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1. Introduction

The 3z + 1 problem, also known as the Collatz problem, the Syracuse problem, Kakutani’s
problem, Hasse’s algorithm, and Ulam’s problem, concerns the behavior of the iterates of the
function which takes odd integers n to 3n+1 and even integers n to n/2. The 3z+1 Conjecture
asserts that, starting from any positive integer n, repeated iteration of this function eventually
produces the value 1.

The 3z 4+ 1 Conjecture is simple to state and apparently intractably hard to solve. It shares
these properties with other iteration problems, for example that of aliquot sequences (see Guy
[36], Problem B6) and with celebrated Diophantine equations such as Fermat’s last theorem.
Paul Erd6s commented concerning the intractability of the 3z + 1 problem: “Mathematics is
not yet ready for such problems.” Despite this doleful pronouncement, study of the 3z + 1
problem has not been without reward. It has interesting connections with the Diophantine
approximation of logy 3 and the distribution (mod 1) of the sequence {(3/2)" : k = 1,2,...},
with questions of ergodic theory on the 2-adic integers Zs, and with computability theory
a generalization of the 3z + 1 problem has been shown to be a computationally unsolvable
problem. In this paper I describe the history of the 3z + 1 problem and survey all the literature

I am aware of about this problem and its generalizations.

'I was first exposed to the 32 + 1 problem in 1967 as a high school student working at the National Bureau
of Standards. Afterwards [ worked on it from time to time. Out of curiosity and frustration I gradually became
a historian of the problem, accumulating a collection of papers about it. This survey is a happy consequence. I
obtained a Ph.D. (1974) in analytic number theory at M.I.T. under the supervision of Harold Stark. T have been
on the staff of AT&T Bell Laboratories since then, and have held visiting positions at the University of Mary-
land (mathematics) and Rutgers University (computer science). My research interests include computational
complexity theory, number theory, and cryptography.



The exact origin of the 3z + 1 problem is obscure. It has circulated by word of mouth
in the mathematical community for many years. The problem is traditionally credited to
Lothar Collatz, at the University of Hamburg. In his student days in the 1930’s, stimulated
by the lectures of Edmund Landau, Oskar Perron, and Issai Schur, he became interested in
number-theoretic functions. His interest in graph theory led him to the idea of representing
such number-theoretic functions as directed graphs, and questions about the structure of such
graphs are tied to the behavior of iterates of such functions [25]. In his notebook dated July 1,

1932, he considered the function
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3" if n=0(mod 3) ,
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gn)=4¢ —n— -, if n=1(mod 3) ,
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4 1
—n + 3 if n=2(mod 3),
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which gives rise to a permutation P of the natural numbers

7T 8 9
9 11 6 ...

He posed the problem of determining the cycle structure of P, and asked in particular whether or
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not the cycle of this permutation containing 8 is finite or infinite , i.e., whether or not the iterates
¢®) (8) remain bounded or are unbounded [24]. I will call the study of the iterates of g(n)
the original Collatz problem. Although Collatz never published any of his iteration problems,
he circulated them at the International Congress of Mathematicians in 1950 in Cambridge,
Massachusetts, and eventually the original Collatz problem appeared in print ([9], [47], [62]).

His original question concerning ¢'*) (8) has never been answered; the cycle it belongs to is



believed to be infinite. Whatever its exact origins, the 3z + 1 problem was certainly known
to the mathematical community by the early 1950s; it was discovered in 1952 by B. Thwaites
[72].

During its travels the 3z 41 problem has been christened with a variety of names. Collatz’s
colleague H. Hasse was interested in the 3z 4+ 1 problem and discussed generalizations of it
with many people, leading to the name Hasse’s algorithm [40]. The name Syracuse problem
was proposed by Hasse during a visit to Syracuse University in the 1950’s. Around 1960,
S. Kakutani heard the problem, became interested in it, and circulated it to a number of
people. He said “For about a month everybody at Yale worked on it, with no result. A similar
phenomenon happened when I mentioned it at the University of Chicago. A joke was made that
this problem was part of a conspiracy to slow down mathematical research in the U.S. [45].”
In this process it acquired the name Kakutani’s problem. S. Ulam also heard the problem and
circulated the problem at Los Alamos and elsewhere, and it is called Ulam’s problem in some
circles ([13], [72]).

In the last ten years the 3z +1 problem has forsaken its underground existence by appearing
in various forms as a problem in books and journals, sometimes without attribution as an
unsolved problem. Prizes have been offered for its solution: $50 by H. S. M. Coxeter in 1970,
then $500 by Paul Erdos, and more recently £1000 by B. Thwaites [72]. Over twenty research
articles have appeared on the 32 + 1 problem and related problems.

In what follows I first discuss what is known about the 3z 4+ 1 problem itself, and then



discuss generalizations of the problem. I have included or sketched proofs of Theorems B, D,
E, F, M and N because these results are either new or have not appeared in as sharp a form

previously; the casual reader may skip these proofs.

2. The 3x+1 problem.

The known results on the 3z 4+ 1 problem are most elegantly expressed in terms of iterations of

the function

n+1
3“;— , if n=1(mod 2) ,
(2.1) T(n)=
g , if n=0(mod +2) .

One way to think of the 3z +1 problem involves a directed graph whose vertices are the positive
integers and that has directed edges from n to T'(n). T call this graph the Collatz graph of T'(n)
in honor of L. Collatz [25]. A portion of the Collatz graph of T'(n) is pictured in Fig. 1. A
directed graph is said to be weakly connected if it is connected when viewed as an undirected
graph, i.e., for any two vertices there is a path of edges joining them, ignoring the directions on

the edges. The 3z 4+ 1 Conjecture can be formulated in terms of the Collatz graph as follows.

3x+1 CONJECTURE (First form). The Collatz graph of T(n) on the positive integers is

weakly connected.

We call the sequence of iterates (n, T(n), T?) (n), T (n), ...) the trajectory of n. There are

three possible behaviors for such trajectories when n > 0.

(i). Convergent trajectory. Some T (n) = 1.



(ii). Non-trivial cyclic trajectory. The sequence T™*)(n) eventually becomes periodic and

T (n) # 1 for any k > 1.
(iii). Divergent trajectory. limy,_ .o T™ (n) = cc.

