
IFACES: ADAPTATIVE USER INTERFACES FOR
AMBIENT INTELLIGENCE

Javier Gómez Escribano
Universidad Autónoma de Madrid
javier.gomeze@estudiante.uam.es

Germán Montoro Manrique
Universidad Autónoma de Madrid

german.montoro@uam.es

Pablo A. Haya Coll
Universidad Autónoma de Madrid

pablo.haya@uam.es

ABSTRACT

In this paper we present an ontology language to model an environment and its graphical user interface in the field of
ambient intelligence. This language allows a simple definition of the environment and automatically produces its
associated interaction interface. The interface dynamically readjusts to the characteristics of the environment and the
available devices. Therefore it adapts to the necessities of the people who have to use it and their resources. The system
has been developed and tested employing a real ambient intelligence environment.

KEYWORDS

User interface definition languages, ambient intelligence.

1. INTRODUCTION

Ambient intelligence provides “highly interactive environments that use embedded computation to observe
and participate in activities that have never previously involved computation” [Coen, M.H. 1998].

In this kind of environments, computers usually keep hidden from users and system services are obtained
by means of context awareness interaction. Therefore, rooms, offices, classrooms and homes should be
provided with their own entity and improve the quality of life of their inhabitants, helping them in their daily
tasks. Moreover, this interaction must be adapted to the task, the environment, its occupants (with their
specific characteristics and special necessities), and the available resources [Paterno, F., and Santoro, C.
2002; Rayner, M. et al. 2001].

These environments provide new possibilities of interaction [Weiser, M. 1994], offering new challenges
to the designers of the interfaces [Shafer, S., et al. 2001]. This interaction could be in many different ways,
with a mouse/keyboard in a PC, mobile devices [Eisenstein, J., et al. 2000], oral interactions [Haya, P.A., and
Montoro, G. 2006], etc.

In this paper we present the results in the process of definition and implementation of a Graphical User
Interface (GUI) for intelligent environments that adapts to the domain of each environment.

This research is based on a real intelligent environment. This environment is formed by a laboratory
furnished as a living room, provided with several devices. Among them, we can find lights and switches, an
electronic lock mechanism, speakers, microphones, a radio tuner, a TV set, RFID cards, etc.

We have defined an ontology language to describe the environment. The ontology is formed by two parts,
one describing the environment in general, and the other one describing the representation of the
environment. Then, the system merges this information, so that users can easily access to the information.

GUIs are automatically generated from the information in the ontology and dynamically adapt to the
device (i.e. to screen resolution), their purpose is to ease the interaction with the environment and control
devices.

The paper is organized as follows. In section 2 we provide an overview of other languages to describe
ontologies and GUI. In Section 3 we present the implemented system: “AmIGO” and it extension: “iFaces”
in Section 4. Then, in Section 5, an application in a real environment is presented. Finally, we conclude in
Section 6.

2. RELATED WORK

2.1 Ontologies

One of the most popular languages employed to define ontologies is Web Ontology Language (OWL)
[Smith, et al. 2004.], which is a formal recommendation of the World Wide Web Consortium (W3C). OWL
is intended to be used when the information in the documents is going to be processed by the applications,
i.e. a web browser. There are three sublanguages, Lite, DL and Full. Although it is used in some others
ambient intelligence projects, such as MIMUS [Pérez, G., et al. 2006a] and Delfos [Pérez, G. et al. 2006b],
OWL is verbose and it is web-oriented. This makes it not very suitable for a straightforward description of an
environment and its interfaces, which is one of the main requisites of our project.

Another recommendation from the W3C is Resource Description Framework (RDF) [Beckett, D. and
McBride, B. 2004], which was originally a meta-data model but which has come to be used as a general
method of modeling information. It uses statements to define resources, in the form subject – predicate –
object expressions. A collection of these statements is an ontology. Its drawbacks are: its XML syntax is too
verbose, the statement notation (subject – predicate – object) is not expressive enough and its ability to reify
statements is handled ambiguously.

