
UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

Ph.D. Thesis

Proactive Measurement Techniques

For Network Monitoring In

Heterogeneous Environments

Author:
Javier Ramos de Santiago

Supervisor:
Prof. Javier Aracil Rico

Madrid, 2013

DOCTORAL THESIS: Proactive Measurement Techniques
For Network Monitoring In
Heterogeneous Environments

AUTHOR: Javier Ramos de Santiago

SUPERVISOR: Prof. Javier Aracil Rico

The committee for the defense of this doctoral thesis is composed by:

PRESIDENT: Dr. Eduardo Magaña Lizarrondo

MEMBERS: Dr. Mikel Izal Azcárate
Dr. Edmundo Monteiro
Dr. József Stéger

SECRETARY: Dr. Jorge E. López de Vergara Méndez

To my family.
To Victoria.

Summary

Nowadays the increasing bandwidth demand by telecommunication oper-

ators’ customers as well as the wide spread of new services and applica-

tions running over the Internet have converted the design and operation of

communication networks into a complex task. To ease the operation and

maintenance of such networks, operators have traditionally resorted to the

monitoring of their networks to analyze a set of Quality of Service (QoS)

parameters and determine the state and quality of the services provided to

their customers reducing both Operational Expenditures (OPEX) and Cap-

ital Expenditures (CAPEX). Moreover, in the last years, the emergence of

other actors such as important banks or Internet companies which provide

services making use of their own private communication networks has raised

the need for reliable monitoring systems adaptable to different network envi-

ronments. Traditionally, network monitoring has been classified into active

and passive methodologies. The former is based on the injection of traffic on

the monitored network to obtain a set of parameters or results. The latter

is based on the capture and analysis of traversing network traffic to estimate

the value of a set of QoS parameters. Each monitoring flavor presents its

own benefits and drawbacks.

In recent years, hybrid systems that make use of both passive and active

techniques have been proposed to overcome the limitations of each method-

ology and get the best of both worlds. Such hybrid technique is known as

Reactive Measurement (REM) and uses the value of a set of parameters

to trigger response processes to certain values or situations. In this work,

Proactive Monitoring (PM) which goes far beyond the REM is presented and

proposed. While in REM an event triggers a reaction, in PM, control actions

vii

viii Summary

are carried out in order to avoid the occurrence of situations to which react.

Additionally, in case such situations are produced, PM allows reacting to

them as in a standard reactive system. This new type of monitoring eases

not only the maintenance and operation but the dimensioning and deploy-

ment of new networks.

The main goal of this thesis is analyzing and proposing proactive moni-

toring techniques applicable in heterogeneous environments in a simple way.

Due to the evolution of actual networks and the diversity of devices and tech-

nologies, it is necessary developing monitoring techniques that may be easily

integrated in both high-performance systems and low computing-power de-

vices and that may operate at rates ranging from a few Mb/s to multi-Gb/s.

To achieve the proposed objectives, firstly communication networks and

QoS fundamentals have been reviewed. Such review has been presented in an

orderly way composing a state of the art on the most important methods and

concepts related to network monitoring. Next, the literature concerning to

active monitoring methods has been analyzed taking into account both file-

transfer and packet-pair methods. Such analysis has revealed the influence

of external parameters such as Central Processing Unit (CPU) load and self-

induced traffic over the active measurement techniques. In heterogeneous

environments, such external parameters may not be easily controlled. To

overcome this limitation a method for detecting and subsequently removing

polluted measurements (due to the influence of external parameters) has

been developed. Additionally, it has been proved the influence of traffic

control mechanisms such as shapers or policers over the active measurement

methods. To solve these problems an algorithm that detects the presence of

such mechanisms and estimates, if possible, the parameters of the shaping or

policing system is proposed.

Later on, an analysis of the state of the art of passive measurement meth-

ods has been performed with particular emphasis on those based on flows and

trajectory sampling. Derivative of such analysis and based on the need of

obtaining simple methods which are able to operate in heterogeneous envi-

ronments at different speeds, a fast packet correlation algorithm has been

proposed. Such algorithm may be used in selective sampling or trajectory

Summary ix

sampling and is able to process about 6 Gb/s of real network traffic. More-

over, an efficient architecture for network flow construction and simple statis-

tics gathering has been presented.

Additionally, in this work, a detection algorithm for time instants in which

there is presence of anomalous or polluting traffic based on the analysis of

time series is presented. Such algorithm has been validated using real traffic

from an operator and a bank network, obtaining promising results.

Finally, an architecture for a proactive monitoring system that integrates

the previously presented ideas has been proposed. Particular applicability

examples of PM in heterogeneous environments have been also provided.

Keywords: proactive monitoring; packet-pair; shaper detection; flow

creation; passive measurements; active measurements; heterogeneous net-

works;

Resumen

Hoy en d́ıa la creciente demanda de ancho de banda por parte de los clientes

de los operadores de telecomunicaciones aśı como la proliferación de nuevos

servicios y aplicaciones que funcionan a través de Internet ha convertido el

diseño y la operación de redes de comunicaciones en una tarea de gran com-

plejidad. Para facilitar la operación y el mantenimiento, los operadores han

recurrido tradicionalmente a la monitorización de sus redes de comunicacio-

nes para analizar un conjunto de parámetros de calidad de servicio (QoS)

con los que poder determinar el estado y la calidad del servicio que ofer-

tan a sus clientes reduciendo sus costes capitales y de operación. Además,

en los últimos años la aparición de otros actores como grandes bancos o

empresas de Internet que disponen de redes privadas de comunicaciones a

través de las cuales ofrecen servicios ha despertado la necesidad de sistemas

de monitorización fiables que puedan adaptarse a diferentes entornos de red.

T́ıpicamente la monitorización de red se ha dividido en monitorización activa

y pasiva. La primera se basa en la inyección de tráfico en la red a analizar

para obtener un conjunto de parámetros o resultados. La segunda se basa en

la captura y análisis del tráfico que circula por la red para la obtención de los

parámetros de calidad de servicio. Cada uno de los tipos de monitorización

presenta ventajas e inconvenientes.

En los últimos años se ha propuesto el uso de sistemas h́ıbridos que utili-

zan medidas pasivas y activas para obtener lo mejor de ambas técnicas. Este

tipo de medida h́ıbrida conocida como medida reactiva (REM) usa el valor de

una serie de parámetros para desencadenar procesos de respuesta ante ciertos

valores o situaciones. En este trabajo se presenta y propone el concepto de

monitorización proactiva (PM) que va más allá de la monitorización reac-

xi

xii Resumen

tiva. Mientras que en la monitorización reactiva se espera la ocurrencia de

un evento para desencadenar una reacción, en la monitorización proactiva se

realizan acciones de control para evitar que se produzcan dichas situaciones

a las que reaccionar. Además, en caso de que estas situaciones se produz-

can se puede responder igualmente de manera reactiva. Este nuevo tipo de

monitorización facilita no solo el mantenimiento sino también el despliegue

y dimensionado de nuevas redes.

El objetivo principal de este trabajo es analizar y proponer técnicas de

monitorización proactiva que puedan ser aplicadas en ambientes heterogéneos

de manera sencilla. Debido a que las redes actuales han evolucionado y se

pueden encontrar diferentes tipos de dispositivos y tecnoloǵıas, es necesario

crear métodos de monitorización que puedan ser integrados tanto en sistemas

de alto rendimiento como en dispositivos con una potencia de cálculo reducida

y que puedan actuar sobre un rango de velocidades que van desde los pocos

Mb/s hasta tasas multi-Gb/s.

Para conseguir este objetivo, primero se han revisado los conceptos fun-

damentales acerca de redes de comunicaciones aśı como de los parámetros

de calidad de servicio. Esta revisión se ha presentado de manera ordenada

constituyendo un estado del arte de los métodos y conceptos más impor-

tantes relacionados con la monitorización. Seguidamente se ha analizado el

estado del arte sobre métodos de medida activos analizando los métodos de

descarga de ficheros y de pares de paquetes. El análisis de estos métodos ha

demostrado la sensibilidad de los mismos a ciertos parámetros como la carga

de trabajo del procesador aśı como a la cantidad de tráfico interferente au-

toinducido. En los entornos heterogéneos este tipo de parámetros no puede

ser fácilmente controlado aśı que se ha propuesto un método para detectar

la contaminación de las medidas debidas a la influencia de estos parámetros

para su posterior eliminación en el análisis de los resultados de las medidas.

Adicionalmente se ha comprobado que los métodos de medida activos son

sensibles a la presencia de mecanismos de control de tráfico como shapers y

policers. Para solucionar este tipo de problemas se ha propuesto un algoritmo

que detecta la presencia de este tipo de mecanismos y estima, si es posible,

los parámetros que los conforman.

Resumen xiii

Más adelante se ha realizado un análisis del estado del arte de los métodos

de medida pasivos haciendo especial hincapié en aquellos basados en flujos y

en trajectory sampling. Derivado de este análisis y de la necesidad de obtener

métodos sencillos y que sean capaces de funcionar en entornos heterogéneos y

a diferentes velocidades, se ha propuesto un sistema de correlación rápida de

paquetes para realizar muestreo selectivo y trajectory sampling que es capaz

de procesar cerca de 6 Gb/s. Además se ha presentado una arquitectura para

la formación eficiente de flujos y la obtención de estad́ısticas sencillas.

Adicionalmente en este trabajo se ha propuesto un algoritmo basado en

el análisis de las series temporales de parámetros simples para la detección

de instantes temporales en los que existe contaminación por tráfico anómalo.

Este algoritmo ha sido validado con tráfico real de una red bancaria obte-

niendo unos resultados de detección muy favorables.

Por último se ha propuesto y mostrado la arquitectura de un sistema

proactivo de monitorización que integra las ideas anteriormente presentadas

indicando ejemplos concretos de la aplicabilidad de este tipo de monitoriza-

ción a las redes heterogéneas.

Palabras clave: monitorización proactiva; medidas activas; medidas

pasivas; pares de paquetes; detección de shapers; formación de flujos; redes

heterogéneas;

Acknowledgments

Now that this work is coming to an end, it is time to thank all those who have

participated in one way or another in the completion of this work. Thank

you very much to those who have contributed with their expertise and those

who have given me their support on this long road.

First of all I would like to thank my supervisor, Javier Aracil, for his time

and dedication on the construction of this work. Thank you for introducing

me to the world of research and allowing me to grow as a researcher and

professional.

In the same way, I would like to thank my colleagues from the High-

Performance Computing and Networking group: Juan Antonio Andrés, José

Luis Añamuro, Marco Forconesi, Rubén Garćıa, Paco Gómez, Iván González,

Diego Guerra, Diego Hernando, Rafael Leira, Jorge López de Vergara, Sergio

López, Daniel Michaud, Luis de Pedro, Enrique Prieto, Germán Retamosa,

Paula Roquero, Javier Santos, Alfredo Sosa, Gustavo Sutter, Carlos Vega,

José Fernando Zazo and those that are no longer here: Miguel Cubillo, Wal-

ter Fuertes, Jaime Fullaondo, Alvaro Garćıa, Jaime Garnica, Pedro Gómez,

Ismael Gómez, José Alberto Hernández, Bas Huiszoon, Vı́ctor Lucas, David

Madrigal, Santiago Pina, Mario Poyato, Alfredo Salvador and Diego Sánchez.

Thank you for all this time at the laboratory and all the good moments we

have shared.

Especially I would like to thank José Luis Garćıa, Vı́ctor López, Felipe

Mata, Vı́ctor Moreno, David Muelas and Pedro Santiago for their ideas and

support throughout these years and all the good moments we have shared. I

have learned a lot from you guys.

All my work would not have been possible without the support of the

xv

xvi Acknowledgments

Universidad Autónoma de Madrid and the Departamento de Tecnoloǵıa

Electrónica y de las Comunicaciones (former Departamento de Informática)

of the Escuela Politécnica Superior. I would like to express my gratitude to

all the people involved in the projects that have partially funded this work:

PASITO and OneLab2.

I would also like to express my gratitude to Carsten Schmoll for hosting

me in Berlin. This internship helped me to grow up as a researcher and learn

new ways of working. Thank you very much to all the people at Fraunhofer

FOKUS and especially to the NGNI research group for making me feel at

home. This includes Thomas Magedanz, Christian Henke, Julian Vetter,

Ramón Masek, Jakub Kocur, Florian Ermisch and Jacob Schramm.

I would like to acknowledge my family for their support and understand-

ing throughout these years. Thanks to my parents for making me the person

I am today. Thank you very much for instilling the value of hard work and

curiosity and for providing me the opportunity to grow as a person and as

a professional. Thanks to my brother and sister for being an example and

leading the way.

I am grateful to my friends for making this long journey a little more

enjoyable. We have to celebrate this. I would also like to express my gratitude

to all the people with whom I shared my college time. Thanks for all the

good times and the support during these years.

Finally, last but not least, I would like to thank Victoria. Without you,

this work would not have been possible. Thanks for supporting and cheering

me up when everything was a mess. You have been my cornerstone, a part

of this work is yours. I definitely owe you a celebration.

Contents

Title Page i

Summary vii

Resumen xi

Acknowledgments xv

Contents xix

List of Figures xxi

List of Tables xxv

Acronyms xxxii

1 Introduction 1

1.1 Overview and Motivation . 1

1.2 Objectives . 4

1.3 Thesis Structure . 5

2 Background 9

2.1 QoS Mechanisms . 9

2.1.1 QoS metrics . 10

2.1.2 Traffic Shaping and Traffic Policing 15

2.1.3 Router Queuing Disciplines 21

2.2 Network Measurements . 25

xvii

xviii Contents

2.2.1 Flows and Sessions . 25

2.2.2 Time synchronization 29

3 Active Measurements 37

3.1 Introduction . 37

3.2 Active Techniques . 38

3.2.1 File-Transfer . 39

3.2.2 Packet-Pair . 42

3.2.3 Packet Train . 44

3.3 Active Measurement Techniques Problems 46

3.3.1 Testbed Description 46

3.3.2 CPU and memory load 48

3.3.3 Self-induced Traffic . 62

3.3.4 Interrupt Coalescence 70

3.3.5 Threshold-based rejection techniques for biased mea-

surements . 70

3.3.6 QoS Mechanisms Impact 77

3.4 Conclusions . 83

4 Passive Measurements 85

4.1 Introduction . 85

4.2 Passive Monitoring Techniques 87

4.2.1 Flow Monitoring . 87

4.2.2 Packet Monitoring . 89

4.3 Packet Correlation and Sampling 93

4.3.1 Testbed . 94

4.3.2 Hashing . 94

4.3.3 Packet Correlation . 99

4.4 FlowProcess and FlowLib: Flow tracking and analysis 102

4.5 Conclusions . 108

5 Traffic Pollution Detection 111

5.1 Introduction . 111

5.2 Initial Hypotheses . 114

Contents xix

5.3 Online Algorithm . 117

5.3.1 Algorithm Validation 120

5.4 Conclusions . 122

6 Proactive System 125

6.1 Introduction . 125

6.2 Measurement Planning: switching from passive to active . . . 127

6.3 Proposed System . 130

6.3.1 Probe Module . 131

6.3.2 Collector Module . 133

6.3.3 Frontend Module . 134

6.4 Conclusions . 138

7 Conclusions 139

7.1 Main Contributions . 139

7.2 Industrial Applications . 143

7.3 Future Work . 144

Conclusiones 147

References 155

List of Publications 167

A Memory and CPU load programs 171

B Multinomial Minimum Distribution Calculation 173

Index 177

List of Figures

2.1 Traffic Policing . 16

2.2 Traffic Shaping . 17

2.3 Token Bucket Diagram . 18

3.1 Saw-Tooth behavior produced by Transmission Control Pro-

tocol (TCP) congestion mechanism 41

3.2 Packet Pair method . 43

3.3 Inter-arrival expansion due to interfering traffic 44

3.4 Inter-arrival compression due to interfering traffic 44

3.5 Packet Train method . 45

3.6 Testbed Topology . 47

3.7 Bandwidth measurement versus system load parameters with

file-download technique on Windows using TCP as transport

protocol. Link capacity 6 Mb/s 51

3.8 Bandwidth measurement versus system load parameters with

file-download technique on Windows using TCP as transport

protocol. Link capacity 100 Mb/s 52

3.9 Linear regression model adjusted for the bandwidth measure-

ment with file-download technique on Windows using TCP as

transport protocol. The link capacity is equal to 100 Mb/s . . 54

3.10 Linear regression model adjusted for the bandwidth measure-

ment with file-download technique on Linux using TCP as

transport protocol. The link capacity is equal to 100 Mb/s . . 55

xxi

xxii List of Figures

3.11 Linear regression model adjusted for the bandwidth measure-

ment with file-download technique on Mac OS X using TCP

as transport protocol. The link capacity is equal to 100 Mb/s 56

3.12 strace output of a TCP file-download using wget 57

3.13 strace output of an UDP packet-train reception 57

3.14 cpu frac vs bandwidth measurement with packet-train tech-

nique on Windows, Linux and Mac OS using User Datagram

Protocol (UDP) as transport protocol. 59

3.15 mem vs bandwidth measurement with packet-train technique

on Windows, Linux and Mac OS using UDP as transport pro-

tocol. 60

3.16 Effects of concurrent applications 62

3.17 Incorrect measurement due to cross-traffic 63

3.18 tcpdump output: Cross-traffic interferes on the measurement . 64

3.19 Bandwidth measurements with interfering TCP flows using

file-download technique, Speedtest and packet-train technique 66

3.20 TCP behavior with concurrent downloads 67

3.21 Bandwidth measurements with UDP interfering traffic (ran-

domly delayed) using file-download technique, Speedtest and

packet-train technique . 68

3.22 Bandwidth measurements with UDPinterfering traffic (Con-

stant Bit Rate (CBR)) using file-download technique, Speedtest

and packet-train technique . 69

3.23 Correct measurement in spite of cross-traffic 71

3.24 Comparison between the real case and the worst case —assumption

of the model . 72

3.25 Error probability as a function of the number of interfering

packets, m, for several packet-train lengths, N 74

3.26 Maximum number of interfering packets to accept a measure-

ment as a function of the packet-train length, N , for different

values of the error probability threshold, ε 75

List of Figures xxiii

3.27 Comparison between the theoretical error probabilities pro-

vided by the model and the estimated error probabilities by

means of simulations for Exponential and Pareto distributions.

The packet-train length is equal to N = 100 packets 76

3.28 Packet inter-arrival times distribution of a packet-train with

token-bucket (N = 100 packets, B = 1 KB, r = 44, CIR = 10

Mb/s, PIR = 100 Mb/s and Bl = 40 KB) 79

3.29 Estimated Token-Bucket Parameters: CIR, PIR and Burst

length —N = 100 packets, B = 1500 Bytes, PIR = 100 Mb/s

and several cases of CIR and Bl 81

3.30 CIR Measurement without Cross Traffic —PIR = 100 Mb/s,

CIR = 6 Mb/s and several cases of Bl 82

4.1 Trajectory Sampling Example 92

4.2 Boxplot hash time for different algorithm 96

4.3 Boxplot hash time using BOB 98

4.4 Fast Packet Correlation Architecture 100

4.5 Fast Packet Correlation (FPC) effective processing rate (pps)

for different traces . 101

4.6 FlowProcess Architecture . 102

4.7 FlowProcess Workflow . 104

4.8 FlowProcess performance . 107

5.1 ECDF cross correlation value between bytes and flow size vari-

ance at lag 0 for bank traces 116

5.2 ECDF cross correlation value between bytes and flow size vari-

ance at lag 0 for other traces 117

5.3 ROC graph for bank traces using th=30% 121

5.4 ROC graph for other traces using th=30% 122

6.1 Measurement triggering estimator value for Bank 4 trace with

W=300 s and th=0.6 . 128

6.2 PNMF architecture . 130

6.3 Passive Probe Module . 132

xxiv List of Figures

6.4 Active Probe Module . 133

6.5 Collector Module . 135

6.6 PNMF Frontend . 136

6.7 PNMF Frontend with nodes added 137

6.8 PNMF byte time series . 137

6.9 PNMF OWD value between two nodes time series 138

B.1 Stochastic process related to multinomial distribution 174

List of Tables

3.1 Regression coefficients for linear model considering CPU and

memory load with file-download technique on Windows using

TCP as transport protocol. The link capacity is equal to 100

Mb/s . 53

3.2 Regression coefficients for linear model considering CPU load

only, with file-download technique on Windows using TCP as

transport protocol. The link capacity is equal to 100 Mb/s . . 53

3.3 Analysis of variance table for the bandwidth measurement

with packet-train technique on Windows, Linux and Mac OS

using UDP as transport protocol. Link capacity 100 Mb/s . . 61

3.4 Analysis of variance table for the bandwidth measurement

with packet-train technique on Windows, Linux and Mac OS

using UDP as transport protocol. Link capacity 6 Mb/s 61

3.5 Empirical evaluation of the theoretical model. 270 ≤ m ≤
300, 93 ≤ N ≤ 100 . 77

4.1 Trace Sets Information . 94

4.2 Empirical Hash Collision Rate 98

4.3 Hash Summary . 98

4.4 FlowProcess memory footprint 108

5.1 Characteristics of the traffic data sets 115

xxv

Acronyms

ANOVA ANalysis Of VAriance. 50, 58

API Application Programming Interface. 65

BE Best Effort. 21

BMC Best Master Clock. 31

BPF Berkeley Packet Filter. 135

BTC Bulk Transfer Capacity. 11, 88

CAIDA The Cooperative Association for Internet Data Analysis. 94, 95,

100, 101, 108, 109

CAPEX Capital Expenditures. vii, 2

CBQ Class-Based Queuing. 24

CBR Constant Bit Rate. xxii, 65, 68, 69, 83, 140, 148

CBS Committed Burst Size. 17, 19, 20

CIR Committed Information Rate. 17, 19, 20, 78

CPU Central Processing Unit. viii, 5, 6, 37, 42, 46, 48–50, 55–58, 62, 63,

70, 78, 83, 122, 123, 133, 140, 142, 151

CUSUM Cumulative Sum. 118

xxvii

xxviii Acronyms

CV Coefficient of Variation. 13

DDoS Distributed Denial of Service. 93

DNS Domain Name System. 88

DPI Deep Packet Inspection. 86

DSL Digital Subscriber Line. 12

EBS Excess Burst Size. 17, 19, 20

ECDF Empirical Cumulative Distribution Function. 115

ETSI European Telecommunications Standards Institute. 39, 40

FCFS First Come First Served. 21

FIFO First In-First Out. 21, 22

FN False Negative. 120

FP False Positive. 120

FPC Fast Packet Correlation. xxiii, 85, 99–101, 106, 109, 134, 136, 141,

142, 150

FPR False Positives Rate. 120, 122, 123, 142

FQ Fair Queuing. 22–24

FTP File Transfer Protocol. 114

GPS Global Positioning System. 29, 33, 34, 43

HTML HyperText Markup Language. 28

HTTP HyperText Transfer Protocol. 12, 39, 40, 86, 89, 114, 132

Acronyms xxix

HTTPS HyperText Transfer Protocol Secure. 114

IC Interrupt Coalescence. 38, 44, 46, 58, 70

IEEE Institute of Electrical and Electronics Engineers. 33

IETF Internet Engineering Task Force. 27

IFG Inter-Frame Gap. 95

IP Internet Protocol. 10, 14, 25–28, 33, 86, 90, 91, 95, 97, 103, 104, 106,

135

IPFIX Internet Protocol Flow Information eXport. 26–28, 86–88, 102, 105,

109, 131, 134, 142, 150

IPTV Internet Protocol Television. 111

IPv6 Internet Protocol version 6. 33

JNI Java Native Interface. 65

JSD Jensen-Shannon Divergence. 127, 128, 138, 143

KLD Kullback-Leibler Divergence. 127

LDAP Lightweight Directory Access Protocol. 114

MPLS Multi-Protocol Label Switching. 27

Mpps Million Packets per Second. 97, 101

MRTG Multi Router Traffic Grapher. 28, 86, 87, 102, 105, 106, 109, 117,

131, 134–136, 142, 150

MSS Maximum Segment Size. 89

MTU Maximum Transmission Unit. 10, 58

xxx Acronyms

NAT Network Address Translation. 91

NEBA Nuevo servicio Ethernet de Banda Ancha. 144, 152

NGN Next Generation Networks. 3

NIC Network Interface Cards. 56, 63, 70, 97, 144

NIDS Network Intrusion Detection Systems. 86

NMLib Network Measurement Library. 105, 106, 109, 142, 150

NTP Network Time Protocol. 29–31, 33, 34, 43

OID Object IDentifier. 28

OPEX Operational Expenditures. vii, 2

OTS Off-The-Shelf. 3

OWD One-Way Delay. 3, 11–13, 29, 38, 40, 42, 43, 70, 88, 93, 99, 100, 105,

109, 112, 126, 129, 131, 132, 134–136, 141

PAT Port Address Translation. 91

PBS Peak Burst Size. 17, 20

PCA Principal Component Analysis. 112

PCAP Packet Capture. 86, 89, 102, 114, 120

PIR Peak Information Rate. 17, 19, 20, 78, 80

PLR Packet Loss Rate. 3, 42, 43, 100, 112, 125, 126, 129, 132, 134

PM Proactive Monitoring. vii–ix, 2–5, 7, 13, 25, 37, 85, 109, 125–127, 129,

138, 139, 142

PNMF Proactive Network Monitoring Framework. 125, 130, 136, 138, 143,

151

Acronyms xxxi

PQ Priority Queuing. 21, 22

PTP Precision Time Protocol. 29, 31, 33, 34, 43

QoE Quality of Experience. 14

QoS Quality of Service. vii, viii, 1, 5, 6, 9, 11–15, 37–39, 42, 46, 57, 70, 78,

83, 86–89, 105, 108, 109, 125, 126, 129, 136, 138–140, 142, 143, 145,

150

RAM Random Access Memory. 94

RCPQ Rate-Controlled Priority Queuing. 22

REM Reactive Measurement. vii, 2, 126

ROC Receiver Operating Characteristic. 120

RR Round Robin. 22–24

RSS Receive-Side Scaling. 95

RT Real Time. 22

RTP Real-time Transport Protocol. 27, 114

RTT Round-Trip Time. 12, 29, 30, 40, 43, 78, 88–90, 105, 125, 126, 131

SCCP Skinny Client Control Protocol. 114

SDN Software-Defined Networking. 3

SLA Service-Level Agreement. 3, 4, 15, 17, 38, 144

SNMP Simple Network Management Protocol. 28, 88

SPAN Switched Port Analyzer. 86

SRR Shaped Round Robin. 24

xxxii Acronyms

TAI International Atomic Time. 32

TCP Transmission Control Protocol. xxi, xxii, 12, 14–16, 21, 22, 25, 26, 40,

41, 43, 48, 51, 52, 55–57, 65–69, 80, 88–91, 97, 103–106, 113, 114, 132

TN True Negative. 120

ToS Type of Service. 26

TP True Positive. 120

TPR True Positives Rate. 120, 123, 142

TTL Time To Live. 100

UDP User Datagram Protocol. xxii, xxv, 21, 26, 31, 33, 41, 43, 55–61, 65,

67–69, 76, 83, 90, 91, 97, 106, 113, 132, 140, 148

UTC Coordinated Universal Time. 29

VLAN Virtual Local Area Network. 112

VoD Video on Demand. 114, 115, 120

VoIP Voice over Internet Protocol. 14, 15, 69, 111, 112, 114, 115, 120

WFQ Weight Fair Queuing. 23

WRR Weighted Round Robin. 24

Chapter 1

Introduction

This chapter provides an overview of this Ph.D. thesis and introduces its

motivation, presents its objectives and hypothesis, and finally describes its

main contributions outlining its organization.

1.1 Overview and Motivation

Nowadays, the number of Internet users is growing continuously and quickly.

Such increase has entailed an increment on the complexity and size of both

commercial and domestic networks. Moreover, new services and protocols

have arisen changing several of the previously well-established ideas about

traffic characterization. In this light, monitoring and characterizing networks

have become paramount importance tasks for both operators and regulatory

bodies. In this scenario, several data must be gathered to analyze the behav-

ior and proper working of networks. This information can be condensed into

a set of measurable parameters that can be used to assure Quality of Service

(QoS) and derive operational related facts. To accomplish such task, several

network measurement methodologies can be applied. These methodologies

can be grouped into active and passive categories. Each methodology has its

advantages and disadvantages and must be applied depending on the mon-

itoring scenario. Typically, passive monitoring has minimal impact on the

monitored network at the expense of gathering less precise metrics. On the

1

2 Chapter 1. Introduction

contrary, active monitoring provides precise metrics but introduces traffic on

the measured network modifying its behavior and affecting production traffic

which in some cases is unacceptable.

In recent years, hybrid systems that make use of both passive and active

techniques have been proposed to overcome the limitations of each method-

ology and get the best of both worlds. Such hybrid technique is known as

Reactive Measurement (REM) [AP08, BKM+09] and uses the value of a set

of parameters to trigger response processes to certain values or situations.

In this work Proactive Monitoring (PM) which goes far beyond the REM is

presented and proposed. While in REM an event is expected for triggering

a reaction, in PM control actions are carried out in order to avoid the occur-

rence of situations to which react. Additionally, in case such situations are

produced, PM allows reacting to them as in a standard reactive system. This

new type of monitoring eases not only the maintenance and operation but

the dimensioning and deployment of new networks. Moreover, PM reduces

the amount of information transferred over the network which results in a

better utilization of the network resources especially when the same network

is used for both data transmission and monitoring. Additionally, the use of

PM techniques reduces the operational and capital expenditure investments

Operational Expenditures (OPEX) and Capital Expenditures (CAPEX) pro-

viding centralized network management and early problem diagnosis. In con-

trast with traditional statistical monitoring, PM provides more information

about the network state in a real-time fashion allowing also the construction

of statistical models on top of the gathered information.

The combination of measurement methodologies implies that several de-

cisions must be taken on whether active or passive monitoring must be used.

PM provides both time scheduled and event based measurements but the de-

cision of using polling/time scheduled or event-based methodologies depends

on the monitored network and the real-time data gathered. The selection

of the applicable measurement methodology on large-scale networks entails

the correlation of network traffic across multiple hops. Such correlation is

not trivial and the process complexity increases as the monitored network

grows in number of customers and the capacity of the links increases. More-

1.1. Overview and Motivation 3

over traditional networks have evolved in the last years into Next Generation

Networks (NGN) composed of a heterogeneous combination of devices and

technologies that has raised the complexity of the monitoring tasks. Due to

such evolution, it is necessary to develop monitoring techniques that may

be easily integrated in both high-performance systems and low computing-

power devices and that may operate at rates ranging from a few Mb/s to

multi-Gb/s. Such diverse scenario presents several challenges as monitor-

ing systems must be as simple and powerful as possible while maintaining a

high degree of flexibility and reliability with minimal cost. To address such

tasks, the community has recently focused in the use of Off-The-Shelf (OTS)

systems [GDMR+13, GHH+09, DA03] which combine commodity hardware

and open-source software in a simple and low-cost solution. Depending on

the characteristics of the measured network, such systems may be tuned to

reduce the costs or increase the performance.

Additionally, operators are being increasingly aware every day of the im-

portance of realistic network measurements not only in their core networks

by also on their access networks to have a clearer idea of the quality per-

ceived by their users. Moreover both corporate and domestic customers have

become more demanding in terms of bandwidth and quality. For example

corporate users, sign exclusive contracts with the operators which contain

hard restrictions respecting to availability, One-Way Delay (OWD), Packet

Loss Rate (PLR) or offered bandwidth. Such contracts are ironclad by means

of a Service-Level Agreement (SLA) and breaches in the contracts result in

strong monetary losses for the operator. In such scenarios, PM helps oper-

ators not only providing real-time realistic measurements that may prevent

the violation of the agreed SLA values but also detecting significant changes

in the characteristics and behavior of the customer network allowing the

operator to offer new products and services tailored to the customer’s need.

Recently, the development of Software-Defined Networking (SDN) tech-

niques has opened new avenues for an efficient network deployment and use.