The 3z + 1 Conjecture asserts that all trajectories of positive n are convergent. It is certainly
true for n > 1 that T")(n) = 1 cannot occur without some T (n) < n occurring. Call the
least, positive k for which T™)(n) < n the stopping time o(n) of n, and set o(n) = oo if no k
occurs with T (n) < n. Also call the least positive k for which T*) (n) =1 the total stopping
time 0o (n) of n, and set o (n) = oo if no such k occurs. We may restate the 3z +1 Conjecture

in terms of the stopping time as follows.
3x+1 CONJECTURE (Second form). Every integer n > 2 has a finite stopping time.

The appeal of the 3z + 1 problem lies in the irregular behavior of the successive iterates
(k) (n). One can measure this behavior using the stopping time, the total stopping time, and

the expansion factor s(n) defined by

SuPg>0 e (1)
s(n) = ———— |

n
if n has a bounded trajectory and s(n) = 4oc if n has a divergent trajectory. For example

n = 27 requires 70 iterations to arrive at the value 1 and

<o T (27) 4616
3(27):811[)‘2')27 @n _ o 171

Table 1 illustrates the concepts defined so far by giving data on the iterates T (n) for selected

values of n.



TABLE 1. Behavior of iterates T (n).

n ogn) | oac(n) s(n)
1 o 2 2
7 7 11 3.7
27 59 70 171.
20 1 | 143 383 | 6.37 x 108
250 1 50 1
290 41 2 223 1.50
2500 _ 1] 1828 | 4331 | 1.11 x 10%®
2900411 2 2204 1.50

The 3z + 1 Conjecture has been numerically checked for a large range of values of n. It is
an interesting problem to find efficient algorithms to test the conjecture on a computer. The
current record for verifying the 3z + 1 Conjecture seems to be held by Nabuo Yoneda at the
University of Tokyo, who has reportedly checked it for all n < 210 =~ 1.2 x 10'? [2]. In several
places the statement appears that A. S. Fraenkel has checked that all n < 259 have a finite total
stopping time; this statement is erroneous [32].

2.1. A heuristic argument.

The following heuristic probabilistic argument supports the 3z+1 Conjecture (see [28]). Pick an
odd integer ny at random and iterate the function T until another odd integer n; occurs. Then
$ of the time 1y = (3ng+1)/2, I of the time ny = (3ng+1)/4, % of the time n; = (3ng+1)/8.
and so on. If one supposes that the function T is sufficiently “mixing” that successive odd
integers in the trajectory of n behave as though they were drawn at random (mod 2*) from the

set of odd integers (mod 2%) for all k, then the expected growth in size between two consecutive

odd integers in such a trajectory is the multiplicative factor

3 1/2 3 1/4 3 1/8 3
<-> <_> <_) =21,
2 4 8 4



Consequently this heuristic argument suggests that on average the iterates in a trajectory tend
to shrink in size, so that divergent trajectories should not exist. Furthermore it suggests that
the total stopping time o, (n) is (in some average sense) a constant multiple of logn. (Click
here for more.)

From the viewpoint of this heuristic argument, the central difficulty of the 3z + 1 problem
lies in understanding in detail the “mixing” properties of iterates of the function T'(n)(mod 2F)
for all powers of 2. The function T'(n) does indeed have some “mixing” properties given by
Theorems B and K below; these are much weaker than what one needs to settle the 3z + 1

Conjecture.

2.2. Behavior of the stopping time function.

It is Riho Terras’s ingenious observation that although the behavior of the total stopping time
function seems hard to analyze, a great deal can be said about the stopping time function. He

proved the following fundamental result ([67], [68]), also found independently by Everett [31].

Theorem A (Terras). The set of integers Sy, = {n : n has stopping time < k} has

limiting asymptotic density F(k), i.e., the limit

F(k)= lim l#{n :n <z and o(n) <k}

r—00 I

exists. In addition, F(k) — 1 as k — oo, so that almost all integers have a finite

stopping time.



The ideas behind Terras’s analysis seem basic to a deeper understanding of the 3z + 1
problem, so I describe them in detail. In order to do this, I introduce some notation to describe
the results of the process of iterating the function T'(n). Given an integer n, define a sequence

of 0 — 1 valued quantities z;(n) by

(2.2) TW(n) = zi(n) (mod2), 0<i< oo,

where T(9(n) = n. The results of first k iterations of T are completely described by the parity

vector
(2.3) vp(n) = (zo(n),...,zp_1(n)) ,

since the result of k iterations is

(2.4) THF (n) = Ap(n)n + pp(n) |

31‘0(11)—|—...—|—1‘k_1 (n)
2k

(2.5) Ap(n) =

and

3.7:i+1(n)+...+.nk,1 (n)
ok—1

k—1
(2.6) pr(n) = 2 xi(n)

1=0

Note that in (2.5), (2.6) both A and pj are completely determined by the parity vector v =
vi(n) given by (2.3); I sometimes indicate this by writing Az (v), pr(v) (instead of Ap(n), pr(n)).

The formula (2.4) shows that a necessary condition for T (n) < n is that

(2.7) Ar(n) <1,



since pr(n) is nonnegative. Terras [67] defines the coefficient stopping time w(n) to be the least

value of &k such that (2.7) holds, and +oo if no such value of k exists. It is immediate that
(2.8) w(n) <o(n) .

The function w(n) plays an important role in the analysis of the behavior of the stopping time
function o(n), see Theorem C.

The formula (2.2) expresses the parity vector v = vi(n) as a function of n. Terra’s idea is
to reverse this process and express n as a function of v.

Theorem B The function Q. : 4 — Z/QkZ defined by

k-1

Qr(n) = mi(n)2’
=0
is periodic with period 28, The induced function Qy, - Z/2kZ — 7227 is a permu-
tation, and its order is a power of 2.
Proof B (sketch). The theorem is established by induction on £, using the inductive

hypotheses:

(1) z;(n) is periodic with period 2/*! for 0 <4 < k — 1. In fact
(2.9) zi(n+2Y) = z;(n) +1 (mod 2)

for0<i<k—1.
(2) Qr(n) is periodic with period 2*.

(3) A\x(n) and pp(n) are periodic with period 2*.



(4) Qy, is a permutation whose order divides 2%, Also

(2.10) Qrn+ 21 = Qr(n) + 28! (mod 2¥) .

I omit the details. O

The cycle structure and order of the first few permutations Q) are given in Table 2. (One-
cycles are omitted.) It is interesting to observe that the order of the permutation Q) seems to
be much smaller than the upper bound 2* proved in Theorem B. Is there some explanation of

this phenomenon?

