� To see this� suppose

that there were a nontrivial cycle of period k and let n� be its smallest element� and note that

��n�
 ��� Then T
�i��n�
 � n� for � � i � k � � and

T �k��n�
 � �k�n�
n� � �k�n�
 � n� ����


Now �k�n�
 �� � since n� isn�t a power of � so that ���
 implies that �k�n�
 � �� Hence

	�n�
 � k� so that 	�n�
 �� ��n�
�

The following result shows that the Coe�cient Stopping Time Conjecture is �nearly true��

I will use it later to bound the number of elements not having a �nite stopping time�

Theorem E There is an e
ectively computable constant k� such that if v is admissible

of length k � k�� then all elements of S�v
 have stopping time k except possibly the

smallest element n��v
 of S�

Proof E �sketch
� The results of A� Baker and N� I� Feldman on linear forms in

logarithms of algebraic numbers ������ Theorem ���
 imply that there is an e�ectively

computable absolute constant c� � � such that for all k� l � ��

jk log � l log �j � k�c� �

Consequently there is an e�ectively computable absolute constant c� such that for

k� l � c� one has

jk � �lj �
�


kk�c� �

��



and ���
 then yields

�k � k�c� �

Since v is admissible� v�� � � ��vk�� � 
k� where 
 � �log� �

�� by ����
� Therefore

�k�v
 �
k��X
i��

vi
�vi�� � � � �� vk��

k�i
�

�
��k�X
i��

�i

i
�


A� k��� 



�
�



��k

� k�����k �

But all elements of S�v
 except n��v
 exceed 
k and

k � kc�
��l���k � ���k �k�v


for all su�ciently large k� so the theorem follows by ����
� �

��	� How many elements don
t have a �nite stopping time�

The results proved so far can be used to obtain an upper bound for the number of elements not

having a �nite stopping time� Let

���x
 � jfn � n � x and ��n
 ��gj �

The following result is the sharpest known result concerning the size of the �exceptional� set

of n with ��n
 ���

Theorem F There is a positive constant c� such that

j���x
� xj � c�x
��� ����


where � � ������ � � � is the constant de�ned in Theorem D�

��



Proof F Suppose k�� � x � k� Then

jfn � n � x and ��n
 ��gj � j���x
� xj � S� � S� �

where S� �  fn � k � 	�n
 � k � �g and S� �  fn � k � 	�n
 � k and

	�n
 �� ��n
g� Now Theorem D shows that

S� � c��
k
��� � c�x

��� ���


and Theorem E shows that

S� �  fv � v admissible and length �v
 � kg� c� �

where c� �  fn � 	�n
 � k� and 	�n
 �� ��n
g is a constant by Theorem C� Now

 fv � v admissible and length �v
 � ig �  fv � v� � � � �� vi�� � �i
�g �

�
i

�i
�

�

� c	
���n�i

using the binomial theorem and Stirling�s formula� Hence

S� � c�
�l���k � c� � �c� � c�
x

��� �

Then this inequality and ��
 imply ���
 with c� � c� � c� � c�� �

���� Behavior of the total stopping time function�

Much less is known about the total stopping time function than about the stopping time

function� One phenomenon immediately observable from a table of the total stopping times

of small integers is the occurrence of many pairs and triples of integers having the same �nite

��



total stopping time� From Figure � we see that ����
 � ����
 � 	� ����
 � �����
 � ��

�����
 � �����
 � �� ����
 � �����
 � �� and ������
 � ������
 � ��� Indeed for

larger values of n� multiple consecutive values occur with the same total stopping time� For

example there are �� consecutive values of n with ���n
 � �� for ���� � n � ����� A

related phenomenon is that over short ranges of n the function ���n
 tends to assume only

a few values �C� W� Dodge ����
� As an example the values of ���n
 for ���� � n � ����

are given in Table �� Only �� values for ���n
 are observed� for which a frequency count is

given in Table �� Both of these phenomena have a simple explanation� they are caused by

coalescence of trajectories of di�erent n�s after a few steps� For example the trajectories of

�k � � and �k � � coalesce after � steps� for all k � �� More generally� the large number

of coalescences of numbers n� and n� close together in size can be traced to the trivial cycle

���
� as follows� Suppose n� and n� have ���n�
 � ���n�
�mod 
� and let ���n�
 � r� �

