|IFACES: ADAPTATIVE USER INTERFACESFOR
AMBIENT INTELLIGENCE

Javier Gomez Escribano
Universidad Autbnoma de Madrid
javier.gomeze@estudiante.uam.es

German Montoro Manrique
Universidad Autbnoma de Madrid
german.montoro@uam.es

Pablo A. Haya Caoll
Universidad Autbnoma de Madrid
pablo.haya@uam.es

ABSTRACT

In this paper we present an ontology language tdeinan environment and its graphical user interiactne field of
ambient intelligence. This language allows a simgédinition of the environment and automaticallyoguces its
associated interaction interface. The interfaceadyinally readjusts to the characteristics of theirenment and the
available devices. Therefore it adapts to the reittes of the people who have to use it and thesiources. The system
has been developed and tested employing a reakatribtelligence environment.

KEYWORDS

User interface definition languages, ambient ifgelice.

1. INTRODUCTION

Ambient intelligence provides “highly interactiveveronments that use embedded computation to observ
and participate in activities that have never grasly involved computation” [Coen, M.H. 1998].

In this kind of environments, computers usuallygké@den from users and system services are obtaine
by means of context awareness interaction. Thexefaroms, offices, classrooms and homes should be
provided with their own entity and improve the dtyadf life of their inhabitants, helping them ihdir daily
tasks. Moreover, this interaction must be adaptethé task, the environment, its occupants (witkirth
specific characteristics and special necessit@s), the available resources [Paterno, F., and fant
2002; Rayner, M. et al. 2001].

These environments provide new possibilities ofriattion [Weiser, M. 1994], offering new challenges
to the designers of the interfaces [Shafer, Sal.e2001]. This interaction could be in many diéfet ways,
with a mouse/keyboard in a PC, mobile devices ji&tsn, J., et al. 2000], oral interactions [Hag&., and
Montoro, G. 2006], etc.

In this paper we present the results in the prooéskefinition and implementation of a Graphicaleds
Interface (GUI) for intelligent environments thatagts to the domain of each environment.

This research is based on a real intelligent enm@nt. This environment is formed by a laboratory
furnished as a living room, provided with severavides. Among them, we can find lights and switclaes
electronic lock mechanism, speakers, microphonesdia tuner, a TV set, RFID cards, etc.

We have defined an ontology language to describetivironment. The ontology is formed by two parts,
one describing the environment in general, and dliger one describing the representation of the
environment. Then, the system merges this infolgnaso that users can easily access to the infaxmat

GUIs are automatically generated from the infororatin the ontology and dynamically adapt to the
device (i.e. to screen resolution), their purpaséoi ease the interaction with the environment ewwtrol
devices.

The paper is organized as follows. In section 2pn@/ide an overview of other languages to describe
ontologies and GUI. In Section 3 we present thelemgnted system: “AmIGO” and it extension: “iFaces”
in Section 4. Then, in Section 5, an applicatioraireal environment is presented. Finally, we agtelin
Section 6.

2. RELATED WORK

2.1 Ontologies

One of the most popular languages employed to eedimologies is Web Ontology Language (OWL)
[Smith, et al. 2004.], which is a formal recommeiimta of the World Wide Web Consortium (W3C). OWL
is intended to be used when the information indbeuments is going to be processed by the apmitsti
i.e. a web browser. There are three sublanguagies,DL and Full. Although it is used in some athe
ambient intelligence projects, such as MIMUS [Péfez et al. 2006a] and Delfos [Pérez, G. et ab62),
OWL is verbose and it is web-oriented. This makemi very suitable for a straightforward descoptof an
environment and its interfaces, which is one ofrttaén requisites of our project.

Another recommendation from the W3C is ResourcecBeson Framework (RDF) [Beckett, D. and
McBride, B. 2004], which was originally a meta-datedel but which has come to be used as a general
method of modeling information. It uses statemdatslefine resources, in the form subject — predicat
object expressions. A collection of these statemenan ontology. Its drawbacks are: its XML synigt00
verbose, the statement notation (subject — preslieatbject) is not expressive enough and its ghiitreify
statements is handled ambiguously.

To develop our ontology, we have to decide theasgmtation mechanism which allows us to model the
state of a single entity and also the environm8oime of these mechanisms are [Chen, G., and Kotz, D
2005; Strang, T., and Linnhoff — Popien, C. 2004]:

— Key—Value: The contextual information is reprdednas a set of pairs variable name (or key) and

value.