TABLE 2. Cyecle structure and order of permutation Q.

Qr order
identity

identity 1
(1,5) 2
(1,5)(2,10)(9,13) 2
(1,21)(2,10)(4,20)(5,17)(7,23)(9,29,25,13)(18,26) 4
(1,21)(2,42)(3.35)(4.20)(5,17,37.49)
(7,23)(8,40)(9,29,25,13)(10,34)
(18,58,50,26)(19,51)(27,59)(33,53)
(36,52)(29,55)(41,61,57.45) 4

Sy U W N

Theorem B allows one to associate with each vector v = (vg,...,v4_1) € (Z/2Z)k of length

k a unique congruence class S(v) (mod 2¥) given by

S(v)={n:v=(xz¢(n),...,z5_1(n))} .

The integer

k-1
no(v) = (Qp)~! (Z 'v,,-2i> (mod 2%)
=0



with 0 < ng(v) < 2* is the minimal element in S(v) and S(v) is the arithmetic progression:

S(v) ={ng(v) + 2k 0<i< oo} .

Now I consider the relation between a vector v and stopping times for integers n € S(v).

Define a vector v = (vg, v1,...,v,_1) of length k to be admissible if
(1) (vo+ ... +vp_1)In3 < kln 2,
(2) (vo+...+v)In3 > (¢+1)In2, when 0 <7 <k — 2.

Note that all admissible vectors v of length k have

(2.11) w0+ .+ ey = (k0]

where # =1n2/1n3 = (log, 3)™' ~ .63093 and [z] denotes the largest integer < . The following

result is due to Terras.

Theorem C (Terras). (a) The set of integers with coefficient stopping time k are
exactly the set of integers in those congruence classes n (mod 2F) for which there
is an admissible vector v of length k with n = ng(v).

(b) Let n = ng(v) for some vector v of length k. If v is admissible, then all
sufficiently large integers congruent to n (mod Qk') have stopping time k. If v 1s not
admissible, then only finitely many integers congruent to n (mod 2¥) have stopping

time k.

11



Proof C The assertions made in (a) about coefficient stopping times follow from the

definition of admissibility, because that definition asserts that
(1) Ap(v) <1,
(ii)) Mj(v) >1for1 <i<k-—1.

To prove (b), first note that if v is admissible of length %, then
. 3vo+...+'vi—1
T () > TnZn for 1<i<k-1,
and so all elements of S(v) have stopping time at least k. Now define ¢, > 0 by

(2.12) p=1— "0

where 6 = (log,3)~!, and note that (2.11) implies that

31/’0+---+7'k71

€k=1—Ak(V)=1— 2]*6'

for all admissible v. Now for n € S(v) for an admissible v, (2.4) may be rewritten

(2.13) (k) (n)=n+ (pr(v) —exn) .
Hence when v is admissible, those n in S(v) with
(2.14) n > e,?lpk(v)

have stopping time %k, and w(n) = o(n) = k in this case.

Now suppose v is not admissible. There are two cases, depending on whether or

not some initial segment (vg,...,v;) of v is admissible. No initial segment of v is

12



admissible if and only if
(2.15) (vo+ ... +wvi—1)log3 >ilog2 for 1<i<k-—1,

and when (2.15) holds say that v is inflating. If v is inflating, A\z(v) > 1 so that
T8 (n) > n for all n in S(v) by (2.4), so that no elements of S(v) have stopping
time k or less. In the remaining case v has an initial segment w = (vg, vy, ..., v;)
with ¢ < k — 1 which is admissible. Now S(v) C S(w) and all sufficiently large

elements of S(w) have stopping time 7 + 1 < k by the argument just given. O

Theorem C asserts that the set of integers I, with a given coefficient stopping time £ is a
set of arithmetic progressions (mod 2¥), which has the immediate consequence that Ij, has the
asymptotic density

1
d(1p) = lim —#{n:n <z and n € I}
r—0o0

which is given by

1
d(I) = Q—A#{V : v is admissible and of length £} .

Furthermore Theorem C asserts that the set
St = {n : n has stopping time k }

differs from I by a finite set, so that Sy also has an asymptotic density which is the same as

that of I. Consequently, Theorem C implies the first part of Theorem A, that the set of all

13



integers with stopping time at most k have an asymptotic density F(k) given by

(2.16) F(k) = > weight (V) |
v admissible
length (v) <k

where
weight (v) =27 length (v)

Now the formula (2.16) can be used to prove the second part of Theorem A, and in fact to

prove the stronger result that F(k) approaches 1 at an exponential rate as k — oo.

Theorem D For all k > 1,

1 , .
(2.17) 1—F(k)= lim —#{n:n<zand o(n) >k} <277
T—0 1
where
(2.18) n=1—H(#)~ .05004... .

Here H(z) = —xlogy v —(1—2) logy(1—1) is the entropy function and 6 = (log, 3) L.
Proof D Let C' = C U Cy, where

C} = {v : v is admissible and length (v) < k}
and

Cy = {v : v is inflating and length (v) =k} .

Then C has the property that for any binary word w of length & there is a unique

v € C with v a prefix of w. Now for any v with length (v) <k

weight (v) = Zweight(w) ,

14



where the sum is over all w of length k for which v is a prefix of w. Hence
Z weight(v) = Z weight(w) =1 .
ved length(w)=t

From (2.16) this implies that

> weight(v) =27F|Cy| =1 F(k) .

vels
where |C2| denotes the number of vectors in Cy. The already proved first part of

Theorem A shows that

1
1—F(k)=lim —#{n:n <z and o(n) >k},

T—00 I

so that to prove (2.17) it suffices to bound |Cs| from above.

Now the definition (2.15) of an inflating vector implies that

k—1
C> C {V : Z’U,,‘ > A‘H} ,
1=0

Co

‘%)

The right side of (2.19) is just the tail of the binomial distribution. It is easily

checked using Stirling’s formula that for any constant o > % and any € > 0 the

bound

Z <k> < k( k ) < o(H(a)+e)k
j>ka \J [fal



holds for all sufficiently large k. With more work one can obtain the more precise

estimate (Ash [8], Lemma 4.7.2) that for any o > 3

> <"T> < 2folk,

>k J

which used in (2.19) implies (2.17). O
Theorem D cannot be substantially improved; it can be proved that for any € > 0 we have
|Cy| > 9(H(0)—c)k
for all sufficiently large k depending on €. Hence for any € > 0
1— F(k) > 2~ (rtok

holds for all sufficiently large k& depending on e.