���n�
 � r�� Then the trajectories of n� and n� coalesce after at most r� � � iterations� since

T �r�����n�
 � T �r�����n�
 � � since the trajectory of n� continues to cycle around the trivial

cycle� If in addition �r����n�
 � �r����n�
� which nearly always happens if n� and n� are about

the same size� then the trajectories of r���k�n�� and 
r���k�n� coalesce after at most r���

iterations� for k � �� In particular� ���
r���k�n�
 � ���

r���k�n�
 then holds for k � �� In

this case the original coalescence of n� and n� has produced an in�nite arithmetic progression

�mod r���
 of coalescences� The gradual accumulation of all these arithmetic progressions of

coalescences of numbers close together in size leads to the phenomena observed in Tables � and

�



��

Although the �x�� Conjecture asserts that all integers n have a �nite total stopping time�

the strongest result proved so far concerning the density of the set of integers with a �nite total

stopping time is much weaker�

�



Table �� Values of the total stopping time ���n
 for ���� � n � �����
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Table �� Values of ���n
 and their frequencies for ���� � n � �����

���n
 freq� ���n
 freq� ���n
 freq� ���n
 freq�

�� � � � �� � �� �
�� � �� � �� � �� �
�� 	 �� 	 	� � �� 

� �� � � � 	 ��� 
	 	 �� � �� �	

Theorem G �Crandall
� Let

�total�x
 � jfn � n � x and ���n
 ��gj �

Then there is a positive constant c	 such that

�total�x
 � xc�

for all su�ciently large x� �Click here for the current best result��

Assuming that the �x� � Conjecture is true� one can consider the problem of determining

the expected size of the total stopping time function ���n
� Crandall ��� and Shanks �	�� were

guided by probabilistic heuristic arguments �like the one described earlier
 to conjecture that





the average order of ���n
 should be a constant times lnn� more precisely� that

�

x

XX
n��

���n
  

�
ln
�

�

���
lnx �

� Click here and here for further information on ���n
�


A modest amount of empirical evidence supports these conjectures� see ����

��� Are there non�trivial cycles�

A �rst observation is that there are other cycles if negative integers are allowed in the domain of

the function� There is a cycle of period � starting from n � ��� and there are cycles of length �

and �� starting from n � �� and n � ���� respectively� B�ohm and Sontacchi ���� conjecture

that these cycles together with the cycles starting with n � � and n � � make up the entire

set of cycles occurring under iteration of T �n
 applied to the integers Z� Several authors have

proposed the following conjecture ������ ���� ����� �	��
�

Finite Cycles Conjecture� There are only a �nite number of distinct cycles for the

function T �n
 iterated on the domain Z�

One can easily show that for any given length k there are only a �nite number of integers

n that are periodic under iteration by T with period k� in fact at most k such integers� as

observed by B�ohm and Sontacchi ����� To see this� substitute the equation ���
 into

T �k��n
 � n � n 
 Z���


�



to obtain the equation

�
��

�x�
���
xk��

k

�
n �

�x�
���
xk��

k

k��X
i��

xi
i

�x�
���
xi
����


There are only k choices for the � � � vector v � �x�� � � � � xk��
� and for each choice of v

the equation ���
 determines a unique rational solution n � n�v
� Consequently there are

at most k solutions to ���
� B�ohm and Sontacchi also noted that this gives an �ine�cient


�nite procedure for deciding if there are any cycles of a given length k� as follows� Determine

the rational number n�v
 for each of the k vectors v� and for each n�v
 which is an integer

test if ���
 holds�

The argument of B�ohm and Sontacchi is a very general one that makes use only of the

fact that the necessary condition ���
 for a cycle has a unique solution when the values

xi are �xed� In fact� considerably more can be proved about the nonexistence of nontrivial

cyclic trajectories using special features of the necessary condition ���
� For example� several

authors have independently found a much more e�cient computational procedure for proving

the nonexistence of nontrivial cyclic trajectories of period � k� it essentially makes use of the

inequality

��� �k�v

n � �k�v
 �

which must hold for v � �x�� x�� � � � � xk
 satisfying ���
� This approach also allows one to

check the truth of the Coe�cient Stopping Time Conjecture for all n with 	�n
 � k� The basic

