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Abstract. The Internet has opened new avenues for information ac-
cessing and sharing in a variety of media formats. Such popularity has
resulted in an increase of the amount of resources consumed in backbone
links, whose capacities have witnessed numerous upgrades to cope with
the ever-increasing demand for bandwidth. Consequently, network traffic
processing at today’s data transmission rates is a very demanding task,
which has been traditionally accomplished by means of specialized hard-
ware tailored to specific tasks. However, such approaches lack either of
flexibility or extensibility—or both. As an alternative, the research com-
munity has pointed to the utilization of commodity hardware, which may
provide flexible and extensible cost-aware solutions, ergo entailing large
reductions of the operational and capital expenditure investments. In
this chapter, we provide a survey-like introduction to high-performance
network traffic processing using commodity hardware. We present the
required background to understand the different solutions proposed in
the literature to achieve high-speed lossless packet capture, which are
reviewed and compared.
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1 Introduction

Leveraging on the widespread availability of broadband access, the Internet has
opened new avenues for information accessing and sharing in a variety of media
formats. Such popularity has resulted in an increase of the amount of resources
consumed in backbone links, whose capacities have witnessed numerous upgrades
to cope with the ever-increasing demand for bandwidth. In addition, the Inter-
net customers have obtained a strong position in the market, which has forced
network operators to invest large amounts of money in traffic monitoring on at-
tempts to guarantee the satisfaction of their customers—which may eventually
entail a growth in operators’ market share.

Nevertheless, keeping pace with such ever-increasing data transmission rates
is a very demanding task, even if the applications built on top of a monitoring
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system solely capture to disk the headers of the traversing packets, without
further processing them. For instance, traffic monitoring at rates ranging from
100 Mb/s to 1 Gb/s was considered very challenging a few years ago, whereas
contemporary commercial routers typically feature 10 Gb/s interfaces, reaching
aggregated rates as high as 100 Tb/s.

As a consequence, network operators have entrusted to specialized Hard-
Ware (HW) devices (such as FPGA-based solutions, network processors or high-
end commercial solutions) with their networks monitoring. These solutions are
tailored to specific tasks of network monitoring, thus achieving a high-grade
of performance—e.g., lossless capture. However, these alternatives for network
traffic monitoring either lack of flexibility or extensibility (or both), which are
mandatory nowadays for large-scale network monitoring. As a result, there have
been some initiatives to provide some extra functionalities in network elements
through supported Application Programming Interfaces (APIs) to allow the ex-
tension of the software part of their products—e.g., OpenFlow [1].

As an alternative, the research community has pointed to the utilization of
commodity hardware based solutions [2]. Leveraging on commodity hardware
to build network monitoring applications brings along several advantages when
compared to commercial solutions, among which overhang the flexibility to adapt
any network operation and management tasks (as well as to make the network
maintenance easier), and the economies of scale of large-volume manufacturing in
the PC-based ecosystem, ergo entailing large reductions of the operational and
capital expenditures (OPEX and CAPEX) investments, respectively. To illus-
trate this, we highlight the special interest that software routers have recently
awakened [3, 4]. Furthermore, the utilization of commodity hardware presents
other advantages such as using energy-saving policies already implemented in
PCs, and better availability of hardware/software updates enhancing extensibil-
ity [4].

To develop a network monitoring solution using commodity hardware, the
first step is to optimize the default NIC driver to guarantee that the high-speed
incoming packet stream is captured lossless. The main problem, the receive live-
lock, was studied and solved several years ago [5, 6]. The problem appears when,
due to heavy network load, the system collapses because all its resources are
destined to serve the per packet interrupts. The solution, which mitigates the
interrupts in case of heavy network load, is now implemented in modern operat-
ing systems (Section 2.2), and specifically in the GNU Linux distribution, which
we take in this chapter as the leading example to present the several capture
engines proposed in the literature [4, 7–10]. These engines provide improvements
at different levels of the networking stack, mainly at the driver and kernel levels.
Another important point is the integration of the capturing capabilities with
memory and CPU affinity aware techniques, which increase performance by en-
hancing the process locality.

The rest of the chapter is structured as follows. In Section 2 we provide
the required background to understand the possibilities and limitations that
contemporary commodity hardware provides for high-performance networking
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tasks. Then, Section 3 describes the general solutions proposed to overcome
such limitations. Section 4 details different packet capture engines proposed in
the literature, as well as their performance evaluation and discussion. Finally,
Section 5 concludes the chapter.

2 Background

2.1 Commodity Hardware: Low Cost, Flexibility and Scalability

Commodity computers are systems characterized by sharing a base instruction
set and architecture (memory, I/O map and expansion capability) common to
many different models, containing industry-standard PCI slots for expansion
that enables a high degree of mechanical compatibility, and whose software
is widely available off-the-self. These characteristics play a special role in the
economies of scale of the commodity computer ecosystem, allowing large-volume
manufacturing with low costs per unit. Furthermore, with the recent develop-
ment of multi-core CPUs and off-the-self NICs, these computers may be used to
capture and process network traffic at near wire-speed with little or no packet
losses in 10 GbE networks [4].

On the one hand, the number of CPU cores within a single processor is
continuously increasing, and nowadays it is common to find quad-core processors
in commodity computers—and even several eight-core processors in commodity
servers. On the other hand, modern NICs have also evolved significantly in the
recent years calling both former capturing paradigms and hardware designs into
question. One example of this evolution is Receive Side Scaling (RSS) technology
developed by Intel [11] and Microsoft [12]. RSS allows NICs to distribute the
network traffic load among different cores of a multi-core system, overcoming
the bottleneck produced by single-core based processing and optimizing cache
utilization. Specifically, RSS distributes traffic to different receive queues by
means of a hash value, calculated over certain configurable fields of received
packets and an indirection table. Each receive queue may be bound to different
cores, thus balancing load across system resources.