The integration of PM inside the SDN design flow fits perfectly, as the incor-

poration of a centralized measurement system along with the control plane

allows a more efficient use of the network resources and eases the problem

4 Chapter 1. Introduction

detection and automatic testing.

In accordance with all the above mentioned, PM has turned out to be an

important methodology to provide quality to the operators’ customers and to

ease the use and deployment of the networks of the future with applicability

in various fields such as traffic engineering, attack and threats detection, SLA

validation or network design and operational verification.

1.2 Objectives

This thesis presents a methodology for applying PM based on novel active

and passive techniques in an efficient way. The main objectives of the thesis

are:

1. Analyzing and developing new active and passive monitoring tech-

niques.

2. Creating new algorithms for active and passive network measurement

integration.

3. Developing a PM framework based on simple decision algorithms.

4. Applying all the developed techniques in heterogeneous environments

with minimal cost.

Little work has been carried out in the field of proactive monitoring. The

main problem is the lack of concreteness on the metrics used and the effective

performance obtained by the proposed techniques. This thesis aims to fill

the existing gap proposing a set of metrics that can be used to determine

whether active or passive monitoring should be used, providing as well a

framework to execute proactive monitoring in large-scale heterogeneous net-

works. Moreover, the performance of the proposed solution is analyzed in

terms of achieved throughput.

To tackle the monitoring tasks, new algorithms and methods must be

designed in order to work in heterogeneous environments. In this thesis,

one of the main goals is bringing into focus the achieved performance of

1.3. Thesis Structure 5

the algorithms due to the wide range of link speeds present on heterogeneous

networks. Additionally, this work has focused on the simplicity and efficiency

of the algorithms in terms of computational power owing to the restrictions

of the heterogeneous systems.

Regarding active monitoring methods, the main objective is the charac-

terization of the pollution of the measurements by the influence of external

parameters such as Central Processing Unit (CPU) load or interfering traf-

fic. Such characterization is important as measurement systems on heteroge-

neous networks are deployed over non-dedicated systems that execute multi-

ple concurrent processes and may degrade the quality of the measurements

providing, thus, a wrong estimation of QoS parameters. Besides designing

pollution-aware algorithms, active algorithms should take into account the

influence of shaping and policing methods which are very common in corpo-

rate and domestic environments. The detection and characterization of the

parameters of such control methods is a paramount importance goal of this

thesis.

Considering passive monitoring techniques, the main goal of this work is

the characterization and proposal of new packet and flow correlation meth-

ods focusing on the performance analysis and the limitation on the use of

monitoring systems’ resources.

Finally, with respect to the integration of active and passive methodolo-

gies into PM systems, the main goal is the development of simple triggering

algorithms with low computational cost based on minimal information. An

additional objective is the development and evaluation of a PM framework

that puts together all the previous ideas in a simple and cost-effective man-

ner.

1.3 Thesis Structure

The rest of the present document is structured as follows. First, in Chapter 2,

communication networks and QoS fundamentals have been reviewed. Such

review is presented in an orderly way and provides a state of the art on

the most important methods and concepts related to network monitoring

6 Chapter 1. Introduction

focusing on QoS metrics, shaping and policing methodologies, router queuing

disciplines and flow-level and packet-level monitoring systems. Due to the

importance of time synchronization on network monitoring a brief review of

the most important methodologies is also presented.

Next, in Chapter 3 the literature concerning to active monitoring meth-

ods has been analyzed taking into account both file-transfer and packet-pair

methods. In this section an exhaustive analysis of the influence of external

parameters over the accuracy of the measurements has been carried out.

Such analysis has revealed the influence of external parameters such as

CPU load and self-induced traffic over the active measurement techniques.

In heterogeneous environments, such external parameters may not be easily

controlled. To overcome this limitation a method for detecting and subse-

quently removing polluted measures (due to the influence of external parame-

ters) has been developed. Additionally, it has been shown that traffic control

mechanisms such as shapers or policers, have an influence over the active

measurement methods. To solve these problems an algorithm that detects

the presence of such mechanisms and estimates, if possible, the parameters

of the shaping or policing system is proposed.

In Chapter 4, an analysis of the state of the art of passive measurement

methods has been performed with particular emphasis on those based on

flows and trajectory sampling. Derivative of such analysis and based on the

need of obtaining simple methods which are able to operate in heteroge-

neous environments at different speeds, a fast packet correlation algorithm

has been proposed. Such algorithm may be used in selective sampling or tra-

jectory sampling and is able to process about 6 Gb/s of real network traffic.

Moreover, an efficient architecture for network flow construction and simple

statistics gathering has been presented.

Additionally, in this work, a detection algorithm for time instants in which

there is presence of anomalous or polluting traffic based on the analysis of

time series is presented in Chapter 5. Such algorithm has been validated

using real traffic from an operator and a bank network, obtaining promising

results.

Finally, an architecture for a proactive monitoring system that integrates

1.3. Thesis Structure 7

the previously presented ideas has been proposed in Chapter 6. Particular

applicability examples of PM in heterogeneous environments have been also

provided.

Chapter 2

Background

This chapter provides the background and revises the most relevant concepts

related to Quality of Service (QoS) and monitoring metrics. The structure

of the chapter is as follows. First, traffic QoS metrics and assurance mech-

anisms such as traffic shaping and policing are described in Section 2.1 in

order to determine the base measurement scenarios. Section 2.2 describes

some important ideas and technologies related to traffic monitoring includ-

ing the definition of key aspects such as flows and sessions as well as time

synchronization mechanisms.

2.1 QoS Mechanisms

In order to provide QoS on both domestic and commercial networks, opera-

tors apply different techniques to control traffic at intermediate routers. Such

techniques can produce undesirable effects such as packet drop or delay over

the traversing traffic. In this scenario, understanding the QoS mechanisms

and effects turns out to be of paramount importance on the design and im-

plementation of measurement techniques. Additionally, a set of parameters

must be monitored in order to assure QoS. This section provides an overview

of the most relevant QoS parameters and techniques that must be taken into

account when designing and implementing measurement methodologies.

9

10 Chapter 2. Background

2.1.1 QoS metrics

Capacity

The capacity of a level 2 link is defined as the constant transmission rate.

Such constant transmission rate is limited by the physical characteristics of

the transmission medium and by the electrical/optical characteristics of the

transmitter and receiver hardware. At Internet Protocol (IP) level, capacity

is defined as the transmission rate taking into account the overhead produced

by the link layer headers. The capacity in this case can be defined as:

CL3 = CL2
1

1 + HL2

LL3

(2.1)

where CL2 is the level 2 capacity, HL2 is the link level preamble and header

length and LL3 is the IP packet size represented in bytes. The capacity

of the hop i, Ci, is defined as the maximum transmission rate at IP level.

Therefore, the capacity of one hop is always calculated using level 2 Maximum

Transmission Unit (MTU) IP sized packets. The capacity of an end-to-end

path, C, is defined as the minimum capacity of all the path hops. The hop

with the smaller capacity is known as narrow link.

Available Bandwidth

The available bandwidth of an end-to-end path is defined as the non-used

capacity in a given time period. This metric depends on as much from

the physical characteristics as from the link traffic load along the time. To

calculate the available bandwidth it is necessary to know the loads of the

links in advance. As such instantaneous utilization is not very practical, the

average utilization over a time period is used. Such metric is defined as:

u(t− τ, t) =
1

τ

∫ t

t−τ
u(x) dx. (2.2)

where u(x) is the instantaneous utilization of the link that either takes

the value 1 or the value 0 and τ is the time interval also known as averaging

timescale. Taking into account the previous definition, it can be stated that

2.1. QoS Mechanisms 11

the average available bandwidth of a hop i is:

Ai = (1− ui)Ci (2.3)

and the average available bandwidth of an end-to-end path is the minimum

of the per-hop average available bandwidth. The hop with the minimum

available bandwidth is known as the tight link. As the average available

bandwidth varies along the time, it is necessary measuring it quickly espe-

cially when the measured value is used to adapt the content distribution of

upper-layer applications.

Throughput

Another important QoS metric related to bandwidth is the TCP throughput

of a connection. The main disadvantage of this metric is that depends on

different factors such as the data transfer size, the number of concurrent TCP

connections, the congestion in the traversing links or the amount of TCP or

UDP cross traffic. Bulk Transfer Capacity (BTC) [MA01] represents the

throughput of a TCP connection. Note that this metric is not applicable in

all scenarios and due to the dependency on other parameters it has narrow

scope of application.

One-Way Delay (OWD)

OWD is defined as the elapsed time between the first bit of a packet in the

source observation point and the last bit of a packet in the destination ob-

servation point [AKZ99a]. This metric can be measured in a certain link

or along an end-to-end path. End-to-end OWD is composed of: transmis-

sion delay, propagation delay, processing delay and queuing delay [HMn07].

Transmission delay is the time needed to transmit all bits in a given packet.

Such delay depends on the packet length, transmission rate and physical

medium. Propagation delay is the time elapsed between the last bit of a

packet is emitted and the same bit is received on the other end. Processing

delay is the time needed by each router or network equipment to process

12 Chapter 2. Background

a packet. Queuing delay is the time spent by a packet waiting in a router

queue until is processed.

Round-Trip Time (RTT)

RTT is defined as the time interval between the first bit of a Transmission

Control Protocol (TCP) sent segment and the last bit of the corresponding

received TCP ACK [CFGS11]. Although RTT is defined over TCP, the

concept could be extended to any bidirectional protocol [AKZ99c] even to

services on top of TCP. Unlike OWD, RTT provides information about the

two directions of a communication which is useful when measuring asymmet-

ric links such as Digital Subscriber Line (DSL). RTT also takes into account

processing times at each end of the connection. For example, measuring RTT

of a HyperText Transfer Protocol (HTTP) connection implies waiting for the

server to either generate an HTTP response or a TCP RST in case connec-

tion cannot be handled. Measuring RTT in this scenario implies including

the HTTP server processing delay as part of communications delay which

may be unacceptable in some cases.

Jitter

The term jitter is normally misused depending on the context. In the QoS

scenario, jitter refers to the delay variation of a given stream of packets.

From now on, the term packet delay variation will be used instead of jitter.

In this case, delay variation over a stream of packets can be defined as the

difference between the OWD of a selected group of packets [DC02]. Such

selection can be done by means of either a deterministic or random selection

function applied to the set of received packets. Only ordered packet pairs

are used to calculate delay variation. Packet delay variation of packet i is

analytically defined as:

PDV (i) = D(i)−D(min) (2.4)

where D(i) represents the delay of packet i and D(min) represents the min-

imum packet delay on the observed time interval. Additionally, other ap-

2.1. QoS Mechanisms 13

proaches define the packet delay variation as the standard deviation of the

OWD of the observed packets in given a time period [IDVFE10]. Using the

previous definition, the packet delay variation can be calculated as:

PDV =

√√√√ 1

N − 1

N∑
k=1

(OWDi −OWD)
2

(2.5)

where OWDi represents the OWD of i− th packet and OWD represents the

average value of OWD on the measurement interval. Note that packet OWD

must be calculated disregarding lost packets as stated in [AKZ99a]. Other

approach to measure delay variation consist on calculating the Coefficient

of Variation (CV) of the measured packets OWD. This metric provides a

normalized measure of OWD dispersion. Unlike the previous approaches, the

CV method provides a unitless magnitude which gives an idea about whether

the delay variation is large or not. The larger the coefficient of variation is,

the greater the variability of OWD is. This approach is useful when relative

information is used to determine the quality of a monitored end-to-end path

or link. Delay variation as a coefficient of variation is analytically defined as:

PDV =
σOWD

µOWD

(2.6)

where σOWD represents the standard deviation of the measured OWDs and

µOWD represents the average value of the measured OWDs. The coefficient

of variation can be expressed also as a percentage which fits better into

threshold-based decision systems and eases the integration into Proactive

Monitoring (PM) decision systems.

Packet Loss

One important parameter when analyzing QoS is packet loss. Packet loss is

defined as the amount of lost packets to total sent packets in a given time

period [AKZ99b]. One packet is considered lost if it does not reach its des-

tination, arrives with errors or it is received with excessive delay. Note that

packets may not reach their destination due to several causes such as: packet

14 Chapter 2. Background

queue drops along an end-to-end path or physical link problems. In case of

protocols that allow fragmentation such as IP, one packet is considered as lost

if one of its fragments is lost. Additionally, as stated above, some protocols

such as Voice over Internet Protocol (VoIP) related, mark a packet as lost

when it has arrived with a large delay and it is no longer necessary. Packet

loss is an important parameter as a high packet loss can imply throughput

degradation due to error correction mechanisms implemented in transport

protocols such as TCP. Moreover, this parameter has a big impact over real-

time protocols as degrades the Quality of Experience (QoE) perceived by a

user. Packet loss can be measured either one-way or round-trip. Measur-

ing packet loss in a one-way fashion is beneficial as packet loss rate does

not necessarily have to be symmetric although links are symmetric. This is

particularly relevant when QoS policies are applied over the measured links

since each direction can have its own set of QoS rules. To actively measure

the packet loss rate between a source and a destination point, a packet train

is sent containing incremental sequence numbers. On arrival, packets are

received and analyzed to detect gaps in the sequence of identifiers. With all

this information, packet loss rate is calculated using the following equation:

PLR = 1− packetsRCV
packetsSND

(2.7)

where packetsRCV denotes the amount of correctly received packets and

packetsSND the total sent packets. Packets can be sent using constant inter-

departure times or generated randomly following a specific pattern such as

a Poisson process [AKZ99b]. The sending rate of the packets must be cor-

rectly adjusted as selecting a high rate implies a lot of interfering packets

while selecting a low rate can mask interesting networks effects

To monitor packet loss passively several approximations have been pre-

sented [PKP+06, FUK+09]. Such approximations are based on the retrieval

and correlation of traffic between two or more points on the network. Ana-

lyzing the traffic that flows between two points allows the proposed method-

ologies to estimate the traffic lost in one specific link or end-to-end path sub-

tracting sent traffic to received traffic. Other approximations such as [BV02],

2.1. QoS Mechanisms 15

track TCP connections and calculate packet losses using TCP sequence num-

ber and retransmission information. These methodologies, present some er-

rors on their estimation as only a subset of traffic or network paths are

monitored. Although, the precision is fair enough for general purposes, some

other applications such as VoIP need a more accurate estimation. Addition-

ally, capturing and correlating traffic in high speed environments [FUK+09]

is not a trivial task which may require special hardware or software.

2.1.2 Traffic Shaping and Traffic Policing

One important aspect when measuring QoS parameters is the influence of

QoS assurance mechanisms such as traffic shaping and traffic policing. Such

mechanisms modify several traffic characteristics resulting in different QoS

parameters values than expected. Specifically, shaping and policing tech-

niques have impact on the capacity, available bandwidth, packet loss and

delays. To get the big picture of the measurement scenario is important

to know how such mechanisms work and quantify their impact on the QoS

metrics. Traffic shaping and traffic policing are logical methods to limit and

control bandwidth in communication networks. Such limitation usually is

used to control and ensure that a packet or data source adheres to a spe-

cific contract or Service-Level Agreement (SLA). Both shaping and policing,

attempt to maintain the traffic rate below certain predetermined level. The

main difference between them is how they deal with traffic and the areas in

which these methods are applicable. Traffic policing uses a drop or mark-

ing policy. Packets belonging to bursts that exceed the previously marked

limit rate are dropped or marked as droppable for further processing. This

method does not modify the traffic in any way so that the original delay is

maintained and also the original traffic characteristics. It therefore main-

tains traffic bursts contained in the original traffic but not exceeding the

limit. Whenever limits are exceed, packets are dropped and consequently

packet loss may occur while measuring. Traffic policing can be applied on

both inbound and outbound traffic. The main disadvantage of policing is

the exceeding rate traffic loss which may degrade the performance of active

16 Chapter 2. Background

TCP connections due to the multiple retransmissions sent. On Figure 2.1

the effect of policing over traffic can be observed.

Traffic

Time

Traffic
rate Traffic

Time

Traffic
rate

��������

Figure 2.1: Traffic Policing

Traffic shaping uses a queuing-based policy to maintain a constant out-

put rate. Every time a packet arrives to the shaper is queued. At constant

time intervals packets are dequeued producing a constant output rate. Un-

like traffic policing, original traffic characteristics and delays disappear due

to queuing process. The main advantage of this method, besides maintaining

a constant output rate, is that allows controlling incoming traffic bursts to

obtain a smoother and continuous output. Additionally, this method reduces

traffic losses whenever incoming traffic exceeds the predetermined traffic rate

reducing thus, the average number of retransmissions. The main disadvan-

tage of the method is the delay increase due to queuing which can adversely

affect real-time systems or multimedia. The Figure 2.2 shows the effect of

shaping over the traffic.

2.1. QoS Mechanisms 17

Traffic

Time

Traffic
rate Traffic

Time

Traffic
rate

���
���

Figure 2.2: Traffic Shaping

Both in traffic shaping and policing several parameters can be adjusted

to calibrate the tolerance and operation mode. Such parameters are:

• Peak Information Rate (PIR): maximum customer transmission rate

expressed in bits/s and previously agreed between customer and op-

erator by means of a SLA. PIR value can never be greater than the

capacity of the link provided by the operator.

• Committed Information Rate (CIR): long-range average traffic rate

that the operator agrees to provide to a customer by means of a SLA.

This parameter is expressed in bits/s and is generally lower than the

PIR. In any case, the CIR can never be greater than the PIR.

• Committed Burst Size (CBS): maximum allowed burst size. This pa-

rameter specifies the maximum number of bytes that can be transmit-

ted at PIR without violating the CIR agreement.

• Excess Burst Size (EBS): Burst size threshold above CBS. Whenever

traffic bursts exceed the EBS, incoming packets are marked as drop-

pable.

• Peak Burst Size (PBS): CBS similar parameter defined with respect to

PIR instead of CIR.

18 Chapter 2. Background

Token Bucket Algorithm

For both shaping and policing, Token Bucket algorithm is used to control the

transmission rate taking into account traffic bursts. The algorithm is based

on the existence of a bucket full of tokens. A token represents an amount of

bytes or a packet of defined size. Token Bucket algorithm is defined by the

next variables:

• r: Token generation rate

• d: Maximum bucket size

• C: Maximum transmission rate

• B: Buffer size

Figure 2.3 shows the diagram of an standard Token Bucket.

Incoming
Packets

Exceeding
Buffer

Packets

Buffer
size
�

Output Link
Rate

C

Bucket
Size

d

Token
Generation Rate

Figure 2.3: Token Bucket Diagram

Tokens are generated and stored in the bucket at rate r. In case that the

bucket exceeds its maximum capacity d, new generated tokens are dropped.

Whenever traffic is to be sent, the bucket is checked for the existence of as

many tokens as bytes or packets are needed to be sent. In case that the

2.1. QoS Mechanisms 19

bucket contains enough tokens, the packet or packets are sent and tokens are

removed from the bucket. If the bucket is empty, depending on whether a

queue is used or not, packets are queued or dropped. Queued packets must

wait until enough tokens are available. Using this token consumer/producer

mechanism, the output traffic rate is controlled. The algorithm allows the

existence of traffic bursts. If the bucket is full of tokens, bursts of length d

at rate C are allowed. On the contrary, if the bucket is empty, packets are

sent at rate r. Applying the algorithm the previously commented shaping

and policing parameters may be set. The CIR parameter corresponds to the

r parameter of the model while the PIR corresponds to the C parameter and

the CBS to the d parameter.

Understanding this admission control mechanism is important, as stated

before, since both commercial and domestic networks are nowadays logically

limited by this mechanism.

Traffic Policing using Token Bucket

Single-Rate Three Color Marker (srTCM) Single Rate Three Color

Marker [HG99a] is a Token Bucket based mechanism to apply policing at a

single rate, mainly CIR. The method marks packets with three different col-

ors (green, yellow and red) according to the incoming traffic. Whenever

packets must be discarded, red and yellow ones are discarded in first place.

The configurable parameters for this method are: CIR, CBS and EBS. The

main objective of this mechanism is to ensure that the average traffic rate is

roughly the CIR. To this end, two buckets named C and E are used. In the

case of C bucket, the maximum size is CBS while in case of E bucket is EBS.

The token generation rate for both of them is CIR—every 1/CIR seconds a

token is generated. Each time a token is generated is automatically added

to the buckets unless buckets are full.

When a B bytes packet arrives, the bucket C is checked for token ex-

istence. In case C has enough tokens, packet is marked as green and the

corresponding tokens to B bytes are removed from C bucket. On the con-

trary, if the E bucket has enough tokens, packet is marked as yellow and the

20 Chapter 2. Background

corresponding tokens to B bytes are removed from the E bucket. If both

E and C buckets happen to be empty, packet is marked as red. Using this

method, output rate is enforced to be in the bounds of CIR allowing certain

bursts depending on the values of CBS and EBS

Two-Rate Three Color Marker (trTCM) Two Rate Three Color

Marker [HG99b] is a Token Bucket based mechanism to apply policing inde-

pendently at two rates—CIR and PIR. As the previous algorithm, incoming

packets are marked as green, yellow or red. The configurable parameters for

this method are: CIR, PIR, CBS and PBS. This mechanism uses two buckets

named C and P. The bucket C has a maximum capacity of CBS tokens and a

token generation rate of CIR. The bucket P has a maximum capacity of PBS

tokens and a token generation rate of PIR. Initially, both buckets are full and

each time a token is generated is automatically added to its corresponding

bucket unless is full.

When a B bytes packet arrives, the bucket P is checked for token existence.

In case P does not have enough tokens, packet is marked as red. If the

bucket P has enough tokens, the C bucket is checked for token existence.

If the bucket C does not have enough tokens, packet is marked as yellow

and tokens corresponding to B bytes are removed from the P bucket. If the

C bucket does have enough tokens, packet is marked as green and tokens

corresponding to B bytes are removed from both C and P buckets.

Traffic Shaping using Token Bucket To apply shaping a Token

Bucket method can be used. Such method is similar to the Single Rate

Three Color Marker and Two Rate Three Color Marker policing methods.

Tokens are generated at a constant CIR rate if the bucket is empty. To apply

shaping it is necessary the existence of an admission queue where incoming

traffic is stored. When a packet of B bytes arrives, the bucket is checked for

token existence. While the bucket has enough tokens packets are sent at PIR

rate. In this way, adjusting PIR and CIR, the bursty traffic is regulated and

a constant CIR output rate is achieved.

2.1. QoS Mechanisms 21

2.1.3 Router Queuing Disciplines

In addition to the physical or logical traffic limitations, there exists another

source of uncertainties when measuring large-scale networks. Such source of

uncertainties is associated to the behavior of the routers that compose the

measured network, specifically, to the queuing disciplines used to manage the

traffic. Router queuing mechanisms can modify traffic characteristics such

as delay, delay variation or effective bandwidth. Thus, it is important to

analyze and understand the most popular queuing disciplines in order to de-

sign effective and realistic measurement methods. In a queue system, several

queuing disciplines exist. Such disciplines allow organizing the traversing

traffic and deal with it one way or another. Some queuing disciplines can act

as bandwidth limiters which clearly impacts on the measurements. In this

part of the thesis, some queuing disciplines will be described discussing their

advantages and disadvantages as well as the traffic characteristics that may

modify.

First In-First Out (FIFO)

FIFO is the basic and standard discipline used by default in most of the

commercial routers. In this discipline, the packets are queued in the order

they arrive and depart from the queue in the same order. This discipline

is also known as First Come First Served (FCFS). The main benefit of this

method is its simplicity which eases the implementation of both software and

hardware routers. FIFO process all the packets in the same manner which

makes it a good method for processing traffic marked as Best Effort (BE).

This fact does not make it particularly good for other type of traffic since

all traffic is penalized in the same way when congestion exists. For example,

FIFO favors User Datagram Protocol (UDP) traffic over TCP insomuch as

TCP uses retransmissions and reduces its rate to minimize packet losses.

Priority Queuing (PQ)

PQ somewhat solves FIFO discipline problems defining N queues with pri-

ority ranging from one to N in such way that traffic can be classified into

22 Chapter 2. Background

different classes. The method is based on the idea that traffic from queue

j can only be dequeued if queues from one to j-1 are empty. This mech-

anism retains the simplicity of FIFO queuing while traffic classification is

possible. The major drawback of the method is that starvation can occur.

For example, if traffic is always present in high priority queues, low priority

queues are never processed. This discipline is highly recommended in scenar-

ios where high-priority traffic represents a small fraction of total traffic. For

instance, this discipline can be used to create Real Time (RT) traffic queues

that can be used for video or audio transmission. This queue discipline must

be used with extremely caution when managing TCP traffic as TCP conges-

tion control mechanisms may cause more serious starvation for other traffic

in different queues.

To address the starvation problem one queuing discipline is used, Rate-

Controlled Priority Queuing (RCPQ). In this discipline several usage thresh-

olds are applied to each queue. Thus while higher priority queues do use

less capacity than the predefined usage threshold, the method works as PQ.

When the threshold is exceeded traffic is restricted in order to favor lower

priority queues.

Fair Queuing (FQ)

FQ is a discipline that allows the creation of classful queues based on packet

contents. Each packet that arrives to the system is classified in one queue

ranging from one to N. Each queue has assigned one fraction of 1/N of the

total output bandwidth. The system scheduler loops over the N queues in

Round Robin (RR) order dequeuing one packet per queue in case the queue

is not empty.

This discipline is easily implementable and scalable in such a way that

adding a new queue does not imply significant changes on the algorithm. One

of the disadvantages of this method is the negative impact over traffic that

demands a minimum rate. In this case, as the total bandwidth is divided by

1/N, if the traffic demand is higher than 1/N packet losses can occur. For

instance, bandwidth measurement algorithms need to have available all the

2.1. QoS Mechanisms 23

output bandwidth to perform correctly and provide reliable results and only

1/N will be available.

Other FQ problem is that queues containing large packets obtain more

output bandwidth than queues with smaller ones as one packet per queue

is dequeued each iteration. Thus, small packets obtain less output band-

width which can affect negatively especially when such packets are used for

bandwidth measurements or multimedia content transmission purposes.

Weight Fair Queuing (WFQ)

This queuing discipline is an approximation to the Generalized Processor

Sharing (GPS) [PG93]. The algorithm divides the incoming traffic into N

queues and the output bandwidth between such N queues in a weighted

fashion. The global weight sum is equal to the output capacity. In WFQ

unlike in FQ, the scheduler dequeues packets from the N queues in finalization

time order. Such finalization time is estimated by an approximation to the

theoretical model Weighted bit-by-bit round robin. This model, loops over

the queues using RR algorithm outputting one bit at a time. Whenever a

packet is complete, is dequeued and sent. Note that larger packets will have

to wait in queue more than smaller ones. This theoretical approximation is

not directly applicable as reassembling all the previously extracted bits of a

packet would be prohibitive in terms of processing time and power.

For an output link of capacity C, the output rate of class i with the weight

wi is denoted by:

Ci =
Cwi

w1 + w2 ++ wN
(2.8)

This discipline solves the problems presented by FQ and allows a differen-

tiated class distribution of the output bandwidth. In a situation in which

all queues have traffic, the bandwidth of each queue is limited by the Equa-

tion 2.8 which imposes a limitation when measuring bandwidth in systems

with this type of queuing.

24 Chapter 2. Background

Weighted Round Robin (WRR)

To solve the FQ problem of the traffic that demands a certain amount of

bandwidth, WRR discipline also known as Class-Based Queuing (CBQ) is

used. This method divides the input traffic into m different classes according

to its bandwidth requirements. Each of these classes has an associated weight

whose sum is 100%. Inside each i class, Ni FQ queues exist.

Every time a packet is to be dequeued, the scheduler visits the m classes

in RR order. Inside each class the FQ queues are also visited in RR order.

The individual weight of every FQ queue j inside the class i is determined by

the next equation:

Wij = Wi ×
1

Ni

; j = 0, 1, ...Ni (2.9)

As in the previous case when all queues are full, the bandwidth of spe-

cific traffic may be limited due to the weight of the queue containing it

and adversely affect the link bandwidth measurements. Although the traffic

bandwidth requirements distribution problem is solved, this method does not

solve the imbalance produced by the difference in the sizes of the packets.

Shaped Round Robin (SRR)

SRR is a discipline adopted by some router vendors as Cisco which is based

on the specification of the packet extraction rate from a specific queue. Using

this technique, the bandwidth assigned to each queue is strictly controlled.

To control the bandwidth, the scheduler visits the queues in RR order and

establishes time intervals in which packets can be extracted, adjusting thus,

the maximum per-queue bandwidth. SRR has also a more relaxed working

mode also known as shared mode. Such mode allows the use of the band-

width assigned to other queues in case these are empty. On the contrary,

the standard mode known as shaped mode does not allow this behavior.

Shared mode is used when the maximum efficiency is to be obtained from

a queue system as the idle queues may be used to store the traffic excess

from other queues. Shaped mode is used when a strict maximum bandwidth

2.2. Network Measurements 25

limit is needed to be established on certain queues. This method can be used

together with other previously applied bandwidth control methods such as

traffic shaping or traffic policing.

2.2 Network Measurements

One key aspect of PM, is the management and handling of data derived and

used in network measurement process. This section provides a brief overview

of concepts and technologies related to network measurements both active

and passive.

2.2.1 Flows and Sessions

A flow is defined as set of packets that share the same source and destination

IP addresses, source and destination ports and transport protocol identifica-

tion. A session or bidirectional flow is defined as a set of packets that share

same permutable source and destination IP addresses, source and destination

ports and transport protocol identification. Note that usually, a bidirectional

flow or session is composed by two flows, one per direction. For example, one

TCP connection can be grouped into a unique session or a flow pair. From

now on the term session will be used to describe a bidirectional flow while

the term flow will be used to describe a unidirectional flow.

Both sessions and flows are interesting from measurement and monitoring

point of view. For instance, a monitoring system may collect flow records

and generate statistics to describe and characterize the monitored network.

In this light several standards and de-facto standards are being developed

and used nowadays. Following, some of these standards are described for the

sake of completeness.

NetFlow

NetFlow is a Cisco proprietary protocol designed to collect statistics and

monitor IP traffic traversing routers and switches. Other vendors had ac-

quired this protocol as a de-facto standard in their equipments. NetFlow v5,

26 Chapter 2. Background

is the most extended and simpler version. In NetFlow v5 a flow is defined

as a set of packets sharing a 7-tuple, namely: source and destination IP ad-

dresses, IP protocol, source and destination ports (supposing either TCP or

UDP packets), ingress interface and IP Type of Service (ToS). Equipments

implementing NetFlow maintain an in-memory table containing all active

flows. Each flow entry contains the 7-tuple information as well as number

of bytes and packets corresponding to such flow and first and last packet

timestamps.

Each time a packet arrives to a router or switch that implements Net-

Flow, the packet is processed and its 7-tuple is compared with the in-memory

flow table. If the flow entry does not exist and the equipment has memory

available, a new flow entry is created. In case that the flow does not exist

but there is no space available, one used entry is exported and its memory

space is reused. One flow may be exported if:

• Flow has not been updated in a determined period of time. By default

this time is set to 15 seconds on Cisco routers and switches.

• Flow has been active for a long time period. By default this time is set

to 30 minutes on Cisco routers and switches.

• In a TCP flow, a FIN or RST packet has been received.

Each time a flow is exported, a NetFlow record is generated and sent

to a collector which may process it. Each flow record contains the 7-tuple

information as well as start and end flow timestamp and number of packets

and bytes in the flow. Newer versions of NetFlow such as v9 have been used as

basis for standardization of other protocols as in the case of Internet Protocol

Flow Information eXport (IPFIX). More detailed description of NetFlow

records can be found on [Cla04]. Note that, when monitoring high-speed

links, all packets cannot be processed for NetFlow table update due to the

high memory and processing power needed. In such case, packet sampling

may be applied. In the case of routers and switches, sampling is applied

in a deterministic way selecting one packet per each received N packets.