result is as follows�

�



Theorem H �Terras
� For each k there is a �nite bound M�k
 given by

M�k
 � maxf���i �i�v
 � v admissible� length �v
 � i � kg���


such that 	�n
 � k implies that 	�n
 � ��n
 whenever n �M�k
� Consequently

�i
 If ��n
 �� for all n �M�k
� then there are no non�trivial cycles of length

� k�

�ii
 If 	�n
 � ��n
 for all n �M�k
� then 	�n
 � k implies 	�n
 � ��n
�

Proof H The existence of the boundM�k
 follows immediately from ����
� and �ii


follows immediately from this fact�

To prove �i
� suppose a nontrivial cycle of length � k exists� We observed earlier

that if n� is the smallest element in a purely periodic nontrivial cycle of length � k�

then 	�n�
 � i � k and ��n�
 ��� The �rst part of the theorem then implies that

n� �M�k
� This contradicts the hypothesis of �i
� �

Theorem H can be used to show the nonexistence of nontrivial cycles of small period by

obtaining upper bounds for the M�k
 and checking that condition �i
 holds� This approach

has been taken by Crandall ���� Garner ����� Schuppar �	�� and Terras �	��� In estimating

M�k
� one can show that the quantities �i�v
 are never very large� so that the size of M�k
 is

essentially determined by how large

���i �

�
��

��i�

i

���

�



can get� The worst cases occur when ��i� is a very close approximation to i� i�e�� when

i��i
� is a very good rational approximation to � � log� �� The best rational approxima�

tions to � are given by the convergents pk�qk of the continued fraction expansion of � �

��� �� �� � � �� �� �� � �� � � �� �� ��� �� �� � � � ��� Crandall ��� uses general properties of contin�

ued fraction convergents to obtain the following quantitative result�

Theorem I �Crandall
� Let n� be the minimal element of a purely periodic trajectory

of period k� Then

k �
�


min

�
qj�

n�
qj � qj
�

�
���	


where pi�qj is any convergent of the continued fraction expansion of log� � with

j � ��

As an application� use Yoneda�s bound �� that n� � 
	� and choose j � �� in ��	
� noting

that q�� � ������ and q�	 � ��������� to conclude that there are no nontrivial cycles with

period length less than �������

Further information about the nonexistence of nontrivial cyclic trajectories can be obtained

by treating the necessary condition ���
 as an nonexponential Diophantine equation� Davidson

��� calls a purely periodic trajectory of period k a circuit if there is a value i for which

n� � T �n�
 � � � � � T �i��n�


and

T �i��n�
 � T �i
���n�
 � � � � � T �k��n�
 � n� �

	



i�e�� the parity vector vk�n�
 � �x��n�
� � � � � xk���n�

 has the special form

xj�n�
 �

���
��
� � when � � j � �k
�� � �

� � when �k
� � j � k � � �
���


where 
 � �log� �

��� The cycle starting with n� � � is a circuit� Davidson observed that each

solution to the exponential Diophantine equation

�a
b � �b
h � a � � � a � ����


gives rise to a circuit of length k � a� b with �k
� � b and n� � 
bh� �� and conversely� �The

equation ���
 is the necessary condition ���
 specialized to the vector ���
� R� Steiner �	��

showed that �a� b� h
 � �� �� �
 is the only solution of ���
� thus proving the following result�

Theorem J �Steiner
� The only cycle that is a circuit is the trivial cycle�

Proof J �sketch
� Steiner�s method is to show �rst that any solution of ���
 with

a � � has the property that �a � b
�b is a convergent in the continued fraction

expansion of log� �� since ���
 implies that

� �

����a� b

b
� log� �

���� � �

b ln �b � �

����


He checks that this rational approximation �a� b
�b is so good that it violates the

e�ective estimates of A� Baker ������ p� ��� for linear forms in logarithms of algebraic

numbers if b � ������ Finally he checks that ���
 fails to hold for all that b � �����

by computing the convergents of the continued fractions of log� � up to ��
���� �

�



The most remarkable thing about Theorem J is the weakness of its conclusion compared to

the strength of the methods used in its proof� The proof of Theorem J does have the merit that

it shows that the coe�cient Stopping Time Conjecture holds for the in�nite set of admissible

vectors v of the form ���
�

���� Do divergent trajectories exist�

Several authors have observed that heuristic probabilistic arguments suggest that no divergent

trajectories occur�

Divergent Trajectories Conjecture� The function T � Z 	 Z has no divergent

trajectories� i�e�� there exists no integer n� for which

lim
k��

jT �k��n�
j �� �����


If a divergent trajectory fT �k��n�
 � � � k � �g exists� it cannot be equidistributed

�mod 
� Indeed if one de�nes

N��k
 � jfj � j � k and T �j��n�
 � � �mod 
gj �

then it can be proved that the condition ����
 implies that

lim inf
k��

N��k


k
� �log� �


�� � �	���� �����


Theorem F constrains the possible behavior of divergent trajectories� Indeed� associated

to any divergent trajectory D � fT �k��n�
 � k � �g is the in�nite set UD � fn � n 
 D and

�



T �k��n
 � n for all k � �g� Since ��n
 �� for all n 
 UD� Theorem F implies that

jfn 
 UD � n � xgj � c�x
��� ����


where � � ������� Roughly speaking� ���
 asserts that the elements of a divergent trajectory

cannot go to in�nity �too slowly��

���� Connections of the �x� � problem to ergodic theory�

The study of the general behavior of the iterates of measure preserving functions on a measure

space is called ergodic theory� The �x� � problem has some interesting connections to ergodic

theory� because the function T extends to a measure�preserving function on the �adic integers

Z� de�ned with respect to the �adic measure� To explain this� I need some basic facts about

the �adic integers Z�� cf� ����� ����� The �adic integers Z� consist of all series

 � a� � a� � a�
� � � � � � all ai � � or � �

where the fai � � � i � �g are called the �adic digits of � One can de�ne congruences

�mod k
 on Z� by  � � �mod k
 if the �rst k �adic digits of  and � agree� Addition and

multiplication on Z� are given by

X � � � � X �mod k
 �  �mod k
 � ��mod k
 for all k �

X � � � X �mod k
 �  �mod k
 � ��mod k
 for all k �

�



The �adic valuation jj� on Z� is given by j�j� � � and for  �� � by jj� � 
�k� where ak is the

�rst nonzero �adic digit of � The valuation jj� induces a metric d on Z� de�ned by

d�� �
 � j� �j� �

As a topological space Z� is compact and complete with respect to the metric d� a basis of open

sets for this topology is given by the �adic discs of radius �k about �

Bk�
 � f� 
 Z� �  � � �mod k
g �

Finally one may consistently de�ne the �adic measure �� on Z� so that

���Bk�

 � 
�k �

in particular ���Z�
 � �� The integers Z are a subset of Z�� for example

�� � � � � �  � � � � � � � � �

Now one can extend the de�nition of the function T � Z	 Z given by ���
 to T � Z� 	 Z� by

T �
 �

�����
����




� if  � � �mod 
 �

�� �


� if  � � �mod 
 �

Ergodic theory is concerned with the extent to which iterates of a function mix subsets of

a measure space� I will use the following basic concepts of ergodic theory specialized to the

measure space Z� with the measure ��� A measure�preserving function H � Z� 	 Z� is ergodic

if the only ���measurable sets E for which H
���E
 � E are Z� and the empty set� i�e�� such a

function does such a good job of mixing points in the space that it has no nontrivial ���invariant

��



sets� It can be shown ������ p� �	� that an equivalent condition for ergodicity is that

lim
N��

�

N

NX
j��

���H
�j�Bk�

 �Bl��

 � ���Bk�

���Bl��

 � 

��k
l� �

for all � � 
 Z� and all integers k� l � �� This condition in turn is equivalent to the assertion

that for almost all  
 Z� the sequence of iterates

fH i�
 � i � �� �� � � � �g

is uniformly distributed �mod k
 for all k � �� A function H � Z� 	 Z� is strongly mixing if

lim
N��

���H
�N�Bk�

 �Bl��

 � 

��k
l�

for all � � 
 Z� and all k� l � �� Strongly mixing functions are ergodic�

The following result is a special case of a result of K� P� Matthews and A� M� Watts �����

Theorem K The map T is a measure�preserving transformation of Z� which is

strongly mixing� Consequently it is ergodic� and hence for almost all  
 Z� the

sequence

fT �i��
 � i � �� �� � � � �g

is uniformly distributed �mod k
 for all k � ��

Theorem K implies nothing about the behavior of T on the set of integers Z because it is

a measure � subset of Z�� In fact� the trajectory fT
�i��n
 � i � �� �� � � � �g of any integer n

can never have the property of the conclusion of Theorem K� for if the trajectory is eventually

periodic with period k� it cannot be uniformly distributed �mod k��
� while if it is a divergent

��



trajectory� it cannot even be equidistributed �mod 
 by ����
� Consequently� this connection

of the �x�� problem to ergodic theory does not seem to yield any deep insight into the �x��

problem itself�

There is� however� another connection of the �x � � problem to ergodic theory of Z� that

may conceivably yield more information on the �x�� problem� For each  
 Z� de�ne the ���

variables xi by

T �i��
 � xi �mod 
 �

Now de�ne the function Q� � Z� 	 Z� by Q��
 � �� where

� � x� � x� � x�
� � � � � �����


The value Q��
 thus encodes the behavior of all the iterates of  under T �

The following result has been observed by several people� including R� Terras and C� Pomer�

ance� but has not been explicitly stated before�

Theorem L The map Q� � Z� 	 Z� is a continuous� one�one� onto� and measure�

preserving map on the ��adic integers Z��

Proof L This is essentially a consequence of Theorem B� Use the fact that Q��
 �

!Qn�
�mod 
n
� For any �� � in Z�� if j� � �j � 

�n� then � � � �mod 
n
�

so

Q���
 � !Qn��
 � !Qn��
 � Q���
�mod 
n
 �

�



so that jQ���
 � Q���
j � 
�n and Q� is continuous� If � �� �� then � ��

� �mod 
n
 for some n� so that

Q���
 � !Qn��
 �� !Qn��
 � Q���
 �mod 
n


and Q� is one�to�one� To see that Q� is onto� given  one can �nd �n so that

!Qn��n
 �  �mod n
 �

since !Qn is a permutation� Then jQ���n
� j� � 
�n� Now f�ng forms a Cauchy

sequence in the �adic metric and Z� is compact� hence the limiting value � of f�ng

satis�es Q���
 � � Now Q��� is de�ned� and Q��
 � !Q��n �
�mod 
n
 implies

that Q��� is continuous� �

The �x� � Conjecture can be reformulated in terms of the function Q� as follows�

�x�� Conjecture �Third form
� Let N
 denote the positive integers� Then Q��N


 �

�
�Z� In fact Q��N



 � �
�Z� Z�

For example Q���
 �
P�

i�� 
�n � ����� Q��
 � ���� and Q���
 � �����

The behavior of the function Q� under iteration is itself of interest� Let Q� denote the

set of all rational numbers having odd denominators� so that Q� � Z�� The set Q� consists of

exactly those �adic integers whose �adic expansion is �nite or eventually periodic� The Finite

Cycles Conjecture is equivalent to the assertion that there is a �nite odd integer M such that

Q��Z
 �
�

M
Z �

��



In fact one can takeM �
Q
�l��
� where the product runs over all integers l for which there is

a cycle of minimal length l� As a hypothesis for further work I advance the following conjecture�

Periodicity Conjecture� Q��Q�
 � Q��

For example� one may calculate thatQ����
 � �	��� Q���	��
 � ���� Q�����
 � �����

Q������
 �"���� It can be shown that if n has a divergent trajectory� then the sequence

�x��n
� x��n
� x��n
� � � �
 cannot be eventually periodic� As a consequence the truth of the

Periodicity Conjecture implies the truth of the Divergent Trajectories Conjecture�

Theorem B has a curious consequence concerning the �xed points of iterates of Q��

Theorem M Suppose the kth iterate Q
�k�
� of Q� has a �xed point  
 Z� which is

not a �xed point of any Q
�l�
� for � � l � k� Then k is a power of ��

Proof M By hypothesis Q
�k�
� �
 �  and Q

�l�
��
 � l �� � for � � l � k� All the

l�s are distinct for � � l � k� since Q
�l��
� �
 � Q

�l��
� �
 implies Q

�l��l��
� �
 � �

since Q� is one�one and onto� Consequently one can pick m large enough so that

all the residue classes l �mod 
m
 are distinct� for � � l � k� where � � � Now

the action of Q��mod 
m
 is exactly that of the permutation !Qm� hence

!Q�l�
m ��mod 

m

 � l �mod 
m


for � � l � k� In particular ���mod 
m
� � �mod 

m
� � � � � k�� �mod 
m



makes up a single cycle of the permutation !Qm� hence k is a power of  by Theo�

rem B� �

��



�� Generalizations of �x� � problem�

The �x�� problem can be generalized by considering other functions U � N	 N de�ned on the