As shown in Fig. 1, the Least Significant Bits (LSB) from the calculated hash
are used as a key to access to an indirection table position. Such indirection table
contains values used to assign the received data to a specific processing core. The
standard hash function is a Toeplitz hash whose pseudocode is showed in Algo-
rithm 1. The inputs for the function are: an array with the data to hash and a
secret 40-byte key (K)—essentially a bitmask. The data array involves the follow-
ing fields: IPv4/IPv6 source and destination addresses; TCP/UDP source and
destination ports; and, optionally, IPv6 extension headers. The default secret
key produces a hash that distributes traffic to each queue maintaining unidi-
rectional flow-level coherency—packets containing same source and destination
addresses and source and destination ports will be delivered to the same process-
ing core. This behavior can be changed by modifying the secret key to distribute
traffic based on other features. For example in [13] a solution for maintaining
bidirectional flow-level (session-level) coherency is shown.
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Fig. 1: RSS architecture

Modern NICs offer further features in addition to RSS technology. For ex-
ample, advanced hardware filters can be programmed in Intel 10 GbE cards to
distribute traffic to different cores based on rules. This functionality is called
Flow Director and allows the NIC to filter packets by: Source/destination ad-
dresses and ports; Type Of Service value from IP header; Level 3 and 4 protocols;
and, Vlan value and Ethertype.

Hardware/software interactions are also of paramount importance in com-
modity hardware systems. For example Non-Uniform Memory Access (NUMA)
design has become the reference for multiprocessor architectures, and has been
extensively used in high-speed traffic capturing and processing. In more de-
tail, NUMA design splits available system memory between different Symmetric
MultiProcessors (SMPs) assigning a memory chunk to each of them. The com-
bination of a processor and a memory chunk is called NUMA node. Fig. 2 shows
some examples of NUMA architectures. NUMA-memory distribution boosts up
systems’ performance as each processor can access in parallel to its own chunk of
memory, reducing the CPU data starvation problem. Although NUMA architec-
tures increase the performance in terms of cache misses and memory accesses [14],
processes must be carefully scheduled to use the memory owned by the core in
which they are being executed, avoiding accessing to other NUMA nodes.

Algorithm 1 Toeplitz standard algorithm

1: function ComputeHash(input[],K)
2: result = 0
3: for each bit b in input[] from left to right do
4: if b == 1 then
5: resultˆ= left-most 32 bits of K
6: shift K left 1 bit position

7: return result
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Essentially, the accesses from a core to its corresponding memory chunk re-
sults in a low data fetching latency, whereas accessing to other memory chunk
increases this latency. To explode NUMA architectures, the NUMA-node distri-
bution must be previously known as it varies across different hardware platforms.
Using the numactl1 utility a NUMA-node distance matrix may be obtained.
This matrix represents the distance from each NUMA-node memory bank to
the others. Thus, the higher the distance is, the higher the access latency to
other NUMA nodes is. Other key aspect to get the most of NUMA systems is
the interconnection between the different devices and the processors.

Generally, in a traffic capture scenario, NICs are connected to processors by
means of PCI-Express (PCIe) buses. Depending on the used motherboard in
the commodity hardware capture system, several interconnection patterns are
possible. Fig. 2 shows the most likely to find schemes on actual motherboards.
Specifically Fig. 2a shows an asymmetric architecture with all PCIe lines directly
connected to a processor whereas Fig. 2b shows a symmetric scheme where PCIe
lines are distributed among two processors. Figs. 2c and 2d show similar archi-
tectures with the difference of having their PCIe lines connected to one or several
IO-hubs. IO-hubs not only connect PCIe buses but also USB or PCI buses as
well as other devices with the consequent problem of sharing the bus between
the IO-hub and the processor among different devices. All this aspects must
be taken into account when setting up a capture system. For example, when a
NIC is connected to PCIe assigned to a NUMA node, capturing threads must
be executed on the corresponding cores of that NUMA node. Assigning capture
threads to another NUMA node implies data transmission between processors
using Processor Interconnection Bus which leads to performance degradation.
One important implication of this fact is that having more capture threads than
existing cores in a NUMA node may be not a good approach as data transmission
between processors will exist. To obtain information about the assignment of a
PCIe device to a processor, the following command can be executed on Linux
systems cat /sys/bus/pci/devices/PCI ID/local cpulist where PCI ID is
the device identifier obtained by executing lspci2 command.

All the previously mentioned characteristics make modern commodity com-
puters highly attractive for high-speed network traffic monitoring, because their
performance may be compared to today’s specialized hardware, such as FPGAs
(NetFPGA3, Endace DAG cards4), network processors5,6,7 or commercial so-
lutions provided by router vendors8, but they can be obtained at significantly
lower prices, thus providing cost-aware solutions. Moreover, as the monitoring
functionality is developed at user-level, commodity hardware-based solutions are

1 linux.die.net/man/8/numactl
2 linux.die.net/man/8/lspci
3 www.netfpga.org
4 www.endace.com/
5 www.alcatel-lucent.com/fp3/
6 www.lsi.com/products/networkingcomponents/Pages/networkprocessors.aspx
7 www.intel.com/p/en_US/embedded/hwsw/hardware/ixp-4xx
8 www.cisco.com/go/nam
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Fig. 2: NUMA architectures

largely flexible, which in addition to the mechanical compatibility, allows design-
ing scalable and extensible systems that are of paramount importance for the
monitoring of large-scale networks.