To develop our ontology, we have to decide the representation mechanism which allows us to model the
state of a single entity and also the environment. Some of these mechanisms are [Chen, G., and Kotz, D.
2005; Strang, T., and Linnhoff – Popien, C. 2004]:

– Key–Value: The contextual information is represented as a set of pairs variable name (or key) and
value.
– Mark–up Languages: It uses a semi–structured data model in a language similar to XML. Another
example could be Composite Capabilities/Preferences Profile, from the W3C [Klyne G., et al. 2004] and
User Agent Profile (UAProf) [Nilsson, M. 2002], used by the Open Mobile Alliance (OMA) Consortium.
– Tuples: It is a group of values each of a specified type. In example, tuples were used as the basic
interchange unit in the generative communication mechanism, proposed by Gelernter [Gelernter, D.
1985]. This model has been used in projects as One.World [Grimm, D. 2004] and Gaia [Román M., and
Campbell, H. 2000].
– Entity–Relation Model: This model is used in the Entity–Relation (ER) paradigm of data bases. Other
models are derivated from ER, in example, a graphical extension of ORM (Object – Role Modeling)
which models contextual information. Another example which combines the object oriented model and
ER model is Object Model (OM).
– Object Oriented Model: The context processing details and the access to it is encased in objects. Both,
ORM and OM, have simility with the Object Oriented Model (OOM) but they are oriented to ER Model.
The
Active Object Model (AOM) only uses the object oriented paradigm. It was introduced in GUIDE project
[Cheverst, K., et al. 2000].
– Logic Model: The context is represented as a group of facts and rules which are described using first
order predicated logic.
– Ontology Based Model: This model is based in a hierarchy categorization of the context. This paradigm
has been used in representing contextual information and in ubiquitous computation.

The data model we propose is a representation of information relative to the world, regardless of the
source and the abstraction level. The most suitable models to represent a context are Object and Ontology
models [Strang, T., and Linnhoff– Popien, C. 2004]. Both divide classes and instances, where classes are
organized hierarchically and each instance belongs to a class of the hierarchy. Object Oriented Models encase
algorithm part inside the objects. On the other hand, ontologies focus on defining data.

2.2 User Interfaces / UIDL

To define UIs, User Interface Description Languages (UIDLs) are commonly employed. Some of them are
UIML, XIML and USIXML.

User Interface Markup Language (UIML) is an XML-based language whose goal is to express user
interfaces for multiple software platforms on different devices and for multiple applications [Phanouriou, C.
2000]. The latest draft specification is UIML 3.1, which refines previous versions and adds support for
dynamic and multimodal user interfaces. As a XML derivation it is verbose, and it is complicated to modify
an interface, in case of a non-programmer person.

eXtensible Interface Markup Language (XIML) [Puerta, A., and Eisenstein, A. 2002] is a common
representation for interaction data. It was created to fulfill some common requirements of UIDLs, such as
being able to relate the abstract and the concrete data of an interface, enabling knowledge–based systems to
exploit the captured data, etc. It allows adaptation to desktop or PDA interfaces but it needs an
“intermediate” presentation component with predefined relations to these controllers, so it only provides
some degree of automated mapping [Trewin, X.S., et al. 2003].

User interface eXtesible Markup Language (UsiXML) [Vanderdonckt, J., et al. 2007] allows
programmers to describe multimodal user interfaces, with different interaction modalities and, that interfaces,
could be shown in many different platforms and devices. It describes, in a high abstraction level, the elements
of an interface and the interaction modalities also. UsiXML is intended for non-developers, such as analysts,
specifiers, designers, human factors experts, project leaders, novice programmers, so a basic formation in
user interfaces is required.

However, such approaches have usually focused on providing support, not in the runtime phase, but only
in the design and authoring phase in order to help designers to efficiently obtain different versions that adapt
to the various interaction features.

All of them are languages to describe UIs. An example of a Framework to create UIs is SUPPLE [Gajos,
K., and Weld, D.S. 2004] which is an application and device – independent system, that automatically
generates user interfaces for a wide variety of display devices. SUPPLE uses decision-theoretic optimization
to render an interface from an abstract functional specification and an interchangeable device model.
SUPPLE can use information from the user model to automatically adapt user interfaces to different tasks
and work styles while also providing extensive customization mechanisms that allow for modifications to the
appearance, organization and navigational structure of the user interface. This has a big inconvenient, since
you must be a programmer to create the UI.