2.3. What is the relation between the coefficient stopping time and the stop-
ping time?

Theorem C shows that generally they are equal: For any fixed k at most a finite number of
those n having coefficient stopping time w(n) < k have o(n) # w(n). Terras [67] and later

Garner [34] conjecture that this never occurs.

COEFFICIENT STOPPING TIME CONJECTURE. For alln > 2, the stopping time o(n) equals

the coefficient stopping time w(n).

The Coefficient Stopping Time Conjecture has the aesthetic appeal that if it is true, then

the set of positive integers with stopping time k is exactly a collection of congruence classes

16



(mod 2%), as described by part (i) of Theorem C. Furthermore, the truth of the Coefficient
Stopping Time Conjecture implies that there are no nontrivial cycles. To see this, suppose

that there were a nontrivial cycle of period k and let ng be its smallest element, and note that

o(ng) = c0. Then T (ng) > ng for 1 <7<k —1 and
(2.20) (k) (no) = A(no)no + pr(no) =ng -

Now pr(ng) # 0 since ng isn’'t a power of 2, so that (2.20) implies that A\.(ng) < 1. Hence
w(ng) < k, so that w(ng) # a(ng).
The following result shows that the Coefficient Stopping Time Conjecture is “nearly true.”

I will use it later to bound the number of elements not having a finite stopping time.

Theorem E There 1s an effectively computable constant ky such that if v is admassible
of length k > kg, then all elements of S(v) have stopping time k except possibly the

smallest element ng(v) of S.

Proof E (sketch). The results of A. Baker and N. I. Feldman on linear forms in
logarithms of algebraic numbers ([10], Theorem 3.1) imply that there is an effectively

computable absolute constant ¢y > 0 such that for all k,{ > 1,
|klog2 —llog3| > k™ .

Consequently there is an effectively computable absolute constant ¢; such that for
k,l > ¢ one has
k l 1 ki.—c
|2 — 3" > ;2 kT,

17



and (2.12) then yields

€ >k,

Since v is admissible, vo+. .. +vp_; < 0k, where 6 = (log, 3)~! by (2.11). Therefore

k-1 y k0 . ok
Vil 4 4 v 3! 3
pr(v) = > v T L< (E —2i+l> + k(1 -10) <2>

=0 1=0

< K200k
But all elements of S(v) except ng(v) exceed 2% and
ok > pertlgli=0k - ezlpk(v)

for all sufficiently large k, so the theorem follows by (2.14). O

2.4. How many elements don’t have a finite stopping time?

The results proved so far can be used to obtain an upper bound for the number of elements not

having a finite stopping time. Let
7 (xz) =|{n:n <z and o(n) < oo} .

The following result is the sharpest known result concerning the size of the “exceptional” set

of n with o(n) = cc.
Theorem F There is a positive constant c¢1 such that
(2.21) | () — 2] < exwt

where n == .05004 ... is the constant defined in Theorem D.

18



Proof F Suppose 2F~1 < 2 < 2%, Then
{n:n <z and o(n) =occ}| = |7 (x) —z| < S+ 9,

where S = #{n < 28 : wn) > k+ 1)} and So = #{n < 28 : w(n) < k and

w(n) # o(n)}. Now Theorem D shows that
(2.22) S1 < (27 < 2002
and Theorem E shows that
Sy < #{v: v admissible and length (v) <k} +¢3 ,
where c3 = #{n : w(n) < ky and w(n) # o(n)} is a constant by Theorem C. Now

#{v : v admissible and length (v) =i} < #{v:ivg+...+v,—1 =[if]} = <[10])
1

(342(] —n)i

IA

using the binomial theorem and Stirling’s formula. Hence

Sy < ep2U=MF 40 < (2¢5 + cg)at T

Then this inequality and (2.22) imply (2.21) with ¢; = 2¢9 + ¢34+ 2¢5. O

2.5. Behavior of the total stopping time function.

Much less is known about the total stopping time function than about the stopping time
function. One phenomenon immediately observable from a table of the total stopping times

of small integers is the occurrence of many pairs and triples of integers having the same finite

19



total stopping time. From Figure 1 we see that 0,(20) = 05 (21) =6, 05c(12) = 05 (13) =T,
00o(84) = 000(85) = 8, 050(52) = 05(53) = 9, and 0,(340) = 0,(341) = 10. Indeed for
larger values of n, multiple consecutive values occur with the same total stopping time. For
example there are 17 consecutive values of n with o, (n) = 40 for 7083 < n < 7099. A
related phenomenon is that over short ranges of n the function o (n) tends to assume only
a few values (C. W. Dodge [70]). As an example the values of o4 (n) for 1000 < n < 1099
are given in Table 3. Only 19 values for o, (n) are observed, for which a frequency count is
given in Table 4. Both of these phenomena have a simple explanation; they are caused by
coalescence of trajectories of different n’s after a few steps. For example the trajectories of
8k + 4 and 8k + 5 coalesce after 3 steps, for all k& > 0. More generally, the large number
of coalescences of numbers 1 and ny close together in size can be traced to the trivial cycle
(1,2), as follows. Suppose nj and no have o, (n1) = 0oo(no)(mod 2), and let o (ny) = r; >
0s0(n2) = r2. Then the trajectories of n; and no coalesce after at most r; — 1 iterations, since
T “Dny) = T ~D(ny) = 2, since the trajectory of ny continues to cycle around the trivial
cycle. If in addition A, —1(n1) = A,y —1(n2), which nearly always happens if n; and no are about
the same size, then the trajectories of 2"~k +ny, and 2"~k +na coalesce after at most 71 — 1
iterations, for £ > 0. In particular, o, (2" *lk—l—nl) = 05 (27 7l]§7+77,2) then holds for £ > 1. In
this case the original coalescence of n; and ng has produced an infinite arithmetic progression
(mod 2" ~1) of coalescences. The gradual accumulation of all these arithmetic progressions of

coalescences of numbers close together in size leads to the phenomena observed in Tables 3 and

20



Although the 3z 4+ 1 Conjecture asserts that all integers n have a finite total stopping time,
the strongest result proved so far concerning the density of the set of integers with a finite total

stopping time is much weaker.

