El Arte de la Programación Rápida

Backtracking

Problema ejemplo

- Vamos a analizar la técnica de backtracking a través de un ejemplo.
- El problema de las 8 reinas

Cómo ubicar 8 reinas en un tablero sin que se "amenacen" la una a la otra?

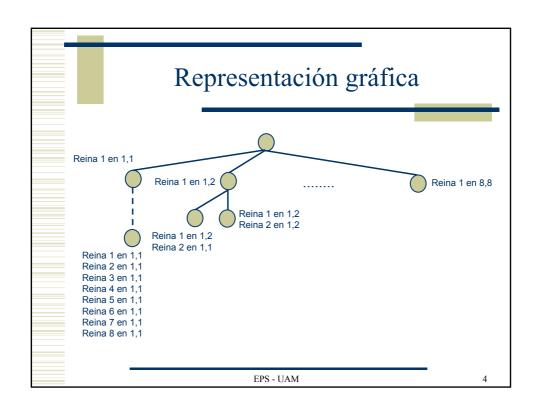
Generalizable a N reinas

Backtracking = Fuerza bruta

- Método sistemático que itera a través de todas las combinaciones posibles del espacio de búsqueda.
- Es una técnica general que debe ser adaptada para cada aplicación particular.
- Siempre puede encontrar todas las soluciones existentes
 - El **problema** es el **tiempo** que toma en hacerlo.

EPS - UAM

.



Backtracking: modelamiento

- En general representamos la solución como un vector a = (a₁,a₂,...,a_n), donde:
 - Cada a_i es seleccionado de un conjunto S_i.
- Puede representar, por ejemplo:
 - Una situación donde a_i es el *i-ésimo* elemento de una permutación.
 - Un subconjunto (a_i es verdadero sii el *i-ésimo* elemento del universo pertenece al conjunto.
 - Secuencia de movimientos en un juego o camino en un grafo, donde a_i contiene el *i-ésimo* evento en la secuencia.

EPS - UAM

- 5

Backtracking: algoritmo

- En cada paso:
 - Empezamos desde una solución parcial a = (a₁, a₂,...,a_k); (al principio, vacía).
 - Tratamos de extenderla agregando otro elemento al final.
 - Después, comprobamos si tenemos una solución.
 - Si la tenemos, podemos imprimirla, guardarla, contarla, etc.
 - Si no es solución, comprobamos si la solución parcial es todavía extensible para completar una solución
 - Si lo es, nos llamamos recursivamente y continuamos
 - Si no es extensible, borramos el último elemento de a e intentamos otra posibilidad para esa solución, si hay.

Backtracking: algoritmo

```
backtrack(int a[], int k, data input) {
  int c[MAX_CANDIDATES];
  int ncandidates;
  int i;

  if(is_a_solution(a,k,input)) {
    process_solution(a,k,input);
    else {
        k = k+1;
        ncandidates=construct_candidates(a,k,input,c);
        for (i=0;i<ncandidates;i++) {
            a[k] = c[i];
            backtrack(a,k,input);
            if (finished) return;
        }
    }
}</pre>
```

EPS - UAM

7

Backtracking: especializando

- is_a_solution(a,k,input)
 - Verifica si tenemos una solución. El parámetro input sirve para dar información de contexto
 - Por ejemplo, tamaño de la solución buscada
- construct candidates(a, k, input, c)
 - Llena un vector c con los posibles candidatos (hijos del nodo actual en el árbol), retornando el número de candidatos.
- process_solution(a,k)
 - Imprime, cuenta o hace lo necesario con la solución encontrada.

Backtracking: construcción de subconjuntos

- ◆ Podemos construir los 2ⁿ subconjuntos de n elementos iterando sobre los 2ⁿ posibles vectores de longitud *n*
 - Cada posición tiene un true o false.
 - Es decir, usando la notación general,
 S_k=(true, false).

EPS - UAM

9

Construcción de subconjuntos: algoritmo

```
is_a_solution(int a[],int k, int n) {
    return (k == n);
}

int construct_candidates(int a[],int k,int n, int c[]) {
    c[0] = TRUE;
    c[1] = FALSE;
    return 2;
}

process_solution(int a[], int k) {
    int i;
    printf("{");
    for (i=1; i<=k; i++)
        if(a[i] == TRUE) printf(" %d",i);
    printf(" }\n");
}</pre>
```

EPS - UAM

Construcción de subconjuntos: algoritmo

```
Generate_subsets(int n) {
   int a[NMAX];

   backtrack(a,0,n);
}

Salida:
{ 1 2 3 }
{ 1 2 }
{ 1 3 }
{ 1 3 }
{ 1 }
{ 2 3 }
{ 2 }
{ 3 }
{ 2 }
{ 3 }
{ 3 }
{ 1 }
}
```

Backtracking: construcción de permutaciones

- Ahora el candidato para la próxima "movida" depende de los valores de la solución parcial.
 - Para evitar repetir elementos, debemos verificar que el *i-ésimo* elemento es distinto de los anteriores.
 - Utilizando la notación, Sk = {1,...,n} a
 - a es una solución siempre que k=n.