Sampling traffic may lead to wrong flow statistics and problems that must be

2.2. Network Measurements 27

taken into account when using record information for monitoring and analysis

purposes [Duf04, PRTV10, dRCGDA13]. NetFlow records are commonly

used on passive network monitoring and analysis due to the simplicity and

widespread deployment of Netflow-capable routers.

IPFIX

IPFIX [QZCZ04, Cla08, QBC+08, TB08] is an Internet Engineering Task

Force (IETF) protocol created to establish a common IP flow information

export and data definition mechanism. This standard defines not only the

type and format of transferred information and data from an exporter to a

collector but also the protocol and communication mechanisms. IPFIX is

based on NetFlow v9. IPFIX redefines the concept of IP flow extending the

classical NetFlow definition to include the idea of a function that is applied

to each packet to determine whether the packet belongs to a flow or not. The

function may be applied to:

1. One or more packet header fields, transport header fields or applica-

tion header fields. For example, a function can be applied over the

5-tuple classical fields (source and destination IP addresses, source and

destination ports and transport protocol) and also over a Real-time

Transport Protocol (RTP) header field defining thus, a RTP flow.

2. One or more intrinsic packet characteristics. For example, a function

can be applied over Multi-Protocol Label Switching (MPLS) labels to

group all the packets with the same labels in a unique flow.

3. One or more fields derived from packet processing. For instance packets

may be grouped in a unique flow based on the next hop IP address.

The IPFIX flows contain usually: a flow key based on the previously de-

scribed selection fields and a flow record containing measured properties of

the flow such as number of bytes and packets. Flow records are generated

by a metering process that receives packet headers, characteristics and treat-

ment results and applies a set of functions. Such functions include packet

header capturing, timestamping, sampling, classifying, and flow update and

28 Chapter 2. Background

creation. As in NetFlow case, when flows expire must be exported. This

exportation is done using IPFIX protocol messages which make use of tem-

plates to define and packetize the flow information and statistics. Custom

templates can be added to extend the protocol in a simple and standard way

positioning IPFIX as one of the most extended mechanisms to monitor IP

traffic.

Multi Router Traffic Grapher (MRTG)

MRTG [OR98] is a link monitoring and traffic load measurement tool. This

application allows the graphical representation of several network parame-

ters such as link utilization. Additionally, MRTG has evolved allowing the

measurement and representation of almost any kind of parameter. The tool

periodically requests the value of the monitored parameters and graphs them.

By default, parameter value requests are done in five minutes intervals but

allows data aggregation with different granularities such as weeks, months or

years. Typically, MRTG has two working modes. The first one is based on

Simple Network Management Protocol (SNMP). In this working mode, the

MRTG process, constructs and sends a SNMP request containing the Object

IDentifier (OID) of the resource that is to be monitored. The response gen-

erated by the SNMP agent is received and stored in a measurement database

and using all the measurement data a HyperText Markup Language (HTML)

document is generated. Such document contains both graphs and informa-

tion about the monitored resources. The second working mode is based on

customs scripts. As in SNMP case, every so often, the customs scripts are

executed and the results are stored in the measurement database. Such mea-

surements can also be graphed as the SNMP response values.

MRTG tool1 is written in Perl, and is available for the most popular

operating systems —Windows, Linux and Mac. MRTG measurements are

very useful when passive monitoring large-scale networks as gives an idea

of network general load and utilization. Combining this methodology with

NetFlow or IPFIX almost any traffic characteristic can be monitored and

1http://oss.oetiker.ch/mrtg/

http://oss.oetiker.ch/mrtg/

2.2. Network Measurements 29

represented.

2.2.2 Time synchronization

Network measurement process, independently whether is active or passive,

needs time synchronization between all the elements to obtain reliable and

valid results. This is especially important when measuring parameters such

as OWD or RTT. Moreover, in high-speed environments, such need becomes

critical as operation time intervals are very small and high accuracy is also

needed. In this light, this section describes some time synchronization mech-

anisms commenting their major benefits and drawbacks. In this section only

Network Time Protocol (NTP), Precision Time Protocol (PTP) and Global

Positioning System (GPS) techniques are analyzed due to their importance

and wide dissemination. From now own the terms accuracy and precision

will be used. Thus, is important to correctly define what is understood by

accuracy and precision. To this end, the definitions in [IS08] are used. Ac-

curacy is defined as the mean time or frequency error between one target

clock and a perfect reference clock over a time period. Precision is defined

as the deviation of the error from the mean.

NTP

NTP [Mil85, MMBK10] is a client-server time synchronization protocol widely

used on the Internet. Basically, NTP was designed to distribute and syn-

chronize Coordinated Universal Time (UTC) time between different network

points. NTP is based on a hierarchical organization defining three main clock

strata levels namely:

• Stratum 0: This stratum is composed by high-precision clocks such

as atomic clocks, GPS or radio clocks. Normally, such clocks are not

directly connected to the network but connected to computers that act

as NTP stratum 1 server.

• Stratum 1: This stratum is composed by computers attached to Stra-

tum 0 devices. Such computers are known as time servers and provide

30 Chapter 2. Background

time synchronization to Stratum 2 equipment via NTP.

• Stratum 2: This stratum is composed by computers that communicate

with Stratum 1 computers and act as time servers for lower strata. Stra-

tum 2 machines also communicate with other Stratum 2 equipments to

obtain more precision and stability.

NTP uses a time correction algorithm to distribute the time across the

network. Such algorithm is based on the RTT calculation. To calculate

the RTT, the NTP client sends a packet timestamped with value t1. On

the server side, client packet is timestamped upon receiving with value t2.

The server sends a packet timestamped with value t3 that is received and

timestamped on the client with value t4. The RTT is calculated as:

RTT = (t4− t1) (2.10)

And the clock time offset c as:

c =
t2− t1 + t3− t4

2
(2.11)

Such formulas, implicitly assume that the delay in each direction is sym-

metric and that the drift rates of client and server clocks are small. Such

assumptions may not be realistic in all scenarios and NTP mat have a sys-

tematic bias of half the RTT.

All modern operating systems implement NTP clients to keep local time

synchronized. Usually, the local clocks are corrected several times a day

and periodic NTP request are done. The achievable accuracy depends on

both network delay variations and source clock precision. Typically, on the

Internet the NTP accuracy ranges from 5 ms to 100 ms. NTP performs bad

in presence of high network delays.

In [Min99], a wide NTP analysis is done and the results suggest that only

the 10% of the analyzed NTP servers have network access delays higher than

100 ms with a mean of 33 ms, a median of 32 ms and a standard deviation

115 ms. Also the author of [Min99] points to a reduction of such times in

comparison with previous studies due to the improvement of the networks

2.2. Network Measurements 31

quality. Additionally, the clock offset is analyzed on several hosts obtaining

values of mean offset of 8.2 ms, median of 1.8 ms and standard deviation of

18 ms.

NTP is a good choice for time synchronization when ms accuracy is

enough and a widely compatible and scalable system is needed. The main

advantage is that NTP works over almost any kind of network as far as UDP

is available.

PTP

PTP [IS08] is a network time synchronization protocol. Unlike NTP, PTP

uses the master/slave architecture to maintain time synchronized between

multiple equipments. Each machine in a network can act a either a master

(time source) or a slave —time destination. The selection between master and

slave is done dynamically along the synchronization process. Thus, a clock

may act as master for a time period but if a more accurate clock is added

to the network, it will change its role to slave transferring the master role

to the new clock. Additionally another role called boundary clock is used.

Boundary clocks are connected to two or more network segments and are

used to bridge synchronization from one network segment to another. Note

that each network segment can have its own master clock. A grandmaster

clock is selected among all the master clocks to synchronize clocks located on

different network segments. The protocol is conceived to be distributed and

is based on the exchange of PTP timing messages between the grandmaster

clock and the slaves using such timing information to adjust and compensate

their clocks using the time of their master in the hierarchy.

The synchronization process is based on two stages comprising the estab-

lishment of master-slave hierarchy and the time synchronization itself. Each

PTP node has its own state machine to determine whether it works as a

master, as a slave or as a passive node. Passive nodes do not synchronize

to any clock and do not provide time synchronization to other nodes. The

selection of master and slave clocks is made using the Best Master Clock

(BMC) algorithm. Such algorithm analyzes clocks data to select the best

32 Chapter 2. Background

clock. The analyzed data is sent periodically in Announce messages by the

grandmaster clock. The clock selection algorithm uses the next properties in

the indicated order to make a decision of the best clock.

1. Priority 1: This parameter indicates the belonging of a clock to an

ordered set of clocks from which the master should be selected. It can

be set by the user.

2. Clock class: This parameter defines the clock International Atomic

Time (TAI) traceability, that is, define whether or not the clock has a

set of properties related to a TAI international standard by means of

an unbroken chain of comparisons including stated uncertainties.

3. Clock accuracy: This parameter defines the clock accuracy.

4. Offset-scaled Log Variance: This parameter defines the stability of a

clock along time.

5. Priority 2: This parameter establishes a fine-grained ordering among

equivalent clocks.

6. Clock identity: A unique clock identifier.

Once master and slave clocks are selected the synchronization process

starts. For every slave, the time offset with respect to the master clock is

calculated following the next process:

1. The master sends a Sync message to the slave and stores the transmis-

sion time t1.

2. The slave receives the Sync message and stores the reception time t2.

3. The master sends t1 timestamp embedding it on both Sync and Fol-

low Up messages to the slaves.

4. The slave sends a Delay Req message to the master and stores the

sending time t3.

2.2. Network Measurements 33

5. The master receives the Delay Req message and stores the reception

time t4.

6. The master sends to the slave the timestamp t4 embedding it in a

Delay Resp message.

When this message exchange is over, the slave has received t1, t2, t3 and

t4. Using such timestamps, the offset may be calculated as well as the mean

propagation time between two clocks. As in NTP case, the offset computation

assumes that propagation times in each direction are equal. For asymmetric

links there exists an error in the calculated clock offset. Using the previously

stored times, the offset from master is calculated as:

o(t) =
t2− t1− t4− t3

2
(2.12)

Once the slave clock knows the offset can correct itself. The offset calcula-

tion is carried out in a relatively small time period and, thus, the calculated

offset can be considered constant. Such calculation must be done repeat-

edly to correct the time drifts. Regarding accuracy, PTP can achieve clock

synchronization with errors lower than 1 µs on Ethernet networks [IS08].

PTP emerged as an alternative for local systems where high-accuracy

synchronization is needed and NTP does not provide enough accuracy. Also

PTP is presented as an alternative to GPS synchronization since the latter

adds per-node monetary costs increasing the deployment investments. Ad-

ditionally, in some scenarios, the GPS signal may be inaccessible. This is

the case of big data-centers which usually are located in basements or closed

environments where the cost of transporting the signal is very high.

Although PTP originally used multicast UDP over IP messages, the pro-

tocol has evolved to support messages over Internet Protocol version 6 (IPv6)

and also over Institute of Electrical and Electronics Engineers (IEEE) 802.3

Ethernet directly.

34 Chapter 2. Background

GPS

GPS is a satellite navigation system that can provide location and time in-

formation in an accurate way. In recent years this technology has gained

tremendous popularity and has been widely disseminated in all kind equip-

ments. Some examples are the GPS receivers installed on car navigation

systems or the receiver included in modern commercial smartphones. GPS

technology is based on the calculation of message propagation time and dis-

tance from satellites to receivers. To this end, both receivers and satellites

are equipped with special hardware. In the case of satellites, atomic clocks

are installed to perform the timing of the messages. On the receiver side

accurate hardware clocks are installed.

Using this precise time characteristic provided by the GPS technology,

several nodes can be synchronized without any communication installing GPS

receivers on each node. Timing with GPS is a very good approach when

synchronization systems based on packet transmission such as NTP or PTP

are not allowed or the cost in terms of extra traffic is not assumable. The main

disadvantage of such approach is the increment of monetary cost of receivers’

deployment and the impossibility, in some cases, to carry the signal to the

receivers.

Focusing on traffic monitoring, several projects and works have been

carried out using GPS techniques [MMI+05, SMRD06, LAM+11, FDL+01].

Such approaches make use of GPS receivers to build a network measurement

and control infrastructure based on accurate timestamping. Depending on

the application the GPS receiver may be connected to specific network hard-

ware such as Endace DAG2 or NetFPGA3 cards. Other applications make

use of commodity hardware together with specific software to synchronize

the clock using a GPS [SBDR10].

The average accuracy achieved by a commercial GPS receiver is in the

bounds of 200 ns [EGE02]. Additionally, extra processing or signal quality

may degrade such figure to 500 ns. In any case, the accuracy obtained by this

2http://www.endace.com/
3http://netfpga.org/

http://www.endace.com/
http://netfpga.org/

2.2. Network Measurements 35

technology outperforms all the previously presented methodologies at the ex-

pense of increasing the deployment cost. However, hybrid solutions had been

developed to reduce such cost keeping a reasonable clock accuracy [HG03].

Chapter 3

Active Measurements

This chapter provides the background and revises the most relevant works re-

lated to active network measurements. In addition, new active measurement

techniques are proposed and analyzed in order to provide a better integration

into Proactive Monitoring (PM) systems. The structure of the chapter is as

follows. First, a brief description about active measurement methodology is

done in Section 3.1. Then, in Section 3.2 an overview of active measurement

techniques is done dividing the existing methods into File-Transfer based and

Packet Pair based. These methods lack of precision estimating Quality of

Service (QoS) parameters when monitoring heterogeneous networks on gen-

eral purpose machines. In Section 3.3 such problem is addressed taking into

account the influence of external parameters such as Central Processing Unit

(CPU) and memory load, concurrent traffic or the application of QoS mech-

anisms among others. In the survey of Section 3.3, several algorithms are

proposed to address the previously presented problems. To finalize, some im-

portant ideas are presented in Section 3.4 as conclusion.

3.1 Introduction

Active measurement techniques are based on the idea of injecting traffic into

a network to measure its characteristics. Such approach can be applied to

large scale networks either end-to-end or per link to obtain reliable statis-

37

38 Chapter 3. Active Measurements

tics and determine the quality of the observed network segment. On the

one hand, active measurements are network-invasive due to their very na-

ture. Such characteristic is not desirable in some scenarios as the measured

link behavior is being influenced by the measurement traffic. On the other

hand, in some cases QoS parameters must be estimated accurately in a given

time period. For example, Service-Level Agreement (SLA) validation process

over a specific link or path requires active measurement to obtain parame-

ters such as path or link capacity, One-Way Delay (OWD) or packet loss.

Some of these parameters such as link capacity cannot be estimated in a

passive way as links are not usually fully-loaded. In other cases the estima-

tion of the parameters could be done in a less accurate way. For example,

to passively estimate OWD packet correlation is needed besides end-to-end

time synchronization. Additionally, some network behaviors can only be

correctly observed when adding load to the links. This is the case of traf-

fic shaping and policing parameters estimation for SLA verification. Due

to the aforementioned advantages, active measurements must be taken into

account when monitoring networks in a proactive way to improve passive

estimations and detect specific problems. Nevertheless, the implementation

of active methodologies on real systems brings up several problems such as

the self-induced traffic, the CPU load, the Interrupt Coalescence (IC) or the

scheduling policies applied by intermediate routers. Such problems must be

taken into account in order to obtain reliable results and a full understand-

ing of measured network. Depending on the type of generated traffic and the

methodology used, three main categories can be distinguished: Bulk-Data

transfer, Packet-Pair and Packet-Train. Every, methodology has its own ad-

vantages and disadvantages. In Section 3.2 these methods are described in

depth.

3.2 Active Techniques

Active measurement techniques aim to measure several network characteris-

tics by generating traffic and observing its behavior as the traffic traverses

the network. The major drawback of this method is its intrusiveness as extra

3.2. Active Techniques 39

traffic must be generated. In some situations such intrusiveness is desirable,

for instance when trying to stress a network to characterize existence of mis-

used or available resources. Active techniques may be used periodically to

test and analyze the networks. Such process leads to a stratification of the

active measurement to characterize the network behavior along the time de-

pending on the state of the network. Active techniques can be divided into

two big groups mainly: File-Transfer/Bulk Data Transfer techniques and

Packet-Pair techniques. Such division is based on the technique used to gen-

erate traffic and subsequently analyze it to estimate the QoS parameters. In

this section, several techniques and tools are commented composing a brief

state of the art of the active measurement methodologies including some

comments about their strengths and weaknesses as well as how some QoS

parameters are estimated.

3.2.1 File-Transfer

This measurement method formally defined by European Telecommunica-

tions Standards Institute (ETSI) EG 202 057-4 [Ins08] aims to estimate QoS

parameters using a HyperText Transfer Protocol (HTTP) file transfer. The

transfer must be done querying a dedicated test server and downloading a file

which must be, in size, eight times the nominal bandwidth of the measured

link. For example, on a 1 Mbps link the test file size must be 106 Bytes (8

Mbits) in size. Such file must be randomly generated to avoid any web server

optimization. Furthermore, an integrity check must be performed by means

of a SHA digest associated with the file. To calculate the QoS both server

response and file download times are calculated. To estimate the bandwidth

of the measured link or end-to-end path, the next formula is used:

BW =
8N

τf − τi
(Mbps) (3.1)

where N is the size of the downloaded file expressed in bytes and τf ,τi rep-

resent the file download finalization and start time, expressed in µs, re-

spectively. The download time can be measured at different protocol lev-

els (Physical Layer, IP, TCP) and application level is considered in these

40 Chapter 3. Active Measurements

measurements [AAMD06].

According to the ETSI standard, the file, in size, eight times the nominal

speed of the link must be downloaded in about eight seconds to verify that

the measured bandwidth is about 100% the nominal bandwidth. Several

commercial solutions such as Speedtest1 use this method to provide an esti-

mation of the bandwidth. Such platforms perform several download trials in

order to provide a better estimation.

Other parameter that can be estimated using this method is Round-Trip

Time (RTT). In this case, the RTT is estimated as the average HTTP server

response time or the Transmission Control Protocol (TCP) RTT. Addition-

ally, packet loss rate can also be estimated using this method [BMSDM12].

The OWD can be estimated as the half of RTT as stated in the ETSI

guide [Ins08]. Such estimation is only applicable when the measured link

or end-to-end path is symmetric. Even more, if the measured link or end-to-

end path is symmetric it cannot be assumed that the delays are similar in

both directions.

The main advantage of this method is that the measurement is performed

at the user level and it provides a closest idea of the user experience. File-

download techniques are very simple to implement but they have twofold

drawbacks. On one hand, the download times are large, in the order of 8

seconds because the downloaded file is 8 times the nominal bandwidth of the

measured link, according to the ETSI guide [Ins08]. On the other hand, the

influence of cross-traffic is high. This is expected because TCP performs a

rate adjustment that depends on the number of concurrent connections in

the bottleneck link. Whenever a TCP connection is established, for instance

a HTTP connection, a congestion-window mechanism is used to limit the

amount of data that can be sent without receiving an acknowledgment. Due

to the slow start method, such congestion window is increased until losses are

detected or ACK reception timeouts expire. At this point, the mechanism

reduces the congestion windows until either the minimum value of the window

is reached or no losses are detected. Once this state is reached, the congestion

window is increased again and the previous processes are repeated. This

1www.speedtest.net

www.speedtest.net

3.2. Active Techniques 41

mechanism produces a saw-tooth behavior as Figure 3.1 for TCP Reno —

W/2.

Time

W

W/2

Congestion
Window

Figure 3.1: Saw-Tooth behavior produced by TCP congestion mechanism

Given that a file download measurement can be executed in general pur-

pose machines, other concurrent TCP and User Datagram Protocol (UDP)

connections may exist. Equations 3.2 and 3.3 [HAN02] show that both the

bandwidth of a single TCP connection and the aggregate bandwidth of a set

of TCP connections depend of the loss probability pi of each connection. If

a measurement is carried out making use of TCP and either UDP or TCP

concurrent intensive traffic exists, losses can be detected and the effective

bandwidth of the measurement connection decreases.

BW ≤ MSS

RTT

C
√
p

(3.2)

BWagg ≤
MSS

RTT

[
1
√
p1

+
1
√
p2

++
1
√
pn

]
(3.3)

Additionally, if two TCP connections are sequentially created the first

one will be favored due to the slow start mechanism. TCP connections must

42 Chapter 3. Active Measurements

spin out some time until an equitable bandwidth distribution is obtained.

In some cases the time needed to reach such equilibrium exceeds the time

required to perform a file download test.

Other disadvantage of this measurement methodology, is that is affected

by CPU and memory load, providing distorted results as shown in Section 3.3

3.2.2 Packet-Pair

Packet-pair [Jac88, Kes91, Pax96, DRM04, DRM01] is an active measure-

ment method based on sending multiple packet pairs from a source to a

destination point to calculate QoS parameters. Each pair is composed by

equally sized packets sent back-to-back, this is, at maximum allowed speed

in a link or end-to-end path. The pair dispersion in a specific link is defined

as the time between the last bit of the first packet and the last bit of the

second packet. The pair dispersion in the destination if no interfering traffic

is present is defined by:

∆r =
L

mini=0,..,H Ci
=
L

C
(3.4)

H = # hops

where L represents the size of the packet expressed in bits and Ci is the

capacity of link i in an end-to-end path of H hops expressed in Mbps. ∆r is

the dispersion or inter-arrival expressed in µs. To calculate the capacity of

the end-to-end path Equation 3.5 is used.

C =
L

∆r

(3.5)

Figure 3.2 shows the behavior of this measurement method.

These types of methods allow the estimation of other QoS metrics such

as OWD, delay variation or Packet Loss Rate (PLR). To calculate the OWD

packets are timestamped both on departure and arrival time. Calculating

the difference between the two timestamps the OWD may be estimated. To

calculate the delay variations, the algorithms described in Section 2.1.1 can

3.2. Active Techniques 43

�� SourceDestination

Figure 3.2: Packet Pair method

be used. As in the case of OWD, to calculate PLR, packets are sequentially

numbered on the source measurement point and checked for gaps at destina-

tion measurement point. Calculating the ratio between the received and sent

packets the PLR can be estimated. To calculate the RTT the measurement

must be carried out in both directions estimating the two OWD. Usually,

packet-pair methods are implemented using UDP as transport protocol, un-

like the file-download technique, which uses TCP.

One advantage of these types of methods is that measurements take little

time. For instance, a bandwidth measurement in a 10 Mbps link can take less

than 1 ms —i.e. the transmission of two packets with size 600 bytes in a 10

Mbps link takes 2×600×8
10

= 910 µs<1 ms. However, the packet-pair method

accuracy is highly dependent on the clock resolution for sending and receiving

packets. Usually, measurements are performed at the application layer and

the clock resolution is the one provided by the operating system. To mitigate

these uncertainties either Libpcap 2 or WinPcap 3 drivers can be used. Such

drivers provide a packet timestamp in the µs timescale. Additionally, if

more precision is required, some kernel-space solutions such as Pktgen [Ols05]

may be used. In any case, to obtain reliable results source and destination

measurement clocks must be synchronized using techniques such as Network

Time Protocol (NTP), Precision Time Protocol (PTP) or Global Positioning

System (GPS) depending on the required precision.

The major drawback of packet pair techniques is the impact of interfering

traffic during the measurement period. In a realistic scenario, the measured

network transports traffic that can concurrently traverse the measured link

along with the measurement traffic. Such interfering traffic may influence

2www.tcpdump.org
3www.winpcap.org

www.tcpdump.org
www.winpcap.org

44 Chapter 3. Active Measurements

the inter-arrival time measured by the packet-pair methods in two ways:

• Inter-arrival Expansion: when one or more interfering packets slip in

between two measurement packets, the measured inter-arrival ∆r in-

creases and the estimated bandwidth decreases. This effect is shown

on Figure 3.3.

• Inter-arrival Compression: when two measurement packets with inter-

arrival ∆rt are queued together and interfering traffic fills the router

queue, the two measurement packets are dequeued as fast as the outer

link allows. Thus the measurement packets would have an inter-arrival

∆r that could be smaller than the one measured at previous hop in-

creasing the estimated bandwidth. This effect is shown on Figure 3.4

�� SourceDestination

Figure 3.3: Inter-arrival expansion due to interfering traffic

�����
SourceDestination

Tight
Link

Figure 3.4: Inter-arrival compression due to interfering traffic

Other adverse effect that affects packet pair methods is the existence of

IC. This mechanism produces an overestimation in the measured bandwidth.

Such effect is covered in Section 3.3.

3.2.3 Packet Train

The packet-pair method is very sensitive to cross-traffic, which motivates

the use of a packet train [DRM01, Joh03, MBG00, MBG02]. Using packet

3.2. Active Techniques 45

pair method, there is a single inter-packet gap, which may be easily filled by

interfering traffic. In order to decrease the chances of cross-traffic slip in the

inter-packet gap, a packet-train of N packets is sent instead. The dispersion

∆R in this case is calculated as the addition of individual pair dispersions:

∆R(N) =
N∑
k=1

∆r(i) (3.6)

The dispersion factor D is defined as:

D =
(N − 1)L

∆R(N)
(3.7)

where L is the packet size expressed in bits.

In case that there is no interfering traffic, the dispersion factor is equal to

the link or end-to-end path capacity. Otherwise, the dispersion factor only

presents an approximation to the average link or end-to-end path capacity.

As N grows, the dispersion rate variance is reduced and the estimation ap-

proximates to real capacity. Figure 3.5 shows the behavior of packet train

method.

���� ������

����

� �

SourceDestination

Figure 3.5: Packet Train method

Packet-trains constitute a robust technique against cross-traffic albeit not

totally immune. As the number of packets in the train grows, the probabil-

ity of every gap being occupied with cross-traffic decreases. However, large

packet-trains have negative effects, as shown in [DRM04]. As it turns out,

large packet-trains are intrusive. For instance, a packet-train of N = 1000

Ethernet-MTU-sized packets is 1.5 MB worth of traffic. Since the packet-

train technique is based on link flooding, 1000 packets of 1500 Bytes saturate

a 10 Mbps link for 1.2 s. This can produce packet loss or throughput degra-

dation to other connections which may be active in that moment. Thus,

46 Chapter 3. Active Measurements

there is a trade-off between cross-traffic immunity and intrusiveness.

3.3 Active Measurement Techniques Problems

Active measurement methodologies provide reliable results but some prob-

lems may affect the quality of the obtained results. In this section, such

problems are analyzed and its impact over the results is quantified providing

a general overview of several aspects that must be taken into account when

actively measuring. After an extensive study, five problems that impact on

the active measurement results have been identified. Such problems are:

CPU and memory load, self-induced traffic, IC and QoS assurance mecha-

nisms.

3.3.1 Testbed Description

Active measurement techniques have been assessed in a local area network.

Figure 3.6 shows the testbed topology. Link 3 is a link with variable speed.

It represents the bottleneck link. The switch represents the “core” network

—assumed to operate at 1 Gb/s. There is a cross-traffic source which sends

packets to the measurement PC. Note that this is traffic generated from other

concurrent applications because it is a download from the measurement PC

which is simultaneous with the measurement.

The equipment used in the testbed is the following: the client processor

is a Pentium Dual Core 1.80GHz 32 bits and it has Linux, Windows and Mac

OS operating systems installed; the measurement server processor is an Intel

Xeon Quad Core 2.33GHz 64 bits with Linux operating system installed;

the cross-traffic source is an AMD Geode LX 700 433MHz 32 bits and it has

Linux operating system installed. All the experiments were done in Windows

(XP and Vista), Linux (Ubuntu) and Mac OS on the client.

The bottleneck link is simulated using Linux tc4 on a PC, which acts

as a router. The bottleneck links speeds are 900 Kb/s, 6 Mb/s, 12 Mb/s,

which are typical access link speeds for residential users and small companies,

4http://linux.die.net/man/8/tc

http://linux.die.net/man/8/tc

3.3. Active Measurement Techniques Problems 47

Switch

Cross-Traffic Source

Measurement Server

Measurement Client

Link 1

Link 2

100 Mbps Link 3Variable Speed

Variable Speed

Variable Speed

CROSS TRAFFIC

PROBING PACKETS

Figure 3.6: Testbed Topology

48 Chapter 3. Active Measurements

and 100 Mb/s, which is available in the access link in more of 4 millions of

households in Japan by means of FTTH [CFEK06].

On the controlled testbed, the generated cross-traffic was injected with

hping25 for UDP traffic and wget6 for TCP traffic. For the generation of ran-

domly delayed cross-traffic, Linux tc tool with netem extension was used to

generate Pareto-Normal [FAM01, ZH07, ITF04] distributed inter-departure

packet times.

To generate CPU load, a custom C language program which makes float-

ing point and file processing operations was used. To generate memory load

a custom C program was used to allocate memory and keep it booked dur-

ing the tests. The pseudocode is shown in the Appendix A. Also a similar

Java program was used to generate CPU and memory load. These programs

emulate different concurrent applications.

3.3.2 CPU and memory load

Most part of the measurement processes are executed in general purpose

machines that run many other processes concurrently. Thus, is important to

quantify and analyze the impact of the CPU load over the measurement pro-

cess. First what is understood by CPU usage (cpu frac) of a measurement

process must be formally defined:

cpu frac =
tproc end − tproc begin
ttotal end − ttotal begin

(3.8)

where tproc end and tproc begin are the total cumulative processor times

which are devoted to the measurement process at the end and at the be-

ginning of the measurement, respectively. Similarly, ttotal end and ttotal begin

are the total cumulative processor times at the end and at the beginning of

the measurement, for all the applications including the measurement process.

Therefore, cpu frac represents the fraction of time that the measurement

process is being executed in the processor.

5http://linux.die.net/man/8/hping2
6http://linux.die.net/man/1/wget

http://linux.die.net/man/8/hping2
http://linux.die.net/man/1/wget

3.3. Active Measurement Techniques Problems 49

When the measurement system is loaded with many concurrent applica-

tions running, the measurement process will be less time in the processor

—and cpu frac will have values near zero. On the other hand, if the mea-

surement system is not loaded, with a few or no concurrent applications

running, the measurement process will be more time in the processor —and

cpu frac will have greater values. Furthermore, the scales of cpu frac are

different between different operating systems due to differences between pro-

cessor schedulers. Moreover, it is not possible to obtain all values of cpu frac

in the range from 0 to 1. For example, the operating systems does not al-

locate 100% of processing time to a single process, even if the processor is

idle.

Note that the total CPU time of a process can be split into the following

partial CPU times:

• User Time: specifies the number of processor counter ticks spent in

user-level processes.

• Kernel Time: specifies the number of processor counter ticks spent in

kernel-level processes and in transitions such as context switches.

• Interrupt Time: specifies the number of processor counter ticks spent

in detecting and handling system interrupts —hardware and software.

• Idle Time: specifies the number of processor counter ticks spent in

the idle process. The Idle process is a simple thread which is used to

calculate the percentage of free CPU time in a system. This process is

always running.

The total process CPU time (tproc) used on this analysis is defined as

the addition of all the partial CPU times used by the measurement process

during the measurement —i.e. user, kernel, interrupt.

In the same way memory load can be formally defined as:

mem =
free memory

total memory
(3.9)

where mem simply represents the fraction of free memory on the system.

50 Chapter 3. Active Measurements

To analyze the impact of CPU and memory load over the quality of an

active measurement, several measurements have been done while increasing

the CPU and memory load following the process commented in Section 3.3.1.

The measurements have been carried out in the 6 Mb/s and 100 Mb/s sce-

narios as representatives of domestic and high-speed scenarios.

Figure 3.7 shows the scatter plots of the bandwidth measurement and

the CPU and memory load parameters on Windows. This figure represents

the degree of correlation between each pair of variables. For instance, the

upper figure shows the bandwidth measurement as a function of the cpu frac

parameter.

In this case (when the link capacity is 6 Mb/s) it can be observed that

there is no correlation between the load (CPU or memory) and the bandwidth

measurement. This fact can be statistically proved by means of a ANalysis

Of VAriance (ANOVA) test.

The experiment is repeated changing the link capacity to 100 Mb/s.

Fig. 3.8 shows the scatter plots of the measured bandwidth and the CPU

and memory load parameters. In this case, it can be observed that there

is high correlation between the CPU load and the bandwidth measurement.