21



TABLE 3. Values of the total stopping time o (n) for 1000 < n < 1099.

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090

—1009 | —1019 | —1029 | —1039 | —1049 | —1059 | —1069 | —1079 [ —1089 | —1099
0 72 42 34 80 23 23 80 18 31 31
1 91 42 34 26 80 61 80 107 88 31
2 72 72 42 80 80 53 80 23 31 23
3 29 72 42 99 80 53 50 18 88 23
4 45 26 10 80 23 53 23 18 31 23
5} 45 26 26 80 23 107 50 18 31 50
6 45 34 26 80 80 23 23 23 88 61
7 61 99 26 80 80 53 42 23 88 88
8 72 34 80 42 23 23 18 34 15 61
9 72 42 80 42 42 23 18 34 31 23

TABLE 4. Values of o (n) and their frequencies for 1000 < n < 1099.

Oso(n) freq. | 0o(n) freq. | ox(n) freq. | ooo(n) freq.
10 1 29 1 50 3 88 )
15 1 31 7 53 4 91 1
18 6 34 6 61 4 99 2
23 17 42 9 72 6 107 2
26 6 45 3 80 16

Theorem G (Crandall). Let

Tiotal(z) = [{n :n <z and o4 (n) < oo} .

Then there 1s a positive constant cq such that

Ttotal (T) >z

for all sufficiently large x. (Click here for the current best result.)

Assuming that the 3z + 1 Conjecture is true, one can consider the problem of determining
the expected size of the total stopping time function o (n). Crandall [28] and Shanks [63] were

guided by probabilistic heuristic arguments (like the one described earlier) to conjecture that
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the average order of o, (n) should be a constant times Inn; more precisely, that

X —1
1 4
— E Tso(n) ~ 2 (hl —> Inz .
T = 3

( Click here and here for further information on o4 (n).)

A modest amount of empirical evidence supports these conjectures, see [28].

2.6. Are there non-trivial cycles?

A first observation is that there are other cycles if negative integers are allowed in the domain of
the function. There is a cycle of period 1 starting from n = —1, and there are cycles of length 3
and 11 starting from n = =5 and n = —17, respectively. Bohm and Sontacchi [13] conjecture
that these cycles together with the cycles starting with » = 0 and n = 1 make up the entire
set of cycles occurring under iteration of T'(n) applied to the integers Z. Several authors have

proposed the following conjecture ([13], [28], [41], [67]).

FiniTE CycLES CONJECTURE. There are only a finite number of distinct cycles for the

function T(n) iterated on the domain Z.

One can easily show that for any given length k there are only a finite number of integers
n that are periodic under iteration by T with period k, in fact at most 2¥ such integers, as

observed by Bohm and Sontacchi [13]. To see this, substitute the equation (2.4) into

(2.23) TW(ny=n, neZ
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to obtain the equation

310++Ik_1 310++Ik—1 k-1 21
(2.24) (1 - T) n = ok ar Tt
There are only 2% choices for the 0 — 1 vector v = (zg,...,21_1), and for each choice of v

the equation (2.24) determines a unique rational solution n = n(v). Consequently there are
at most 2% solutions to (2.23). Béhm and Sontacchi also noted that this gives an (inefficient)
finite procedure for deciding if there are any cycles of a given length k, as follows: Determine
the rational number n(v) for each of the 2¢ vectors v, and for each n(v) which is an integer
test if (2.23) holds.

The argument of Béhm and Sontacchi is a very general one that makes use only of the
fact that the necessary condition (2.24) for a cycle has a unique solution when the values
x; are fixed. In fact, considerably more can be proved about the nonexistence of nontrivial
cyclic trajectories using special features of the necessary condition (2.24). For example, several
authors have independently found a much more efficient computational procedure for proving
the nonexistence of nontrivial cyclic trajectories of period < k; it essentially makes use of the
inequality

(1= eV < pe(v) |

which must hold for v = (g, z1,...,z) satisfying (2.24). This approach also allows one to
check the truth of the Coefficient Stopping Time Conjecture for all n with w(n) < k. The basic

result is as follows.
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Theorem H (Terras). For each k there is a finite bound M (k) given by

(2.25) M (k) = max{e; 1p;(v) : v admissible, length (v) =i <k}

such that w(n) < k tmplies that w(n) = o(n) whenever n > M (k). Consequently:

(i) If o(n) < oo for alln < M(k), then there are no non-trivial cycles of length

< k.

(ii) If w(n) = o(n) for alln < M(k), then w(n) < k implies w(n) = o(n).

Proof H The existence of the bound M (k) follows immediately from (2.14), and (ii)

follows immediately from this fact.

To prove (i), suppose a nontrivial cycle of length < k exists. We observed earlier
that if ng is the smallest element in a purely periodic nontrivial cycle of length < k&,
then w(ng) =7 < k and o(ng) = . The first part of the theorem then implies that

ng < M (k). This contradicts the hypothesis of (i). O

Theorem H can be used to show the nonexistence of nontrivial cycles of small period by
obtaining upper bounds for the M (k) and checking that condition (i) holds. This approach
has been taken by Crandall [28], Garner [34], Schuppar [61] and Terras [67]. In estimating
M (k), one can show that the quantities p;(v) are never very large, so that the size of M (k) is

essentially determined by how large




can get. The worst cases occur when 309 is a very close approximation to 27, i.e., when
1/[40] is a very good rational approximation to ¢ = logy3. The best rational approxima-
tions to ¢ are given by the convergents pp/q; of the continued fraction expansion of ¢ =
[1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3...]. Crandall [28] uses general properties of contin-

ued fraction convergents to obtain the following quantitative result.

Theorem I (Crandall). Let ng be the minimal element of a purely periodic trajectory

of period k. Then

3 M
(2.26) k> Zmin (¢, —o 1 |
2 g g

where p;/q; is any convergent of the continued fraction expansion of logy 3 with

J 24

As an application, use Yoneda's bound [2] that ny > 240 and choose j = 13 in (2.26), noting
that ¢13 = 190737 and ¢4 = 10590737, to conclude that there are no nontrivial cycles with
period length less than 275,000.