— Mark—up Languages: It uses a semi-structured whatel in a language similar to XML. Another

example could be Composite Capabilities/PrefereReetle, from the W3C [Klyne G., et al. 2004] and

User Agent Profile (UAProf) [Nilsson, M. 2002], usby the Open Mobile Alliance (OMA) Consortium.

— Tuples: It is a group of values each of a spedifiype. In example, tuples were used as the basic

interchange unit in the generative communicatiorchmaism, proposed by Gelernter [Gelernter, D.

1985]. This model has been used in projects asv@aréd [Grimm, D. 2004] and Gaia [Roman M., and

Campbell, H. 2000].

— Entity—Relation Model: This model is used in thetity—Relation (ER) paradigm of data bases. Other

models are derivated from ER, in example, a gragphégtension of ORM (Object — Role Modeling)

which models contextual information. Another exaenplhich combines the object oriented model and

ER model is Object Model (OM).

— Object Oriented Model: The context processingitteind the access to it is encased in objectd, Bo

ORM and OM, have simility with the Object Orienttbdel (OOM) but they are oriented to ER Model.

The

Active Object Model (AOM) only uses the object mtied paradigm. It was introduced in GUIDE project

[Cheverst, K., et al. 2000].

— Logic Model: The context is represented as a mrfufacts and rules which are described using firs

order predicated logic.

— Ontology Based Model: This model is based ineadichy categorization of the context. This panadig

has been used in representing contextual informatial in ubiquitous computation.

The data model we propose is a representationfofnmation relative to the world, regardless of the
source and the abstraction level. The most suitafaldels to represent a context are Object and Guyol
models [Strang, T., and Linnhoff— Popien, C. 20@jth divide classes and instances, where clagges a
organized hierarchically and each instance belém@gsclass of the hierarchy. Object Oriented Modelsase
algorithm part inside the objects. On the otherdhamtologies focus on defining data.

2.2 User Interfaces/ UIDL

To define Uls, User Interface Description Langua@i¢dls) are commonly employed. Some of them are
UIML, XIML and USIXML.

User Interface Markup Language (UIML) is an XML-bdslanguage whose goal is to express user
interfaces for multiple software platforms on diffat devices and for multiple applications [PhammurC.
2000]. The latest draft specification is UIML 3Mhich refines previous versions and adds suppart fo
dynamic and multimodal user interfaces. As a XMkivdion it is verbose, and it is complicated todifp
an interface, in case of a non-programmer person.

eXtensible Interface Markup Language (XIML) [Puerta, and Eisenstein, A. 2002] is a common
representation for interaction data. It was createtllfill some common requirements of UIDLs, suah
being able to relate the abstract and the condatte of an interface, enabling knowledge—baseasysto
exploit the captured data, etc. It allows adaptatio desktop or PDA interfaces but it needs an
“intermediate” presentation component with predsfirrelations to these controllers, so it only pdesi
some degree of automated mapping [Trewin, X.Sal.€2003].

User interface eXtesible Markup Language (UsiXMLYapderdonckt, J., et al. 2007] allows
programmers to describe multimodal user interfasés, different interaction modalities and, thateirfaces,
could be shown in many different platforms and desi It describes, in a high abstraction level gfleenents
of an interface and the interaction modalities .aldsiXML is intended for non-developers, such aalygsts,
specifiers, designers, human factors experts, grrdgaders, novice programmers, so a basic formatio
user interfaces is required.

However, such approaches have usually focused@ndimg support, not in the runtime phase, but only
in the design and authoring phase in order to tefgners to efficiently obtain different versidghat adapt
to the various interaction features.

All of them are languages to describe Uls. An extengb a Framework to create Uls is SUPPLE [Gajos,
K., and Weld, D.S. 2004] which is an applicatiord asrevice — independent system, that automatically
generates user interfaces for a wide variety gildisdevices. SUPPLE uses decision-theoretic opéititn
to render an interface from an abstract functiospécification and an interchangeable device model.
SUPPLE can use information from the user modeluimraatically adapt user interfaces to differenksas
and work styles while also providing extensive oasization mechanisms that allow for modificationghe
appearance, organization and navigational struatfitbe user interface. This has a big inconvenisinice
you must be a programmer to create the Ul.