Construcción de permutaciones: algoritmo

```
int construct_candidates(int a[],int k,int n, int c[]){
  int i;
  bool in_perm[NMAX];
  int candidates = 0;

for(i=1;i<=NMAX;i++) in_perm[i]=FALSE;
  for(i=0;i<k;i++) in_perm[ a[i] ] = TRUE;

for (i=1; i<=n;i++)
    if(in_perm[i]=FALSE{
        c[candidates] = i;
        candidates = candidates + 1;
    }
  return candidates;
}</pre>
```

EPS - UAM

13

¿Y las 8 reinas?

- Primera solución:
 - 1 vector para cada reina: (a_{1,1}, a_{1,2},...a_{64,64}), donde uno de los a_{i,i} es TRUE y el resto FALSE.
 - 2^{64} vectores posibles para cada reina ($\approx 2*10^{19}$)
- Antes de sacar cuentas, pensemos...
 - PC usan procesadores de ≈ 1Gh (1000 millones de operaciones por segundo)
 - Se puede esperar procesar unos pocos millones de elementos por segundo ($\approx 10^6$)

EPS - UAM

Representación

- Está claro que da lo mismo que la reina en la celda 1,1 sea la reina 1 o la reina x.
- Y está claro que en la solución no pueden haber dos reinas en la misma celda!
- ◆ Entonces sólo necesitamos un vector a = (a_{1,1}, a_{1,2},...a_{64,64}), donde que a_{i,j} es TRUE significa que hay una reina en esa celda (hay 8 TRUE y el resto FALSE).
- Esto lo podemos resolver con el cálculo de subconjuntos que ya vimos.
- Seguimos necesitando $\approx 2*10^{19}$ vectores.
 - Es decir, en el orden de 10¹³ segundos!!
 - "Sólo" unos.... 300000 años?

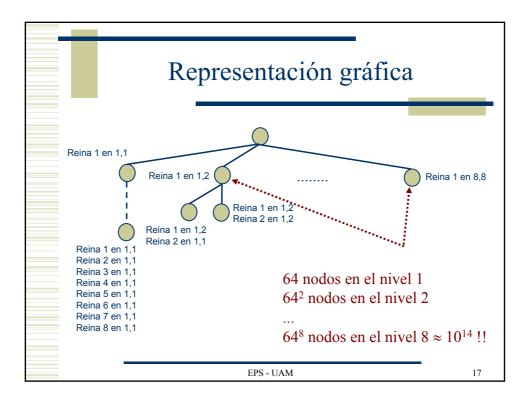
EPS - UAM

14

Representación y poda

- ◆ Podemos considerar que el i-ésimo elemento del vector solución nos dice explícitamente dónde está ubicada la reina i.
- (a₁, a₂,...a₀), donde cada aᵢ es un número entre 1 y 64.
- Poda: sólo consideramos candidatos a las celdas no amenazadas

EPS - UAM



Métodos de poda

- Es necesario reducir mucho mas el número de nodos a generar.
- Primero podemos quitar simetrías:
 - Ya sabes que las reinas son iguales.
 - Estoy generando la misma solución 8! = 40320 veces.
 - Es fácil evitarlo haciendo que la reina en la posición a_i esté siempre en una celda con número mayor que la está en la posición a_{i-1}.
 - El espacio de búsqueda será de $\approx 4*10^9$

EPS - UAM

Métodos de poda (II)

- Podemos darnos cuenta que siempre tendremos una y sólo una reina por fila.
- ◆ Entonces los candidatos para el reina i sólo pueden ser las celdas de la fila i.
 - Es decir, indico el número de columna.
- Nuestro espacio de búsqueda ahora es $8^8 \approx 1,677 * 10^7$
 - Grande, pero manejable...

EPS - UAM

10

Métodos de poda (III)

- Más aún, no puede haber dos reinas en la misma columna
- Entonces los números de columna de la solución son una permutación de [1..8].
 - Espacio de solución = 8! = 40320

EPS - UAM

Solución posible a N reinas

```
int construct_candidates(int a[],int k,int n,int c[]){
   int i,j;
   bool legal_move;
   int candidates = 0;
   for (i=1;i<=n;i++){
       legal_move = TRUE;
       for (j=1;j<k;j++){
        if(abs(k-j) == abs(i-a[j])) legal_move = FALSE;
        if(i==a[j])legal_move = FALSE;
       }
       if (legal_move == TRUE) c[candidates++] = i;
   }
}</pre>
```

Solución posible a N reinas (II)