Further information about the nonexistence of nontrivial cyclic trajectories can be obtained

by treating the necessary condition (2.24) as an nonexponential Diophantine equation. Davidson

[29] calls a purely periodic trajectory of period k a circuit if there is a value ¢ for which
ng < T(ng) <--- < T(i>(’l’L0)

and
T (ng) > T+ (ng) > -+ > T®) (ng) =y,
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i.e., the parity vector vi(ng) = (zo(no),...,zr_1(ng)) has the special form

1, when 0<jy<[kb] -1,
(2.27) zj(ng) =
0, when [k0]<j<k-1,

where 6 = (log,3)~'. The cycle starting with ng = 1 is a circuit. Davidson observed that each

solution to the exponential Diophantine equation
(2.28) (29t — 3" h=29-1, a>1

gives rise to a circuit of length k = a + b with [k6] = b and ng = 2°h — 1, and conversely. (The
equation (2.28) is the necessary condition (2.24) specialized to the vector (2.27). R. Steiner [64]

showed that (a,b,h) =1,1,1) is the only solution of (2.28), thus proving the following result.
Theorem J (Steiner). The only cycle that is a circuit is the trivial cycle.

Proof J (sketch). Steiner’s method is to show first that any solution of (2.28) with
a > 4 has the property that (a + b)/b is a convergent in the continued fraction

expansion of log, 3, since (2.28) implies that

b
(2.29) 0< ‘% —log, 3

< ———F .
~ bln2(20 —1)

He checks that this rational approximation (a + b)/b is so good that it violates the
effective estimates of A. Baker [[10], p. 45] for linear forms in logarithms of algebraic

numbers if b > 1019, Finally he checks that (2.29) fails to hold for all that b < 10199

by computing the convergents of the continued fractions of log, 3 up to 10'%, O
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The most remarkable thing about Theorem J is the weakness of its conclusion compared to
the strength of the methods used in its proof. The proof of Theorem J does have the merit that
it shows that the coefficient Stopping Time Conjecture holds for the infinite set of admissible

vectors v of the form (2.27).

2.7. Do divergent trajectories exist?

Several authors have observed that heuristic probabilistic arguments suggest that no divergent

trajectories occur.

DIVERGENT TRAJECTORIES CONJECTURE. The function T : Z — Z has no dwergent

trajectories, 1.e., there exists no wnteger ng for which
(2.30) klim 1T ()| = oo .
If a divergent trajectory {T“") (ng) : 0 < k < oo} exists, it cannot be equidistributed
(mod 2). Indeed if one defines
N*(k)=|{j:j <kand TW(ng) =1 (mod 2)}|,

then it can be proved that the condition (2.30) implies that

N*(k
(2.31) lim inf (k)

i > (log, 3)7 !~ 63097 .

Theorem F constrains the possible behavior of divergent trajectories. Indeed, associated

to any divergent trajectory D = {T®)(ng) : k > 1} is the infinite set Up = {n : n € D and
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TW (n) > n for all k > 1}. Since o(n) = oo for all n € Up, Theorem F implies that

(2.32) Hn e Up :n <z} < crat

where n = .05004. Roughly speaking, (2.32) asserts that the elements of a divergent trajectory
cannot go to infinity “too slowly.”

2.8. Connections of the 32 + 1 problem to ergodic theory.

The study of the general behavior of the iterates of measure preserving functions on a measure
space is called ergodic theory. The 3z 4+ 1 problem has some interesting connections to ergodic
theory, because the function T extends to a measure-preserving function on the 2-adic integers
Z> defined with respect to the 2-adic measure. To explain this, I need some basic facts about

the 2-adic integers Zy, cf. [14], [50]. The 2-adic integers Zo consist of all series

a=ag+a2+a2’+---, all a;=0 or 1

where the {a; : 0 < i < oo} are called the 2-adic digits of o. One can define congruences
(mod 2%) on Zs by a = 3 (mod 2F) if the first k 2-adic digits of o and § agree. Addition and

multiplication on Zs are given by

X = a+fe X (mod 2¥) = a (mod 2%) + B(mod 2¥) for all k

X = af e X (mod 2%) = a (mod 2%) - f(mod 2%) for all k .
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The 2-adic valuation ||z on Zs is given by |0z = 0 and for o # 0 by |a]s = 27, where ay, is the

first nonzero 2-adic digit of «. The valuation ||2 induces a metric d on Zs defined by
d(o, 3) = | — 2 .

As a topological space Z» is compact and complete with respect to the metric d; a basis of open

sets for this topology is given by the 2-adic discs of radius 2~% about «:
Bi(o)=1{f € Zs:a=f (mod 2%)} .
Finally one may consistently define the 2-adic measure pa on Zs so that
pa(Br(a) =27 ;
in particular po(Zo) = 1. The integers Z are a subset of Zso; for example
~1=1+1-241-224-...

Now one can extend the definition of the function T': Z — Z given by (2.1) to T : Zo — Zs by

% , if =0 (mod?2),

T() = o
«

2 b}

if =1 (mod 2).

Ergodic theory is concerned with the extent to which iterates of a function mix subsets of
a measure space. [ will use the following basic concepts of ergodic theory specialized to the
measure space Zy with the measure ps. A measure-preserving function H : Zy — Z» is ergodic
if the only po-measurable sets E for which H—1(F) = E are Zs and the empty set, i.e., such a

function does such a good job of mixing points in the space that it has no nontrivial ps-invariant
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sets. It can be shown [[39], p. 36] that an equivalent condition for ergodicity is that
1 & :
wmN > pa(H I (B(e)) N Bi(B)) = pa( Bi(@)) pa(By(8)) = 27 FH)
1 =00 J:]

for all a, 8 € Z9 and all integers k,! > 0. This condition in turn is equivalent to the assertion

that for almost all a € Zs the sequence of iterates
{H'(a):i=0.1,2,...}
is uniformly distributed (mod Qk) for all £ > 1. A function H : Zio — Zo is strongly maxing if
Jim (B (Bi(e)) 0 Bi(f) =2

for all o, B € Zy and all k,[ > 0. Strongly mixing functions are ergodic.

=

The following result is a special case of a result of K. P. Matthews and A. M. Watts [51].

Theorem K The map T is a measure-preserving transformation of Zs which s
strongly maizing. Consequently it is ergodic, and hence for almost all o € Zo the
sequence

(T (a):4=0,1,2,...}

is uniformly distributed (mod 2%) for all k> 1.