2.2 Operating System Network Stack

Nowadays, network hardware is rapidly evolving for high-speed packet captur-
ing but software is not following this trend. In fact, most commonly used op-
erating systems provide a general network stack that prioritizes compatibility
rather than performance. Modern operating systems feature a complete net-
work stack that is in charge of providing a simple socket user-level interface for
sending/receiving data and handling a wide variety of protocols and hardware.
However, this interface does not perform optimally when trying to capture traffic
at high speed.

Specifically, Linux network stack in kernels previous to 2.6 followed an in-
terrupt-driven basis. Let us explain its behavior: each time a new packet arrives
into the corresponding NIC, this packet is attached to a descriptor in a NIC’s
receiving (RX) queue. Such queues are typically circular and are referred as
rings. This packet descriptor contains information regarding the memory region
address where the incoming packet will be copied via a Direct Memory Access
(DMA) transfer. When it comes to packet transmission, the DMA transfers are
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Fig. 3: Linux Network Stack RX scheme in kernels previous to 2.6

made in the opposite direction and the interrupt line is raised once such transfer
has been completed so new packets can be transmitted. This mechanism is shared
by all the different packet I/O existing solutions using commodity hardware.
The way in which the traditional Linux network stack works is shown in Fig. 3.
Each time a packet RX interrupt is raised, the corresponding interrupt software
routine is launched and copies the packet from the memory area in which the
DMA transfer left the packet, DMA-able memory region, into a local kernel
sk buff structure—typically, referred as packet kernel buffer. Once that copy is
made, the corresponding packet descriptor is released (then the NIC can use it
to receive new packets) and the sk buff structure with the just received packet
data is pushed into the system network stack so that user applications can feed
from it. The key point in such packet I/O scheme is the need to raise an interrupt
every time a packet is received or transferred, thus overloading the host system
when the network load is high [15].

With the aim of overcoming such problem, most current high-speed network
drivers make use of the NAPI (New API)9 approach. This feature was incor-
porated in kernel 2.6 to improve packet processing on high-speed environments.
NAPI contributes to packet capture speedup following two principles:

(i) Interrupt mitigation. Receiving traffic at high speed using the traditional
scheme generates numerous interrupts per second. Handling these inter-
rupts might lead to a processor overload and therefore performance degra-
dation. To deal with this problem, when a packet RX/TX interrupt ar-
rives, the NAPI-aware driver interrupt routine is launched but, differently
from the traditional approach, instead of directly copying and queuing the
packet the interrupt routine schedules the execution of a poll() function,

9 www.linuxfoundation.org/collaborate/workgroups/networking/napi
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and disables future similar interrupts. Such function will check if there are
any packets available, and copies and enqueues them into the network stack
if ready, without waiting to an interruption. After that, the same poll()

function will reschedule itself to be executed in a short future (that is,
without waiting to an interruption) until no more packets are available.
If such condition is met, the corresponding packet interrupt is activated
again. Polling mode is more CPU consumer than interrupt-driven when
the network load is low, but its efficiency increases as speed grows. NAPI
compliant drivers adapt themselves to the network load to increase per-
formance on each situation dynamically. Such behavior is represented in
Fig. 4.

(ii) Packet throttling. Whenever high-speed traffic overwhelms the system ca-
pacity, packets must be dropped. Previous non-NAPI drivers dropped these
packets in kernel-level, wasting efforts in communication and copies be-
tween drivers and kernel. NAPI compliant drivers can drop traffic in the
network adapter by means of flow-control mechanisms, avoiding unneces-
sary work.

From now on, the GNU Linux NAPI mechanism will be used as the leading
example to illustrate the performance problems and limitations as it is a widely
used open-source operating system which makes performance analysis easier and
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code instrumentation possible for timing statistics gathering. Furthermore, the
majority of the existing proposals in the literature are tailored to different flavors
of the GNU Linux distribution. Some of these proposals have additionally paid
attention to other operating systems, for example, FreeBSD [8], but none of
them have ignored GNU Linux.

2.3 Packet Capturing Limitations: Wasting the Potential
Performance

NAPI technique by itself is not enough to overcome the challenging task of very
high-speed traffic capturing since other architectural inherent problems degrades
the performance. After extensive code analysis and performance tests, several
main problems have been identified [4, 8, 16, 17]:

(i) Per-packet allocation and deallocation of resources. Every time a packet
arrives to a NIC, a packet descriptor is allocated to store packet’s infor-
mation and header. Whenever the packet has been delivered to user-level,
its descriptor is released. This process of allocation and deallocation gen-
erates a significant overhead in terms of time especially when receiving at
high packet rates—as high as 14.88 Million packets per second (Mpps) in
10 GbE. Additionally, the sk buff data structure is large because it com-
prises information from many protocols in several layers, when the most of
such information is not necessary for numerous networking tasks. As shown
in [16], sk buff conversion and allocation consume near 1200 CPU cycles
per packet, while buffer release needs 1100 cycles. Indeed, sk buff-related
operations consume 63% of the CPU usage in the reception process of a
single 64B sized packet [4].

(ii) Serialized access to traffic. Modern NICs include multiple HW RSS queues
that can distribute the traffic using a hardware-based hash function applied
to the packet 5-tuple (Section 2.1). Using this technology, the capture pro-
cess may be parallelized since each RSS queue can be mapped to a specific
core, and as a result the corresponding NAPI thread, which is core-bound,
gathers the packets. At this point all the capture process has been paral-
lelized. The problem comes at the upper layers, as the GNU Linux network
stack merges all packets at a single point at network and transport layers
for their analysis. Fig. 5 shows the architecture of the standard GNU Linux
network stack. Therefore, there are two problems caused by this fact that
degrade the system’s performance: first, all traffic is merged in a single
point, creating a bottleneck; second, a user process is not able to receive
traffic from a single RSS queue. Thus, we cannot make the most of parallel
capabilities of modern NICs delivered to a specific queue associated with a
socket descriptor. This process of serialization when distributing traffic at
user-level degrades the system’s performance, since the obtained speedup
at driver-level is lost. Additionally, merging traffic from different queues
may entail packet disordering [18].
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Fig. 5: Standard Linux Network Stack

(iii) Multiple data copies from driver to user-level. Since packets are transferred
by a DMA transaction until they are received from an application in user-
level, packets are copied several times, at least twice: from the DMA-able
memory region in the driver to a packet buffer in kernel-level, and from
the kernel packet buffer to the application in user-level. For instance, a
single data copy consumes between 500 and 2000 cycles depending on the
packet length [16]. Another important idea related to data copy is the fact
that copying data packet-by-packet is not efficient, so much the worse when
packets are small. This is caused by the constant overhead inserted on each
copy operation, giving advantage to large data copies.