However, it can also be seen that the memory load seems to be uncorrelated

with the bandwidth measurement and the CPU load.

In order to model the effects of the CPU and memory load on the mea-

surement, the following linear model has been considered:

y = β0 + β1 · cpu frac+ β2 ·mem+ ε (3.10)

where y is the bandwidth measurement and ε ∼ N(0, σ2) represents the

measurement error. Note that β1 and β2 values represent the influence of

CPU and memory load, respectively, on the bandwidth measure. After ap-

plying linear regression, Table 3.1 shows the regression coefficients obtained,

β̂i, for each variable explanatory, the standard deviation estimated and the

p-value, for the test with null hypothesis βi = 0, i = 0, 1, 2 . Furthermore, the

last row of the table provides us the R2 value which represents the amount of

variance explained by the linear model. The results show that the memory

3.3. Active Measurement Techniques Problems 51

0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

cpu_frac

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t
[M

b
p
s
]

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

mem

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t
[M

b
p
s
]

(b)

Figure 3.7: Bandwidth measurement versus system load parameters with
file-download technique on Windows using TCP as transport protocol. Link
capacity 6 Mb/s (a) cpu frac (b) mem

52 Chapter 3. Active Measurements

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100

cpu_frac

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t

Experimental Data

Linear Model

(a)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

mem

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t
[M

b
p
s
]

(b)

Figure 3.8: Bandwidth measurement versus system load parameters with
file-download technique on Windows using TCP as transport protocol. Link
capacity 100 Mb/s (a) cpu frac (b) mem

3.3. Active Measurement Techniques Problems 53

Table 3.1: Regression coefficients for linear model considering CPU and mem-
ory load with file-download technique on Windows using TCP as transport
protocol. The link capacity is equal to 100 Mb/s

Coefficient Sd. error p-value

β̂0 -3.4789 2.0154 0.087

β̂1 311.3522 8.3068 < 10−16

β̂2 -0.4605 2.1346 0.830

R2 0.9233

Table 3.2: Regression coefficients for linear model considering CPU load only,
with file-download technique on Windows using TCP as transport protocol.
The link capacity is equal to 100 Mb/s

Coefficient Sd. error p-value

β̂ 295.29 1.61 < 10−16

R2 0.9965

load does not have influence on the measurement whereas the CPU load is

very influential on the bandwidth measurement. It is also worth remarking

that the coefficient β0 is not statistically significant —at common significance

level α = 0.05. This fact is coherent in the sense of if the computer does not

give any processing time to the measurement process (cpu frac = 0), the

measured bandwidth is zero.

Therefore, a simplified linear model, which only considers the CPU load,

is more advisable:

y = β · cpu frac+ ε (3.11)

where y is the bandwidth measurement and ε ∼ N(0, σ2) represents the

measurement error. After applying linear regression, Table 3.2 shows the

summary of the linear regression model obtained. Note that the value of β

represents the slope in the linear regression model.

This simplified model explains the 99.65% of the variance of the band-

54 Chapter 3. Active Measurements

width measurement. It is worth remarking that the simplified model explains

a greater amount of the variance of the measurement than the previous model

—which explains the 92.33% of the variance.

Figure 3.9 shows the linear regression estimated for the bandwidth mea-

surement as a function of cpu frac. Note that process time ratio below 30%

for the measurement application imply severe underestimation error —up to

90%.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

100

cpu_frac

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t

Experimental Data

Linear Model

Figure 3.9: Linear regression model adjusted for the bandwidth measurement
with file-download technique on Windows using TCP as transport protocol.
The link capacity is equal to 100 Mb/s

The previous experiments were performed on Windows. The experiments

were repeated on Linux, and the results obtained were very similar: linear

dependence between cpu frac and the bandwidth measurement and uncorre-

3.3. Active Measurement Techniques Problems 55

lation between the memory load and the bandwidth measurement, although

there are slight differences in the slope. Fig. 3.10 shows the scatter plot

between cpu frac and the bandwidth measurement in this case. Note that

the scales of cpu frac are different between Linux and Windows due to dif-

ferences between processor schedulers. Experiments were also performed on

Mac OS X, obtaining similar results. Fig. 3.11 shows the linear regression

estimated for Mac OS X. It is worth remarking that it is more difficult to

degrade CPU load smoothly in Mac OS X than in Windows or Linux.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

90

100

cpu_frac

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t

Experimental Data

Linear Model

Figure 3.10: Linear regression model adjusted for the bandwidth measure-
ment with file-download technique on Linux using TCP as transport protocol.
The link capacity is equal to 100 Mb/s

But why is the TCP-based measurement influenced by the CPU load

at 100 Mb/s? As it turns out, TCP needs more processing capacity than

UDP due to control flow mechanisms, ACK sending, etc. When the link

56 Chapter 3. Active Measurements

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

90

100

cpu_frac

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t

Experimental Data

Linear Model

Figure 3.11: Linear regression model adjusted for the bandwidth measure-
ment with file-download technique on Mac OS X using TCP as transport
protocol. The link capacity is equal to 100 Mb/s

capacity is high (100 Mb/s) and the measurement system is loaded, there is

not enough processing time to perform TCP processing. It is worth noting

that the inter-arrival time (for a packet size of 1500 Bytes) at 100 Mb/s

is 120 µs. On the other hand, when the speed link is low (6 Mb/s) the

inter-packet gap is large enough to perform TCP operations even if the CPU

is fully loaded —the inter-arrival time for a packet size of 1500 Bytes at 6

Mb/s is 2 ms. Moreover, CPU load can produce packet loss at 100 Mb/s —

overflow of Network Interface Cards (NIC) buffers. Such packet loss produces

retransmissions and the download time increases.

To show the differences between TCP and UDP behaviors, it have been

3.3. Active Measurement Techniques Problems 57

monitored, with the help of strace7, the system calls during the execution

of a TCP file-download (by means of wget) and a UDP packet-train sending

—by means of hping. Figure 3.12, 3.13 show the six heaviest system calls for

both cases. It can be observed that the number of system calls (open/close

the socket, read/write in the socket, etc.) in the TCP download is much

greater than in the UDP packets-train case. Note that the system calls

involved in TCP processing take significant times while this is not the case

for UDP, whose execution times are so small that cannot be reported by

strace.

% time seconds usecs/call calls errors syscall

--

1 83.17 0.143883 5 30852 select

2 13.90 0.024056 1 31384 write

3 1.76 0.003050 0 30879 read

4 1.17 0.002019 0 30851 clock_gettime

5 0.00 0.000000 0 69 30 open

6 0.00 0.000000 0 44 close

Figure 3.12: strace output of a TCP file-download using wget

% time seconds usecs/call calls errors syscall

--

1 nan 0.000000 0 15 read

2 nan 0.000000 0 4 write

3 nan 0.000000 0 14 open

4 nan 0.000000 0 20 close

5 nan 0.000000 0 1 execve

6 nan 0.000000 0 101 time

Figure 3.13: strace output of an UDP packet-train reception

In light of these results, it can be concluded that the file-download tech-

nique is very sensitive to the CPU load and, then, is not a good choice to

estimate QoS parameters in general-purpose PCs running concurrent soft-

ware.

7http://linux.die.net/man/1/strace

http://linux.die.net/man/1/strace

58 Chapter 3. Active Measurements

Once it has been demonstrated the negative impact of CPU load over

the file-transfer methods, packet-train methods should be analyzed. In next

experiments, the effects of memory and CPU load on the measurement ob-

tained with the packet-train technique are analyzed. For the next experi-

ments packet trains with N = 100 Ethernet-Maximum Transmission Unit

(MTU)-sized packets are used. This technique uses UDP as transport pro-

tocol.

In high speeds links (100 Mb/s or greater), the packet-train technique is

affected by IC [PJD04]. This effect is analyzed on Section 3.3.4. For the sake

of simplicity and correctness this feature is disabled in the operating system

when experiments are being executed.

First of all, the influence of CPU load on the bandwidth measurement

is analyzed. Figure 3.14 shows the scatter plot between cpu frac and the

bandwidth measurement for the different test cases. It can be observed that

the measurements do not depend on the CPU load, unlike the file-download

technique.

Furthermore, Figure 3.15 shows the scatter plot between mem and the

bandwidth measurement. It can be observed that the memory load does not

have influence on the bandwidth measurement either.

To further analyze the influence of external factors in the packet-train

method performance, the effects of other factors such as operating system are

studied. To this end, several measurements are performed with the packet-

train technique on the most popular operating systems, namely: Windows,

Linux and Mac OS.

In order to statistically prove the independence between the measure-

ment and the external factors (operating system, memory and CPU load),

the ANOVA test is performed. A discretization must be made to the contin-

uous explanatory variables: mem and cpu frac. To do this, three levels are

defined, namely: low (the lowest 33% of the measurements), high (the high-

est 33%) and medium —the remaining measurements. Tables 3.3 and 3.4

show the results of the ANOVA test, for both cases —6 Mb/s and 100 Mb/s.

It can be concluded that none of the factors are statistically significant —at

common significance level α = 0.05.

3.3. Active Measurement Techniques Problems 59

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7

cpu_frac

B
a

n
d

w
id

th
 M

e
a

s
u

re
m

e
n

t
[M

b
p

s
]

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

cpu_frac

B
a

n
d

w
id

th
 M

e
a

s
u

re
m

e
n

t
[M

b
p

s
]

(b)

Figure 3.14: cpu frac vs bandwidth measurement with packet-train tech-
nique on Windows, Linux and Mac OS using UDP as transport protocol. (a)
Link Capacity 6 Mb/s (b) Link Capacity 100 Mb/s

60 Chapter 3. Active Measurements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

mem

B
a

n
d

w
id

th
 M

e
a

s
u

re
m

e
n

t
[M

b
p

s
]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

mem

B
a

n
d

w
id

th
 M

e
a

s
u

re
m

e
n

t
[M

b
p

s
]

(b)

Figure 3.15: mem vs bandwidth measurement with packet-train technique
on Windows, Linux and Mac OS using UDP as transport protocol. (a) Link
Capacity 6 Mb/s (b) Link Capacity 100 Mb/s

3.3. Active Measurement Techniques Problems 61

Table 3.3: Analysis of variance table for the bandwidth measurement with
packet-train technique on Windows, Linux and Mac OS using UDP as trans-
port protocol. Link capacity 100 Mb/s

Factor Degrees of Freedom Sum Sq. p-value

Operating System 2 30.00 0.1221

mem 2 14.52 0.3598

cpu frac 2 18.7 0.2671

Residuals 245 1732.21

Table 3.4: Analysis of variance table for the bandwidth measurement with
packet-train technique on Windows, Linux and Mac OS using UDP as trans-
port protocol. Link capacity 6 Mb/s

Factor Degrees of Freedom Sum Sq. p-value

Operating System 2 0.01189 0.3084

mem 2 0.01451 0.2381

cpu frac 2 0.01189 0.3084

Residuals 623 3.14262

62 Chapter 3. Active Measurements

Therefore, it can be empirically concluded that the packet-pair technique

is highly immune to both CPU and memory load. In addition, it has been

proved that the operating system does not have influence on the measure-

ment.

3.3.3 Self-induced Traffic

In this section the impact of cross-traffic from other applications in the mea-

surement accuracy is analyzed. When measurements are being performed in

general-purpose systems, several concurrent applications may be executing

and generating traffic. Figure 3.16 depicts such situation.

SHARED RESOURCES

CPUNETWORK

HARD DISK

MEMORY

S
P

E
E

D
O

M
E

T
E

R

C
O

N
C

U
R

R
E

N
T

 A
P

P
 1

C
O

N
C

U
R

R
E

N
T

 A
P

P
 2

C
O

N
C

U
R

R
E

N
T

 A
P

P
 n

(a)

NETWORK INTERFACE

S
P

E
E

D
O

M
E

T
E

R

S
K

Y
P

E

U
P

D
A

T
E

S

C
O

N
C

U
R

R
E

N
T

 A
P

P
 n

Speedometer
packets

Interfering
packet

(b)

Figure 3.16: Effects of concurrent applications. (a) The measurement is
affected by concurrent applications, which share system resources such as
CPU, memory, hard disk and network (b) Cross-traffic generated by concur-
rent applications (such as Skype, Updates, Spotify, Antivirus ...) interferes
in the measurement

Clearly, cross-traffic from other applications has an impact in the mea-

3.3. Active Measurement Techniques Problems 63

surement accuracy. Figure 3.17 shows a worst case in which the NIC driver

interleaves one packet of interfering traffic between every two packets of the

probe packet-train. In the depicted example, the client performs a measure-

ment in the direction server to client, while concurrently downloading a video

clip. In that case, the bottleneck link bandwidth estimation is exactly one

half of the real link bandwidth value.

Cross-traffic

Sources

User

Speedometer Video client

Figure 3.17: Incorrect measurement due to cross-traffic

Note that the larger the packet-train the better against interfering traffic.

However, the packet-train is more intrusive in the bottleneck link and the

measurement time is larger than the packet-pair technique. In this light,

system-level limitations in the estimation of cross-traffic from other applica-

tions and CPU and memory load are explained.

An analysis is made on the operating system dynamics in the worst case

depicted by Figure 3.18, which shows a packet-train sent from the measure-

ment server to the client. Meanwhile, a video was downloaded to the client.

64 Chapter 3. Active Measurements

Figure 3.18 shows packet interleaving, that is, there are some interfering

packet from a concurrent application (video download) between two probing

packets.

time arrival source>destination protocol details

20.722397 measurementServer>client: UDP,length 1400

20.731881 videoServer>client: ack 78 win 14600

20.733910 measurementServer>client: UDP,length 1400

20.734258 videoServer>client: 73666:75126(1460) ack 78 win 14600

20.734344 videoServer>client: 75126:76128(1002) ack 78 win 14600

20.745433 measurementServer >client: UDP,length 1400

Figure 3.18: tcpdump output: Cross-traffic interferes on the measurement

The previous experiment motivates the use of techniques that estimate

the interfering traffic generated from other applications, in order to drop

measurements with a high interference level. In a standard scenario, the

measurement process does not have higher priority in comparison to other

concurrent applications. Nowadays, the measurement application may run

on top of a virtual machine, which makes things worse compared to native

processes [WN10]. Note that measurements of interfering traffic must be

performed at the application layer. This is also a distinguishing feature of

the standard measurement scenario: there is no access to privileged kernel

routines that provide fine-grain traffic measurements at driver level. Again,

this is because the measurement process is just another application.

In this case study, a Java program is in charge of measuring CPU, memory

and cross-traffic load parameters. To this end, the SIGAR JNI API 8 is

used. SIGAR API provides a platform-independent approach for measuring

system resource parameters. JNI is a native C interface linkable from Java.

Specifically, SIGAR is used to obtain:

• The percentage of CPU time used on the bandwidth measuring process.

• The amount of free memory on the system during the measurement

process.

8www.hyperic.com/products/sigar.html

www.hyperic.com/products/sigar.html

3.3. Active Measurement Techniques Problems 65

• The number of bytes and packets received on the NIC during the mea-

surement process.

It is worth noting that the above performance items cannot be obtained

with arbitrarily small resolution. This API uses system Java Native Inter-

face (JNI) calls to the underlying operating system to obtain the requested

parameters. If multiple queries are executed in a short space of time, the

operating systems counters (received bytes, number of interrupts, etc) will

not be updated and the Application Programming Interface (API) returns

invalid values. In addition, multiple queries to the operating system produce

a large processing overhead. Consequently, the measurement intervals must

be relatively large, in order to obtain reliable results. As a consequence of

this limitation, only the number of interfering packets for the entire duration

of the train can be obtained, and not the packet timestamps.

The effect of cross-traffic on both file-download and packet-train tech-

niques (with train length of N = 100 Ethernet-MTU-sized packets) must

be analyzed and quantified. Besides one measurement process (based on

the ETSI recommendation [Ins08]), the commercial measurement system

Speedtest9 is also used for file-download.

Three cross-traffic scenarios are considered: interfering TCP traffic, UDP

cross-traffic with random packet inter-arrival times and UDP cross-traffic

with Constant Bit Rate (CBR).

Firstly, the impact of concurrent TCP flows in a general-purpose PC is

analyzed. In order to generate the interfering TCP flows, a large file is down-

loaded using wget. The file size is 100 MB and the download lasts around 2

minutes when the link capacity is equal to 6 Mb/s. There are five replicas of

the experiment for each cross-traffic level —x-axis in Figure 3.19, 3.21, 3.22.

Figure 3.19 shows the bandwidth measurements obtained with packet-train

(using N = 100 Ethernet-MTU-sized packets), file-download and Speedtest

for different amount of interfering TCP connections. It can be observed that

TCP cross-traffic does not affect the packet-train method (which is based

on UDP packets) as expected. However, the custom file-download method

9www.speedtest.net

www.speedtest.net

66 Chapter 3. Active Measurements

and Speedtest are affected by the presence of interfering TCP connections

because they also feature congestion control.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

Number of interfering TCP flows

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t

Theoretical Bandwidth 6 Mbps

Packets Train

File−Transfer

SpeedTest

Figure 3.19: Bandwidth measurements with interfering TCP flows using file-
download technique, Speedtest and packet-train technique

This result clearly shows that TCP-based speedometers are highly af-

fected by concurrent TCP flows. It could be expected that the total band-

width was equally shared by all flows, but that does not happen in this case

—for instance, when there is one concurrent flow it is expected to obtain

around 3 Mb/s but is obtained around 2 Mb/s instead. The main reason is

that the adaptation process is not so fast (can take several seconds or even

minutes) and the duration of the measurement is not enough to reach the

stationary state in which the total capacity is equally shared by all flows.

This behavior can be observed in Fig. 3.20, where the throughput of

a concurrent flow and of the file-download measurement are shown —the

3.3. Active Measurement Techniques Problems 67

link capacity is 10 Mb/s. It can be observed that the first flow reaches

the maximum throughput quickly. At 17 seconds, a measurement starts

consisting of a 10 MB file-download. Such measurement flow does not reach

half the total bandwidth until 13 seconds after the start time. Note that

the measurement takes 24 seconds to download a 10 MB file. Therefore, the

obtained measurement is 10×8
24

= 3.3 Mb/s, i.e. a third of the total capacity,

as in the experiments in Fig. 3.19.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10
x 10

6

time [s]

T
h
ro

u
g
h
p
u
t
[b

p
s
]

Concurrent Flow

File−Download

Figure 3.20: TCP behavior with concurrent downloads

Secondly, the impact of UDP cross-traffic is analyzed. For the next ex-

periments it is considered that inter-packet gaps are heavy-tailed distributed

according to a Pareto-Normal distribution —with mean value equals 200 ms

and standard deviation equals 200 ms. This kind of traffic emulates traf-

fic produced by a concurrent application in a general-purpose PC (such as

video or audio streaming) [FAM01, ITF04, ZH07]. There are five replicas of

the experiment for each cross-traffic level. Figure 3.21 shows the bandwidth

68 Chapter 3. Active Measurements

measurements obtained with the three methods varying the UDP cross-traffic

rate from 0 to 6 Mb/s (link capacity), in the case of random delayed packets.

On the one hand, it can be observed that UDP cross-traffic does not affect

the packet-train method for these cross-traffic rates. On the other hand, the

file-download method and Speedtest are affected by the UDP cross-traffic

since both techniques are TCP-based, which adapts its rate to the avail-

able bandwidth. It is worth noting that TCP connections adapt to available

bandwidth better in this case (UDP interfering traffic) than in previous case

—TCP concurrent connections.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

UDP cross−traffic rate (Mbps)

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t

Theoretical Bandwidth 6 Mbps

Packets Train

File−Transfer

SpeedTest

Figure 3.21: Bandwidth measurements with UDP interfering traffic (ran-
domly delayed) using file-download technique, Speedtest and packet-train
technique

In the third experiment, CBR UDP cross-traffic is injected. This is the

worst-case for the packet-train method as visually observed in Figure 3.17.

3.3. Active Measurement Techniques Problems 69

Moreover, CBR is a common model for Voice over Internet Protocol (VoIP)

applications or periodic heartbeats —but only at low transmission rates.

As in the previous experiments, there are five replicas of the experiment

for each cross-traffic level. Figure 3.22 shows the bandwidth measurement

versus cross-traffic rate. The packet-train method is accurate if the cross-

traffic rate is less than the link capacity. However, if the cross-traffic rate

equals the link capacity, the bandwidth measurement is reduced to a half

because the inter-arrival time is doubled due to the interfering packets. The

behavior of the TCP-based methods (File-transfer and Speedtest) is similar

to the one observed in the previous experiment.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

CBR UDP cross traffic rate (Mbps)

B
a
n
d
w

id
th

 M
e
a
s
u
re

m
e
n
t

Packets Train

File−Transfer

SpeedTest

Figure 3.22: Bandwidth measurements with UDPinterfering traffic (CBR)
using file-download technique, Speedtest and packet-train technique

70 Chapter 3. Active Measurements

3.3.4 Interrupt Coalescence

In high speeds links (100 Mb/s or greater), the packet-train is affected by

IC [PJD04]. IC, is a NIC mechanism by which several packets are queued at

NIC level before generating a processing interrupt. Such mechanism, moder-

ates the presence of interrupts reducing, thus, the processor time devoted to

interrupt handling produced by packets arrival. If this technique is not ap-

plied, capturing traffic at high-speed, could lead to a CPU saturation stealing

general purpose processing time to the detriment of packet processing time.

As this mechanism queues packets for a time lapse and then transfers

them in batch mode, the perceived packet inter-arrival times could be lower

than the real inter-arrival times due to the grouping of several packets. These

smaller inter-arrivals have a great impact over the QoS parameters estima-

tion. For instance the measured bandwidth by packet-train methods is in-

creased and the OWD is also increased. To avoid this, this feature must be

disabled in the operating system when measuring. In the cases when such

option is not available, a packet-train technique is proposed to measure in

presence of interrupt coalescence. Such technique is proposed in Section 3.3.6.

3.3.5 Threshold-based rejection techniques for biased

measurements

File-transfer techniques have shown bad performance in presence of cross-

traffic and high CPU load, as it can be observed in the previous experiments

and in Section 3.3.3. Therefore, only packet-train techniques are taken into

account in what follows. The third experiment in the Section 3.3.3 shows

that although packet-train methods are more robust to cross-traffic they

may not produce accurate results. This fact motivates the development of

an analytic model, (which is explained in this section) that takes the number

of interfering packets as an input and marks the measurement as either valid

or invalid.

3.3. Active Measurement Techniques Problems 71

In a packet-train measurement, a train of N packets is sent. The obtained

measurement is deemed as correct if at least two probe packets arrive con-

tiguously —i.e. with no interfering packets in between. Such packets serve

to accurately estimate the bottleneck link bandwidth. Figure 3.23 shows this

behavior.

Cross-traffic

Sources

User

Speedometer Video client

CONTIGUOUS

PACKETS

Figure 3.23: Correct measurement in spite of cross-traffic

In this light, an estimation of the number of interfering packets that

fall in between probe packets becomes crucial. However, it can only be

measured the total number of interfering packets throughout the packet-

train. Thus, it is key to estimate what is the probability that a given number

of interfering packets (say m) occupies all probe inter-packet gaps. To do

so, a simplifying assumption must be made: an interfering packet makes a

random (uniform) choice of all the probe inter-packet gaps. Clearly, any

given interfering packet may not be transmitted in a probe inter-packet gap

that happened before its actual transmission time. However, note that the

72 Chapter 3. Active Measurements

above assumption represents a worst-case for the packet probe. Indeed, since

packets may choose any given probe inter-packet gap the probability of all

gaps being occupied increases with respect to the real-life case, as shown in

Figure 3.24.

PACKET TRAIN

INTERFERING PACKET

PACKET TRAIN

INTERFERING PACKET

REAL CASE

WORST CASE

POSSIBLE GAPS TO OCCUPY

POSSIBLE GAPS TO OCCUPY

Figure 3.24: Comparison between the real case and the worst case —
assumption of the model

Being this model worst-case, the main goal is to tag a given measurement

as invalid if the probability of all gaps being occupied is larger than a thresh-

old ε. Low values of ε provide a large rejection rate and vice versa, much

like a significance level. The model formulation is actually more conservative

and will reject possibly valid measurements. Namely, the proposed model

has a larger rejection rate than strictly necessary, but will filter out invalid

measurements at the threshold probability ε.

With the previous assumptions, the random scatter of the m packets

(from cross-traffic) across N − 1 gaps follows a multinomial distribution: let

3.3. Active Measurement Techniques Problems 73

N and m be the length of the train and the amount of interfering packet,

respectively, where each packet independently drops into a gap with proba-

bility 1
N−1

—i.e. each interfering packet has the same probability of drop in

each gap. Let n1, . . . , nN−1 be a given distribution of the interfering packets

where ni is the amount of packets which fall into the ith gap and
∑

i ni = m.

The probability of a given gap occupancy vector (n1, . . . , nm) is:

P (n1, . . . , nm) =
m−1∏
k=1

(
m− sk−1

sk − sk−1

)(
1

N − 1

)sk−sk−1
(
N − 2

N − 1

)m−sk
(3.12)

where sk =
k∑
i=1

ni

The measurement rejection probability (i.e. the probability that no gap

contains less than 1 packet) can be formally defined as:

P

(
min

i=1,...,N−1
ni ≥ 1

)
(3.13)

It turns out that the multinomial distributions calculations are involved,

especially with large packet-trains. The reader is referred to the Appendix

B for further insight.

Figure 3.25 shows the measurement rejection probability (Equation 3.13)

for packet-train lengths, N = {10, 50, 100, 150} and varying the amount of

interfering packets, m = {0, . . . , 1000}. Clearly, the rejection probability

increases with the number of interfering packets m. Moreover, it can be

observed that the rejection probability decreases quickly as the length of

train (N) increases. For instance, if N = 10 and m = 3 ·N = 30 the rejection

probability is 75%, whereas if N = 50 and m = 3 · N = 150 the rejection

probability is 8.5%. On the other hand, if N = 100 and m = 3 · N = 300

the probability is 0.005 and, even more, if N = 150 and m = 3 ·N = 450 the

probability is 0.0003. Using ε = 0.05, the maximum number of interfering

packets to accept a measurement is equal to 12, 141, 351, 587 for packet-train

lengths (N) of 10, 50, 100 and 150 packets. Accordingly, when a measure is

performed, the packet-train length, N , is known beforehand and the number

74 Chapter 3. Active Measurements

of interfering packets, m, can be obtained through the SIGAR API. Thanks to

the model, the probability that the measurement is correct can be calculated.

Namely, with a packet-train of length N , what is the maximum number of

interfering packets to consider that a measurement is correct, with probability

greater than 1− ε, which is shown in Figure 3.26.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

amount of interfering packets, m

E
rr

o
r

P
ro

b
a
b
ili

ty

N=10

N=50

N=100

N=150

Figure 3.25: Error probability as a function of the number of interfering
packets, m, for several packet-train lengths, N

Model Validation

In this section, the proposed model is checked by means of both simulations

and experiments. That is, ensure that a measurement labeled as correct by

the model is actually correct, with probability greater than 1− ε.
Firstly, samples of inter-arrival packets times are generated and, according

to them, the number of packets that have filled every inter-packet gap of the

measurement train are counted. Should all gaps be filled by at least one

interfering packet then the measurement is marked as incorrect.

3.3. Active Measurement Techniques Problems 75

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

Length of the packet−train, N

m
a
x
im

u
m

 n
u
m

b
e
r

o
f
in

te
rf

e
ri
n
g
 p

a
c
k
e
ts

ε=0.01

ε=0.025

ε=0.05

ε=0.1

Figure 3.26: Maximum number of interfering packets to accept a measure-
ment as a function of the packet-train length, N , for different values of the
error probability threshold, ε

Two different inter-arrival time distributions have been simulated: on the

one hand, the classic model of exponential inter-arrival times —according to

a Poisson arrivals process; on the other hand, a long-term dependency us-

ing a heavy-tailed distribution like Pareto-Normal. The latter distribution

(defined in netem tool) is a weighted sum of a Pareto sample with α = 3

(finite variance) with weight 75% and a Normal sample with weight 25%.

Figure 3.27 shows the estimated error probability for each distribution (expo-

nential and Pareto) and the theoretical probability provided by the proposed

model —ε = 0.05. It can be observed that the estimated error probability for

each distribution is below the rejection probability provided by the model,

as expected.

Finally, the performance of the proposed model is assessed with exper-

76 Chapter 3. Active Measurements

200 250 300 350 400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interfering Packets

E
rr

o
r

P
ro

b
a
b
ili

ty

Exponential

Model

Pareto−Normal

Figure 3.27: Comparison between the theoretical error probabilities provided
by the model and the estimated error probabilities by means of simulations
for Exponential and Pareto distributions. The packet-train length is equal
to N = 100 packets

iments. To this end, more than three thousands measurements were per-

formed and the number of incorrect measurements was counted, comparing

this account with the theoretical value provided by the model. A measure-

ment is marked as incorrect when the measured bandwidth is reduced by half

—or less. Actually, the obtained bandwidth is divided by 2, 3, 4 . . . (when

the minimum amount of interfering packets in a inter-packet gap is 1, 2, 3)

due to fact that the size of interfering packets is the same as probing pack-

ets. This is possible because the experimental scenario is controlled —i.e. no

cross-traffic is present, besides the cross-traffic intentionally injected. In this

experiment, 100 Ethernet-MTU-sized packets long trains are used. Moreover,

UDP cross-traffic (with random inter-arrival times distributed according to

a Pareto-Normal distribution) is injected with a mean rate of three times the

3.3. Active Measurement Techniques Problems 77

measurement rate —obtaining around 300 interfering packets per train. The

experiment is performed for three different bandwidth values: 900 Kb/s, 6

Mb/s and 12 Mb/s.

Table 3.5 shows the results obtained. m̄ and N̄ represent the mean num-

ber of interfering packets and probe packets, respectively. It is also worth

remarking that the length of the train is not N = 100 for every measurement

due to the packet loss. The estimated error counts the proportion of wrong

measurements i.e. #incorrectmeasurements
#totalmeasurements

. The theoretical error is bounded by

the error probability for N = 100, m = 270 (the maximum length of the

train and the minimum number of interfering packets, in the experiments)

and by the error probability for N = 93, m = 300 —the minimum length

of the train and the maximum number of interfering packets, in the exper-

iments. Note that the error probability given by the model is greater than

the error ratio obtained in the experiments. Therefore, the model gives a

valid upper bound for the error probability.

Thus, it can be concluded that the proposed model provides a sound

methodology to filter out incorrect measurements polluted by cross-traffic.

Table 3.5: Empirical evaluation of the theoretical model. 270 ≤ m ≤
300, 93 ≤ N ≤ 100

Bandwidth m̄ N̄ # Measur. Est. Error Theo. Error

900 Kb/s 282 96 3601 0.0061 0.0006 ≤ p ≤ 0.0187
6 Mb/s 281 96 5021 0.0030 0.0006 ≤ p ≤ 0.0187
12 Mb/s 289 96 4332 0.0115 0.0006 ≤ p ≤ 0.0187

3.3.6 QoS Mechanisms Impact

Estimation technique of Token Bucket Parameters

One key aspect when measuring heterogeneous networks is determining the

presence of Token-Bucket like mechanisms to adjust the measurement method

and estimate the shaping/policing parameters. Estimating these parameters

78 Chapter 3. Active Measurements

allows a more precise and accurate QoS parameters measurement. Measur-

ing using the file-transfer technique provides an accurate estimation in terms

of measured bandwidth and RTT but as shown in Section 3.3.2 suffers a

degradation in presence of high CPU load and cross-traffic. From now on,

only packet-train based method will be studied.

In packet-train-based measurements, a train of N packets is sent. Given

the existence of a shaping/policing mechanism, the first r packets (while the

bucket is not empty) are sent to the maximum rate —Peak Information Rate

(PIR). The rest of packets are sent at Committed Information Rate (CIR).