Theorem K implies nothing about the behavior of T' on the set of integers Z because it is
a measure 0 subset of Zs. In fact, the trajectory {T("‘)(n) :4=0,1,2,...} of any integer n
can never have the property of the conclusion of Theorem K, for if the trajectory is eventually
periodic with period k, it cannot be uniformly distributed (mod 2*~1), while if it is a divergent
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trajectory, it cannot even be equidistributed (mod 2) by (2.31). Consequently, this connection
of the 3z + 1 problem to ergodic theory does not seem to yield any deep insight into the 3z + 1
problem itself.

There is, however, another connection of the 3z + 1 problem to ergodic theory of Zo that
may conceivably yield more information on the 3z + 1 problem. For each a € Z9 define the 0-1
variables z; by

T (@) = z; (mod 2) .

Now define the function Q~ : Zo — Z9 by Qo () = 3, where

(2.33) B=xg+ax2+ 2%+ .

The value Qo (@) thus encodes the behavior of all the iterates of o under T.
The following result has been observed by several people, including R. Terras and C. Pomer-

ance, but has not been explicitly stated before.

Theorem L The map Qoo : Lo — Zo is a continuous, one-one, onto, and measure-

preserving map on the 2-adic integers Zo.

Proof L This is essentially a consequence of Theorem B. Use the fact that Q ()
Qn(a)(mod 2™). For any «y, s in Zo, if |a; — as| <277, then o) = as (mod 27),
S0

Q1) = Qunlar) = Q) = Qoo (z)(mod 27) |
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so that |Qsc(@1) — Quc(a2)| < 27" and Q4 is continuous. If o) # aa, then a) #

a9 (mod 2") for some n, so that

Qoo(al) = Qn(al) = Qn(a2) = Qoo(CYZ) (mod 2")

and () 1s one-to-one. To see that (J is onto, given « one can find /3, so that

Qn(fn) = o (mod 2") ,

since @, is a permutation. Then |Quo(8,) — ala < 27" Now {3,} forms a Cauchy
sequence in the 2-adic metric and Zs9 is compact, hence the limiting value 5 of {3, }
satisfies Quo(3) = a. Now Q! is defined, and Q. () = Q;, () (mod 27) implies

that Q2! is continuous. O
The 3z + 1 Conjecture can be reformulated in terms of the function () as follows.

3x+1 CONJECTURE (Third form). Let NT denote the positive integers. Then Q.o(NT) C

2Z. In fact Quo(NT) C 2Z — Z.

For example Qo (1) = 372,2%" = —1/3, Qx(2) = —2/3, and Q. (3) = —20/3.

The behavior of the function ) under iteration is itself of interest. Let Qo denote the
set of all rational numbers having odd denominators, so that Q2 C Zs. The set Q2 consists of
exactly those 2-adic integers whose 2-adic expansion is finite or eventually periodic. The Finite

Cycles Conjecture is equivalent to the assertion that there is a finite odd integer M such that

1
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In fact one can take M = [[(2/ — 1), where the product runs over all integers [ for which there is

a cycle of minimal length [. As a hypothesis for further work I advance the following conjecture.
PERIODICITY CONJECTURE. QQo(Q2) = Qo.

For example, one may calculate that Qo (10) = —26/3, Qo (—26/3) = =54, Qo (—54) = —82/7,
Qoc(—82/7) =7/15. It can be shown that if n has a divergent trajectory, then the sequence
(zo(n),z1(n),z2(n),...) cannot be eventually periodic. As a consequence the truth of the
Periodicity Conjecture implies the truth of the Divergent Trajectories Conjecture.

Theorem B has a curious consequence concerning the fixed points of iterates of ).

Theorem M Suppose the kth iterate Qg;) of Qoo has a fized point o € Zo which us
not o fixed point of any Q(QIO) for 1 <1< k. Then k s a power of 2.

Proof M By hypothesis Qg@(a) = « and Qgc)(oz) =a; # «a, for 1 <1< k. All the
ay’s are distinct for 0 < [ < k, since Qg)(a) = gg)(a) implies Qg.fﬁlg)(a) = q,
since Qs is one-one and onto. Consequently one can pick m large enough so that

all the residue classes a; (mod 2™) are distinct, for 0 <1 < k, where ap = a. Now

the action of Q. (mod 2™) is exactly that of the permutation (),,. hence

Q' (a(mod 2™)) = a; (mod 2™)

™m

for 0 <1 < k. In particular (ap(mod 2™), «; (mod 2™),...,«ar_1 (mod 2™))
makes up a single cycle of the permutation Q,,, hence k is a power of 2 by Theo-
rem B. 0O
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3. Generalizations of 3z + 1 problem.

The 3241 problem can be generalized by considering other functions U : N — N defined on the
natural numbers N that are similar to the function T. The functions I consider to be similar
to the function T are the periodically linear functions, which are those functions U for which
there is a finite modulus d such that the function U when restricted to any congruence class
kE (mod d) is linear. Some reasons to study generalizations of the 3z + 1 problem are that they
may uncover new phenomena, they can indicate the limits of validity of known results, and they
can lead to simpler, more revealing proofs. Here I discuss three directions of generalizations of
the 3= + 1 problem. These deal with algorithmic decidability questions, with the existence of
stopping times for almost all integers, and with the fractional parts of (3/2)F.

3.1. Algorithmic decidability questions.

J. H. Conway [26] proved the remarkable result that a simple generalization of the 3z41 problem
is algorithmically undecidable. He considers the class F of periodically piecewise linear functions

g : N — N having the structure

(3.1) g(n) = nif n=4%k (modd) , for 0<k<d-1,

)
specified by the nonnegative integers (d, «, . .., aq_1). These are exactly the functions g : N —

N such that g(n)/n is periodic.



Theorem O (Conway). For every partial recursive function f defined on a subset D

of the natural numbers N there exists a function g : N — N such that
(1) g(n)/n is periodic (mod d) for some d and takes rational values.

(2) There is some iterate k > 1 such that g(m(Q"”) =2 for some § if and only if m
s D.

(3) g®(2m) = 270" for the minimal k > 1 such that ¢ (2™) is a power of 2.

Conway’s proof actually gives in principle a procedure for explicitly constructing such a function
g given a description of a Turing machine® that computes f. He carried out this procedure to
find a function g associated to a particular partial recursive function f having the property that
f(2Pn) = 2Pn+1 where p, is the nth prime; this is described in Guy [37].

By choosing a particular partial recursive function whose domain is not a recursive subset
of N, e.g., a function fy that encodes the halting problem for Turing machines, we obtain the

following corollary of Theorem O.