(iv) Kernel-to-userspace context switching. From the monitoring application in
user-level is needed to perform a system call for each packet reception. Each
system call entails a context switch, from user-level to kernel-level and vice
versa, and the consequent CPU time consumption. Such system calls and
context switches may consume up to 1000 CPU cycles per-packet [16].

(v) No exploitation of memory locality. The first access to a DMA-able mem-
ory region entails cache misses because DMA transactions invalidate cache
lines. Such cache misses represent 13.8% out of the total CPU cycles con-
sumed in the reception of a single 64B packet [4]. Additionally, as previ-
ously explained, in a NUMA-based system the latency of a memory access
depends on the memory node accessed. Thus, an inefficient memory loca-
tion may entail a performance degradation due to cache misses and greater
memory access latencies.

3 Proposed Techniques to Overcome Limitations

In the previous sections, we have shown that modern NICs are a great alternative
to specialized hardware for network traffic processing tasks at high speed. How-
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ever, both the networking stack of current operating systems and applications at
user-level do not properly exploit these new features. In this section, we present
several proposed techniques to overcome the previous described limitations in
the default operating systems’ networking stack.

Such techniques may be applied either at driver-level, kernel-level or between
kernel-level and user-level, specifically applied at the data they exchange, as will
be explained.

(i) Pre-allocation and re-use of memory resources. This technique consists in
allocating all memory resources required to store incoming packets, i.e.,
data and metadata (packet descriptors), before starting packet reception.
Particularly, N rings of descriptors (one per HW queue and device) are
allocated when the network driver is loaded. Note that some extra time is
needed at driver loading time but per-packet allocation overhead is sub-
stantially reduced. Likewise, when a packet has been transferred to user-
space, its corresponding packet descriptor is not released to the system,
but it is re-used to store new incoming packets. Thanks to this strategy,
the bottleneck produced by per-packet allocation/deallocation is removed.
Additionally, sk buff data structures may be simplified reducing memory
requirements. These techniques must be applied at driver-level.

(ii) Parallel direct paths. To solve serialization in the access to traffic, direct
parallel paths between RSS queues and applications are required. This
method, shown in Fig. 6, achieves the best performance when a specific core
is assigned both for taking packets from RSS queues and forwarding them to
the user-level. This architecture also increases the scalability, because new
parallel paths may be created on driver module insertion as the number
of cores and RSS queues grow. In order to obtain parallel direct paths,
we have to modify the data exchange mechanism between kernel-level and
user-level.
In the downside, such technique entails mainly three drawbacks. First, it
requires the use of several cores for capturing purposes, cores that other-
wise may be used for other tasks. Second, packets may arrive potentially
out-of-order at user-level which may affect some kind of applications [18].
Third, RSS distributes traffic to each receive queue by means of a hash func-
tion. When there is no interaction between packets, they can be analyzed
independently, which allows to take the most of the parallelism by creat-
ing and linking one or several instances of a process to each capture core.
However, some networking tasks require analyzing related packet, flows or
sessions. For example, a Voice over IP (VoIP) monitoring system, assum-
ing that such a system is based on the SIP protocol, requires not only to
monitor the signaling traffic (i.e., SIP packets) but also calls themselves—
typically, RTP traffic. Obviously, SIP and RTP flows may not share either
level 3 or 4 header fields that the hash function uses to distribute packets
to each queue, hence they might be assigned to different queues and cores.
The approach to circumvent this latter problem is that the capture system
performs by itself some aggregation task. The idea is that before packets
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are forwarded to user-space (for example to a socket queue), a block of the
capture system aggregates the traffic according to a given metric. However,
this for sure is at the expense of performance.

(iii) Memory mapping. Using this method, a standard application can map ker-
nel memory regions, reading and writing them without intermediate copies.
In this manner, we may map the DMA-able memory region where the NIC
directly accesses. In such case, this technique is called zero-copy. As an
inconvenient, exposing NIC rings and registers may entail risks for the
stability of the system [8]. However, this is considered a minor issue as
typically the provided APIs protect NIC from incorrect access. In fact, all
video boards use equivalent memory mapping techniques without major
concerns. Another alternative is mapping the kernel packet memory re-
gion where driver copies packets from RX rings, to user-level, thus user
applications access to packets without this additional copy. Such alter-
native removes one out of two copies in the default network stack. This
technique is implemented on current GNU Linux as a standard raw socket
with RX RING/TX RING socket option. Applying this method requires
either driver-level or kernel-level modifications and in the data exchange
mechanism between kernel-level and user-level.