3. AMIGO: AN ONTOLOGY FOR AMBIENT INTELLIGENCE

AmIGO is the acronym of “Ambient Intelligence GeakOntology”. This is an ontology description
language that defines the characteristics of aelliggént environment, the devices that are in figirt
properties, capabilities and relations.

To develop AmIGO we have chosen an ontology mobat &llows a representation of information
relative to the world, regardless of the sourcethedabstraction level.

The representation of the information includes naeidms to be able to describe the elements in the
environment. The data model is formed by two cledifferent parts, but strongly related. On the twaed,
a meta-language is required to define the chatatitsr and relations of the objects that can eixisthe
environment; on the other hand, a language is me&gelescribe each object that, in a given momient,
associated to the environment.

The first part is the model schema (see Figurelt¢)main elements are classes, which represent the
different possible categories of the real worlde Becond part is formed by the realizations ofdalaasses,
which are instances.

class [abstract] <class name> [extends <parent class name>]
r{"

[must property prop]

[may property prop]

[must —list]
[may —list]
[cap —list]

17

must — list = must properties “{" prop — list “}"
may — list = may properties “{" prop — list “}"
prop — list = name [*;” prop — list]

name = identifier [dv value]

cap — list = capability [cap — list]

Figure 1. Example: Syntax for class definition

Each class is formed by:

— Name: That is a unique identifier.

— Type: The category of the reality where it bekng

— Properties: A set of name-value pairs that moitelmitrinsic characteristics. Each property hagpe
that can be “Numeric”, “String”, “Boolean”, etc. dfrerties can be “must properties” which are the
properties that are considered to have always @evahd “may properties” which are the ones that are
optional.

— Relations: A connection with another class. Asslaan have more than one relation with the same
name, but the class that is related to must beréifit. A class cannot have a relation with itself.

— Capabilities: They represent an ability that asslhas to perform a task or an action. Since @Gtés
based on the actions that elements can perfornm ienaironment, capabilities are a key issue inrthei
development (See Section 4). One example is thabiép “isSwitchable” which has a property called
“status” that represents the physical state ofithdce (See Figure 2).

capability isSwitchable
{

must properties

status;

Figure 2. Example: Definition of the capability Switchable”

This schema includes a specialization mechanisngusimple inheritance.

Therefore, a class inherits all the properties eapabilities from another class. The inherited lss
called “offspring class”, and the class when itnBerited from is called “parent class”. An offamgiclass
can only have one parent, but a parent class canrhany offspring classes.

An example of a class and its properties and céipebiis given in Figure 3. The class “light” has
property called “name”, with its default value setTable Light” and the capability “isSwitchablétefined
in Figure 2).

An instance of a class gets the properties andbdéfees from its type of class, although they abilie
changed to its own if necessary.

To model a new environment it would only be necestaspecify the entities (this is, the realizasmf
the classes) that compose the environment anatlhigons between them.

The communication mechanism used is a blackboardemavhich is a middleware between “real
world”, Uls and applications [Haya, P.A., et al02]. The blackboard stores all the data from tlaé weorld
devices. This provides coordination between thdieatons that interact with the environment, besmathey

don’t have to be synchronized either in time orcgpdt is very useful for the reconfiguration ofndynic
environments, since components appear and disapleealy for the applications.

class light extends actuator

{
must property name dv “Table light”;
capability isSwitchable;

Figure 3. Example: A class definition

4. IFACES: AN EXTENSION OF AMIGO FOR USER INTERFACES

iFaces (a contraction of interfaces) is an extensfoAmIGO that has all the information referredthe
representation of the elements of the environmientthe GUI.

Interfaces are generated automatically becauseoti@ogy has the representation properties of an
interface and their default values. They can baegbd, to make the interface adapt to the user qametes.

Since Uls are based on the actions that elementpedorm in an environment, the set of represantat
objects is fixed by the capabilities that a clags. T he capabilities are associated to the classbshe same
capability can be associated to several classes.

The property of a capability has three defaultitaites: “iFaceType” (interface type), which defirteg
representation object for the property, “iName”témface name), which is a name to identify the
representation object and “iText” (interface textpich contains information relative to the texatlihas to
be shown for each different possible state of #peasentation object.

The representation objects can be buttons, slidedsspinners, lists, check boxes, colored boxeas, te
boxes and dynamic and static frames.