Theorem P (Conway). There exists a particular, explicitly constructible function
go : N — N such that go(n)/n is periodic (mod d) for a finite modulus d and takes
rational values, for which there is no Turing machine that, when given n, always
decides in a finite number of steps whether or not some iterate g(()k) (n) with k > 1

1s a power of 2.

2 5 . . . . . L. .
“Conway’s proof used Minsky machines, which have the same computational power as Turing machines.
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3.2. Existence of stopping times for almost all integers.

Several authors have investigated the range of validity of the result that T'(n) has a finite
stopping time for almost all integers n by considering more general classes of periodicity linear

functions. One such class G consists of all functions U = U(m,d, R) which are given by
n
d )
(3.2) Un)=< mn—r
d ’

if n=0 (mod d) ,

if n#0 (mod d),and r € R is such that

mn = r (mod d)

where m and d are positive integers with (m,d) =land R = {r; :r; =¢ (mod d),1 <1 <d—1}
is a fixed set of residue class representatives of the nonzero residue classes (mod d). The
3z + 1 function T is in the class G. H. Moéller [54] completely characterized the functions
U = U(m,d, R) in the set G which have a finite stopping time for almost all integers n. He

showed they are exactly those functions for which

(3.3) m < dY4D

E. Heppner [41] proved the following quantitative version of this result, thereby generalizing

Theorem D.

Theorem @) (Heppner). Let U = U(m,d, R) be a function in the class G.

(i) If m < dY=1)  then there ewist real numbers 81,85 > 0 such that for N =
[log x/log d] we have #{n :n < x and UN)(n) > nz=0} = O(z' %) as z — .
(i) If m > dY1 | then there ewist real numbers 63,64 > 0 such that for N =
[log z/log d] we have #{n:n <z and UN)(n) < nz®} = O(z'~%) as z — oo.
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J.-P. Allouche [1] has further sharpened Theorem Q and Matthews and Watts [51], [52] have
extended it to a larger class of functions.
It is a measure of the difficulty of problems in this area that even the following apparently

weak conjecture is unsolved.

EXISTENCE CONJECTURE. Let U be any function in the class G. Then:
(i) U has at least one purely periodic trajectory if m < d%/(d=1).

(ii) U has at least one divergent trajectory if m > dd/(d=1)

3.3. Fractional parts of(3/2)".

Attempts to understand the distribution (mod 1) of the sequence {(3/2)% : 1 < k < oo} have
uncovered oblique connections with ergodic-theoretic aspects of a generalization of the 3z + 1
problem. It is conjectured that the sequence (3/ 2)* is uniformly distributed (mod 1).

(This conjecture seems intractable at present.)

One approach to this problem is to determine what kinds of ( mod 1) distributions can occur
for sequences {(3/2)%¢ : 1 < k < o0}, where ¢ is a fixed real number. In this vein K. Mahler [49]
considered the problem of whether or not there exist real numbers &, which he called Z-numbers,

having the property that

k
3 1
(3.4) 0< <>g <g- k=Ll23...

38



where {x} = z—[z] is the fractional part of z. He showed that the set of Z-numbers is countable,
by showing that there is at most one Z-number in each interval [n.n + 1), for n = 1,2,3,....
He went on to show that a necessary condition for the existence of a Z-number in the interval

[n,n+ 1) is that the trajectory (n, W(n). W) (n),...) of n produced by the periodically linear

function
%, if n=0 (mod 2) ,
(3.5) Wi(n) =
' 1
3n2—|— . if n=1 (mod 2),
satisfy
(3.6) W (n) £ 3 (mod 4), 1<k< .

Mahler concluded from this that is unlikely that any Z-numbers exist. This is supported by the
following heuristic argument. The function W may be interpreted as acting on the 2-adic inte-
gers by (3.5), and it has properties exactly analogous to the properties of T' given by Theorem K.
In particular, for almost all 2-adic integers « the sequence of iterates (o, W(«), W(z)(a), .
has infinitely many values k with W) (o) = 3 (mod 4). Thus if a given n € Z behaves like
almost all 2-adic integers «, then (3.6) will not hold for n. Note that it is possible that all
the trajectories (n, W(n), W) (n),...) for n > 1 are uniformly distributed (mod 2*) for all k,
unlike the behavior of the function T'(n).

In passing, I note that the possible distributions (mod 1) of {(3/2)%¢: 1 < k < oo} for real

¢ have an intricate structure (see G. Choquet [16] [22] and A. D. Pollington [57], [58]). In
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particular, Pollington [58] proves that there are uncountably many real numbers £ such that

k
1 3 24
— < <—3 k=123,...,
> < <2>£ S k=123

in contrast to the at most countable number of solutions £ of (3.4).

4. Conclusion.

Is the 3z + 1 problem intractably hard? The difficulty of settling the 3z 4+ 1 problem seems
connected to the fact that it is a deterministic process that simulates “random” behavior. We
face this dilemma: On the one hand, to the extent that the problem has structure, we can
analyze it — yet it is precisely this structure that seems to prevent us from proving that it
behaves “randomly.” On the other hand, to the extent that the problem is structureless and
“random,” we have nothing to analyze and consequently cannot rigorously prove anything.
Of course there remains the possibility that someone will find some hidden regularity in the
3z + 1 problem that allows some of the conjectures about it to be settled. The existing general
methods in number theory and ergodic theory do not seem to touch the 3z + 1 problem; in
this sense it seems intractable at present. Indeed all the conjectures made in this paper seem
currently to be out of reach if they are true; I think there is more chance of disproving those
that are false.

If the 3x+1 problem s intractable, why should one bother to study it? One answer is provided
by the following aphorism: “No problem is so intractable that something interesting cannot be
said about it.” Study of the 3z + 1 problem has uncovered a number of interesting phenomena;

I believe further study of it may be rewarded by the discovery of other new phenomena. It also
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serves as a benchmark to measure the progress of general mathematical theories. For example,
future developments in solving exponential Diophantine equations may lead to the resolution
of the Finite Cycles Conjecture.

If all the conjectures made in this paper are intractable, where would one begin to do research
on this deceptively simple problem? As a guide to doing research, I ask questions. Here are a few
that occur to me: For the 3z + 1 problem, what restrictions are there on the growth in size of
members of a divergent trajectory assuming that one exists? What interesting properties does
the function ()o have? Is there some direct characterization of (J other than the recursive
definition (2.33)7
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