(iv) Batch processing. To gain performance and avoid the degradation related
with per-packet copies, batch packet processing may be applied. This solu-
tion groups packets into a buffer and copies them to kernel/user memory
in groups called batches. Applying this technique permits to reduce the
number of system calls and the consequent context switchings, and miti-
gates the number of copies. Thus, the overhead of processing and copying
packets individually is removed. According to NAPI architecture, there are
intuitively two points to use batches, first if packets are being asked in a



High-Performance Processing Systems Using Commodity Hardware 13

polling policy, the engines may ask for more than one packet per request.
Alternatively, if the packet fetcher works on a interrupt-driven basis, one
intermediate buffer may serve to collect traffic until applications ask for it.
The major problem of batching techniques is the increase of latency and
jitter, and timestamp inaccuracy on received packets because packets have
to wait until a batch is full or a timer expires [19]. In order to implement
batch processing, we must modify the data exchange between kernel-level
and user-level.

(v) Affinity and prefetching. To increase performance and exploit memory lo-
cality, a process must allocate memory in a chunk assigned to the processor
in which it is executing. This technique is called memory affinity. Other
software considerations are CPU and interrupt affinities. CPU affinity is
a technique that allows fixing the execution localization in terms of pro-
cessors and cores of a given process (process affinity) or thread (thread
affinity). The former action may be performed using Linux taskset10 util-
ity, and the latter by means of pthread setaffinity np11 function of the
POSIX pthread library. At kernel and driver levels, software and hardware
interrupts can be handled by specific cores or processors using this same
approach. This is known as interrupt affinity and may be accomplished
writing a binary mask to /proc/irq/IRQ#/smp affinity. The importance
of setting capture threads and interrupts to the same core lies in the ex-
ploitation of cache data and load distribution across cores. Whenever a
thread wants to access to the received data, it is more likely to find them
in a local cache if previously these data have been received by an interrupt
handler assigned to the same core. This feature in combination with the
previously commented memory locality optimizes data reception, making
the most of the available resources of a system.

Another affinity issue that must be taken into account is to map the cap-
ture threads to the NUMA node attached to the PCIe slot where the NIC
has been plugged. To accomplish such task, the system information pro-
vided by the sysctl interface (shown in Section 2.1) may result useful.
Additionally, in order to eliminate the inherent cache misses, the driver
may prefetch the next packet (both packet data and packet descriptor)
while the current packet is being processed. The idea behind prefetching
is to load the memory locations that will be potentially used in a near
future in processor’s cache in order to access them faster when required.
Some drivers, such as Intel ixgbe, apply several prefetching strategies to
improve performance. Thus, any capture engine making use of such vanilla
driver, will see its performance benefited from the use of prefetching. Fur-
ther studies such as [4, 20] have shown that more aggressive prefetching
and caching strategies may boost network throughput performance.

10 linux.die.net/man/1/taskset
11 linux.die.net/man/3/pthread_setaffinity_np



14 High-Performance Processing Systems Using Commodity Hardware

4 Capture Engines implementations

In what follows, we present four capture engine proposals, namely: PF RING
DNA [10], PacketShader [4], Netmap [8] and PFQ [9], which have achieved sig-
nificant performance. For each engine, we describe the system architecture (re-
marking differences with the other proposals), the above-mentioned techniques
that applies, what API is provided for clients to develop applications, and what
additional functionality it offers. Table 1 shows a summary of the comparison of
the proposals under study. We do not include some capture engines, previously
proposed in the literature, because they are obsolete or unable to be installed
in current kernel versions (Routebricks [3], UIO-IXGBE [21]) or there is a new
version of such proposals (PF RING TNAPI [7]). Finally, we discuss the per-
formance evaluation results, highlight the advantages and drawbacks of each
capture engine and give guidelines to the research community in order to choose
the more suitable capture system.

Table 1: Comparison of the four proposals (D=Driver, K=Kernel, K-U=Kernel-
User interface)

Characteristics/ PF RING
PacketShader netmap PFQ

Techniques DNA

Memory Pre-allocation
X X X ×/X

and re-use

Parallel direct paths X X X X

Memory mapping X X X X

Zero-copy X × × ×

Batch processing × X X X

CPU and interrupt
X X X X

affinity

Memory affinity X X × X

Aggressive Prefetching × X × ×

Level D,K, D, D,K, D (minimal),
modifications K-U K-U K-U K,K-U

API Libpcap-like Custom
Standard

Socket-like
libc

4.1 PF RING DNA

PF RING Direct NIC Access (DNA) is a framework and engine to capture pack-
ets based on Intel 1/10 Gb/s cards. This engine implements pre-allocation and
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re-use of memory in all its processes, both RX and PF RING queue alloca-
tions. PF RING DNA also allows building parallel paths from hardware receive
queues to user processes, that is, it allows to assign a CPU core to each received
queue whose memory can be allocated observing NUMA nodes, permitting the
exploitation of memory affinity techniques.

Differently from the other proposals, it implements full zero-copy, that is,
PF RING DNA maps user-space memory into the DMA-able memory region of
the driver allowing users’ applications to directly access to card registers and
data in a DNA fashion. In such a way, it avoids the intermediation of the kernel
packet buffer reducing the number of copies. However, as previously noted, this
is at the expense of a slight weakness to errors from users’ applications that
occasionally do not follow the PF RING DNA API (which explicitly does not
allow incorrect memory accesses), which may potentially entail system crashes.
In the rest of the proposals, direct accesses to the NIC are protected. PF RING
DNA behavior is shown in Fig. 7, where some NAPI steps have been replaced
by a zero-copy technique.

PF RING DNA API provides a set of functions for opening devices to cap-
ture packets. It works as follows: first, the application must be registered with
pfring set application name() and before receiving packets, the reception
socket can be configured with several functions, such as, pfring set direction(),
pfring set socket mode() or pfring set poll duration(). Once the socket
is configured, it is enabled for reception with pfring enable ring(). After the
initialization process, each time a user wants to receive data pfring recv() func-
tion is called. Finally, when the user finishes capturing traffic pfring shutdown()

and pfring close() functions are called. This process is replicated for each re-
ceive queue.