If r < N , two (sub)packet-trains may be differentiated: the one sent to PIR

rate and the one sent to CIR rate. Therefore, CIR and PIR can be estimated

as follows:

CIR ≈ min
i=r,...,N−1

(
B

ti+1 − ti

)
(3.14)

PIR ≈ min
i=1,...,r−1

(
B

ti+1 − ti

)
(3.15)

Moreover, burst length can be estimated as follows:

Bl ≈ r ×B
(

1− CIR

PIR

)
(3.16)

For instance, Figure 3.28(a) shows the inter-arrival times of a train of

100 packets of size 1 KB, with a token-bucket configuration of CIR = 10

Mb/s, PIR = 100 Mb/s and Bl = 40 KB. It can be observed the two stages:

packets from 1 to 44 are sent at PIR and from packet 45 to packet 100 are

sent at CIR. Therefore, PIR can be estimated using the first sub-train (until

the change-point) and the CIR rate using the rest of packets.

But, how can a change-point be detected? Figure 3.28(b) shows the cumu-

lative inter-arrival time of the same packet-train in Figure. 3.28(a). Problems

produced by interrupt coalescence [PJD04] present a similar pattern and can

be treated in the same way.

In order to calculate the slope, an detect the change, the least square

error method is used —see Equation 3.17.

3.3. Active Measurement Techniques Problems 79

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3 Packets Interarrival Times

Packet Number

t i+
1−

t i

(a)

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Cumulative Packets Interarrival Times

Packet Number

t i+
1−

t 0

(b)

Figure 3.28: Packet inter-arrival times distribution of a packet-train with
token-bucket (N = 100 packets, B = 1 KB, r = 44, CIR = 10 Mb/s, PIR =
100 Mb/s and Bl = 40 KB) (a) Packet inter-arrival times (b) Cumulative
packet inter-arrival times

80 Chapter 3. Active Measurements

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
(3.17)

The algorithm to detect the change-point is shown in Algorithm 1. Note

that slope function returns the gradient of a line using the method previously

described.

Algorithm 1 Change-point detection

cum slope = 0
win slope = 0
i = win size+ 1
while cum slope ≤ win slope× k AND i < N − win size do
win slope = slope(N, cum iarrivals, i− win size, i)
cum slope = slope(N, cum iarrivals, 1, i)
i = i+ 1

end while
if i+ win size == N then

print no change detected
return win size+ 1

else
print change detected
return i+ win size

end if

If r = N , the link is not saturated by the train —i.e. Bl > N · B. Then,

every packet is sent at PIR. In this case, the packet-train length has to be

increased in order to estimate token bucket parameters. In case that the mea-

sured link is not under the influence of token-bucket based mechanisms, the

packet-train length may be increased until a hard-limit is reached following

a similar algorithm to TCP window adjustment.

Experimental Results and Performance Evaluation

Figure 3.29 shows the estimations of the three parameters (CIR, PIR and

burst length) by the proposed algorithm, for the following configuration in

the token-bucket : PIR = 100Mb/s and varying the CIR from 5 Mb/s to

20 Mb/s and the burst length from 1 KB to 200 KB.

3.3. Active Measurement Techniques Problems 81

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

Burst length [KBytes]

E
st

im
at

ed
 C

IR
/P

IR
 [M

bp
s]

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

Burst length [KBytes]

E
st

im
at

ed
 P

IR
 [M

bp
s]

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Burst length [KBytes]

E
st

im
at

ed
 B

ur
st

 L
en

gt
h

[K
B

yt
es

]

5 Mbps
7.5 Mbps
10 Mbps
12.5 Mbps
15 Mbps
17.5 Mbps
20 Mbps
5 Mbps (theo)
7.5 Mbps (theo)
10 Mbps (theo)
12.5 Mbps (theo)
15 Mbps (theo)
17.5 Mbps (theo)
20 Mbps (theo)

Figure 3.29: Estimated Token-Bucket Parameters: CIR, PIR and Burst
length —N = 100 packets, B = 1500 Bytes, PIR = 100 Mb/s and sev-
eral cases of CIR and Bl

Figure 3.30 shows the bandwidth estimated with the proposed technique

(CIRChecker) and with other generic tools, such as Speedtest, Iperf (UDP

and TCP), Capprobe, a File-transfer tool based on the ETSI guide [Ins08]

and a generic Packet-train technique —without change-point detection.

82 Chapter 3. Active Measurements

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

Burst [KBytes]

C
IR

 M
ea

su
re

m
en

t [
M

bp
s]

CIR Checker
iperf (UDP)
CapProbe
iperf (TCP)
SpeedTest
File−Transfer
Packet−Train

Figure 3.30: CIR Measurement without Cross Traffic —PIR = 100 Mb/s,
CIR = 6 Mb/s and several cases of Bl

3.4. Conclusions 83

3.4 Conclusions

In this chapter a review of the active measurement methods has been car-

ried out. Such review has focused mainly on the file-transfer and packet-pair

techniques. As an important result of such review, the idea that some ex-

ternal parameters such as CPU load or interfering traffic have an impact

over the quality of measurements has been presented. Based on such idea,

an exhaustive study of the influence of CPU and memory load, self-induced

traffic over active algorithms has been performed analyzing both low and

high-speed scenarios and several operating systems. Such study has revealed

that the memory load does not have influence on the measurement whereas

the CPU load is very influential on the bandwidth measurement. Specially,

file-transfer techniques are more affected by higher CPU loads than packet-

pair methods. Attending to the self-induced traffic, the experiments have

revealed that both file-transfer and packet-pair techniques are influenced by

self-induced interfering traffic being the former method the most influenced

one. In the case of packet-pair methods, the study has shown that such

measurement method is only effected by CBR UDP cross traffic. To detect

and reject polluted measurements, a threshold-based method has been pro-

posed in this section. Such method uses a worst-case scenario approach to

provide an upper bound for the measurement error based on the number of

self-induced interfering packets and a multinomial model.

Finally, the last contribution of this section is the analysis of the re-

sults of the application of traffic rate control mechanisms such as shapers

and policers when conducting active measurements. The experiments have

shown that packet-pair based methods are sensitive to rate control mecha-

nisms producing erroneous measurements which may lead to QoS parameters

overestimation. To tackle this issue, an algorithm to detect and characterize

the parameters of token-bucket based rate control mechanism has been pre-

sented and compared to other existing solutions achieving the best estimation

results.

Chapter 4

Passive Measurements

This chapter provides the background and revises the most relevant works

related to passive network measurements. In addition, new passive mea-

surement techniques are proposed and analyzed in order to provide a better

integration into Proactive Monitoring (PM) systems. The structure of the

chapter is as follows. First, a brief description about different passive mea-

surement methodologies and general concepts is done in Section 4.1. Then

in Section 4.2 the most relevant passive measurements techniques are ana-

lyzed and discussed pointing out their pros and cons. In Section 4.3 a brief

analysis of some hash functions is done attending to performance and em-

pirical collision probability. Such analysis has provided some key ideas used

for the proposal of a mechanism for passive packet correlation called Fast

Packet Correlation (FPC). Next in Section 4.4, a flow creation and statis-

tics gathering system is proposed and analyzed in terms of functionality and

performance. To finalize, some important ideas are presented in Section 4.5

as conclusion.

4.1 Introduction

Passive network measurement is based on the idea of collecting traffic data

and processing it to estimate network parameters and analyze the measured

network performance and behavior. The collected data can belong to any of

85

86 Chapter 4. Passive Measurements

these categories:

• Directly captured traffic: for instance Packet Capture (PCAP) traces

or packets received by any kind of special hardware.

• Pre-processed data and statistics gathered from devices: such informa-

tion may be obtained from routers, switches, Network Intrusion Detec-

tion Systems (NIDS), etc. For example Multi Router Traffic Grapher

(MRTG) data or exported router NetFlow/Internet Protocol Flow In-

formation eXport (IPFIX) flows are representatives of this category.

Depending on the gathered data, the passive monitoring may provide

different output information. For instance, analyzing the information pro-

vided by a NIDS may produce output data such as the number of detected

threats, a list of active malicious Internet Protocol (IP) addresses or the

number of suspicious HyperText Transfer Protocol (HTTP) connections per

second. On the contrary analyzing low level data such as exported flows,

the output estimations are slightly different. In this scenario, for instance,

some Quality of Service (QoS) parameter estimations such as packet loss or

aggregated available bandwidth can be done as well as other estimations as

number of active flows or a list of most active IP addresses. Analyzing all

the traffic traversing the monitored links packet-by-packet provide all the

previous information and also allows applying different techniques such as

Deep Packet Inspection (DPI) or statistical analysis. Usually, such approach

is very expensive in terms of both data storage and computational power.

Moreover traffic capturing at high-speed rates (10 Gb/s and above) have been

proved to be a challenging task, especially when using commodity hardware

[GDMR+13, FD10] that is more likely to be found on heterogeneous net-

works.

The main advantage of passive measurement is the non-intrusiveness on

the analyzed network. Usually, using some Switched Port Analyzer (SPAN)

port the traffic on the routers and switched may be captured without in-

terfering on production traffic. However, in some cases, some extra traffic

may be inserted into the network due to the transportation of data such

as exported flows or MRTG data from sources to collector. Nevertheless,

4.2. Passive Monitoring Techniques 87

such data transfer is considered less intrusive than active measurement traf-

fic injection. Passively estimating QoS parameters in an accurate way, is a

complicated task due to the variation of network conditions and the data

acquisition interval. In this light, for instance, if a large data gathering in-

terval is selected, abrupt network changes in small time periods may not be

detected. On the contrary, if a small data gathering interval is selected a lot

of samples will be received and the processing power and time devoted to

process such samples increases. In addition to this, passive monitoring may

be a challenging task when processing big amount of distributed data due

to correlation process. In what follows, a brief state of the art on passive

monitoring is presented emphasizing in such aspects and focusing on QoS

parameter estimation as in the active case.

4.2 Passive Monitoring Techniques

In this section a review of most popular passive monitoring techniques and

systems is done focusing on three different approaches: flow level monitoring,

packet level monitoring and MRTG level monitoring.

4.2.1 Flow Monitoring

Flow-level monitoring uses exported NetFlow/IPFIX flow information from

routers or switches to either estimate QoS parameters or make assumptions

about the state and performance of the monitored network. In this category

some approaches to estimate QoS parameters have been proposed. The vast

majority of such approaches are focused on estimating the QoS parameters

using minimal information provided by either NetFlow based flows or simple

IPFIX flows.

Passive bandwidth estimation using flow information has not received

so much attention by the research community. In [OSSSP12] an approach

based on the creation of flow-level time series is proposed. The proposed

flow-level bandwidth estimation method is compared against a packet level

analysis achieving results with low bandwidth estimation error (in the bounds

88 Chapter 4. Passive Measurements

of dozens of Mb/s) and bandwidth variance error varying from 0.06 to 66%

depending on the scenarios and flow active and inactive timeouts. Such

results are good but far from the ones obtained by active measurements.

In the case of latency estimation using flow-level measurements, in [LDK10]

a multiflow latency estimator is proposed. Such estimator is based on the idea

that packets traversing a link present a positive queuing delay correlation.

Using this premise, packets are correlated using a hash-based flow sampling

process in several points of the network and an estimator based on average

delay of pairs is proposed. Such estimator provides accurate estimates in the

bounds of 20% median error for flows greater than 100 packets.

In [LLdVBF04] a flow-based estimation of Bulk Transfer Capacity (BTC)

is performed following the metric proposed by [MA01]. Such approach is

compared against a packet level analysis and Iperf tool obtaining estimation

errors lower than 5%. Also a methodology for estimating Round-Trip Time

(RTT) consistent with the one recommended in [AKZ99c] is proposed. Such

proposal achieves an accuracy in the order of milliseconds.

In [ZBBC09] several examples of QoS monitoring using IPFIX exported

flows are presented. The most relevant comprises the estimation of RTT us-

ing a single point methodology and the estimation of One-Way Delay (OWD)

using a multi-point approach. In the case of RTT a packet pair matching

must be done at observation point to correlate both directions of a data con-

nection —e.g. Domain Name System (DNS), Simple Network Management

Protocol (SNMP) or Transmission Control Protocol (TCP) stream. In the

case of OWD estimation using IPFIX a multi-point approximation only the

packet timestamps and node ids are necessary.

In [RSDC11] a methodology for estimating packet losses on a link based

on IPFIX information is proposed. The methodology correlates flow records

produced at two different points of the network and creates a superflow con-

taining both records with a temporal restriction. Analyzing such superflows,

the packet loss rate can be estimated using the difference between the packets

observed in the first observation point and the packets observed in the sec-

ond observation point. This methodology is evaluated against a packet-level

trace obtaining a good precision (mean error less than 8%) especially when

4.2. Passive Monitoring Techniques 89

combing the estimation with additional routing information to discard dis-

appearing flows. Other loss detection algorithms have evolved to cope with

high-speed environments as showed in [FUK+09]. In this case the proposed

algorithm is able to detect packet losses in high-speed scenarios using a flow

correlation approximation. Such correlation uses the flow 5-tuple and a time

window to analyze the number of packets in a flow in two different network

points as shown in the previous work. The results obtained by this approach

suggest that the precision obtained by the method is near to 100% in the

bounds of 10 Gb/s scenarios.

4.2.2 Packet Monitoring

Packet monitoring is based on the use of either on-the-fly captured traffic or

packet traces (usually PCAP1 traces) to estimate QoS parameters.

In [ENUK06], a method to estimate the capacity of a link using tcpdump

traces is presented. The proposed method analyzes TCP connections to

estimate the capacity of the narrow link of a path using the methodology of

packet dispersion. Such estimation takes advantage of TCP delayed ACK

strategy as packets are sent in pairs. The methodology is validated both in

real and simulated environments obtaining less than 5% overestimated values

and less than 18% underestimated values. All the values were compared with

an active estimation tool as ground truth.

In the case of passive RTT estimation, in [JD02] a method to estimate

the TCP RTT using packet level traces is proposed. The methodology is

based on the calculation of the elapsed time between a SYN and the first

ACK of a TCP connection with some optimization in the case of HTTP

connections and using Maximum Segment Size (MSS) estimation. RTT is

only estimated over connections with no losses and no disordered packets to

improve accuracy. The method is widely tested using real traces with an indi-

rect verification approach. Such approach is based on the comparison of the

calculated RTT values separating the TCP connections by direction —source

and destination. The results show that 70%-80% of processed connections

1http://www.tcpdump.org/

http://www.tcpdump.org/

90 Chapter 4. Passive Measurements

have an absolute difference less than 25 ms.

In [BV02] a method for estimating the packet loss in a passive way is sug-

gested. The methodology uses TCP sequence numbers to detect gaps and

retransmissions. The algorithm is refined using the concept of significant

packets. Such packets contain a data segment for the first time. Using this

approximation, retransmissions losses are not taken into account. Addition-

ally a correction for spurious timeouts is added to avoid marking packets as

lost when the RTT increases. Other improvements are proposed to deal with

load balancing and packet reordering. The presented method is analyzed

both in simulation and real scenarios achieving errors lower than 10% for the

90% of the cases.

Trajectory Sampling and Flow Tracking

Trajectory sampling or packet tracking [DG00, SHSZ10] is a methodology

for monitoring packets in large-scale networks using invariant thereof fields

as they traverse across different hops. Usually the invariant fields are used to

identify uniquely a packet across the network. This technique may be used

together with packet records generation to obtain labeled packet information

at different network points. Such labels are usually generated by means of

a hash function applied over the invariant fields of the packets in such a

way that the label remains the same independently of where the label was

created.

For TCP/User Datagram Protocol (UDP) over IP packets the selected

invariant fields for the hash calculation typically are:

• IP version.

• IP protocol.

• Source and destination IP addresses.

• IP identification field.

• Source and destination TCP/UDP ports.

4.2. Passive Monitoring Techniques 91

• First 20 bytes of payload.

Some of the previously commented fields may be variable depending on

the network configuration. For example, in domestic networks is more likely

to find Network Address Translation (NAT) or Port Address Translation

(PAT) technologies which convert IP addresses and TCP/UDP ports in vari-

able fields. Normally, trajectory sampling is used in big data networks such

as core ones where such problems do not occur. Other fields may be con-

sidered as invariant depending on the network conditions. For instance, the

total length, flags and offset IP fields may be used as invariant fields if frag-

mentation is not so usual or if it is confined to the network edges.

Figure 4.1 shows an example of a packet traversing a set of hops and

its corresponding packet records. The packet records must be collected and

analyzed on one or several additional machines. Such analysis is very complex

in terms of processing power and memory consumption as packets must be

correlated attending to several characteristics.

The major drawback of this method lies on the amount of extra traffic

generated as per each packet, a record is generated at every router or switch.

Typically, a packet record may contain a label (32 bits), the packet size value

(16 bits) and a timestamp value (64 bits). Using trajectory sampling, for

every packet in a network at least 16 extra bytes are generated. Moreover the

number of packet records grows linearly with the number of monitored hops

in the network. For example on a 1 Gb/s network, near 1,4 million packets

can be generated each second giving an extra traffic of 19,6 MB each second.

Such extra traffic increases dramatically if, for example, 50 nodes are being

simultaneously monitored —980 MB extra traffic is generated each second.

For such reason, packet sampling mechanisms must be applied to reduce the

number of analyzed packets. A flow tracking methodology is proposed in

Section 4.4 to add a higher abstraction level and reduce the amount of extra

traffic generated while reusing flow creation capabilities of modern routers

and switches. Such methodology is similar to the one presented in [SRW+08].

Trajectory sampling is useful for a wide variety of network monitoring

tasks such as:

92 Chapter 4. Passive Measurements

���������

���	��

������

���	��

������

���	��

������

���	��

������

���	�� ���	��

���	��

�����
��������

������
���

����������
����� ����

�����
��������

������
���

����������
����� ����

�����
��������

������
���

����������
����� ����

�����
��������

������
���

����������
����� ����

Figure 4.1: Trajectory Sampling Example

4.3. Packet Correlation and Sampling 93

• Distributed Denial of Service (DDoS) attacks detection.

• Multi-hop delay and delay variation measurements.

• Multi-hop packet loss measurements.

• Performance analysis of new protocols.

• Active probe packets monitoring.

In [ZMSP03] a methodology for measuring OWD in multi-hop networks is

presented. To calculate the delay of a packet across different hops, packets are

labeled using a hash function and the OWD is calculated as the subtraction

of the destination and source timestamps.

4.3 Packet Correlation and Sampling

One of the key aspects when applying trajectory sampling techniques is

the selection of the packet sampling function and the method for correlat-

ing sampled information at the collector point. Several studies have been

done [MND05, ZMD+09, HSZ08] focusing specially on hash function collision

analysis. Additionally, some of such studies have focused on algorithm time

analysis under certain constraints while the application of such techniques on

high-speed scenarios has not received much attention by the community. On

heterogeneous networks where both high-speed and low-speed links may be

monitored it is important to obtain the operating limits of these algorithms

to adapt the capture system to the network conditions. Moreover, generating

a hash value for each packet is not enough to fulfill the requirements of tra-

jectory sampling techniques but also all generated hashes must be correlated

at the collector point to infer information. Such correlation and path recon-

struction is not a trivial task especially when working with online algorithms

in high-speed environments.

94 Chapter 4. Passive Measurements

4.3.1 Testbed

All the following tests were performed on an standard computer with an

Intel i7-860 processor at 2.8 GHz, 8 GB of Random Access Memory (RAM)

running a Fedora 18 Linux with a 3.9.6 kernel. For validation purposes,

several real packet-level traces were used. Such traces were captured at an

OC192 (9953 Mb/s) backbone link of a Tier-1 ISP located between San

Jose and Los Angeles and were provided by The Cooperative Association for

Internet Data Analysis (CAIDA) [WCA]. Additionally, a packet-level trace

comprising 1 day of traffic of a commercial link of a Spanish operator was

used.

Table 4.1 summarizes the most relevant characteristics from the used

traces.

Trace Number of
packets

Trace
duration

Avg. Packet
Size (bytes)

Avg. Rate
(Mb/s)

Avg.
Concurrent

Flows

CAIDA 25,476,037 1 min 655 2,321 519,715
Operator 97,092,043 1 day 258 3 4,264

Table 4.1: Trace Sets Information

4.3.2 Hashing

The first step when using trajectory sampling or flow sampling techniques is

calculating a hash value for each incoming packet. Typically, the hash is cal-

culated over some predefined packet fields and the data length used for hash

calculation normally is in the range of 12-40 bytes. Generating hash values is

not a simple task and may introduce an important processing overhead. Ad-

ditionally, the hash algorithms used in packet and flow sampling must have

a very low collision probability. Such constraints reduce the number of hash

algorithms that are normally used for packet sampling. Using the previous

works [MND05, ZMD+09, HSZ08] as a starting point, three algorithms are

used in this section to evaluate the processing performance for packet and

flow sampling and correlation. The used algorithms are: Bob-Jenkins im-

4.3. Packet Correlation and Sampling 95

plemented in Linux Netfilter code since 2006; CoralReef proposed and used

by CAIDA in the flow tool with the same name; and Toeplitz hash pro-

posed by Microsoft and Intel [Mic13, Int12] for Receive-Side Scaling (RSS)

in high-speed environments.

To analyze the time consumed by each algorithm when generating a hash

value, random byte arrays of different sizes are generated as input for the hash

function. Note that, both CoralReef and Toeplitz hashes are applied over 5-

tuple (source and destination IP addresses, source and destination ports and

protocol) values. In such cases random 5-tuple values are generated. To

test the performance of the hash algorithms 1,000,000 unique random hash

inputs have been generated. Such inputs have been used to obtain the time

devoted to each hash calculation. Figure 4.2 shows the box plot of the hash

calculation time for the one million inputs previously generated and the three

proposed algorithms. As it can be observed, CAIDA CoralReef hash obtains

the best results in terms of per-packet hash time calculation with a median

located at 20 ns. To put this figure into perspective, note that, in a 10 Gb/s

fully loaded link a 60-byte sized packet is transferred in 67.2 ns :(60 bytes + 4

bytes (CRC)+ 8 bytes (Preamble)+ 12 (Inter-Frame Gap (IFG))) · 8 · 10−10.

In the case of 1514 bytes, a packet is transferred in 1230.4 ns. In the light

of these figure, CAIDA CoralReef hash is able to hash all incoming packets

in a fully loaded 10 Gb/s link even in the worst case. The main problem

of such approach is that CoralReef hash only accepts 12-byte inputs. This

hash function is useful when performing flow-level sampling but it cannot be

used for packet sampling as different packets from a same flow produce the

same hash output. To solve such problem other algorithms such as Toeplitz

or BOB hash may be used.

For comparison purposes, the performance of such algorithms is also

showed on Figure 4.2. As it turns out from the analysis, both BOB and

Toeplitz hash are able to deal with a 10 Gb/s fully saturated link. In the

case of Toeplitz hash, although the algorithm allows the hash calculation over

an extended input, depending on the implementation is only applied over the

5-tuple [Int12] —13 bytes. For such reason, BOB hash has emerged as the

most recommendable choice for packet sampling whereas CoralReef is the

96 Chapter 4. Passive Measurements

20

30

40

50

60

70

80

90

100

110

120

BOB (12 B) BOB (13 B) CAIDA (13 B) Toeplitz (12 B)
Algorithm

T
im

e(
ns

)

Figure 4.2: Boxplot hash time for different algorithm

4.3. Packet Correlation and Sampling 97

most recommendable choice for flow sampling. CoralReef may be replaced

by Toeplitz for flow sampling and indexing when hash is hardware calculated

an provided by the Network Interface Cards (NIC) as in the case of Intel

cards [Int12].

In Figure 4.3 the BOB hash calculation time box plot is shown. Several

inputs with different size have been used ranging from one byte to 48 bytes

performing 1,000,000 algorithm runs per input size. As it can be observed,

the time needed by the BOB hash algorithm increases as the size of the input

grows in blocks of 12 bytes. Such behavior is due to the internal mechanisms

of the algorithm that groups input bytes in 12-byte chunks to apply logical

bitwise operations.

When the BOB algorithm is to be used for packet sampling and correla-

tion, it must be applied over a set of invariant fields that uniquely identify

each packet. Such fields are commented in Section 4.2.2 and consist of: IP

version (1 byte), IP protocol (1 byte), IP identification field (2 bytes), source

and destination IP addresses (8 bytes), source and destination TCP/UDP

ports (4 bytes) and 20 first bytes of payload. Putting together all these fields

the resulting hash input is 36 bytes long. Observing Figure 4.3, the median

for 36-byte inputs is located near 96 ns. In the worst case 10 Gb/s scenario,

60 byte packets, near 10.4 million packets per second may be processed for

packet tracking using BOB hash over 36-byte inputs. Note that, trajectory

sampling is not designed to be applied over all the traversing traffic of a link

but to monitor a reduced set of packets. In this same vein, the obtained re-

sults pave the way for high-speed packet tracking systems as near the 70% of

the traffic of a 10 Gb/s full-saturated link may be marked using BOB hash.

To evaluate the empirical collision probability, 400,000,000 unique ran-

dom keys are generated as inputs for the previously presented hash functions.

The resulting hash values are analyzed and the empirical collision rate is dis-

played on Table 4.2. The figures show a similar collision rate between all the

analyzed hashes. Note that, in a high speed link in the worst case scenario,

the packet rate is 14.88 Million Packets per Second (Mpps). In such case near

380,000,00 unique packets may be received and hashed without any collision

resulting in a 25 second time window for packet correlation.

98 Chapter 4. Passive Measurements

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839404142434445464748
Hash Key Length (bytes)

T
im

e(
ns

)

Figure 4.3: Boxplot hash time using BOB

Hash Function Empirical Collision Rate (%)

BOB (12 Bytes) 4.52
BOB (13 Bytes) 4.52

CAIDA 4.53
Toeplitz 4.51

Table 4.2: Empirical Hash Collision Rate

Hash Function Packet Sampling Flow Sampling

BOB 3 3

CAIDA 7 3

Toeplitz 72 3

Table 4.3: Hash Summary

4.3. Packet Correlation and Sampling 99

4.3.3 Packet Correlation

In section 4.3.2, the hashing techniques for packet and flow tracking were

presented. When packets are being sampled in a multipoint architecture,

packet records are generated at each measurement point. Such records typi-

cally contain a hash value calculated over the packet content, the size of the

sampled packet, the arrival timestamp of the packet and a unique identifier

of the measurement point where the record was generated. Such information

is typically transmitted to a collector point for its further analysis. These

analyses involve correlating all the received records as well as maintaining

the records temporally ordered to obtain reliable statistics. Such process is

a demanding task, especially when using general purpose hardware as the

one present on heterogeneous environments. In this section an architecture

for packet correlation and statistics calculation is presented. The proposed

architecture, FPC, is based on a double hashing technique to reduce the

memory footprint of the proposal while maintaining a low collision rate and

low processing requirements. In addition to the information contained in the

standard packet records, the inclusion of the result of a second hash func-

tion is proposed. Such hash function should be applied over the 5-tuple data

and is used to avoid the collisions produced by the first hash function. The

architecture of FPC is shown on Figure 4.4.

For each packet record received, the hash value calculated over the packet

content is extracted and used as index in a record hash table. To address

the problems derived from the collision of the hash, a linked list is used.

Each node of the linked list contains the result of the second hash function

calculated over the 5-tuple as well as the packet size. Using such combination

of variables, the collision rate is reduced and fewer samples are classified

inside a packet stream by mistake. Each node of the list contains a pointer

to a data structure used to obtain statistics. Such structure may hold any

extra information sent in the packet records. For example, the OWD between

each measurement point may be obtained storing the packet timestamp and

measurement point identification in a time-ordered list. Other statistics such

2Only applied over the 5-tuple

100 Chapter 4. Passive Measurements

Hash
Table

Hash2
Size

Data
Statistics
Structure

Hash Hash2 SizeTimestamp

Figure 4.4: Fast Packet Correlation Architecture

as Packet Loss Rate (PLR) may be easily calculated using the generic data

structure.

To test the performance of the proposed architecture, CAIDA and Op-

erator trace described at Section 4.3.1 are used. To simulate the multipoint

measurements, the traces have been modified decreasing the Time To Live

(TTL) value and adding random exponential delays at each simulated hop.

In the experiment four hops are simulated and the maximum, minimum and

average OWD is calculated. The hashes used for the tests are BOB (applied

over the packet content) and Coral Reef —applied over the 5-tuple. In the

case of BOB hash the input size is 36 bytes while in the CoralReef case the

input data size is 12 bytes. The record hash table used is composed of 224

entries of 8 bytes each which conforms an initial memory footprint of near

128 MB.

Figure 4.5 shows the achieved rate in packets per second of the FPC

method applied to calculate the OWD across the four simulated hops in the

two proposed traces. For the sake of completeness, the experiments were

4.3. Packet Correlation and Sampling 101

repeated 1000 times over the previously commented traces. Figures show

that between 1.1 and 1.3 Mpps may be processed by FPC method using

CAIDA trace and between 0.9 and 0.95 Mpps using the operator trace. Note

that the proposed method is not designed to analyze all packets traversing a

high-speed link but only the ones selected for tracking. For instance, taking

into account the average packet size of the CAIDA trace, 655 bytes, the

FPC method is able to process between 6.1 and 6.8 Gb/s. In the case of

the operator trace, using the average packet size (258 bytes), the achieved

rates are between 1.8 and 1.96 Gb/s. Attending to the empirical collision

rate, using the combination of the two hash functions, the obtained results

approximate to 1% of collision in both cases.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

x 10
6

CAIDA Operator

P
ac

ke
t p

ro
ce

ss
in

g
ra

te
 (

pp
s)

Figure 4.5: FPC effective processing rate (pps) for different traces

102 Chapter 4. Passive Measurements

4.4 FlowProcess and FlowLib: Flow tracking

and analysis

To exploit the potential of the ideas described on the previous sections a

software library and an application have been developed. Such software

pieces allow the user the online/offline processing of either PCAP or live

traffic in a simple and efficient way. Such processing includes:

• Flow creation.

• Flow statistics maintenance.

• Flow and packet sampling using either random or deterministic ap-

proaches.

• Flow export using extended NetFlow format or IPFIX.

• General statistics export using MRTG-like format.

Packet
Parser

Flows
Table

Indexed by
5-tuple

hash

Flow 1 Flow 2 Flow N
Flag-expired

Flow list

Active
Flow list

| |

Flow 1 Flow 2 Flow N| |

Node
1

Node
2

Node
3

Node
1

Node
2

Node
1

Node
2

Node
3

Node
N

| |

Flow
InformationNew

Packet

Flow
Exporter

(Time-Triggered)

Figure 4.6: FlowProcess Architecture

4.4. FlowProcess and FlowLib: Flow tracking and analysis 103

Figure 4.6 shows the architecture implemented on the FlowProcess and

FlowLib tools. Such architecture is optimized to work at high-speeds making

use of some improvements such as memory structures pre-allocation and reuse

or efficient hash distribution. The workflow of the system is as follows:

1. A packet arrives at the system.

2. In case that packet sampling is used, a sampling function is applied

over the arriving packet.

3. If the packet has not been discarded by the sampling function, it is

parsed to extract relevant information such as source and destination

IP address, source and destination ports, protocol, TCP specific fields

(flags, window size) and the first N bytes of payload.

4. A hash function is applied over the 5-tuple of the packet. The result

of such function is used as index in a pre-allocated flow table. Each

table entry contains a linked list to handle hash collisions. The linked

list is composed of nodes each one of which contains a pointer to a flow

structure. Both nodes and flow structures are pre-allocated

5. If the flow exists in the linked list, statistics and flow information are

updated with the information extracted from the last packet.

6. In case the flow does not exists and flow sampling is active, a sampling

function is applied over the previously extracted packet fields. If the

sampling function selects the flow for insertion, a node and flow struc-

ture are assigned and the node is inserted in the active flow list. Such

list contains pointers to the active flow structures and is ordered by

last access time facilitating the export and cleanup of the active flows.

Each time a flow is created or updated, its corresponding active list

node is promoted to the list head.