3. AMIGO: AN ONTOLOGY FOR AMBIENT INTELLIGENCE

AmIGO is the acronym of “Ambient Intelligence General Ontology”. This is an ontology description
language that defines the characteristics of an intelligent environment, the devices that are in it, their
properties, capabilities and relations.

To develop AmIGO we have chosen an ontology model that allows a representation of information
relative to the world, regardless of the source and the abstraction level.

The representation of the information includes mechanisms to be able to describe the elements in the
environment. The data model is formed by two clearly different parts, but strongly related. On the one hand,
a meta-language is required to define the characteristics and relations of the objects that can exist in the
environment; on the other hand, a language is needed to describe each object that, in a given moment, is
associated to the environment.

The first part is the model schema (see Figure 1). Its main elements are classes, which represent the
different possible categories of the real world. The second part is formed by the realizations of these classes,
which are instances.

Figure 1. Example: Syntax for class definition

Each class is formed by:
– Name: That is a unique identifier.
– Type: The category of the reality where it belongs.
– Properties: A set of name-value pairs that models its intrinsic characteristics. Each property has a type
that can be “Numeric”, “String”, “Boolean”, etc. Properties can be “must properties” which are the
properties that are considered to have always a value and “may properties” which are the ones that are
optional.
– Relations: A connection with another class. A class can have more than one relation with the same
name, but the class that is related to must be different. A class cannot have a relation with itself.
– Capabilities: They represent an ability that a class has to perform a task or an action. Since GUIs are
based on the actions that elements can perform in an environment, capabilities are a key issue in their
development (See Section 4). One example is the capability “isSwitchable” which has a property called
“status” that represents the physical state of the device (See Figure 2).

Figure 2. Example: Definition of the capability “isSwitchable”

This schema includes a specialization mechanism using simple inheritance.
Therefore, a class inherits all the properties and capabilities from another class. The inherited class is

called “offspring class”, and the class when it is inherited from is called “parent class”. An offspring class
can only have one parent, but a parent class can have many offspring classes.

An example of a class and its properties and capabilities is given in Figure 3. The class “light” has a
property called “name”, with its default value set to “Table Light” and the capability “isSwitchable” (defined
in Figure 2).

An instance of a class gets the properties and capabilities from its type of class, although they could be
changed to its own if necessary.

To model a new environment it would only be necessary to specify the entities (this is, the realizations of
the classes) that compose the environment and the relations between them.

The communication mechanism used is a blackboard model, which is a middleware between “real
world”, UIs and applications [Haya, P.A., et al. 2004]. The blackboard stores all the data from the real world
devices. This provides coordination between the applications that interact with the environment, because they

class [abstract] <class name> [extends <parent class name>]
[“{ ”
 [must property prop]
 [may property prop]
 [must – list]
 [may – list]
 [cap – list]
“} ”]
must – list = must properties “{” prop – list “}”
may – list = may properties “{” prop – list “}”
prop – list = name [“;” prop – list]
name = identifier [dv value]
cap – list = capability [cap – list]

capability isSwitchable
{
 must properties
 {

status;
 }
}

don’t have to be synchronized either in time or space. It is very useful for the reconfiguration of dynamic
environments, since components appear and disappear clearly for the applications.

Figure 3. Example: A class definition

4. IFACES: AN EXTENSION OF AMIGO FOR USER INTERFACES

iFaces (a contraction of interfaces) is an extension of AmIGO that has all the information referred to the
representation of the elements of the environments for the GUI.

Interfaces are generated automatically because the ontology has the representation properties of an
interface and their default values. They can be changed, to make the interface adapt to the user preferences.

Since UIs are based on the actions that elements can perform in an environment, the set of representation
objects is fixed by the capabilities that a class has. The capabilities are associated to the classes and the same
capability can be associated to several classes.

The property of a capability has three default attributes: “iFaceType” (interface type), which defines the
representation object for the property, “iName” (interface name), which is a name to identify the
representation object and “iText” (interface text), which contains information relative to the text that has to
be shown for each different possible state of the representation object.

The representation objects can be buttons, sliders and spinners, lists, check boxes, colored boxes, text
boxes and dynamic and static frames.