As one of the major advantages of this solution, PF RING API comes with
a wrapping to the above-mentioned functions that provides large flexibility and
ease of use, essentially following the de facto standard of the libpcap library.
Additionally, the API provides functions for applying filtering rules (for example,
BPF filters), network bridging, and IP reassembly. PF RING DNA and a user
library for packet processing are free-available for the research community12.

4.2 PacketShader

The authors of PacketShader (PS) developed their own capture engine to highly
optimize the traffic capture module as a first step in the process of developing a
software router able to work at multi-10Gb/s rates. However, all their efforts are
applicable to any generic task that involves capturing and processing packets.
They apply memory pre-allocation and re-use, specifically, two memory regions
are allocated—one for the packet data, and another for its metadata. Each buffer
has fixed-size cells corresponding to one packet. The size for each cell of packet
data is aligned to 2048 bytes, which corresponds to the next highest power of two
for the standard Ethernet MTU. Metadata structures are compacted from 208

12 www.ntop.org/products/pf_ring/libzero-for-dna/
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Fig. 7: PF RING DNA RX scheme

bytes to only 8 bytes (96%) removing unnecessary fields for many networking
tasks.

Additionally, PS implements memory mapping, thus allowing users to access
to the local kernel packet buffers avoiding unnecessary copies. In this regard,
the authors highlight the importance of NUMA-aware data placement in the
performance of its engine. Similarly, it provides parallelism to packet processing
at user-level, which balances CPU load and gives scalability in the number of
cores and queues.

To reduce the per-packet processing overhead, batching techniques are uti-
lized in user-level. For each batch request, the driver copies data from the huge
packet buffer to a consecutive mapped memory region which is accessed from
user-level. In order to eliminate the inherent cache misses, the modified device
driver prefetches the next packet (both packet data and packet descriptor) while
the current packet is being processed.

PS API works as follows: (i) user application opens a char device to communi-
cate with the driver, ps init handle(), (ii) attaches to a given reception device
(queue) with an ioctl(), ps attach rx device(), and (iii) allocates and maps
a memory region, between the kernel and user levels to exchange data with the
driver, ps alloc chunk(). Then, when a user application requests for packets
by means of an ioctl(), ps recv chunk(), PS driver copies a batch of them,
if available, to the kernel packet buffer. PS interaction with users’ applications
during the reception process is summarized in Fig. 8.

PS I/O engine is available for the community13. Along with the modified
Linux driver for Intel 82598/82599-based NICs network interface cards, a user
library is released in order to ease the usage of the driver. The release also

13 shader.kaist.edu/packetshader/io_engine/index.html
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includes several sample applications, namely: a simplified version of tcpdump14,
an echo application which sends back all traffic received by one interface, and
a packet generator which is able to generate UDP packets with different 5-tuple
combinations at maximum speed.

4.3 netmap

Netmap proposal shares most of the characteristics of PacketShader’s architec-
ture. That is, it applies memory pre-allocation during the initialization phase,
buffers of fixed sizes (also of 2048 bytes), batch processing and parallel direct
paths. It also implements memory mapping techniques to allow users’ applica-
tion to access to kernel packet buffers (direct access to NIC is protected) with a
simple and optimized metadata representation.

Such simple metadata is named netmap memory ring, and its structure con-
tains information such as the ring size, a pointer to the current position of
the buffer (cur), the number of received packets in the buffer or the number
of empty slots in the buffer, in reception and transmission buffers respectively
(avail), flags about the status, the memory offset of the packet buffer, and the
array of metadata information; it has also one slot per packet which includes the
length of the packet, the index in the packet buffer and some flags. Note that
there is one netmap ring for each RSS queue, reception and transmission, which
allows implementing parallel direct paths.

Netmap API usage is intuitive: first, a user process opens a netmap device
with an ioctl(). To receive packets, users ask the system the number of available
packets with another ioctl(), and then, the lengths and payloads of the packets

14 www.tcpdump.org



18 High-Performance Processing Systems Using Commodity Hardware

are available for reading in the slots of the netmap ring. This reading mode is
able to process multiple packets in each operation. Note that netmap supports
blocking mode through standard system calls, such as poll() or select(), pass-
ing the corresponding netmap file descriptors. In addition to this, netmap comes
with a library that maps libpcap functions into own netmap ones, which facili-
tates its operation. As a distinguish characteristic, Netmap works in an extensive
set of hardware solutions: Intel 10 Gb/s adapters and several 1Gb/s adapters—
Intel, RealTek and nVidia. Netmap presents other additional functionalities as,
for example, packet forwarding.

Netmap framework is available for FreeBSD (HEAD, stable/9 and stable/8)
and for Linux15. The current netmap version consists of 2000 lines for driver
modifications and system calls, as well as a C header file of 200 lines to help
developers to use netmap’s framework from user applications.

4.4 PFQ

PFQ is a novel packet capture engine that allows packet sniffing in user applica-
tions with a tunable degree of parallelism. The approach of PFQ is different from
the previous studies. Instead of carrying out major modifications to the driver
in order to skip the interrupt scheme of NAPI or map DMA-able memory and
kernel packet buffers to user-space, PFQ is a general architecture that allows
using both modified and vanilla drivers.