7. Periodically a garbage collector is executed to cleanup and export flows.

The garbage collector traverses trough the active flow list in reverse

order checking the last packet timestamp of each flow. If the flow has

104 Chapter 4. Passive Measurements

not received packets in a certain configurable time period P, the flow is

considered expired, its memory structures and nodes are released and

its information is exported. Additionally unidirectional TCP flows may

be expired when a FIN or RST flag is present on either flow creation

or update. In such scenario, nodes are removed from the flow hash

table and active flow list and a node is inserted into a separate expired

flag flow list which may be analyzed by the garbage collector for flow

removal and exportation.

Packet
Sampling?

Packet
Arrival

Parse
Packet

Sample
Packet

Yes

No

Discard?

No

Yes

Calculate
Hash

Flow Exists?

Sample
Flow

No Discard?

Yes

No

Insert on
flow table
and active

flow list

Yes

Update flow
stats and prepend

node on active flow list

Cleanup

Actual==first?

No

Yes

Flow expired?

Yes

Export
Flow

No

Get
previous

node

Get last node

Figure 4.7: FlowProcess Workflow

Figure 4.7 summarizes the process of flow insertion and update as well

as the flow cleanup process. FlowProcess an FlowLib can also handle IP

fragmented packets for payload extraction and statistics accounting. Addi-

tionally, FlowProcess and FlowLib are able to track sessions, that is, bidirec-

tional flows with minimal changes —the hash function used for table index

calculation and the flow existence function. Besides the per-flow exported

4.4. FlowProcess and FlowLib: Flow tracking and analysis 105

information, FlowProcess and FlowLib are able to export MRTG-like statis-

tics with configurable time granularity. Such statistics include the number

of bytes, packets and concurrent flows in the specified time interval as well

as the timestamp in UNIX format. Both MRTG-like statistics and flow in-

formation can be exported to a file or to a remote collector in an extended

NetFlow or IPFIX format.

Using the exported flow information and MRTG-like registers, other ap-

plications or utilities may calculate and estimate QoS parameters. The next

parameters can be directly calculated from the generated output of FlowPro-

cess or FlowLib:

• Bandwidth: using the MRTG-like statistics with granularity 1 second,

the used bandwidth can be obtained. Additionally, flow registers may

be used to construct an approximated bandwidth time series with low

error as shown in [OSSSP12].

• RTT: using the first N packet timestamps contained in the extended

NetFlow format provided by the tool in combination with the corre-

lation of incoming and outgoing flows, RTT may be calculated with

microseconds precision. Additionally, the maximum, minimum and

average RTT can be calculated depending on the number of stored

timestamps.

• Packet Loss: although packet losses may be estimated using passive

methodologies based on multipoint measurements, on single point mea-

surements like the ones provided by the tool, only TCP losses can be

estimated. Such metric is provided by the tool, based on a simple TCP

sequence number and ACK analysis. Using the information exported

at several measurement points, the packet loss may be estimated cor-

relation such information as shown in [RSDC11].

Other metrics such as OWD require the use of trajectory sampling tech-

niques at different measurement points. To this end, a software library called

Network Measurement Library (NMLib) has been developed as a result of

this work. The library integrates FlowLib and adds extended capabilities

106 Chapter 4. Passive Measurements

to implement trajectory sampling for multipoint measurements. Using the

implemented capability of hash-based packet sampling, NMLib is able to ex-

port per-packet registers containing the timestamp of the packet, the 32-bit

calculated hash, the packet size and a per-node unique identifier. Such infor-

mation is sent to a collector point or stored in a packet register file for further

correlation. The collector process implements the FPC method described in

Section 4.3. NMLib is described in detail in Chapter 6.

To evaluate the performance of the developed solution, the two traffic

traces described on Section 4.3.1 are used as input. Both traces are loaded

in a Linux ramdisk in order to avoid the performance degradation produced

by disk reading and evaluate only the performance of the flow management

system. Using such solution, 100 executions of the program are performed

over each trace to obtain the packet per second processing rate of the solution.

Note that, the performance of the proposed system depends on the number

of concurrent flows, aggregation level and traffic characteristics.

In the performed tests, FlowProcess was producing simultaneously MRTG-

like and extended NetFlow records. Every extended NetFlow record contains:

• Source and destination Ethernet addresses.

• Source and destination IP addresses.

• IP protocol field.

• Source and destination TCP/UDP ports.

• Number of bytes and packets.

• Timestamp of the first 10 packets of the flow.

• Size of the first 10 packets of the flow.

• Mean and standard deviation of the flow packet size.

• Number of observed TCP flags (SYN,FYN,RST,ACK,PSH,URG).

• Time between the first observed SYN packet and the first ACK packet.

4.4. FlowProcess and FlowLib: Flow tracking and analysis 107

1

1.5

2

2.5

3

CAIDA Operator

M
ill

io
n

pa
ck

et
s

pe
r

se
co

nd

Figure 4.8: FlowProcess performance

108 Chapter 4. Passive Measurements

• Minimum, maximum and average packet inter-arrival time of the flow.

Figure 4.8 shows the packet processing rate box plot for 100 executions

of FlowProcess. As the figures show, in the case of CAIDA trace, near

0.93 Mpps are processed. Taking into account the average packet size, 655

bytes, the average processing throughput is near 4.87 Gb/s. In the case of the

operator trace, almost 3.17 Mpps are processed with an average throughput of

6.54 Gb/s. In both cases, the achieved processing rate surpasses the average

rate for each trace which shows that the proposed system is able to handle all

the traversing traffic of a backbone 10 Gb/s link. As the number of concurrent

flows increases, the processing rate decreases due to the overhead of list and

table lookups. To solve this problem, the amount of memory dedicated to

the flow hash table may be increased, reducing the collision rate and, thus,

the average lists lengths. Table 4.4 shows the maximum memory footprint

for the 100 executions of FlowProcess over the two different traces. The

results show a low memory usage (less than 3 GB in the worst case) which is

reachable by any standard computer and fits perfectly into the heterogeneous

networks paradigm.

Trace Avg. Memory (MB) Std.Dev Memory (MB)

CAIDA 2,890 0.0122
Operator 1,251 0.0428

Table 4.4: FlowProcess memory footprint

4.5 Conclusions

In this chapter, the study of passive monitoring methods has been addressed.

Firstly a review of the most popular passive monitoring techniques has been

performed focusing in flow-level and packet-level monitoring. Such review

has shown that each technique has its benefits and drawbacks and has led

the way to the development of multi-granular passive monitoring systems.

Such systems allow the application of the best methods to estimate each QoS

parameter according to the precision needed and the available resources. In

4.5. Conclusions 109

the wake of developing a multi-granular system, flow-based monitoring and

packet-tracking techniques have been selected as the leading examples for

passive monitoring.

To evaluate the adequacy of packet-tracking techniques to heterogeneous

scenarios, a brief analysis of the fundamentals has been presented. First,

an initial set of hash functions have been evaluated in terms of performance

and collision probability. The results of such analysis have shown that BOB

hash function may be used to sample packets and generate packet records

achieving a 10.4 Mpps in the worst case 10 Gb/s scenario —60 byte packets.

Next, an architecture for packet correlation called FPC has been proposed

and presented as a contribution in this chapter. Such proposal has been

tested using an example for OWD calculation over real traffic from CAIDA

and a Spanish operator. The proposed system has achieved near 6.8 Gb/s

processing rates with a standard computer and low base memory footprint

—128 MB.

Regarding flow-based approaches, a novel system for flow creation and

statistics gathering has been presented. Such system, called FlowProcess,

makes use of efficient memory structures and optimization techniques to pro-

duce extended NetFlowIPFIX records and MRTG-like statistics that may be

used to estimate QoS parameters. The proposal has been tested with real

traffic achieving rates between 4.87 and 6.54 Gb/s.

Finally, to obtain an efficient multi-granular passive monitoring system

that fits into the PM methodology the integration of FPC and FlowProcess

into a measurement library called NMLib has been done constituting the

third contribution of this chapter.

Chapter 5

Traffic Pollution Detection

This chapter provides the background and revises the most relevant works

related to the traffic pollution detection. Additionally, a method for traffic

pollution detection using minimal information from time series is provided

along with its corresponding validation. The structure of the chapter is as

follows. First, a brief description about traffic pollution detection and general

concepts is done in Section 5.1. Then in Section 5.2 the fundamentals of the

traffic pollution detection model are presented along with an initial validation

of the hypotheses. In Section 5.3, an online algorithm for traffic pollution

detection based on time series analysis is presented and validated. Finally,

in section 5.4 some conclusions and ideas are presented.

5.1 Introduction

Nowadays, communication networks transport different kinds of protocols

and services complicating the traffic monitoring. Moreover, in recent years

new technologies with special network condition requirements have arisen

such as Voice over Internet Protocol (VoIP), Internet Protocol Television

(IPTV). Usually, such services are provisioned over dedicated networks to

minimize the impact of interfering traffic and control the traffic in a strict

way. Such scenario is even more common in corporate environments where

dedicated resources are used to provide this kind of services. One example is

111

112 Chapter 5. Traffic Pollution Detection

the case of bank networks where some Virtual Local Area Network (VLAN)

or subnets are devoted to electronic bank transactions which need reliable,

secure and low-latency communications. In such transactional environment,

the traffic is controlled and restricted to a small set of protocols and ser-

vices. Thus, incorporating external extra traffic may pollute the controlled

environment producing undesirable effects. Unfortunately, avoiding the pol-

lution is a difficult task as such transactional networks comprise different

devices such as Automated Teller Machines (ATM), Point of Sales (POS) or

standard computers. Moreover, since such networks are not completely and

physically isolated from other networks some polluting traffic may slip into

the network due to maintenance (backup process), misconfigured devices and

applications or security flaws.

In the case of VoIP networks, if polluting traffic is generated, the One-

Way Delay (OWD) and Packet Loss Rate (PLR) may be increased, with the

subsequent performance degradation of the ongoing calls. In both domestic

and corporate scenarios it is very likely to find voice and Internet traffic

mixed up together on the same access router. In such case, it is important

to assure that data traffic does not pollute voice traffic.

Several works [BKPR02, SDTG10, XCF12, LSK10, TMH11] have ad-

dressed similar problems focusing especially on anomaly and attacks detec-

tion. On one hand, some of these works are based on Principal Component

Analysis (PCA) or similar techniques and require a pre-training in order to

obtain reliable results. On the other hand, other works need large amount of

data and the complexity of the proposed methods is computationally unaf-

fordable in heterogeneous environments. Additionally, few of such algorithms

may work in an online way which increases the time needed until a network

manager notices the problems. At the moment of the writing, no literature

addressing specifically the traffic pollution detection was found.

In what follows, a description of the root causes and the fundamentals of

pollution traffic detection are presented.

The first step for polluting traffic detection consists on the detection of the

spikes in the transferred or received bytes time series and their root causes.

Such spikes may be produced by:

5.1. Introduction 113

• Increases in the number of concurrent flows: the creation of several new

flows that generate small or medium amounts of traffic may contribute

to the increase of the global byte series.

• Increases in the rate of one or few flows: the increase in the bits per

second rate of one or few flows may increase the overall byte time series.

In the first case, if the aggregated bytes series suffers an increment and

the number of concurrent flows has increased, the increment on the overall

traffic is not due to polluting traffic unless the increment on the number

of concurrent flows is excessive in a short time period —e.g. SYN flood

or similar attacks. In the second case, if the number of aggregated bytes

increases and the number of concurrent flows remains constant in a short

time period, the increment may be due to the rate increase of one or a small

group of flows. In that case, such flows may be considered as polluting

traffic. Effectively detecting such situations is not a trivial task and may

consume a lot of resources (both processor and memory) analyzing flow rates

individually and correlating such information with the number of concurrent

flows and aggregated bytes rate. To simplify this task, a model to detect

polluting traffic based on the variance of the flow sizes is presented. Using

such simplification, the analysis process is reduced to the calculation of the

squared bytes sum without additional process or resources.

In this light, an algorithm for online detection of polluting traffic presence

is also presented in this chapter. The main advantages of the proposed

method are:

• It can be applied to all the observed traffic regardless of the transport

protocol —Transmission Control Protocol (TCP) or User Datagram

Protocol (UDP).

• Requires minimal information, namely: bytes, number of concurrent

flows and flow size variance time series of a given link.

• Requires minimal computational power and memory which fits per-

fectly into the heterogeneous environment paradigm.

114 Chapter 5. Traffic Pollution Detection

5.2 Initial Hypotheses

Let x(n), n = 0, . . . ,m denote a discrete-time traffic stream that represents

unidirectional traffic on a link, measured in bps. In order to determine what

are the time epochs at which the baseline traffic is being polluted, it is used

a discrete-time stream which represents the flow size variance and is denoted

by y(n), n = 0, . . . ,m. Let also define a discrete-time stream that represents

the number of concurrent flows on a link, denoted by f(n), n = 0, . . . ,m.

The main hypotheses of the model are:

1. f(n) remains stable over a given time period t

2. x(n) and y(n) are strongly correlated

Taking into account the previous hypotheses, if an increment is observed

in the flow size variance stream over a time period t and the number of

concurrent flows is stable within a predefined limit, then an increment in the

byte traffic stream must be observed. Such increment is produced by the

increment of the rate of one flow or a small group of flows which suggest the

presence of polluting traffic such as intensive HyperText Transfer Protocol

(HTTP) downloads.

For validation purposes some real-scenario traces are used. The traces

were collected in a commercial core bank network which contains traffic from

several services and networks. Such traces contain electronic bank transac-

tions mixed up with batch traffic from backups using File Transfer Protocol

(FTP), XCOM data transfer protocol and Lightweight Directory Access Pro-

tocol (LDAP) traffic along with HTTP and HyperText Transfer Protocol Se-

cure (HTTPS). Additionally, VoIP traces collected at the same bank network

are used in the validation process. Such traces contain Skinny Client Control

Protocol (SCCP)/Real-time Transport Protocol (RTP) traffic in combina-

tion with batch TCP traffic from users. Some Video on Demand (VoD) and

commercial traces from a Spanish operator are also used on the validation

process. In all cases, additionally to the minimal data required by the al-

gorithm, the NetFlow output of the traces and the Packet Capture (PCAP)

traces are used to as ground truth to verify the nature of the polluting traffic.

5.2. Initial Hypotheses 115

All the used traces have a 24 hour duration which covers all the possible load

scenarios presented in a day. Table 5.1 shows the main information about

the trace sets used.

Trace
Set

Number of
traces

Avg. Rate
(Mb/s)

Max Rate
(Mb/s)

Additional Info

Bank1 30 6.4 82.3 LDAP,FTP,XCOM and
bank transactions

Bank2 30 3.7 78.6 LDAP,FTP,XCOM and
bank transactions

Bank3 30 3.5 68.3 LDAP,FTP,XCOM and
bank transactions

Bank4 30 0.1 5.9 LDAP,FTP,XCOM and
bank transactions

VoIP1 5 1.5 75 SCCP,RTP,FTP and
HTTP traffic

VoIP2 5 0.4 16 SCCP,RTP,FTP and
HTTP traffic

VoD 2 33.11 145 RTP and HTTP
Operator 4 3 17.3 -

Table 5.1: Characteristics of the traffic data sets

For each set of traces, the cross-correlation value between x(n) and y(n)

is calculated at hourly intervals to assure the applicability of the model to

different types of traffic. Note that, the cross correlation value is only calcu-

lated over the time periods in which the number of concurrent flows remains

stable. The closer to one the cross-correlation value is, the more correlation

exists between x(n) and y(n).

Figure 5.1 shows the Empirical Cumulative Distribution Function (ECDF)

of the cross-correlation value calculated over the bank traces described on

Table 5.1. The cross-correlation value is calculated using the time series of

aggregated bytes and flow size variance corresponding to 30 days of bank

traffic. Note that the value of the cross-correlation value at lag 0 is greater

than 0.7 for the 70% of the cases.

Figure 5.2 shows the ECDF of the cross-correlation value over the VoIP,VoD

and commercial traffic traces. Attending to the figures it can be observed

that the value of the cross-correlation value at lag 0 is greater than 0.7 for

the 75% of the cases. All the presented results support the applicability of

116 Chapter 5. Traffic Pollution Detection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cross−correlation value between bytes and flow size variance series at lag 0

F
(x

)

Bank 1
Bank 2
Bank 3
Bank 4

Figure 5.1: ECDF cross correlation value between bytes and flow size variance
at lag 0 for bank traces

5.3. Online Algorithm 117

the proposed model. In the next section, an online algorithm for pollution

detection based on the verified hypotheses is presented.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cross−correlation value between bytes and flow size variance series al lag 0

F
(x

)

VoIP 1
VoIP 2
VoD
Operator

Figure 5.2: ECDF cross correlation value between bytes and flow size variance
at lag 0 for other traces

5.3 Online Algorithm

In this section, an online algorithm is proposed based on the idea behind

the model presented in the previous section. The algorithm follows a sliding

window approach to detect spurious increments in the bytes and the flow size

variance for each time step. The proposed time step in this case is one second

as is the standard minimum granularity provided by tools such as Multi

Router Traffic Grapher (MRTG). The input parameters of the algorithm

are:

118 Chapter 5. Traffic Pollution Detection

• t: size of the time window.

• bytes time series.

• flow size variance time series.

The output parameter of the algorithm is:

• estimator: a value for the estimator of the presence of polluting traffic.

Such parameter takes either zero or unity value if there is no polluting

traffic or if there is polluting traffic respectively.

Algorithm 2 shows the pseudocode of the proposed algorithm for its fur-

ther implementation. Note that the function percentile represents the per-

centile procedure calculation. The method is based on a similar approach of

the spear detection method described in [Pal09]. Such method relies on the

calculation of the difference between the value of an observed point and the

average value of the N closest previous and subsequent values. Equation 5.1

shows the method used to calculate the spear coefficient at point i.

SC(i) =
xi −

N∑
k=1

xi−k

N
+ xi −

N∑
k=1

xi+k

N

2
(5.1)

To detect global spears and eliminate local increments, a threshold based

method is proposed. Such threshold is based on the capacity of the monitored

link. Usually, such data is previously known and in case of absence it can be

estimated observing the weekly traffic pattern. Using such approximation,

only points with a spear coefficient greater than a certain capacity percentage

are marked as polluted instants.

Note that, in Algorithm 2, the concurrent flow stability test is not showed

for simplicity. Such stability test is based on the use of Cumulative Sum

(CUSUM) methods along with a threshold derived from the observation of

the number concurrent flows of the monitored network.

5.3. Online Algorithm 119

Algorithm 2 Online Traffic Pollution Detection

nsamples=0
while new samples do

Add new sample to byte vector
Add new sample to flow variance vector
nsamples++
if (nsamples > t) then
x0=bytes[1:(t/2)-1]
x= bytes[t/2]
x1=bytes[(t/2)+1:t]
y0=var[1:(t/2)-1]
y=bytes[t/2]
y1=bytes[(t/2)+1:t]
e0=((x-mean(x0))+(x-mean(x1)))/2
e1=((y-mean(y0))+(y-mean(y1)))/2
if (e0 > byte threshold) OR (e1 >variance threshold) then

estimator(nsamples)=1
else

estimator(nsamples)=0
end if

else
estimator(nsamples)=0

end if
end while

120 Chapter 5. Traffic Pollution Detection

5.3.1 Algorithm Validation

To validate the proposed algorithm, using NetFlow records and original

PCAP files, the time intervals with polluted traffic presence have been iden-

tified creating a ground-truth time series of the polluted time intervals. Note

that, the baseline traffic is known in each scenario and it can be differenti-

ated from polluting traffic. The applied threshold is based on the previously

known capacity of each of the monitored links.

For each trace of the trace set described in Section 5.2, the algorithm

has been executed using a threshold of 30% of the link’s capacity and a

time interval t of 60 seconds. To represent the validation results, Receiver

Operating Characteristic (ROC) graphs are used. Note that, in these kind of

graphs the False Positives Rate (FPR) or (1-accuracy) is represented on the x-

axis and the True Positives Rate (TPR) or sensitivity is represented on the y-

axis. Such values are calculated using the False Positive (FP),False Negative

(FN),True Positive (TP) and True Negative (TN) values. Equations 5.2

and 5.3 show how these ratios are calculated. In ROC graphs, the lower the

value of FPR is, the better the algorithm is. Similarly, the higher the TPR

value is, the better the algorithm is.

TPR =
TP

TP + FN
(5.2)

FPR =
FP

FP + TN
(5.3)

Figure 5.3 shows the ROC graph for the results of the application of the

online algorithm over the bank traces. The results show a high TPR ranging

from 50% to 100% with most of the samples located between 90% and 100%.

Attending to the FPR, promising results are achieved ranging from 0% to

1.4%.

Figure 5.4 shows the ROC graph for the results of the application of the

online algorithm over the VoIP, VoD and commercial traffic traces. In this

case, the achieved TPR ranges from 80% to 100% with most of the samples

located between 98% and 100%. The obtained FPR in this case, ranges from

5.3. Online Algorithm 121

0 0.2 0.4 0.6 0.8 1 1.2 1.4
50

55

60

65

70

75

80

85

90

95

100

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Bank 1
Bank 2
Bank 3
Bank 4

Figure 5.3: ROC graph for bank traces using th=30%

122 Chapter 5. Traffic Pollution Detection

0% to 3% with most part of the samples located between 0% and 0.5%.

0 0.5 1 1.5 2 2.5 3 3.5
82

84

86

88

90

92

94

96

98

100

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

VoIP1
VoIP2
VoD
Operator

Figure 5.4: ROC graph for other traces using th=30%

In the light of the obtained results, the proposed method is able to detect

traffic pollution time intervals based on the analysis of the bytes and flow

size variance time series with FPR lower than 3%. These promising results

are supplemented with a low memory footprint (only the last 60 samples are

necessary) and Central Processing Unit (CPU) usage due to the simplicity

of the algorithm.

5.4 Conclusions

In this section a method for traffic pollution detection based on time series

analysis has been presented. The proposed method is based on the existing

correlation between the flow size variance and the aggregated byte rate. First,

5.4. Conclusions 123

a brief review of the fundamentals and similar works has been done. Next,

the hypotheses of the detection method have been proposed and explained.

Such hypotheses have been validated by means of cross-correlation tests us-

ing real traffic traces obtained on a bank and a Spanish operator. Then a

simple algorithm for traffic pollution detection based on a time series spear

identification method has been proposed. Such algorithm makes use of the

aggregated bytes and flow size variance time series to detect the time interval

in which polluting traffic exists. Finally, the algorithm has been validated

using the real traffic traces obtaining promising results with FPR lower than

3% and an average TPR greater than 90%. The developed algorithm fits

perfectly in the heterogeneous networks paradigm as makes use of minimal

resources in terms of memory and CPU usage.

Chapter 6

Proactive System

This chapter describes the difficulties presented when integrating active and

passive measurements into a proactive system. First in Section 6.1 a brief in-

troduction to the proactive measurement selection problem is presented. Next,

in Section 6.2 a simple algorithm for measurement triggering is presented.

Such algorithm makes use of time series analysis and statistical methods

to obtain an estimator of the time epochs in which active monitoring must

be carried out. In Section 6.3, Proactive Network Monitoring Framework

(PNMF) is presented and described. This tool allows the integration of active

and passive measurements into a simple and powerful Proactive Monitoring

(PM) system. Finally, in Section 6.4 some conclusions are presented and the

chapter is closed.

6.1 Introduction

In chapters 3 and 4, different measurement methodologies are presented. Us-

ing active techniques only, reliable measurements may be obtained at the

expense of generating extra traffic and interfering on the measured network.

On the other hand, passive techniques provide measurements that lack of

precision and specificity. For example, the estimation of some Quality of

Service (QoS) parameters such as Round-Trip Time (RTT) or Packet Loss

Rate (PLR) is very complicated as few information is gathered at several

125

126 Chapter 6. Proactive System

measurement points. Such information must be correlated and analyzed in

order to obtain QoS parameter estimations. In case that the monitored net-

work is composed by a large number of measurement points, a prodigious

amount of data is produced and sampling or tracking methodologies must

be applied in order to focus on certain traffic. Such techniques mask the be-

havior of the network and degradation on the quality of the communications

in certain points may not be detected. To tackle this task while maintaining

a trade-off between the reliability of the measurements and the intrusive-

ness in the monitored network, PM is proposed. PM goes beyond the simple

combination of the active and passive methodologies and adds more function-

ality than Reactive Measurement (REM) systems. The main idea behind the

PM is planning the measurements in such a way that the switching between

measurement methods is done automatically when a change is detected. For

example, a system may be passively monitoring a set of reduced QoS param-

eters (base parameters) such as available bandwidth of one or more networks

or One-Way Delay (OWD) over a small set of paths or connections until a

change is detected or a certain threshold is exceeded. In that moment active

measurements over the problematic networks are triggered to obtain esti-

mations of other QoS parameters such as PLR or RTT in addition to base

estimation parameters —i.e. available bandwidth or OWD. Depending on

the obtained results the active tests are performed until the base parame-

ters return to their standard values or a certain monitoring time is expired.

PM triggering is useful not only when anomalous situations are presented

but also when dimensioning must be done in non-production or test environ-

ments. The use of the PM triggering mechanisms allow the operators and

network designers to easily perform tests and push the network to the limit

while obtaining reliable measurements of QoS parameters.

6.2. Measurement Planning: switching from passive to active 127

6.2 Measurement Planning: switching from

passive to active

Triggering between passive and active measurements methodologies before

certain situations are produced is a desirable behavior for PM systems. Such

measurements must be controlled in order to reduce the impact on the net-

work and the necessary running time. To tackle this task, a simple and

efficient method based on passive monitoring data must be applied to in-

crease the event response time and reduce the computational complexity. In

this light, a simple triggering mechanism is proposed based on the analysis

of the byte time series and simple statistical features.

In order to determine the time epochs when active measurements must

be executed an approach based on the Jensen-Shannon Divergence (JSD) is

used. The JSD provides a metric of the similarity of two given probability

distributions P and Q. This method makes use of the Kullback-Leibler Di-

vergence (KLD) to provide a symmetric and finite value of the similarity of

the distributions. Equations 6.1, 6.2 and 6.3 show how JSD and KLD are

calculated. According to [Lin91] the value of JSD is bounded by [0,1].

JSD(P ‖ Q) =
1

2
KLD(P ‖M) +

1

2
KLD(Q ‖M) (6.1)

M =
P +Q

2
(6.2)

KLD(P ‖ Q) =
∑
i

ln

(
P (i)

Q(i)

)
P (i) (6.3)

Let x(n), n = 0, . . . ,m denote a discrete-time traffic stream that repre-

sents unidirectional traffic on a link, measured in bps. Let also define W as

a window length value and xk(n) as the k-th window for the input stream

x(n) with W samples. Calculating the JSD value over the distributions of

adjacent sample windows (Dk−1 and Dk), a metric for detecting changes over

x(n) value is obtained. If
√
JSD(Dk−1 ‖ Dk) value approaches to one, the

distributions of the monitored parameter (unidirectional traffic rate) are dif-

128 Chapter 6. Proactive System

ferent and the time interval defined by the bounds of xk is a candidate for

measurement triggering. In other case, the distribution remained stable and

no triggering must be done. In order to isolate spurious changes and avoid

detecting non-critical changes, a threshold rejection technique is applied over

the
√
JSD(Dk−1 ‖ Dk).

Figure 6.1 shows the value of measurement triggering estimator (square

root JSD value) of the Bank 4 trace described in Table 5.1 with W=300

seconds and a threshold of 0.6. As it can be observed, the value of the

estimator surpasses the given threshold at the time epochs where significant

changes are observed on the traffic rate series.

0 1 2 3 4 5 6 7 8 9

x 10
4

0

5

10

15
x 10

5

sample

T
ra

ffi
c

ra
te

 (
bp

s)

0 1 2 3 4 5 6 7 8 9

x 10
4

0

0.2

0.4

0.6

0.8

1

sample

JS
D

 v
al

ue

Figure 6.1: Measurement triggering estimator value for Bank 4 trace with
W=300 s and th=0.6

The proposed method not only identifies the time epochs where active

monitoring must be launched but also the moments that such monitoring

must finalize. Such detection is automatically done by the very nature of

the JSD-based algorithm. To decide which time intervals must trigger an

active monitoring task and which must not, a simple threshold method may

be used. When applying the proposed method to the traffic rate parameter a

6.2. Measurement Planning: switching from passive to active 129

threshold based on the capacity may be selected —e.g. the existing average

traffic rate exceeds the 80% of monitored links capacity. Using such a simple

mechanism increases the effectiveness of the PM systems as early problem

detection can be done.

Algorithm 3 Measurement triggering algorithm

while new samples do
Add new sample to parameter vector
nsamples++
if (nsamples > 2*W) AND (mod(nsamples,N) ==0) then
xk−1=samples[1:W]
xk=samples[W+1:2*W]
Dk−1=hist(xk−1)/sum(hist(xk−1))
Dk=hist(xk)/sum(hist(xk))
estimator=JSD(Dk−1,Dk)
if estimator > estimator threshold then

if mean(xk) >parameter threshold then
if no active monitoring present then

launch active monitoring task
end if

end if
if active monitoring present then

stop active monitoring task
end if

end if
end if

end while

The proposed method has been applied over the traffic rate parameter but

it can be applied to other parameters, for instance OWD or PLR, depending

on the monitoring scenario and the QoS requirements. Algorithm 3 shows

the triggering algorithm pseudocode for a generic monitored parameter. Note

that the operator hist(x) returns the distribution of the vector x among bins

and the operator sum(x) returns the sum of the elements in the vector x.

130 Chapter 6. Proactive System

6.3 Proposed System

As a result of the work of this thesis, a measurement framework called PNMF

has been developed. Such framework groups all the techniques developed and

presented in Chapters 3, 4 and 5 providing a set of tools useful for distributed

network monitoring. In this section, an overview of the system architecture,

modules and implemented features is done.

PNMF is composed by three different modules, namely: probe module,

collector module and frontend module. Figure 6.2 shows an example of de-

ployment of PNMF modules.

Probe
Module

Probe
Module

Probe
Module

Collector

Frontend

Probe
Module

Figure 6.2: PNMF architecture

6.3. Proposed System 131

6.3.1 Probe Module

The probe module is deployed in each of the network points to monitor.

The main task of this module is passively obtaining data from the network

or performing active tests based on a given set of parameters. The probe

module has two operating modes:

• Passive Mode: such mode consists on a packet capture process that

creates and maintains a flow table in the same way the Cisco routers

do. Whenever a flow expires, it is exported using an extensible mecha-

nism that allows the communication of the information to the collector

using different formats such as NetFlow v5 or Internet Protocol Flow

Information eXport (IPFIX). Additionally, the passive mode constantly

monitors the incoming and outgoing traffic rate and number of packets

to generate Multi Router Traffic Grapher (MRTG)-like statistics which

are exported to the collector. The exportation time is configurable to

adjust the aggregation granularity. The passive methods used are based

on the contributions explained in Chapter 4.

• Active Mode: in this mode, the probe module is able to either generate

or receive measurement traffic to perform active measurements. Such

measurements include the techniques proposed on Chapter 3 to esti-

mate the capacity, OWD, RTT and packet loss including the suggested

improvements to calculate the accuracy of the measurements depend-

ing on the estimation method used and the active estimation of shaping

parameters. Once the measurements are done, the results are exported

to the collector for further processing.

Figure 6.3 shows the distribution of the different elements that conform

the passive part of the probe module. Basically, the passive probe module

captures incoming packets using a raw mmaped socket. Such approach has

limited performance specially when monitoring high-speed links. In case

that high-speed capture is needed, different capture modules such as the

ones described in [GDMR+13] may be easily attached to the probe module

to improve capture performance.

132 Chapter 6. Proactive System

����������	�

�
�����
����

��������

��
����

�	���������

����

������

�
���

�
��	��

����

�������

�

���	��

����!

�������

�

Figure 6.3: Passive Probe Module

In Figure 6.4 the distribution of the different elements that conform the

active part of the probe module are shown. Active module is in charge of

performing measurements using different types of traffic. To this end, both

the Transmission Control Protocol (TCP) measurement and packet train

generator submodules are used. The former generates TCP traffic executing

a HyperText Transfer Protocol (HTTP) file download from a specific server

as stated in Section 3.2.1. The latter sends User Datagram Protocol (UDP)

packet trains based on the methods presented in Sections 3.2.2 and 3.2.3.