natural numbers N that are similar to the function T � The functions I consider to be similar

to the function T are the periodically linear functions� which are those functions U for which

there is a �nite modulus d such that the function U when restricted to any congruence class

k �mod d
 is linear� Some reasons to study generalizations of the �x�� problem are that they

may uncover new phenomena� they can indicate the limits of validity of known results� and they

can lead to simpler� more revealing proofs� Here I discuss three directions of generalizations of

the �x � � problem� These deal with algorithmic decidability questions� with the existence of

stopping times for almost all integers� and with the fractional parts of ���
k�

���� Algorithmic decidability questions�

J� H� Conway �	� proved the remarkable result that a simple generalization of the �x�� problem

is algorithmically undecidable� He considers the class F of periodically piecewise linear functions

g � N	N having the structure

g�n
 �
�

�k� d

n if n � k �mod d
 � for � � k � d� � �����


speci�ed by the nonnegative integers �d� �� � � � � d��
� These are exactly the functions g � N	

N such that g�n
�n is periodic�

��



Theorem O �Conway
� For every partial recursive function f de�ned on a subset D

of the natural numbers N there exists a function g � N	N such that

��
 g�n
�n is periodic �mod d
 for some d and takes rational values�

�
 There is some iterate k � � such that g�k��m
 � j for some j if and only if m

is in D�

��
 g�k��m
 � f�m� for the minimal k � � such that g�k��m
 is a power of ��

Conway�s proof actually gives in principle a procedure for explicitly constructing such a function

g given a description of a Turing machine� that computes f � He carried out this procedure to

�nd a function g associated to a particular partial recursive function f having the property that

f�pn
 � pn�� � where pn is the nth prime� this is described in Guy �����

By choosing a particular partial recursive function whose domain is not a recursive subset

of N� e�g�� a function f� that encodes the halting problem for Turing machines� we obtain the

following corollary of Theorem O�

Theorem P �Conway
� There exists a particular� explicitly constructible function

g� �N	N such that g��n
�n is periodic �mod d
 for a �nite modulus d and takes

rational values� for which there is no Turing machine that� when given n� always

decides in a �nite number of steps whether or not some iterate g
�k�
� �n
 with k � �

is a power of ��

�Conway�s proof used Minsky machines	 which have the same computational power as Turing machines�

�	



���� Existence of stopping times for almost all integers�

Several authors have investigated the range of validity of the result that T �n
 has a �nite

stopping time for almost all integers n by considering more general classes of periodicity linear

functions� One such class G consists of all functions U � U�m�d�R
 which are given by

U�n
 �

�������
������

n

d
� if n � � �mod d
 �

mn� r

d
� if n �� � �mod d
� and r 
 R is such that

mn � r �mod d
 �

���


wherem and d are positive integers with �m�d
 � � and R � fri � ri � i � mod d
� � � i � d��g

is a �xed set of residue class representatives of the nonzero residue classes �mod d
� The

�x � � function T is in the class G� H� M�oller ���� completely characterized the functions

U � U�m�d�R
 in the set G which have a �nite stopping time for almost all integers n� He

showed they are exactly those functions for which

m � dd��d��� �����


E� Heppner ���� proved the following quantitative version of this result� thereby generalizing

Theorem D�

Theorem Q �Heppner
� Let U � U�m�d�R
 be a function in the class G�

�i
 If m � dd��d���� then there exist real numbers ��� �� � � such that for N �

�log x� log d� we have  fn � n � x and U �N��n
 � nx���g � O�x����
 as x	��

�ii
 If m � dd��d���� then there exist real numbers ��� �	 � � such that for N �

�log x� log d� we have  fn � n � x and U �N��n
 � nx��g � O�x����
 as x	��

��



J��P� Allouche ��� has further sharpened Theorem Q and Matthews and Watts ����� ��� have

extended it to a larger class of functions�

It is a measure of the di�culty of problems in this area that even the following apparently

weak conjecture is unsolved�

Existence Conjecture� Let U be any function in the class G� Then

�i
 U has at least one purely periodic trajectory if m � dd��d����

�ii
 U has at least one divergent trajectory if m � dd��d����

���� Fractional parts of�����k�

Attempts to understand the distribution �mod �
 of the sequence f���
k � � � k � �g have

uncovered oblique connections with ergodic�theoretic aspects of a generalization of the �x� �

problem� It is conjectured that the sequence ���
k is uniformly distributed �mod �
�

�This conjecture seems intractable at present�


One approach to this problem is to determine what kinds of � mod �
 distributions can occur

for sequences f���
k� � � � k ��g� where � is a �xed real number� In this vein K� Mahler ����

considered the problem of whether or not there exist real numbers �� which he called Z�numbers�

having the property that

� �

��
�
�
�



�k
�

��
� �

�


� k � �� � �� � � � �����


��



where fxg � x��x� is the fractional part of x� He showed that the set of Z�numbers is countable�

by showing that there is at most one Z�number in each interval �n� n � �
� for n � �� � �� � � ��

He went on to show that a necessary condition for the existence of a Z�number in the interval

�n� n� �
 is that the trajectory �n�W �n
�W ����n
� � � �
 of n produced by the periodically linear

function

W �n
 �

�����
����

�n


� if n � � �mod 
 �

�n� �


� if n � � �mod 
 �

����


satisfy

W �k��n
 �� � �mod �
 � � � k �� ����	


Mahler concluded from this that is unlikely that any Z�numbers exist� This is supported by the

following heuristic argument� The function W may be interpreted as acting on the �adic inte�

gers by ����
� and it has properties exactly analogous to the properties of T given by Theorem K�

In particular� for almost all �adic integers  the sequence of iterates ��W �
�W ����
� � � �


has in�nitely many values k with W �k��
 � � �mod �
� Thus if a given n 
 Z behaves like

almost all �adic integers � then ���	
 will not hold for n� Note that it is possible that all

the trajectories �n�W �n
�W ����n
� � � �
 for n � � are uniformly distributed �mod k
 for all k�

unlike the behavior of the function T �n
�

In passing� I note that the possible distributions �mod �
 of f���
k�� � � k ��g for real

� have an intricate structure �see G� Choquet ��	�$�� and A� D� Pollington ����� ����
� In

��



particular� Pollington ���� proves that there are uncountably many real numbers � such that

�

�
�

��
�
�
�



�k
�

��
� � �� � k � �� � �� � � � �

in contrast to the at most countable number of solutions � of ����
�

	� Conclusion�

Is the �x� � problem intractably hard� The di�culty of settling the �x� � problem seems

connected to the fact that it is a deterministic process that simulates �random� behavior� We

face this dilemma� On the one hand� to the extent that the problem has structure� we can

analyze it � yet it is precisely this structure that seems to prevent us from proving that it

behaves �randomly�� On the other hand� to the extent that the problem is structureless and

�random�� we have nothing to analyze and consequently cannot rigorously prove anything�

Of course there remains the possibility that someone will �nd some hidden regularity in the

�x�� problem that allows some of the conjectures about it to be settled� The existing general

methods in number theory and ergodic theory do not seem to touch the �x � � problem� in

this sense it seems intractable at present� Indeed all the conjectures made in this paper seem

currently to be out of reach if they are true� I think there is more chance of disproving those

that are false�

If the �x�� problem is intractable� why should one bother to study it� One answer is provided

by the following aphorism� �No problem is so intractable that something interesting cannot be

said about it�� Study of the �x�� problem has uncovered a number of interesting phenomena�

I believe further study of it may be rewarded by the discovery of other new phenomena� It also

��



serves as a benchmark to measure the progress of general mathematical theories� For example�

future developments in solving exponential Diophantine equations may lead to the resolution

of the Finite Cycles Conjecture�

If all the conjectures made in this paper are intractable� where would one begin to do research

on this deceptively simple problem� As a guide to doing research� I ask questions� Here are a few

that occur to me� For the �x� � problem� what restrictions are there on the growth in size of

members of a divergent trajectory assuming that one exists" What interesting properties does

the function Q� have" Is there some direct characterization of Q� other than the recursive

de�nition ����
"
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