PFQ follows NAPI to fetch packets but implements two novel modifications
once packets arrive at the kernel packet buffer with respect to the standard
networking stack. First, PFQ uses an additional buffer (referred as batching
queue) in which packets are copied once the kernel packet buffer is full, those
packets are copied in a single batch that reduces concurrency and increases
memory locality. This modification may be classified both as a batching and
memory affinity technique. As a second modification, PFQ makes the most of
the parallel paths technique at kernel level, that is, all its functionalities execute
in parallel and in a distributed fashion across the system’s cores which has proven
to minimize the overhead. In fact, PFQ is able to implement a new layer, named
Packet Steering Block, in between user-level and batching queues, providing
some interesting functionalities. Such layer distributes the traffic across different
receive sockets (without limitation on the number of queues than can receive
a given packet). These distribution tasks are carried out by means of memory
mapping techniques to avoid additional copies between such sockets and the user
level. The Packet Steering Block allows a capture thread to move a packet into
several sockets, thus a socket may receive traffic from different capture threads.
This functionality circumvents one of the drawbacks of using the parallel paths
technique, that is, scenarios where packets of different flows or sessions must
be analyzed by different applications—as explained in Section 3. Fig. 9 shows a
temporal scheme of the process of requesting a packet in this engine.

15 info.iet.unipi.it/~luigi/netmap/
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It is worth remarking that, as stated before, PFQ obtains good performance
with vanilla drivers, but using a patched driver with minimal modifications (a
dozen lines of code) improves such performance. The driver change is to imple-
ment memory pre-allocation and re-use techniques.

PFQ is an open-source package which consists of a Linux kernel module and a
user-level library written in C++16. PFQ API defines a pfq class which contains
methods for initialization and packet reception. Whenever a user wants to cap-
ture traffic: (i) a pfq object must be created using the provided C++ constructor,
(ii) devices must be added to the object calling its add device() method, (iii)
timestamping must be enabled using toggle time stamp() method, and (iv)
capturing must be enable using enable() method. After the initialization, each
time a user wants to read a group of packets, the read() method is called. Using
a custom C++ iterator provides by PFQ, the user can read each packet of the
received group. When a user-level application finishes pfq object is destroyed by
means of its defined C++ destructor. To get statistics about the received traffic
stats() method can be called.
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Fig. 9: PFQ RX scheme

16 available under GPL license in netserv.iet.unipi.it/software/pfq
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4.5 Capture Engines Comparison and Discussion

Once we have detailed the main characteristics of the most prominent capture
engines in the literature, we turned our focus to their performance in terms of
percentage of packets correctly received. It is noteworthy that the comparison
between them, from a quantitative standpoint, is not an easy task for two rea-
sons: first, the hardware used by the different studies is not equivalent (in terms
of type and frequency of CPU, amount and frequency of main memory, server ar-
chitecture and number of network cards); second, the performance metrics used
in the different studies are not the same, with differences in the type of traffic,
and measurement of the burden of CPU or memory.

For such reason, we have stress tested the engines described in the previous
section, on the same architecture. Specifically, our testbed setup consists of two
machines (one for traffic generation purposes and another for receiving traffic
and evaluation) directly connected through a 10 Gb/s fiber-based link. The re-
ceiver side is based on Intel Xeon with two processor of 6 cores each running at
2.30 GHz, with 96 GB of DDR3 RAM at 1333 MHz and equipped with a 10 GbE
Intel NIC based on 82599 chip. The server motherboard model is Supermicro
X9DR3-F with two processor sockets and three PCIe 3.0 slots per processor,
directly connected to each processor, following a similar scheme to that depicted
in Fig. 2b. The NIC is connected to a slot corresponding to the first processor.
The sender uses a HitechGlobal HTG-V5TXT-PCIe card which contains a Xil-
inx Virtex-5 FPGA (XC5VTX240) and four 10 GbE SFP+ ports. Using such
a hardware-based sender guarantees accurate packet-interarrivals and 10 Gb/s
throughput regardless of packet sizes.

We have taken into account two factors, the number of available queues/co-
res and packet sizes, and their influence into the percentage of correctly received
packets. We assume a link of 10 Gb/s full-saturated with constant packet sizes.
For example, 60-byte packets in a 10 Gb/s full-saturated link gives a throughput
in Mpps of 14.88: 1010 / ((60 + 4 (CRC) + 8 (Preamble) + 12 (Inter-Frame
Gap)) · 8). Equivalently, if packet sizes grow to 64 bytes, the throughput in Mpps
decreases to 14.22, and so forth.

It is worth remarking that netmap does not appear in our comparison be-
cause its Linux version does not allow changing the number of receive queues
being this fixed at the number of cores. As our testbed machine has 12 cores, in
this scenario netmap capture engine requires allocating memory over the kernel
limits, and netmap does not start. However, we note that according to [8], its
performance figures should be similar to those from PacketShader. Regarding
PFQ, we evaluated its performance installing the aware driver.

Before showing and discussing the performance evaluation results, let us
describe the commands and applications used to configure the driver and re-
ceive traffic, for each capture engine. In the case of PF RING, we installed
driver using the provided script load dna driver.sh, changing the number of
receive queues with the RSS parameter in the insertion of the driver module.
To receive traffic using multiple queues, we executed the following command:
pfcount multichannel -i dna0 -a -e 1 -g 0:1:...:n, where -i indicates



High-Performance Processing Systems Using Commodity Hardware 21

0 2 4 6 8 10 12
0

20

40

60

80

100

#Queues

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

 

 

PFQ

PS

PF_RING

Fig. 10: Engines’ performance for 60 (+4 CRC) byte packets

the device name, -a enables active waiting, -e sets reception mode and -g spec-
ifies the thread affinity for the different queues. Regarding PS, we installed the
driver using the provided script install.py and receive packets using a slightly
modified version of the provided application echo. Finally, in the case of PFQ, we
install the driver using n reception queues, configure the receive interface, eth0,
and set the IRQ affinity with the followings commands: insmod ./ixgbe.ko

RSS=n,n; ethtool -A eth0 autoneg off rx off tx off; bash ./set irq-

affinity.sh eth0. To receive packets from eth0 using n queues with the right
CPU affinity, we ran: ./pfq-n-counters eth0:0:0 eth0:1:1 ... eth0:n:n.
Note that in all cases, we have paid attention to NUMA affinity by executing
the capture threads in the processor that the NIC is connected, as it has 6 cores,
this is only possible when there are less than seven concurrent threads. In fact,
ignoring NUMA affinity entails extremely significant performance cuts, specifi-
cally in the case of the smallest packet sizes, this may reduce performance by its
half.