Every class has also some default properties. One of them is the property “iIcon” (interface icon), which
specifies the corresponding graphical icon for that class. Classes can also have an “iName” property that is a
descriptive name of the class and is used as a title of the group of class’ objects. These are optional
properties; if users don’t specify an icon, the interface would employ a standard image, and the class name
would be used for the title.

Figure 4. Representation of a class “light” and the graphical objects that it generates
For example, from the descriptions in Figures 2 and 3, is very easy to define a class light (See Figure 4)

with the graphical icon “icon.jpg”. Besides, the property “status” of its capability “isSwitchable” is
represented graphically by a “Button”. The title employed in the graphical representation of this Button

class light extends actuator
{
 must property name dv “Table light”;
 may properties
 {
 iIcon dv “icon.jpg”;
 iName dv “Living ceiling light”;
 }
 capability isSwitchable:status:representation:graphics
 {
 must properties
 {
 iFaceType dv “Button”;
 iName dv “Status”;
 iText dv “Turn ON&Turn OFF”;
 }
 }
}

class light extends actuator
{
 must property name dv “Table light”;
 capability isSwitchable;
}

would be “Status” and the text for its possible states “Turn ON” and “Turn OFF”. The title of the group of
objects is “Living ceiling light”, as it defined in “iName” property.

Since classes and their representation are already defined, a new interface would be generated only by
specifying the entities that compose the environment. That representation would take the default values for its
representation objects, so no programming knowledge is required. Just in the case the user wanted to
customize the interface it would be necessary that she would have some knowledge about the ontology and
interface description languages.

5. APPLICATION IN A REAL WORLD ENVIRONMENT

To develop and test the application, we have used the description languages defined in Sections 3 and 4 with
a real ambient intelligence environment. It is composed by lights and switches, an electronic lock
mechanism, speakers, microphones, a radio tuner, a TV set, RFID cards, etc. (Figure 5).

Figure 5. Screenshot of the environment

After defining the instances of the classes, the interface is automatically generated. The information
represented in the interface corresponds with the elements modeled in the ontology. Their disposition
dynamically adapt to the screen resolution of the device to provide a clear view of all the elements in the
environment. An example of the generated interface for this environment can be seen in Figure 6.

This makes possible to use the interface in a PDA, a desktop computer or any other available device. If
the user changes the size of the window or the resolution of the screen the size and disposition of the
elements of the interface automatically adjust to the new situation. For instance enlarging the interface
window automatically increases the size of its elements, adapting them to everyone necessities.

Figure 6. Example of an automatically created graphical user interface

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a language for describing an ambient intelligence environment and its
components, as well as their representation in a graphical user interface.

Since OWL is verbose and web–oriented, makes it not very suitable for a straightforward description of
an environment and its interfaces, which is one of the main requisites of our project.

In Section 2.2 some UIDLs were presented. They are XML – based languages. From our point of view,
XML is not suitable as a high-level language. Yet XML is desirable for application interoperatibility,
describing or personalizing a complex interface could be a difficult issue for a programmer. That is one of the
reasons why we decided to choose a non XML-based language.

Defining the GUI is a straightforward task. Naming the components in the environment and their types
would be enough to automatically create the interface, because the default representation is already
predefined. Just in the case the user wanted to customize it she would need to have knowledge about the
ontology description language.

Therefore, the created GUIs fulfill the following requisites:
– They are defined in a simple way, making them easy to reconfigure and implement in different
environments, and even by people without specific technical knowledge.
– They dynamically adapt to the particular characteristics of the available devices, and therefore to the
people who have to use it.
These interfaces have been developed and tested in a real ambient intelligence environment.
For future work the GUIs would need to be able to reconfigure dynamically in runtime. A graphical tool

would also help to manage the ontological information more easily.

ACKNOWLEDGEMENT

This work has been partly funded by HADA project number TIN2007 – 64718 and the UAM – Indra Chair
in Ambient Intelligence.