All the measurements parameters such as packet train length, packet size,

destination server or HTTP parameters are received from the network and

forwarded to the adequate submodule by the active measurement scheduler

submodule. In the case of UDP measurement a probe may work as either

sender or receiver. If the probe works as receiver the packet train analyzer

submodule is used. Such submodule receives UDP packet trains and ana-

lyzes them to estimate network parameters such as capacity, OWD or PLR.

Once the measurement either packet-train or HTTP download is finished the

6.3. Proposed System 133

results are forwarded to the measurement quality quantifier submodule. This

part of the active probe module analyzes the results obtained by the previous

measurement submodules and applies the techniques specified in Section 3.3

to provide an estimation of the validity of the measurements based on an-

alyzed parameters such as Central Processing Unit (CPU) load, concurrent

traffic or available memory. Once the quality of the measurements is quanti-

fied, all the information including the quantification and the measurements

themselves are sent to the active measurement scheduler submodule. The

scheduler sends all the measurement information to the collector for storage

and further analysis.

����������	�

�
������
��������
��

��������
��������

������	��

�
������
�����
	����

���

��
�������

��
����������
	���

��
������

��������

��
����

������� �

!"��#
����

�
��

$� ��� �

!"��#
����

�
��

��
��������

%�&���

��
��������

%���	�

��
��������

%���	�

��
��������

%���	�

��
�������

��
��������

%���	�

��
��������

%�&���

"

��
��������

%�&���

"

��
��������

%�&���

"

Figure 6.4: Active Probe Module

6.3.2 Collector Module

The collector module is responsible for gathering and storing measurement

results and statistics that may be used in different type of analyses. Addi-

tionally, the collector module is able to perform some operations over the

134 Chapter 6. Proactive System

received data to obtain extra information. Such extra operations are:

• Hash-based packet correlation: using the gathered information from

different probes across the network, the collector module correlates

and orders temporarily the packet records to analyze the OWD along

a network end-to-end path. The used method, Fast Packet Correlation

(FPC), is described in Chapter 4.

• Hash-based flow correlation: using the NetFlow/IPFIX information

generated by probe modules, a correlation between flows across the

network can be performed. Using such correlation the PLR may be

estimated using the number of packets of each flow at every hop.

• Time series analysis: using the methods described in Chapters 4 and 5,

the collector module performs traffic pollution detection, traffic bursts

detection and link characterization using the MRTG-like information

(number of bytes, variance of the size of the flows and packets and flows

per second) gathered from the probes.

All the data received and generated by the collector module can be stored

using different mechanisms. By default, all the information is stored on disk

using different files per node and analysis. Such mechanism may be extended

to store all the collected and analyzed data in a database to ease the access

and organization. Additionally the collector module exchanges information

with the frontend module to display and represent the collected and analyzed

data. Figure 6.5 shows the collector module architecture.

6.3.3 Frontend Module

The frontend module is in charge of representing and organizing the gathered

information in a ordered and easy way. Additionally, the module serves as an

interface to control and manage measurement nodes as well measurements.

Regarding measurement nodes, the frontend module allows:

• Visualizing measurement network topology.

6.3. Proposed System 135

������������	
��
�������	

����������

�����������������

����

������������

����

�������	

����

��������

���

�������	

����

�������������������

�������

�������	

����

 �!�"#�!�	

����������

����������

$���	
���

Figure 6.5: Collector Module

• Deploying and undeploying measurement nodes.

• Visualizing measurement node information: name, interfaces and In-

ternet Protocol (IP) and Ethernet addresses.

• Visualizing per node MRTG-like information: number of bytes, packets

and concurrent flows.

Regarding measurements, the frontend module allows:

• Deploying and undeploying collector modules in selected nodes.

• Deploying and undeploying probe modules in selected nodes specify-

ing different parameters such as sampling rate, collector IP address or

packet fields used in hash calculation. Additionally, Berkeley Packet

Filter (BPF) filters can be applied in packet capture.

• Executing and visualizing active measurements between selected nodes

defining parameters such as number of packets in train, packet size.

• Tracking packets based on hash correlation to display OWD between

nodes or endpoints.

136 Chapter 6. Proactive System

The frontend module is in charge of calculating the time epochs where

active measurements must be executed using the algorithm described in 6.2.

Active measurements can also be executed in a timely fashion in order to

gather data from the QoS of the network at specific moments of the day.

Figures 6.6 and 6.7 show the interface of the PNMF Frontend module.

Using this interface, all the deployed nodes can be controlled in a central-

ized way. Figure 6.7 shows how the topology of the measurement nodes is

constructed. As new nodes are added, the topology is reconstructed and

displayed in a simple and clean way.

Figure 6.6: PNMF Frontend

Figure 6.8 show the MRTG-like display interface for the byte time series

of a given node. This interface allows, also, the visualization of the packet

and number of concurrent flows time series.

In Figure 6.9 the OWD time series between two connected nodes is shown.

The OWD value is calculated using the hash-based sampling method along

with FPC technique for correlation on the collector.

6.3. Proposed System 137

Figure 6.7: PNMF Frontend with nodes added

Figure 6.8: PNMF byte time series

138 Chapter 6. Proactive System

Figure 6.9: PNMF OWD value between two nodes time series

6.4 Conclusions

In this chapter, a brief description about the main features and requirements

of a PM system has been presented. First, the triggering between active and

passive measurements problem is presented. Next, a simple method based on

time series analysis along with JSD calculation is proposed. Such method is

able to determine the changes on the reference parameter and launch active

measurements when certain threshold is exceeded.

Additionally, in this chapter, PNMF is presented. PNMF is a monitoring

framework that allows the integration of active and passive measurements in

a simple and centralized system. The system is described along with its archi-

tecture focusing on the mechanisms described on the previous chapters and

the QoS measurements that is capable of carrying out. This chapter closes

the circle of the proactive monitoring describing a successful implementa-

tion of a system applicable to heterogeneous networks due to the simple and

efficient principles followed for both active and passive monitoring.

Chapter 7

Conclusions

This chapter is devoted to summarize the main results of this Ph.D. thesis.

First, in Section 7.1, the main contributions of this thesis are presented.

Next, the industrial applications of the work and its deployment in different

commercial projects are presented in Section 7.2. Finally, in Section 7.3,

future works and research lines for continuing with this work are presented.

7.1 Main Contributions

This thesis has tackled the problem of Proactive Monitoring (PM) on het-

erogeneous networks. Traditional monitoring works have focused on passive

and active network monitoring independently. In this thesis, the idea of com-

bining both types of measurement methodologies into a proactive system has

been presented focusing specifically on heterogeneous networks. Such type of

networks present great diversity of protocols, technologies and systems with

dissimilar requirements and restrictions. In this line, this work has focused

on the development of new active and passive monitoring methodologies that

are enough simple and powerful to work on heterogeneous environments. Ad-

ditionally, the problems derived from the combination of active and passive

measurements into one proactive system have been addressed in order to

provide systems that are able to detect and identify abnormal situations in

an early stage and provide Quality of Service (QoS) parameter estimations.

139

140 Chapter 7. Conclusions

The main conclusions from these contributions are presented at the end

of their respective chapters in this thesis. However, the following list shows

the key ideas and conclusions derived from this work.

(i) Active measurement methods are influenced by external pa-

rameters such as Central Processing Unit (CPU) load, self-

induced interfering traffic and traffic control mechanisms. Chap-

ter 3 has shown that traditional measurement methods such as file-

transfer and packet-pair and derivatives are affected by external param-

eters leading to an erroneous estimation of QoS parameters. Specifi-

cally, this thesis has revealed that CPU load is very influential on the

bandwidth measurement. Concretely, file-transfer techniques have been

proved to be more affected by higher CPU loads than packet-pair meth-

ods. Attending to the self-induced traffic, the study in Chapter 3, has

revealed that both file-transfer and packet-pair techniques are influ-

enced by self-induced interfering traffic being the former method the

most influenced one. In the case of packet-pair methods, the experi-

ments have revealed that such measurement method is only effected by

Constant Bit Rate (CBR) User Datagram Protocol (UDP) cross traffic.

Using the gathered information from experiments, a threshold-based

measurement rejection method has been proposed. Such method makes

use of a worst-case scenario approach to provide an upper bound for

the measurement error based on the number of self-induced interfering

packets and a multinomial model. Additionally, it has been demon-

strated the influence of the traffic rate control mechanisms such as

shapers and policers when conducting active measurements. In Chap-

ter 3, the experiments have shown that packet-pair based methods are

sensitive to rate control mechanisms producing erroneous measurements

which may lead to QoS parameters overestimation. To tackle this issue,

an algorithm to detect and characterize the parameters of token-bucket

based rate control mechanisms has been presented and compared to

other existing solutions achieving the best estimation. The results of

the performed studies led to the development of an active measurement

7.1. Main Contributions 141

tool called QoSPoll1 freely available.

Finally, the contributions in this chapter have led to the following pub-

lications (presented in chronological order):

• J. Aracil, J. Ramos, J.E. López de Vergara, L. de Pedro and S.

López, Appliance for the certified measurement of the bandwidth

of a network access and method for the calibration thereof, Inter-

national Patent PCT/ES2010/070269, Spain, 28/04/2010.

• J. Aracil, J. Ramos, P.M. Santiago, J.E. López de Vergara, L. de

Pedro, S. López, I. González and F.J. Gómez, Method for estimat-

ing the parameters of a control element such as a token bucket,

International Patent PCT/ES2011/070239, Spain, 09/04/2011.

• J. Ramos, P.M. Santiago, J. Aracil and J.E. López de Vergara,

On the effect of concurrent applications in bandwidth measurement

speedometers, Computer Networks (2011), Vol. 55, Issue 6, pp.

1435-1453. JCR Impact Factor 1.2 (Q2).

(ii) Packet correlation and flow monitoring can be performed at

multi-Gb/s rates with simple hardware adaptable to hetero-

geneous environments. In Chapter 4, packet correlation and flow

monitoring systems are analyzed. To correlate packets and monitor

flows, hash functions are normally used. The experiments in Chapter 4

have revealed that BOB hash function may be used to sample pack-

ets and generate packet records achieving a 10.4 Mpps in the worst

case 10 Gb/s scenario with an empirical collision rate of 4.5%. Taking

into account such results, a packet correlation architecture for methods

based on trajectory sampling has been proposed. Such architecture,

called Fast Packet Correlation (FPC), has been tested with real traffic

achieving a 6.8 Gb/s processing rate with an error of 1% and low base

memory footprint —128MB. FPC has been used to estimate the One-

Way Delay (OWD) across several hops showing a real example of the

use of the proposed architecture.

1http://danu.ii.uam.es:8080/QoSPollPro/

http://danu.ii.uam.es:8080/QoSPollPro/

142 Chapter 7. Conclusions

Additionally, a system for flow creation and statistics gathering has

been presented. Such system, called FlowProcess, makes uses of effi-

cient memory structures and optimization techniques to produce ex-

tended NetFlow/Internet Protocol Flow Information eXport (IPFIX)

records and Multi Router Traffic Grapher (MRTG)-like statistics that

may be used to estimate QoS parameters. The approach has been tested

with real traffic achieving rates up to 6.5 Gb/s. Moreover, due to the

need of multi-granularity on heterogeneous networks, the integration of

FPC and FlowProcess into a measurement library called Network Mea-

surement Library (NMLib) has been presented. Such library conforms

the base of the PM system proposed on Chapter 6.

(iii) Traffic byte rate and flow size variance are strongly correlated

when the number of concurrent flows remains stable. In Chap-

ter 5, a study of the correlation between the traffic byte rate and the

flow size variance has been carried out. Such study has been performed

using real traces from operator and bank networks and has revealed a

high degree of correlation between the traffic byte rate and the flow

size variance when the number of concurrent flows remains stable. Us-

ing such idea as starting point, an online algorithm for traffic pollution

detection has been developed based on the analysis of traffic byte rate

and flow size variance time series. The algorithm has been validated

using real traffic traces obtaining promising results with False Positives

Rate (FPR) lower than 3% and an average True Positives Rate (TPR)

greater than 90%. The presented algorithm fits perfectly in the hetero-

geneous networks paradigm as makes use of minimal resources in terms

of memory and CPU usage.

(iv) Proactive measurement triggering can be done in an online

way using simple statistical methods. In Chapter 6, the problem

of triggering between active and passive measurements is addressed.

Detecting short-term changes over a variable or set of variables is in-

teresting as may help in early detection problem and dimensioning. In

this light, a method for triggering between measurement methods is

7.2. Industrial Applications 143

presented. Such method is based on the analysis of a reference variable

(e.g. traffic byte rate) at fixed-size intervals to detect changes in the dis-

tribution of the samples. Such detection is done using Jensen-Shannon

Divergence (JSD) as an estimator of the difference between the sample

distribution of two adjacent intervals. A simple analysis has revealed

the effectiveness of this method to change the measurement method.

(v) Implementation of a proactive system called Proactive Net-

work Monitoring Framework (PNMF). In Chapter 6, the descrip-

tion of the implemented proactive system is presented. Such system

puts together all the ideas from Chapters 3, 4 and 5 to conform a

reliable and simple system for proactive monitoring focused on QoS

parameter estimation and suitable for its deployment in heterogeneous

environments.

7.2 Industrial Applications

The results and applications of this thesis are being currently exploited by

Naudit HPCN [NAU13]. Naudit is a technology-based startup created as a

spin-off from two universities: Universidad Autónoma de Madrid (UAM) 2

and Universidad Pública de Navarra (UPNA), and it is part of its Campus of

International Excellence3. Its shareholders include both universities as well

as Spanish National Research Council (CSIC) by way of Madrid Science Park

(Parque Cient́ıfico de Madrid). Naudit along with Fundación de la Univer-

sidad Autónoma de Madrid (FUAM)4 have carried out several innovation

and technology transfer projects. Among Naudit clients, there are public

organisms like Spanish Industry Ministry, telecom operators like Movistar,

multinational banking groups like BBVA, industrial companies like Airbus or

important energy producers. Specifically, the following results of this thesis

are directly applied in the industry:

2http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/

Spin-offs_de_la_UAM.htm
3http://campusexcelencia.uam-csic.es/
4http://www.fuam.es

http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm
http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm
http://campusexcelencia.uam-csic.es/
http://www.fuam.es

144 Chapter 7. Conclusions

• QoSPoll: the methodology and software described in Chapter 3 is

currently deployed in a commercial network from the Spanish operator

Movistar. The software is in charge of quality monitoring in the Nuevo

servicio Ethernet de Banda Ancha (NEBA) service with link speeds up

to 100 Mb/s and more than 30 measurement points.

• QoSInspec: the file-transfer method and the algorithm for measure-

ment rejection based on the value of external parameters have been

implemented in a commercial tool for link quality validation follow-

ing [Ins08] guidelines. Such tool is in use at the present time by the

Spanish Industry Ministry as the official tool for domestic link moni-

toring and Service-Level Agreement (SLA) validation.

• FlowProcess: the flow analysis tool described in Chapter 4 is cur-

rently in use for network traffic monitoring and statistics gathering at

bank network from BBVA-Bancomer.

7.3 Future Work

The work conducted in this thesis has opened new research lines for future

work in the field of the proactive monitoring in heterogeneous environments.

In what follows, some future research topics are presented:

• Active measurement methods and high-speed environments:

Although, active monitoring on high-speed environments has been ad-

dressed in this work, 10 Gb/s links are nowadays quite common and the

suitability of the classical measurement methods must be analyzed and

validated. Moreover, the use of advanced functionalities that present

modern Network Interface Cards (NIC)s such as hardware timestamp-

ing paves the way for accurate active monitoring in high-speed environ-

ments. Additionally, the influence of external parameters in the quality

of the measurements in such scenarios must be analyzed in order to de-

termine if packet-pair methods are enough resilient at high-speeds.

7.3. Future Work 145

• Flow monitoring optimization: Despite the promising results shown

in Chapter 4 for flow monitoring, new optimization techniques and ar-

chitectural changes must be introduced in order to reach 10 Gb/s speeds

and beyond. Moreover the integration with high-speed capture systems

such as the ones proposed in [GDMR+13] must be studied in order to

provide efficient online monitoring systems.

• New hash techniques and packet sampling: This work has shown

the performance and collision rate for a set of selected hash functions.

New hash functions are developed every day. Analyzing such functions

and their applicability to packet sampling and flow monitoring is a key

aspect to improve the efficiency of the presented systems. Moreover, a

deep study on the effects of distributed sampling over the estimation

of the QoS must be done in order to improve large-scale distributed

monitoring systems.

• Enhanced traffic pollution detection methods: In this thesis an

algorithm for traffic pollution detection has been presented. Such al-

gorithm is only applicable whenever concurrent flow number remains

stable over a given time period. Detecting pollution traffic when new

legitimate flows are being created is a challenging task that must be

addressed in the future. Such work is applicable to several popular

fields such as network security and attack detection.

• Advanced proactive multi-parameter triggering mechanisms:

In Chapter 6, a mono-parameter method for measurement triggering

in proactive systems has been presented. Creating a multi-parameter

model may increase the efficiency of the proactive systems by launching

active measurements in a smarter way. Additionally, the use of other

statistical tools to determine the triggering instants and their perfor-

mance compared with the solution proposed in this work is a future

work line.

• Performance and efficiency of proactive monitoring systems

on large-scale networks: the proposed proactive system in Chapter 6

146 Chapter 7. Conclusions

has been tested in a limited environment with a low number of nodes.

Deploying the system in large-scale networks with hundreds of nodes is

a paramount importance task in order to analyze the performance and

verify the applicability of the proposed system in such environments.

Conclusiones

Este caṕıtulo está dedicado a resumir los resultados e ideas principales

presentados en esta tesis doctoral. A continuación se presentan las con-

tribuciones principales del trabajo aśı como las aplicaciones industriales del

mismo. Para terminar, se presenta una colección de ideas para trabajos fu-

turos derivados de las ĺıneas de investigación planteadas en este trabajo.

Contribuciones Principales

Esta tesis ha tratado el problema de la monitorización proactiva en redes

heterogéneas. Tradicionalmente, los trabajos de monitorización se han cen-

trado en medidas de red activas o pasivas de manera independiente. En esta

tesis, la idea de la combinación de ambos tipos de medidas en un sistema

proactivo de monitorización ha sido presentada haciendo especial hincapié en

su aplicabilidad a las redes heterogéneas. Este tipo de redes presentan gran

diversidad de protocolos, tecnoloǵıas y sistemas con requisitos y restricciones

muy dispares. En esta ĺınea, este trabajo se ha centrado en el desarrollo de

nuevas metodoloǵıas de monitorización activas y pasivas que sean suficien-

temente simples y potentes para funcionar en entornos heterogéneos. Adi-

cionalmente, los problemas derivados de combinar medidas activas y pasivas

han sido tratados para proporcionar sistemas que sean capaces de detectar

situaciones anómalas en etapas tempranas y proporcionar estimaciones de

los parámetros de calidad de servicio.

Las conclusiones principales de estas contribuciones se han presentado

al final de sus correspondientes caṕıtulos, sin embargo, a continuación se

resumen las ideas más importantes de esta tesis.

147

148 Conclusiones

(i) Los métodos de medida activos se ven influidos por parámetros

externos tales como la carga de CPU, el tráfico auto-inducido

o los mecanismos de control de tráfico. En el Caṕıtulo 3 se

ha mostrado que los métodos de medida tradicionales tales como la

descarga de fichero o los métodos de pares de paquetes y sus derivados

se ven afectados por la influencia de parámetros externos produciendo

estimaciones erróneas de los parámetros de calidad de servicio. Es-

pećıficamente, esta tesis ha mostrado que la carga de CPU es muy

influyente en la medida del ancho de banda. En concreto, los métodos

de descarga de fichero se han mostrado más afectados que los métodos

basados en pares de paquetes. Atendiendo al tráfico auto-inducido, el

estudio en el Caṕıtulo 3 ha revelado que tanto los métodos de descarga

de fichero como los métodos de pares de paquetes se ven afectados por

el tráfico interferente siendo los primeros más sensibles. En el caso

de los métodos de pares de paquetes, los experimentos han mostrado

que solamente se ven afectados por tráfico cruzado UDP CBR. Usando

la información obtenida de estos experimentos, se ha desarrollado un

método de descarte de medidas basado en umbrales. Este método hace

uso de una aproximación de caso peor para proporcionar un ĺımite su-

perior para el error de la medida basándose en el número de paquetes

de tráfico auto-inducido y un modelo multinomial.

Adicionalmente, se ha demostrado la influencia de los mecanismos de

control de tasa de tráfico como shapers y policers sobre los métodos ac-

tivos. En el Caṕıtulo 3, los experimentos han mostrado que los métodos

de pares de paquetes son sensibles a los mecanismos de control de tráfico

y producen medidas erróneas que llevan a la sobreestimación de algunos

parámetros de calidad de servicio. Para solucionar este problema, se

ha propuesto un algoritmo para detectar y caracterizar los parámetros

de los mecanismos de control basados en Token Bucket y se ha com-

parado con otras soluciones previas obteniendo los mejores resultados.

Los resultados de los estudios realizados han llevado a la creación de

Conclusiones 149

una herramienta gratuita de medida activa llamada QoSPoll5.

Finalmente, las contribuciones en esta área han producido las siguientes

publicaciones (presentadas en orden cronológico):

• Javier Aracil Rico, Javier Ramos de Santiago , Jorge E. López

de Vergara Méndez, Luis de Pedro Sánchez, Sergio López Buedo,

Aparato para la medición certificada del ancho de banda de un ac-

ceso de red y método de calibración del mismo (APPLIANCE FOR

THE CERTIFIED MEASUREMENT OF THE BANDWIDTH OF

A NETWORK ACCESS AND METHOD FOR THE CALIBRA-

TION THEREOF), Patente Internacional PCT/ES2010/070269,

España, 28/04/2010.

• Javier Aracil Rico, Javier Ramos de Santiago, Pedro M. Santiago

del Ŕıo, Jorge E. López de Vergara Méndez, Luis de Pedro Sánchez,

Sergio López Buedo, Iván González Mart́ınez, Francisco Javier

Gómez Arribas, Método para estimar los parámetros de un ele-

mento de control de tipo Tocken-Bucket (METHOD FOR ESTI-

MATING THE PARAMETERS OF A CONTROL ELEMENT

SUCH AS A TOKEN BUCKET), Patente Internacional PCT-

/ES2011/070239, España, 09/04/2011.

• Javier Ramos, Pedro M. Santiago, Javier Aracil, Jorge E. López

de Vergara , On the effect of concurrent applications in bandwidth

measurement speedometers, Computer Networks (2011), Vol. 55,

Issue 6, pp. 1435-1453. Indice de impacto JCR 1.2 (Q2).

(ii) Se puede realizar correlación de paquetes y monitorización de

flujos a tasas multi-Gb/s con hardware simple adaptable a en-

tornos heterogéneos. En el Caṕıtulo 4, la correlación de paquetes

y los sistemas de monitorización de flujos han sido analizados. Para

correlar paquetes y monitorizar flujos, normalmente se hace uso de fun-

ciones hash. En los experimentos de este caṕıtulo, se ha mostrado que la

función hash BOB puede ser usada para muestrear paquetes y generar

5http://danu.ii.uam.es:8080/QoSPollPro/

http://danu.ii.uam.es:8080/QoSPollPro/

150 Conclusiones

registros de paquetes a una tasa de 10.4 Mpps en el peor escenario de

10 Gb/s con una tasa de colisión de 4.5%. Tomando en cuenta estos

resultados, se ha propuesto una arquitectura de correlación de paquetes

para los métodos de trajectory sampling. Esta arquitectura, llamada

FPC, ha sido evaluada con tráfico real obteniendo una tasa de proceso

de aproximadamente 6.8 Gb/s con un error del 1% y una huella base

de memoria mı́nima — 128 MB. Como ejemplo práctico, se ha usado

FPC para realizar el cálculo del retardo en un sentido de cada paquete

a través de varios saltos.

Adicionalmente, se ha presentado un sistema de creación de flujos y

recolección de estad́ısticas. Este sistema, llamado FlowProcess, hace

uso de estructuras de memoria eficientes y técnicas de optimización para

producir registros extendidos NetFlow/IPFIX y estad́ısticas similares a

MRTG que pueden ser utilizadas para estimar parámetros de QoS. La

propuesta se ha evaluado con tráfico real alcanzando tasas de proceso

de 6.5 Gb/s. Además, debido a la necesidad de medidas con múltiple

granularidad en redes heterogéneas, se ha realizado la integración FPC

y FlowProcess en una libreŕıa llamada NMLib. Esta libreŕıa es la base

para el sistema de monitorización proactiva presentado en el Caṕıtulo 6.

(iii) La tasa de tráfico en bytes y la varianza del tamaño de los flu-

jos están fuertemente correlados cuando el número de flujos

concurrentes se mantiene estable. En el Caṕıtulo 5 se ha realizado

un estudio de la correlación entre la tasa de tráfico en bytes y la va-

rianza del tamaño de los flujos. Este estudio se ha realizado con tráfico

real de un operador y una red bancaria y ha revelado un alto grado

de correlación entre las dos magnitudes cuando el número de flujos se

mantiene estable. Usando esta idea como punto de partida, se ha desa-

rrollado un algoritmo online que permite detectar tráfico contaminante

tomando en cuenta la tasa de tráfico en bytes y la varianza del tamaño

de los flujos. El algoritmo ha sido validado usando trazas con tráfico

real obteniendo una tasa de falsos positivos menor al 3% y una tasa

de verdaderos positivos por encima del 90%. El algoritmo propuesto

Conclusiones 151

se adapta perfectamente al entorno heterogéneo ya que hace un uso

mı́nimo de memoria y CPU.

(iv) La selección entre los diferentes tipos de medidas en sistemas

proactivos puede ser realizada de manera online utilizando

métodos estad́ısticos sencillos. En el Caṕıtulo 6 se aborda el prob-

lema del cambio entre medidas activas y pasivas. Detectar cambios a

corto plazo en los valores de una variable o un conjunto de variables

es interesante ya que puede ayudar a la detección temprana de prob-

lemas y al dimensionado. En este sentido, se ha propuesto un método

para cambio entre medidas activas y pasivas basado en el análisis de

una variable de referencia, por ejemplo la tasa de tráfico expresada en

bytes. Este método hace uso de intervalos de tamaño fijo para detectar

cambios en las distribuciones de los valores de la variable de referencia.

Para ello, se utiliza la divergencia de Jensen-Shannon como estimador

de la diferencia en las distribuciones de los valores de dos intervalos ady-

acentes. Un análisis simple ha revelado la efectividad de este método

para realizar cambios en el método de medida usado.

(v) Implementación de un sistema proactivo llamado PNMF. En

el Caṕıtulo 6 se ha presentado la descripción del sistema proactivo im-

plementado. Este sistema reúne todas las ideas de los Caṕıtulos 3, 4

y 5 para conformar un sistema de monitorización proactiva simple y

fiable centrado en proporcionar estimaciones de parámetros de calidad

de servicio para su despliegue en redes heterogéneas.

Aplicaciones Industriales

Los resultados y aplicaciones de esta tesis están siendo actualmente explota-

dos por Naudit HPCN [NAU13]. Naudit es una empresa de base tecnológica

creada por una spin-off de dos universidades: la Universidad Autónoma de

Madrid (UAM)6 y la Universidad Pública de Navarra (UPNA), y forma parte

6http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/

Spin-offs_de_la_UAM.htm

http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm
http://www.uam.es/ss/Satellite/es/1242657608103/listadoCategorizado/Spin-offs_de_la_UAM.htm

152 Conclusiones

de su Campus de Excelencia Internacional7. En su accionariado partici-

pan, además de ambas universidades, el Consejo Superior de Investigaciones

Cient́ıficas (CSIC), a través del parque cient́ıfico de Madrid.

Naudit junto con la Fundación de la Universidad Autónoma de Madrid

(FUAM)8 han llevado a cabo varios proyectos de innovación y transferencia

tecnológica. Entre los clientes de Naudit se encuentran organismos públicos

como el Ministerio de Industria del Gobierno de España, operadoras de tele-

comunicaciones como Movistar, grupos bancarios multinacionales como el

BBVA, compañ́ıas del sector industrial como Airbus o importantes grupos

energéticos. Concretamente, los siguientes resultados de la tesis son aplicados

directamente en la industria:

• QoSPoll: la metodoloǵıa y el software descrito en el Caṕıtulo 3 está

actualmente desplegado en una red comercial del operador español

Movistar. El software se encarga de la monitorización de la calidad en

el servicio NEBA el cual cuenta con enlaces con velocidades de hasta

100 Mb/s y más de 30 puntos de medida.

• QoSInspec: el método de descarga de fichero y el algoritmo de re-

chazo de medidas contaminadas por el impacto de factores externos

han sido implementados en una solución comercial para la validación

de la calidad de los enlaces siguiendo las directrices descritas en [Ins08].

Esta herramienta está actualmente en uso por el Ministerio de Industria

de España y es la herramienta oficial para monitorización de enlaces

domésticos y validación de acuerdos de nivel de servicio.

• FlowProcess: la herramienta de análisis de flujos presentada en el

Caṕıtulo 4 se usa en la actualidad en la red bancaria de BBVA-Bancomer

para monitorizar el tráfico que circula y obtener estad́ısticas.

7http://campusexcelencia.uam-csic.es/
8http://www.fuam.es

http://campusexcelencia.uam-csic.es/
http://www.fuam.es

Conclusiones 153

Trabajo Futuro

El trabajo realizado en esta tesis ha abierto nuevas ĺıneas de investigación

para trabajos futuros en el campo de la monitorización proactiva en entornos

heterogéneos. A continuación se presentan algunos temas de investigación

futuros:

• Métodos de medida activos y entornos de alta velocidad: A

pesar de que la monitorización en entornos de alta velocidad ha sido

abordada por este trabajo, los enlaces de 10 Gb/s son muy comunes hoy

en d́ıa y se deben analizar y validar los métodos de medida clásicos para

ver si son aplicables en estos escenarios. Además, el uso de las caracte-

ŕısticas avanzadas que presentan las tarjetas de red modernas como el

marcado temporal por hardware abre el camino a nuevos métodos de

monitorización activa en entornos de alta velocidad con gran precisión.

Adicionalmente, el impacto de parámetros externos en la calidad de

las medidas en estos escenarios debe ser analizado para determinar si

los métodos de pares de paquetes son suficientemente inmunes a altas

tasas.

• Optimización de la monitorización de flujos: A pesar de los pro-

metedores resultados para la monitorización de flujos mostrados en el

Caṕıtulo 4, se deben aplicar nuevas técnicas de optimización y cam-

bios arquitecturales para alcanzar velocidades de 10 Gb/s y superiores.

Además, se debe estudiar la integración con sistemas de captura de

alta velocidad como los mostrados en [GDMR+13] para proporcionar

sistemas efectivos de monitorización online.

• Nuevas técnicas hash y muestreo de paquetes: En este trabajo

se ha mostrado el rendimiento y la tasa de colisión de un conjunto

de funciones hash seleccionadas. Sin embargo, cada d́ıa se desarrollan

nuevas funciones hash. Analizar estas funciones y su aplicabilidad al

muestreo de paquetes y la monitorización de flujos es un aspecto clave

para mejorar la eficiencia de los sistemas presentados. Además se debe

realizar un estudio profundo del impacto del muestreo distribuido en

154 Conclusiones

la estimación de parámetros de calidad de servicio para mejorar los

sistemas de monitorización distribuida a gran escala.

• Métodos de detección de contaminación de tráfico mejorados:

En esta tesis se ha propuesto un algoritmo para la detección de con-

taminación de tráfico. Este algoritmo solo puede aplicarse cuando el

número de flujos concurrentes se mantiene estable. Detectar la con-

taminación de tráfico cuando flujos leǵıtimos están siendo creados es

un reto que debe ser abordado en el futuro. Este trabajo es aplicable a

varios campos muy populares como la seguridad de red o la detección

de ataques.