First, Fig. 10 aims at showing the worst case scenario of a full-saturated 10
Gb/s link with packets of constant size of 60 bytes (as in the following, excluding
Ethernet CRC) for different number of queues (ranging from 1 to 12). Note that
this represents a extremely demanding scenario, 14.88 Mpps, but probably not
very realistic given that the average Internet packet size is clearly larger [22].

In this scenario, PacketShader is able to handle nearly the total throughput
when the number of queues ranges between 1 and 4, being with this latter figure
when the performance peaks. Such relatively counterintuitive behavior is shared
by PF RING DNA system, which shows its best permanence, a remarkable 100%
packet received rate, with a few queues, whereas with when number of queues is
larger than 7, the performance dips. Conversely to such behavior, PFQ increases
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its performance according to the number of queues up to its maximum with
nine queues, when such growth stalls. To further investigate such phenomenon,
Fig. 11 depicts the results for different packets sizes (60, 64, 128, 256, 512, 1024,
1250 and 1500 bytes) and one, six and twelve queues.

PF RING DNA shows the best results with one and six queues. It does not
show packet losses for all scenarios but those with packet sizes of 64 bytes and,
even in this case, such figure is very low (about 4% with six queues and lower
than 0.5% with one). Surprisingly, increasing packet sizes from 60 to 64 bytes,
entails a degradation in the PF RING DNA performance, although beyond these
packe size, the performance recovers 100% rates. Note that larger packet sizes
implies directly lower throughputs in Mpps. According to [8], investigation in
this regard has shown that this behavior is because of the design of NICs and
I/O bridges that make certain packet sizes to fit better with their architectures.

In a scenario in which one single user-level application is unable to handle
all the received traffic, may result of interest to use more than one receive queue
(with one user-level application per queue). In our testbed and assuming twelve
queues, PacketShader has shown comparatively the best result, although, as
PF RING DNA, it performs better with a fewer number of queues. Specifically,
for packet sizes of 128 bytes and larger ones, it achieves full packet received rates,
regardless the number of queues. With the smallest packets sizes, it gives loss
ratios of 20% in its worst case of twelve queues, 7% with six, and about 4% with
one queue.

Analyzing PFQ’s results, we note that such engine achieves also 100% re-
ceived packet rates, but conversely to the other approaches, it works better with
several queues. It requires at least six ones to achieve no losses with packets of
128 bytes or more, whereas with one queue, packets must be larger or equal to
1000 bytes to achieve full rates. This behavior was expected due to the impor-
tance of parallelism in the implementation of PFQ.

We find that these engines may cover different scenarios, even the more de-
manding ones. We state two types of them, whether we may assume the avail-
ability of multiple cores or not, and whether the traffic intensity (in Mpps) is
extremely high or not (for example, packet size averages smaller than 128 bytes,
which is not very common). That is, if the number of queues is not relevant, given
that the capture machine has many available cores or no other process is exe-
cuting but the capture process itself, and the intensity is relatively low (namely,
some 8 Mpps), PFQ seems to be a suitable option. It comprises a socket-like
API which is intuitive to use as well as other interesting functionalities, such as
an intermediate layer to aggregate traffic, while it achieves full received packet
rates for twelve queues. On the other hand, if traffic intensity is higher than the
previous assumption, PacketShader presents a good compromise between the
number of queues and performance.

Nonetheless, often multi-queue scenarios are not adequate. For example, ac-
curate timestamps may be necessary [19], packet disorder may be a significant
inconvenient (according to the application running on the top of the engine) [18],
or simply, it may be interesting to save cores for other tasks. In this scenario,
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PF RING DNA is clearly the best option, as it shows (almost) full rates regard-
less packet sizes even with only one queue (thus, avoiding any drawbacks due to
parallel paths).

5 Conclusions

The utilization of commodity hardware in high-performance tasks, previously
reserved to specialized hardware, has raised great expectation in the Internet
community, given the astonishing results that some approaches have attained at
low cost. In this chapter we have first identified the limitations of the default
networking stack and shown the proposed solutions to circumvent such limi-
tations. In general, the keys to achieve high performance are efficient memory
management, low-level hardware interaction and programming optimization. Un-
fortunately, this has transformed network monitoring into a non trivial process
composed of a set of sub-tasks, each of which presents complicated configuration
details. The adequate tuning of such configuration has proven of paramount im-
portance given its strong impact on the overall performance. In this light, this
chapter has carefully reviewed and highlighted such significant details, providing
practitioners and researchers with a road-map to implement high-performance
networking systems in commodity hardware. Additionally, we note that this ef-
fort of reviewing limitation and bottlenecks and their respective solutions may
be also useful for other areas of research and not only for monitoring purposes
or packet processing (for example, virtualization).

This chapter has also reviewed and compared successful implementations
of packet capture engines. We have identified the solutions that each engine
implements as well as their pros and cons. Specifically, we have found that each
engine may be more adequate for a different scenario according to the required
throughput and availability of processing cores in the system. As a conclusion,
the performance results exhibited in this chapter, in addition to the inherent
flexibility and low cost of the systems based on commodity hardware, make this
solution a promising technology at the present.

Finally, we highlight that the analysis and development of software based on
multi-core hardware is still an open issue. Problems such as the aggregation of
related flows, accurate packet timestamping, and packet disordering will for sure
receive more attention by the research community in the future.
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