Every class has also some default properties. @tleem is the property “ilcon” (interface icon), igh
specifies the corresponding graphical icon for thass. Classes can also have an “iName” propleatyi$ a
descriptive name of the class and is used as e ditithe group of class’ objects. These are optiona
properties; if users don't specify an icon, theeifdace would employ a standard image, and the clas®e
would be used for the title.

class light extends actuator

{

must property name dv “Table light”;
may properties

ilcon dv “icon.jpg”;
iName dv “Living ceiling light”;

capability isSwitchable:status:representation:graphics
must properties
iFaceType dv “Button”;

iName dv “Status™ Living ceiling light
iText dv “Turn ON&Turn OFF”; Status

}

Figure 4. Representation of a class “light” anddhephical objects that it generates
For example, from the descriptions in Figures 2 ani$ very easy to define a class light (See Egyr
with the graphical icon “icon.jpg”. Besides, theoperty “status” of its capability “isSwitchable” is
represented graphically by a “Button”. The title mayed in the graphical representation of this Bwitt

would be “Status” and the text for its possibleedadTurn ON” and “Turn OFF". The title of the gnowf
objects is “Living ceiling light”, as it defined ifiName” property.

Since classes and their representation are alréafiyed, a new interface would be generated only by
specifying the entities that compose the envirortimiEmat representation would take the default vakoe its
representation objects, so no programming knowledgeequired. Just in the case the user wanted to
customize the interface it would be necessary shatwould have some knowledge about the ontology an
interface description languages.

5. APPLICATION IN A REAL WORLD ENVIRONMENT

To develop and test the application, we have usedléscription languages defined in Sections 3awith
a real ambient intelligence environment. It is cosgd by lights and switches, an electronic lock
mechanism, speakers, microphones, a radio turiér,set, RFID cards, etc. (Figure 5).

Coach sensors

_..Db:u'i' RFID-reader

“Augmented
telephone

Augmented tgble ; EIB swiich

@ Diego Sinova

Figure 5. Screenshot of the environment

After defining the instances of the classes, therface is automatically generated. The information
represented in the interface corresponds with teenents modeled in the ontology. Their disposition
dynamically adapt to the screen resolution of theick to provide a clear view of all the elememtghe
environment. An example of the generated interfac¢his environment can be seen in Figure 6.

This makes possible to use the interface in a Pddesktop computer or any other available device. |
the user changes the size of the window or theluggon of the screen the size and disposition @& th
elements of the interface automatically adjusttte hew situation. For instance enlarging the iataf
window automatically increases the size of its @pts, adapting them to everyone necessities.

“Ambiental Inte! ity Amilab

Figure 6. Example of an automatically created gicghuser interface

6. CONCLUSIONSAND FUTURE WORK

In this paper we have presented a language foridesg an ambient intelligence environment and its
components, as well as their representation iraptgcal user interface.

Since OWL is verbose and web—oriented, makes itvaot suitable for a straightforward description of
an environment and its interfaces, which is onthefmain requisites of our project.

In Section 2.2 some UIDLs were presented. Theyxdiié — based languages. From our point of view,
XML is not suitable as a high-level language. YeMIX is desirable for application interoperatibility,
describing or personalizing a complex interfaceldde a difficult issue for a programmer. That ie®f the
reasons why we decided to choose a non XML-baseplibge.

Defining the GUI is a straightforward task. Namitiigg components in the environment and their types
would be enough to automatically create the interfabecause the default representation is already
predefined. Just in the case the user wanted tmmiee it she would need to have knowledge aboet th
ontology description language.

Therefore, the created GUIs fulfill the followingquisites:

— They are defined in a simple way, making themyeasreconfigure and implement in different

environments, and even by people without speafitihical knowledge.

— They dynamically adapt to the particular chandsties of the available devices, and thereforeéht®

people who have to use it.

These interfaces have been developed and testeceal ambient intelligence environment.

For future work the GUIs would need to be ablegconfigure dynamically in runtime. A graphical tool
would also help to manage the ontological inforomatinore easily.

ACKNOWLEDGEMENT

This work has been partly funded by HADA projeatmber TIN2007 — 64718 and the UAM — Indra Chair
in Ambient Intelligence.

