SEMINARIOS DE INVESTIGACIÓN EN INGENIERÍA INFORMÁTICA Y DE TELECOMUNICACIÓN 2007-2008


Actividad de Formación Continua  del Programa Oficial de Posgrado en Ingeniería Informática y de Telecomunicación


Escuela Politécnica Superior, Universidad Autónoma de Madrid

Escuela Politécnica Superior                        


martes, 29 de Abril de 2008, 12:00

Salón de Grados, Escuela Politécnica Superior, Universidad Autónoma de Madrid


Dynamical Origin of Robust and Reproductible Activity of Complex Neuronal Systems

Michkail I. Rabinovich
 

Institute for Nonlienar Science, University of California, San Diego, USA


Resumen

Context or stimulus dependent transient activity of large groups of neurons that are able to organize reproducible order in thoughts and
actions is one of the most challenging problems to disclose the dynamical mechanisms of animal cognition and behavior. Traditional
approaches that operate with simple attractors (fixed points and limit cycles) are not valid for the solution of this problem. Based on
experiments on olfactory information encoding (locust and bee), and on the the hunting behavior of the marine mollusk Clione, we discuss the
principles of dynamical modeling that help to understand the origin of transient activity in complex neural ensembles (fast odor recognition,
in particular). In this context, we formulate the Winnerless Competition (WLC) principle. The main point of this principle is the transformation
of an incoming identity code or spatial code into ensemble (spatio)-temporal output based on the intrinsic transient dynamics of
the neural network (Antennal Lobe - AL, for example). In the presence of stimuli, the AL transient activity, whose geometrical image in the
phase space of an AL dynamical model is a heteroclinic sequence, uniquely depends on incoming information. Together with the results of computer
modeling of networks with different levels of complexity, we present rigorous results about the robustness and reproducibility of the WLC
dynamics and discuss the advantages of coding and processing neural information with transients, i.e., heteroclinic sequences.

PDF presentation

Mikhail I. Rabinovich

Mikhail I. Rabinovich del Institute for Nonlinear Science, Universidad de California, San Diego, es miembro de la Academia de Ciencias de
Rusia. Ha escrito más de 250 artículos científicos y 14 libros, y es reconocido internacionalemente como uno de los máximos expertos en
sistemas dinámicos. Durante los últimos 15 años su investigación se ha desarrollado en el contexto de la Neurociencia Computacional