REFERENCES

Beckett, D. and McBride, B. 2004. RDF/XML Syntax Specification (Revised) W3C Recommendation, 10 February 2004
Chen, G., and Kotz, D. 2005. Policy-Driven Data Dissemination for Context-Aware Applications. Pervasive Computing

and Communications, 2005. PerCom 2005. Third IEEE International Conference on Publication. 8-12 March 2005
Cheverst, K., et al. 2000. Experiences of Developing and Deploying a Context–Aware Tourist Guide: The GUIDE

Project. Proceedings of the 6th annual international conference on Mobile computing and networking. Boston,
Massachusetts.

Coen, M.H. 1998. Design Principles for Intelligent Environments. Proceedings of the AAAI Spring Symposium on
Intelligent Environments (AAAI98).

Eisenstein, J., et al. 2000. Adapting to mobile contexts with user – interface modelling. Workshop on Mobile Computing
Systems and Applications, Monterey, CA, 2000.

Gajos, K., and Weld, D.S. 2004. SUPPLE: Automatically Generating User Interfaces. Proceedings of IUI’04. Funchal,
Portugal, 2004.

Gelernter, D. 1985. Generative communication in Linda. ACM Transactions on Programming Languages and Systems
(TOPLAS), January 1985

Grimm, D. 2004. One.world: Experiences with a Pervasive Computing Architecture. Pervasive Computing, IEEE
Publication Date: July-Sept. 2004

Haya, P. A., Montoro, G., and Alamán, X. A prototype of a context – based architecture for intelligent home
environments. International Conference on Cooperative Information Systems (CoopIS 2004), Larnaca, Cyprus.
October 25 – 29, 2004.

Haya, P. A., and Montoro, G. A spoken interface based on the contextual modelling of smart homes. HCI related papers
of Interacción 2004, Raquel Navarro – Prieto and Jess Lors – Vidal, Eds. Springer Verlag. ISBN: 1-4020-4204-3.
January, 2006.

Klyne G., et al. 2004. Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. W3C
Recommendation, 15 January 2004

Nilsson, M. 2002. UAProf. An overview. W3C Delivery Context Workshop, 4/5 March 2002.
Paterno, F., and Santoro, C. 2002. One Model Many Interfaces. Proceedings of CADUI, 2002.
Pérez, G. et al. 2006b. Integrating OWL Ontologies with a Dialogue Manager. SEPLN Magazine, Vol. 37 (2006) Pag.

153 – 160
Pérez, G., et al. 2006a. A multimodal architecture for home control by disabled users Spoken Language Technology

Workshop, 2006. IEEE, Pag. 134 – 137
Phanouriou, C. 2000. UIML: A Device – Independent User Interface Markup Language. PhD Thesis.
Puerta, A., and Eisenstein, A. 2002. XIML: A Universal Language for User Interfaces. XIML White paper
Rayner, M. et al. 2001. Plug and Play Speech Understanding. 2nd SIGdial Workshop on Discourse and Dialogue,

September 2001.
Román M., and Campbell, H. 2000. Gaia: Enabling Active Spaces. Proceeding of 9th ACM SIGOPS European

Workshop, September 17th-20th, 2000. Kolding, Denmark, pp. 229-234.
Shafer, S., et al. 2001. Interaction Issues in Context – Aware Intelligent Environments. Human – Computer Interaction,

16, Pag. 363 – 378, 2001.
Smith, et al. 2004. OWL Web Ontology Language Guide Editors W3C Recommendation, 10 February 2004
Strang, T., and Linnhoff – Popien, C. 2004. A Context Modeling Survey. UbiComp 1st International Workshop on

Advanced Context Modelling, Reasoning and Management, Nottingham (2004) Pag. 34 – 41
Trewin, X.S., et al. 2003. Abstract user interface representations: how well do they support universal access? Proceedings

of the ACM Conference on Universal usability. 2003
Vanderdonckt, J., et al. 2007. Distributed User Interfaces in Ambient Environment. Proc. of AmI – 07 Workshop on

“Model Driven Software Engineering for Ambient Intelligence Applications” MDA – AMI07 (Darmstadt, November
7 – 10, 2007), Lecture Notes in Computer Science, Springer – Verlag, Berlin, 2007, Pag. 44 – 52

Weiser, M. 1994. The world is not a desktop. ACM Interactions, 1, 1, Pag. 7 – 8, 1994.