REFERENCES

Beckett, D. and McBride, B. 2004. RDF/XML Syntax Speaifion (Revised) W3C Recommendation, 10 February 2004
Chen, G., and Kotz, D. 2005. Policy-Driven Data Breation for Context-Aware Applications. Pervasifemputing
and Communications, 2005. PerCom 2005. Third |IEE&ational Conference on Publication. 8-12 Marc®320

Cheverst, K., et al. 2000. Experiences of Develomnd Deploying a Context—-Aware Tourist Guide: ThelGit)
Project. Proceedings of the 6th annual internati@monference on Mobile computing and networkingstBo,
Massachusetts.

Coen, M.H. 1998. Design Principles for Intelligemivitonments. Proceedings of the AAAI Spring Sympasion
Intelligent Environments (AAAI98).

Eisenstein, J., et al. 2000. Adapting to mobileterts with user — interface modelling. Workshophabile Computing
Systems and Applications, Monterey, CA, 2000.

Gajos, K., and Weld, D.S. 2004. SUPPLE: Automalyc8lenerating User Interfaces. Proceedings of II'Bunchal,
Portugal, 2004.

Gelernter, D. 1985. Generative communication indainACM Transactions on Programming Languages aiste Sy
(TOPLAS), January 1985

Grimm, D. 2004. One.world: Experiences with a Psm@ Computing Architecture. Pervasive ComputingEEE
Publication Date: July-Sept. 2004

Haya, P. A., Montoro, G., and Alaman, X. A protaypf a context — based architecture for intelligbome
environments. International Conference on CooperdiiNermation Systems (CooplS 2004), Larnaca, Cyprus.
October 25 — 29, 2004.

Haya, P. A., and Montoro, G. A spoken interfacesbdasn the contextual modelling of smart homes. HGlted papers
of Interaccién 2004, Raquel Navarro — Prieto and less — Vidal, Eds. Springer Verlag. ISBN: 1-40214-3.
January, 2006.

Klyne G., et al. 2004. Composite Capability/PrefeeerProfiles (CC/PP): Structure and Vocabularies W3C
Recommendation, 15 January 2004

Nilsson, M. 2002. UAProf. An overview. W3C DeliveBpntext Workshop, 4/5 March 2002.

Paterno, F., and Santoro, C. 2002. One Model Mateyfates. Proceedings of CADUI, 2002.

Pérez, G. et al. 2006b. Integrating OWL Ontologigth a Dialogue Manager. SEPLN Magazine, Vol. 330@) Pag.
153 -160

Pérez, G., et al. 2006a. A multimodal architectio,ehome control by disabled users Spoken Languiagghnology
Workshop, 2006. IEEE, Pag. 134 — 137

Phanouriou, C. 2000. UIML: A Device — Independen¢tdsterface Markup Language. PhD Thesis.

Puerta, A., and Eisenstein, A. 2002. XIML: A UnisarLanguage for User Interfaces. XIML White paper

Rayner, M. et al. 2001. Plug and Play Speech Uraletstg. 2nd SIGdial Workshop on Discourse and Djado
September 2001.

Roman M., and Campbell, H. 2000. Gaia: Enabling ActSpaces. Proceeding of' ACM SIGOPS European
Workshop, September 17th-20th, 2000. Kolding, Deknyap. 229-234.

Shafer, S., et al. 2001. Interaction Issues in &dnt Aware Intelligent Environments. Human — Conepuhteraction,
16, Pag. 363 — 378, 2001.

Smith, et al. 2004. OWL Web Ontology Language Gltdéors W3C Recommendation, 10 February 2004

Strang, T., and Linnhoff — Popien, C. 2004. A Contedideling Survey. UbiComp 1st International Workshap
Advanced Context Modelling, Reasoning and Managenattingham (2004) Pag. 34 — 41

Trewin, X.S., et al. 2003. Abstract user interfeggresentations: how well do they support univessakss? Proceedings
of the ACM Conference on Universal usability. 2003

Vanderdonckt, J., et al. 2007. Distributed Useetiaices in Ambient Environment. Proc. of Aml — 0bNé&hop on
“Model Driven Software Engineering for Ambient IHtgence Applications” MDA — AMIO7 (Darmstadt, Nomgber
7 — 10, 2007), Lecture Notes in Computer Scienpen§er — Verlag, Berlin, 2007, Pag. 44 — 52

Weiser, M. 1994. The world is not a desktop. ACMefattions, 1, 1, Pag. 7 — 8, 1994.