• Mecanismos avanzados multi-parámetro para el cambio entre

medidas en entornos proactivos: En el Caṕıtulo 6, se ha presentado

un método monoparamétrico para el cambio entre medidas en sistemas

proactivos. Crear un sistema multi-paramétrico puede incrementar la

eficiencia de los sistemas proactivos manejando mejor los momentos en

los que se ejecutan las medidas activas. Adicionalmente, el uso de otras

herramientas estad́ısticas para determinar los instantes de cambios en-

tre tipos de medida aśı como su rendimiento en comparación con el

método propuesto conforman una ĺınea de trabajo futuro.

• Rendimiento y eficiencia de los sistemas de monitorización

proactiva en redes a gran escala: el sistema proactivo propuesto

en el Caṕıtulo 6 ha sido probado en un entorno limitado con un número

pequeño de nodos. Desplegar el sistema en una red a gran escala con

cientos de nodos es una tarea de gran importancia para analizar el

rendimiento y verificar la aplicabilidad de la solución propuesta en este

tipo de entornos.

References

[AAMD06] D. Antoniades, A. Athanatos, D. Papadogiannakis, E.P.

Markatos, and C. Dovrolis, Available bandwidth measurement

as simple as running wget, Proceedings of the 7th Interna-

tional Conference on Passive and Active Network Measure-

ment (Adelaide, Australia), PAM’06, March 2006. 40

[AKZ99a] G. Almes, S. Kalidindi, and M. Zekauskas, RFC 2679: A One-

way Delay Metric for IPPM, 1999. 11, 13

[AKZ99b] , RFC 2680: A One-way Packet Loss Metric for IPPM,

1999. 13, 14

[AKZ99c] , RFC 2681: A Round-trip Delay Metric for IPPM,

1999. 12, 88

[AP08] M. Allman and V. Paxson, A reactive measurement framework,

Passive and Active Network Measurement, Lecture Notes in

Computer Science, vol. 4979, 2008, pp. 92–101. 2

[BKM+09] A. Bulut, N. Koudas, A. Meka, A.K. Singh, and D. Srivas-

tava, Optimization techniques for reactive network monitor-

ing, IEEE Transactions on Knowledge and Data Engineering

21 (2009), no. 9, 1343 –1357. 2

[BKPR02] P. Barford, J. Kline, D. Plonka, and A. Ron, A signal analy-

sis of network traffic anomalies, Proceedings of the 2nd ACM

SIGCOMM Workshop on Internet Measurment (Marseille,

France), IMW ’02, November 2002, pp. 71–82. 112

155

156 References

[BMSDM12] S. Basso, M. Meo, A. Servetti, and J.C. De Martin, Estimating

packet loss rate in the access through application-level measure-

ments, Proceedings of the 2nd ACM SIGCOMM Workshop

on Measurements Up the Stack (Helsinki, Finland), W-MUST

’12, 2012, pp. 7–12. 40

[BV02] P. Benko and A. Veres, A passive method for estimating end-

to-end TCP packet loss, Proceedings of the IEEE 2002 Global

Telecommunications Conference ((Taipei, Taiwan)), GLOBE-

COM ’02, vol. 3, November 2002, pp. 2609 – 2613. 14, 90

[CFEK06] K. Cho, K. Fukuda, H. Esaki, and A. Kato, The impact

and implications of the growth in residential user-to-user traf-

fic, ACM SIGCOMM Computer Communication Review 36

(2006), no. 4, 207–218. 48

[CFGS11] B. Constantine, G. Forget, Ruediger Geib, and R. Schrage,

RFC 6349: Framework for TCP Throughput Testing, 2011. 12

[Cla04] B. Claise, RFC 3954: Cisco Systems NetFlow Services Export

Version 9, 2004. 26

[Cla08] , RFC 5101: Specification of the IP Flow Information

Export (IPFIX) Protocol for the Exchange of IP Traffic Flow

Information, 2008. 27

[Cor11] C.J. Corrado, The exact distribution of the maximum, min-

imum and the range of multinomial/dirichlet and multivari-

ate hypergeometric frequencies, Statistics and Computing 21

(2011), no. 3, 349–359. 173

[DA03] L. Deri and Netikos S. P. A., Passively monitoring networks

at gigabit speeds using commodity hardware and open source

software, Proceedings of the 4th International Conference on

Passive and Active Network Measurement (La Jolla, Califor-

nia, USA), PAM’03, April 2003. 3

References 157

[DC02] C. Demichelis and P. Chimento, RFC 3393: IP Packet Delay

Variation Metric for IP Performance Metrics (IPPM), 2002.

12

[DG00] N. G. Duffield and M. Grossglauser, Trajectory sampling for

direct traffic observation, ACM SIGCOMM Computer Com-

munication Review 30 (2000), no. 4, 271–282. 90

[dRCGDA13] P.M.S. del Rıo, D. Corral, JL Garcıa-Dorado, and J. Aracil,

On the impact of packet sampling on Skype traffic classifica-

tion, Poceedings of the IFIP/IEEE International Symposium

on Integrated Network Management, IM ’13, May 2013. 27

[DRM01] C. Dovrolis, P. Ramanathan, and D. Moore, What do packet

dispersion techniques measure?, Proceedings of the 20th An-

nual Joint Conference of the IEEE Computer and Commu-

nications Societies (Anchorage,Alaska, USA), INFOCOM ’01,

vol. 2, April 2001, pp. 905–914. 42, 44

[DRM04] C. Dovrolis, P. Ramanathan, and D. Moore, Packet-

dispersion techniques and a capacity-estimation methodology,

IEEE/ACM Transactions on Networking 12 (2004), 963–977.

42, 45

[Duf04] N. Duffield, Sampling for passive Internet measurement: A

review, Statistical Science 19 (2004), 472–498. 27

[EGE02] J. Elson, L. Girod, and D. Estrin, Fine-grained network time

synchronization using reference broadcasts, ACM SIGOPS Op-

erating Systems Review 36 (2002), no. SI, 147–163. 34

[ENUK06] T. En-Najjary and G. Urvoy-Keller, PPrate: A passive ca-

pacity estimation tool, Proceedings of the 4th IEEE/IFIP

Workshop on End-to-End Monitoring Techniques and Services

(Vancouver,Canada), E2EMON ’06, April 2006, pp. 82 – 89.

89

158 References

[FAM01] K. Fujimoto, S. Ata, and M. Murata, Statistical analysis of

packet delays in the Internet and its application to playout

control for streaming applications, IEICE Transaction on Com-

munications E84 (2001), no. 6, 1504–1512. 48, 67

[FD10] F. Fusco and L. Deri, High speed network traffic analysis with

commodity multi-core systems, Proceedings of the 10th ACM

SIGCOMM Internet Measurement Conference (Melbourne,

Australia), IMC ’10, November 2010, pp. 218–224. 86

[FDL+01] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P.e Owezarski, D. Pa-

pagiannaki, and F. Tobagi, Design and deployment of a pas-

sive monitoring infrastructure, Evolutionary Trends of the In-

ternet, Lecture Notes in Computer Science, vol. 2170, 2001,

pp. 556–575. 34

[FUK+09] A. Friedl, S. Ubik, A. Kapravelos, M. Polychronakis, and

E.P. Markatos, Realistic passive packet loss measurement for

high-speed networks, Traffic Monitoring and Analysis, Lecture

Notes in Computer Science, vol. 5537, 2009, pp. 1–7. 14, 15,

89

[GDMR+13] J.L. Garćıa-Dorado, F. Mata, J. Ramos, P.M. Santiago del

Ŕıo, V. Moreno, and J. Aracil, High-performance network traf-

fic processing systems using commodity hardware, Data Traffic

Monitoring and Analysis, Lecture Notes in Computer Science,

vol. 7754, 2013, pp. 3–27. 3, 86, 131, 145, 153

[GHH+09] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou,

M. Handley, and L. Mathy, Flow processing and the rise of

commodity network hardware, ACM SIGCOMM Computer

Communication Review 39 (2009), no. 2, 20–26. 3

[HAN02] T.J. Hacker, B.D. Athey, and B. Noble, The End-to-End Per-

formance Effects of Parallel TCP Sockets on a Lossy Wide-

Area Network, Proceedings of the 16th IEEE International

References 159

Parallel and Distributed Processing Symposium (Washington,

DC, USA), IPDPS ’02, 2002, pp. 314–. 41

[HG99a] J. Heinanen and R. Guerin, RFC 2697: A Single Rate Three

Color Marker, 1999. 19

[HG99b] , RFC 2698: Two Rate Three Color Marker, 1999. 20

[HG03] K.S.J. Hielscher and R. German, A low-cost infrastructure for

high precision high volume performance measurements of web

clusters, Computer Performance Evaluation. Modelling Tech-

niques and Tools, Lecture Notes in Computer Science, vol.

2794, 2003, pp. 11–28. 35

[HMn07] A. Hernandez and E. Magaña, One-way delay mea-

surement and characterization, Proceedings of the 3rd

IEEE International Conference on Networking and Services

(Athens,Greece), ICNS ’07, June 2007, p. 114. 11

[HSZ08] C. Henke, C. Schmoll, and T. Zseby, Empirical evaluation of

hash functions for multipoint measurements, ACM SIGCOMM

Computer Communication Review 38 (2008), no. 3, 39–50. 93,

94

[IDVFE10] S. Ickin, K. De Vogeleer, M. Fiedler, and D. Erman, The effects

of packet delay variation on the perceptual quality of video,

Proceedings of the 35th IEEE Conference on Local Computer

Networks, LNC ’10, October 2010, pp. 663 –668. 13

[Ins08] European Telecommunications Standards Institute, Speech

Processing, Transmission and Quality Aspects (STQ);User re-

lated QoS parameter definitions and measurements;Part 4: In-

ternet access, 2008. 39, 40, 65, 81, 144, 152

[Int12] Intel, 82599 10 Gbe controller datasheet, http://www.intel.

com/content/www/us/en/ethernet-controllers/82599-

10-gbe-controller-datasheet.html, 2012. 95, 97

http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/ethernet-controllers/82599-10-gbe-controller-datasheet.html

160 References

[IS08] IEEE Instrumentation and Measurement Society, IEEE stan-

dard 1588-2008: Standard for a precision clock synchroniza-

tion protocol for networked measurement and control systems,

2008. 29, 31, 33

[ITF04] Y. Ito, S. Tasaka, and Y. Fukuta, Psychometric analysis of

the effect of end-to-end delay on user-level QoS in live audio-

video transmission, Proceedings of the 2004 IEEE Interna-

tional Conference on Communications (Paris, France), ICC

’04, vol. 4, June 2004, pp. 2214–2220. 48, 67

[Jac88] V. Jacobson, Congestion avoidance and control, ACM SIG-

COMM Computer Communication Review 18 (1988), no. 4,

314–329. 42

[JD02] H. Jiang and C. Dovrolis, Passive estimation of TCP round-

trip times, ACM SIGCOMM Computer Commuication Review

32 (2002), no. 3, 75–88. 89

[Joh03] A. Johnsson, On the comparison of packet-pair and packet-

train measurements, Proceedings of the 2003 Swedish National

Computer Networking Workshop (Arlandastad,Sweden),

SNCNW ’03, 2003. 44

[Kes91] Srinivasan Keshav, A control-theoretic approach to flow con-

trol, ACM SIGCOMM Computer Communication Review 21

(1991), no. 4, 3–15. 42

[LAM+11] V. Lopez, J.L. Anamuro, V. Moreno, J.E. Lopez De Vergara,

J. Aracil, C. Garcia, J.P. Fernandez-Palacios, and M. Izal,

Implementation of multi-layer techniques using FEDERICA,

PASITO and OneLab network infrastructures, Proceedings of

the 17th IEEE International Conference on Networks (Singa-

pore,Singapore), ICON ’11, December 2011, pp. 89 –94. 34

[LDK10] Myungjin L., N. Duffield, and R. Kompella, Two samples

are enough: Opportunistic flow-level latency estimation using

References 161

NetFlow, Proceedings of the 29th Annual Joint Conference

of the IEEE Computer and Communications Societies (San

Diego,CA,USA), INFOCOM ’10, March 2010, pp. 1 –9. 88

[Lin91] J. Lin, Divergence measures based on the shannon entropy,

IEEE Transactions on Information Theory 37 (1991), 145–

151. 127

[LLdVBF04] D. Lpez, J.E. Lpez de Vergara, L. Bellido, and D. Fernndez,

Monitoring an academic network with netflow, Proceedings of

the 10th EUNICE Open European Summer School: Advances

in fixed and mobile networks (Tampere, Finland), EUNICE

’04, June 2004, pp. 63–70. 88

[LSK10] H. Liu and M. Sik Kim, Real-time detection of stealthy DDoS

attacks using time-series decomposition, Proceedings of the

2010 IEEE International Conference on Communications, ICC

’10, May 2010, pp. 1–6. 112

[MA01] M. Mathis and M. Allman, RFC 3148: A Framework for

Defining Empirical Bulk Transfer Capacity Metrics, 2001. 11,

88

[MBG00] B. Melander, M. Bjorkman, and P. Gunningberg, A new end-

to-end probing and analysis method for estimating bandwidth

bottlenecks, Proceedings of the 2000 IEEE Global Telecommu-

nications Conference (San Francisco, CA, USA), GLOBECOM

’00, vol. 1, November 2000, pp. 415–420. 44

[MBG02] B. Melander, M. Björkman, and P. Gunningberg, Regression-

based available bandwidth measurements, Proceedings of the

2002 SCS/IEEE Symposium on Performance and Evaluation

of Computer and Telecommunications Systems (San Diego,

CA, USA), SPECTS ’02, July 2002. 44

162 References

[Mic13] Microsoft, Receive Side Scaling, http://msdn.microsoft.

com/en-us/library/windows/hardware/ff567236(v=vs.

85).aspx, 2013. 95

[Mil85] D.L. Mills, RFC 958: Network Time Protocol (NTP), 1985,

Obsoleted by RFCs 1059, 1119, 1305. 29

[Min99] N. Minar, A survey of the NTP network, http://alumni.

media.mit.edu/~nelson/research/ntp-survey99/html/,

December 1999. 30

[MMBK10] D. Mills, J. Martin, J. Burbank, and W. Kasch, RFC 5905:

Network Time Protocol Version 4: Protocol and Algorithms

Specification, 2010. 29

[MMI+05] D. Morato, E. Magana, M. Izal, J. Aracil, F. Naranjo, F. As-

tiz, U. Alonso, I. Csabai, P. Haga, G. Simon, J. Steger, and

G. Vattay, The European Traffic Observatory Measurement In-

frastructure (ETOMIC): a testbed for universal active and pas-

sive measurements, Proceedings of the 1st International Con-

ference on Testbeds and Research Infrastructures for the De-

velopment of Networks and Communities (Trento,Italy), TRI-

DENTCOM ’05, February 2005, pp. 283 – 289. 34

[MND05] M. Molina, S. Niccolini, and N.G. Duffield, A comparative ex-

perimental study of hash functions applied to packet sampling,

Proceedings of the 19th IAC International Teletraffic Congress

(Beijing, China), ITC ’05, August 2005, pp. 1–10. 93, 94

[NAU13] Naudit High Performance Computing and Networking,, 2013,

http://www.naudit.es. 143, 151

[Ols05] R. Olsson, Pktgen the Linux packet generator, Proceedings of

the 7th Linux symposium (Ottawa, Canada), vol. 2, July 2005,

pp. 11–25. 43

http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff567236(v=vs.85).aspx
http://alumni.media.mit.edu/~nelson/research/ntp-survey99/html/
http://alumni.media.mit.edu/~nelson/research/ntp-survey99/html/
 http://www.naudit.es

References 163

[OR98] T. Oetiker and D. Rand, MRTG: The Multi Router Traffic

Grapher, Proceedings of the 12th USENIX Conference on Sys-

tem Administration (Boston, MA, USA), LISA ’98, December

1998, pp. 141–148. 28

[OSSSP12] R. O. Schmidt, A. Sperotto, R. Sadre, and A. Pras, Towards

bandwidth estimation using flow-level measurements, Depend-

able Networks and Services, Lecture Notes in Computer Sci-

ence, vol. 7279, 2012, pp. 127–138. 87, 105

[Pal09] G.K. Palshikar, Simple Algorithms for Peak Detection in

Time-Series, Proceedings of the 1st IIMA International Con-

ference on Advanced Data Analysis, Business Analytics and

Intelligence (Gujarat, India), June 2009. 118

[Pax96] V. Paxson, Measurements and Analysis of End-to-End In-

ternet Dynamics PhD. Thesis, http://www.eecs.berkeley.

edu/Pubs/TechRpts/1997/CSD-97-945.pdf, 1996. 42

[PG93] A.K. Parekh and R.G. Gallager, A generalized processor shar-

ing approach to flow control in integrated services networks:

the single-node case, IEEE/ACM Transactions on Networking

1 (1993), no. 3, 344–357. 23

[PJD04] R. Prasad, M. Jain, and C. Dovrolis, Effects of interrupt co-

alescence on network measurements, Proceedings of the 5th

International Conference on Passive and Active Network Mea-

surement (Antibes Juan-les-Pins, France), PAM ’04, April

2004, pp. 247–256. 58, 70, 78

[PKP+06] A. Papadogiannakis, A. Kapravelos, M. Polychronakis, E. P.

Markatos, and A. Ciuffoletti, Passive end-to-end packet loss

estimation for grid traffic monitoring, Proceedings of the Core-

GRID Integration Workshop (Krakow, Poland), CGIW ’06,

2006. 14

http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/CSD-97-945.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1997/CSD-97-945.pdf

164 References

[PRTV10] A. Pescape, D. Rossi, D. Tammaro, and S. Valenti, On the

impact of sampling on traffic monitoring and analysis, Pro-

ceedings of the 22nd IAC International Teletraffic Congress

Teletraffic Congress (Amsterdam, The Netherlands), ITC ’10,

2010, pp. 1 –8. 27

[QBC+08] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer,

RFC 5102: Information Model for IP Flow Information Ex-

port, 2008. 27

[QZCZ04] J. Quittek, T. Zseby, B. Claise, and S. Zander, RFC 3917:

Requirements for IP Flow Information Export (IPFIX), 2004.

27

[RSDC11] F. Ricciato, F. Strohmeier, P. Dorfinger, and A. Coluccia,

One-way loss measurements from IPFIX records, Proceedings

of the 1st IEEE International Workshop on Measurements

and Networking (Anacapri, Italy), M&N ’11, October 2011,

pp. 158 –163. 88, 105

[SBDR10] J. Sommers, P. Barford, N. Duffield, and A. Ron, Multiobjec-

tive monitoring for SLA compliance, IEEE/ACM Transactions

on Networking 18 (2010), no. 2, 652–665. 34

[SDTG10] F. Silveira, C. Diot, N. Taft, and R. Govindan, ASTUTE: de-

tecting a different class of traffic anomalies, ACM SIGCOMM

Computer Communication Review 40 (2010), no. 4, 267–278.

112

[SHSZ10] T. Santos, C. Henke, C. Schmoll, and T. Zseby, Multi-hop

packet tracking for experimental facilities, ACM SIGCOMM

Computer Communication Review 40 (2010), no. 4, 447–448.

90

[SMRD06] A. Seuret, F. Michaut, J.P. Richard, and T. Divoux, Net-

worked control using GPS synchronization, Proceedings of the

References 165

2006 American Control Conference (Minneapolis, MN, USA),

ACC ’06, June 2006, p. 6 pp. 34

[SRW+08] V. Sekar, M.K. Reiter, W. Willinger, H. Zhang, R.R. Kom-

pella, and D.G. Andersen, CSAMP: a system for network-wide

flow monitoring, Proceedings of the 5th USENIX Symposium

on Networked Systems Design and Implementation (Berkeley,

CA, USA), NSDI’08, 2008, pp. 233–246. 91

[TB08] B. Trammell and E. Boschi, RFC 5103: Bidirectional Flow

Export Using IP Flow Information Export (IPFIX), 2008. 27

[TMH11] G. Thatte, U. Mitra, and J. Heidemann, Parametric methods

for anomaly detection in aggregate traffic, IEEE/ACM Trans-

actions on Networking 19 (2011), no. 2, 512–525. 112

[WCA] C. Walsworth, k.c. Claffy, and D. Andersen, The CAIDA

UCSD Anonymized Internet Traces 2009 - 17 Decem-

ber, http://www.caida.org/data/passive/passive_2009_

dataset.xml. 94

[WN10] G. Wang and T.S.E. Ng, The Impact of Virtualization on

Network Performance of Amazon EC2 Data Center, Proceed-

ings of the 29th Annual Joint Conference of the IEEE Com-

puter and Communications Societies, INFOCOM ’10, 2010,

pp. 1163–1171. 64

[XCF12] Q. Xu, D. Cheng, and Y. Fu, Traffic feature distribution anal-

ysis based on exponentially weighted moving average, Proceed-

ings of the 2nd IEEE International Conference on Computer

Science and Automation Engineering (Zhangjiajie, China),

CSAE ’12, vol. 1, May 2012, pp. 535–539. 112

[ZBBC09] T. Zseby, E. Boschi, N. Brownlee, and B. Claise, RFC 5472:

IP Flow Information Export (IPFIX) Applicability, 2009. 88

http://www.caida.org/data/passive/passive_2009_dataset.xml
http://www.caida.org/data/passive/passive_2009_dataset.xml

166 References

[ZH07] W. Zhang and J. He, Modeling end-to-end delay using Pareto

distribution, Proceedings of the 2nd IARIA International Con-

ference on Internet Monitoring and Protection (Silicon Valley,

USA), ICIMP ’07, July 2007, p. 21. 48, 67

[ZMD+09] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall,

RFC 5475: Sampling and Filtering Techniques for IP Packet

Selection, 2009. 93, 94

[ZMSP03] T Zseby, L Mark, C Schmoll, and G Pohl, Passive one-way-

delay measurement and data export, Proceedings of the 2003

International Workshop on Inter-domain and Performance

Simulation (Salzburg, Austria), IPS ’03, February 2003. 93

List of Publications

Publications Directly Related to this Thesis

1. J. Aracil, J. Ramos, J.E. López de Vergara Méndez, L. de Pedro Sánchez

and S. López Buedo, Aparato para la medición certificada del ancho de

banda de un acceso de red y método de calibración del mismo (APPLI-

ANCE FOR THE CERTIFIED MEASUREMENT OF THE BAND-

WIDTH OF A NETWORK ACCESS AND METHOD FOR THE CAL-

IBRATION THEREOF), International Patent PCT/ES2010/070269,

Spain, 28/04/2010.

2. J. Aracil, J. Ramos, P.M. Santiago del Rı́o, J.E. López de Vergara

Méndez, L. de Pedro Sánchez, S. López Buedo, I. González Mart́ınez

and F.J. Gómez Arribas, Método para estimar los parámetros de un

elemento de control de tipo Token-Bucket (METHOD FOR ESTIMAT-

ING THE PARAMETERS OF A CONTROL ELEMENT SUCH AS A

TOKEN BUCKET), International Patent PCT/ES2011/070239, Spain,

09/04/2011.

3. J. Ramos, P.M. Santiago del Ŕıo, J. Aracil and J.E. López de Vergara,

On the effect of concurrent applications in bandwidth measurement

speedometers, Computer Networks (2011), Vol. 55, Issue 6, pp. 1435-

1453.

167

168 List of Publications

Publications in Topics Related to this Thesis

1. V. Moreno, P.M. Santiago del Ŕıo, J.Ramos, J.J. Garnica, J.L. Garćıa-

Dorado, Batch to the Future: Analyzing Timestamp Accuracy of High-

Performance Packet I/O Engines, IEEE Communications Letters (2012),

Vol. 16, Issue 11, pp. 1888-1891.

2. J.L. Garćıa-Dorado, F. Mata, J. Ramos, P.M. Santiago del Rı́o, V.

Moreno and J. Aracil, Chapter 1: High-performance network traffic

processing systems using commodity hardware, Data Traffic Monitoring

and Analysis, Lecture Notes in Computer Science 7754 (2013), pp. 327.

3. P. M. Santiago Ŕıo, J. Ramos, A. Salvador, J. E. López de Vergara,

J. Aracil, A. Cuadra and M. Cutanda, Application of Internet Traf-

fic Characterization to All-Optical Networks, Proceedings of the 12th

International Conference on Transparent Optical Networks (Munich,

Germany), ICTON ’10, June 2010.

4. P. M. Santiago Ŕıo, J. Ramos, J.L. Garćıa-Dorado, J. Aracil, A. Cuadra

and M. Cutanda, On the processing time for detection of Skype traffic,

Proceedings of the 2nd International Workshop on Traffic Analysis and

Classification (Istanbul, Turkey), IWCMC2011-TRAC, July 2011.

5. I. Csabai, A. Fekete, P. Hága, B. Hullár, G. Kurucz, S. Laki, P. Mátray,

J. Stéger, G. Vattay, F. Espina, S. Garćıa-Jimenez, M. Izal, E. Magaña,

D. Morató, J. Aracil, F.J Gómez, I. González, S. López-Buedo, V.Moreno

and J. Ramos, ETOMIC Advanced Network Monitoring System for Fu-

ture Internet Experimentation, Proceedings of the 6th International

ICST Conference on Testbeds and Research Infrastructures for the

Development of Networks and Communities (Berlin, Germany), TRI-

DENTCOM ’10, May 2010.

6. J. Fullaondo, P. M. Santiago Rı́o, J. Ramos, J.L. Garćıa-Dorado, and

Javier Aracil, AP-CAP framework: Monitorizando a 10 Gb/s en hard-

ware de propósito general, in Actas de las X Jornadas de Ingenieŕıa

Telemáatica, (Santander, Spain), JITEL ’11, September 2011.

List of Publications 169

7. F. Mata, J.Ramos, A.Cuadra, A.Ferreiro and N.Gómez, Monitorización

de tráfico IP para el control de calidad de servicio en entornos conver-

gentes, in Actas de las XIX Jornadas Telecom I+D (Madrid,Spain),

November 2009.

Appendix A

Memory and CPU load

programs

Memory load program

allocate memory;

while TRUE do

end while

CPU load program

float f1,f2;

while TRUE do

open file;

read file;

close file;

f1*f2;

end while

171

Appendix B

Multinomial Minimum

Distribution Calculation

The distribution for the minimum amount of packets which drops in a gap

when m packets are scattered across N − 1 gaps it is hard to obtain. It is

worth noticing that the amount of all possibilities of distributing packets into

the gaps increases quickly. For instance, 10 gaps and 50 packets gives over

12 billion possibilities. A faster way to calculate the minimum distribution

has been proposed in [Cor11].

As is proposed in [Cor11], the problem of multinomial distribution can be

posed as a stochastic process which represents the gap filling process. Fig. B.1

shows the process diagram, which reads as follows: the generic state i/si gives

the number of packets, si, which fill the first i gaps. For instance, the state

labeled 1/0 means that neither packet have dropped into the first gap. The

diagram in Fig. B.1 also gives the transition probabilities, in general, from

state sk−1 (sk−1 packets in the first k− 1 gaps) to state sk (sk packets in the

first k gaps). This probability is shown in eq. B.1. For instance, transition

from state 0/0 to state 1/0 occurs with probability
(
N−2
N−1

)m
because this

transition occurs when any of m packets drops into the first gap.

173

174 Appendix B. Multinomial Minimum Distribution Calculation

0/0

1/0

1/1

1/s1

1/m

k-1/sk-1 k/sk

11

1

1

1

2

1

ssm

NN

N

s

m

1

1

1

2
1

NN

N
m

m

m

N

N

1

2

m

N 1

1

1

1

1

1

2

1

1

kkk sssm

kk

k

NN

N

ss

sm

Figure B.1: Stochastic process related to multinomial distribution

Appendix B. Multinomial Minimum Distribution Calculation 175

P (sk|sk−1) =

{ (
m−sk−1

sk−sk−1

) (
1

N−1

)sk−sk−1
(
N−2
N−1

)m−sk for sk ≥ sk−1

0 otherwise

}
(B.1)

Let Qk denote the stochastic matrix determining the transitions between

the previous states, which sk−1, sk entry contains the probability shown in

eq. B.1. The product Q1 · . . . · Qk represents the convolution distribution

of the sum sk = n1 + . . . + nk. At k = m, the convolution distribution is

degenerated on m (only takes the value m with probability one).

In order to compute the probability that no gap contains less than 1

packet, it must be set zero the transition probability between states sk−1/k−1

and sk−1/k i.e. set P (sk|sk−1) = 0 whenever sk = sk−1. Therefore, the

product Q1 · . . . ·Qm gives P (mini=1,...,N−1 ni ≥ 1) exactly.

Thus, when we obtain a measurement with the packet-train method, we

know the length of the packets train (N) and the total amount of interfering

packets(m) and then, we can calculate the measurement rejection probability.

These measurement rejection probabilities can be computed beforehand

and stored. Thus, the measurement application does not consume process-

ing time to calculate the measurement rejection probability. It will simply

deem as invalid those measurements with a measurement rejection probabil-

ity higher than ε.

Index

Active Measurement Techniques

Problems, 46

Active Techniques, 38

Background, 9

Commodity Hardware, 34

FlowLib, 102

FlowProcess, 102

Generalized Processor Sharing, 23

Introduction, 1

Measurement Planning, 127

NetFlow, 25, 86, 87, 102, 105, 106,

109, 114, 120, 134, 142, 150

Network Measurements, 25

Objectives, 4

Overview and Motivation, 1

Packet Correlation and Sampling,

93

Passive Monitoring Techniques, 87

Proactive System, 125

QoS Mechanisms, 9

Single-Rate Three Color Marker,

19

Thesis Structure, 5

Token Bucket, 18, 20

Traffic Policing, 15, 17, 25

Traffic Pollution Detection, 111

Traffic Shaping, 15–17, 25

Two-Rate Three Color Marker

(trTCM), 20

XCOM, 114

177

	Title Page
	Summary
	Resumen
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Overview and Motivation
	1.2 Objectives
	1.3 Thesis Structure

	2 Background
	2.1 QoS Mechanisms
	2.1.1 QoS metrics
	2.1.2 Traffic Shaping and Traffic Policing
	2.1.3 Router Queuing Disciplines

	2.2 Network Measurements
	2.2.1 Flows and Sessions
	2.2.2 Time synchronization

	3 Active Measurements
	3.1 Introduction
	3.2 Active Techniques
	3.2.1 File-Transfer
	3.2.2 Packet-Pair
	3.2.3 Packet Train

	3.3 Active Measurement Techniques Problems
	3.3.1 Testbed Description
	3.3.2 CPU and memory load
	3.3.3 Self-induced Traffic
	3.3.4 Interrupt Coalescence
	3.3.5 Threshold-based rejection techniques for biased measurements
	3.3.6 QoS Mechanisms Impact

	3.4 Conclusions

	4 Passive Measurements
	4.1 Introduction
	4.2 Passive Monitoring Techniques
	4.2.1 Flow Monitoring
	4.2.2 Packet Monitoring

	4.3 Packet Correlation and Sampling
	4.3.1 Testbed
	4.3.2 Hashing
	4.3.3 Packet Correlation

	4.4 FlowProcess and FlowLib: Flow tracking and analysis
	4.5 Conclusions

	5 Traffic Pollution Detection
	5.1 Introduction
	5.2 Initial Hypotheses
	5.3 Online Algorithm
	5.3.1 Algorithm Validation

	5.4 Conclusions

	6 Proactive System
	6.1 Introduction
	6.2 Measurement Planning: switching from passive to active
	6.3 Proposed System
	6.3.1 Probe Module
	6.3.2 Collector Module
	6.3.3 Frontend Module

	6.4 Conclusions

	7 Conclusions
	7.1 Main Contributions
	7.2 Industrial Applications
	7.3 Future Work

	Conclusiones
	References
	List of Publications
	A Memory and CPU load programs
	B Multinomial Minimum Distribution Calculation
	Index

