
Optimization of the Accuracy and 
Calibration of Binary and Multiclass

Pattern Recognizers, for Wide 
Ranges of Applications

Niko Brümmer

Spescom DataVoice



Optimization of the Accuracy and 
Calibration of Binary and Multiclass

Pattern Recognizers, for Wide 
Ranges of Applications

Niko Brümmer
Spescom DataVoice



A very long story in two parts, in which we 
will violently charge some old windmills 
and gently re-calibrate some others.

Part I:Binary Pattern Recognition
Part II:Multiclass Pattern Recognition

El Ingenioso Hidalgo
Don Quijote de la Ciudad del Cabo



Rocinante el Tiburón

Don Quijote de la Ciudad del Cabo

Sancho



Contents

Part I
1. Introduction
2. Good old error-rate
3. Binary case: 

Error-Rate → ROC → Cdet → Cllr

Part II: Multiclass



Introduction

1. What do we mean by pattern 
recognition?

2. What is our goal with the 
methodology discussed in this 
talk.

3. Why the emphasis on evaluation?



1.What do we mean by 
pattern recognition?



Pattern Recognizer

Hidden source, known to 
belong to one of N ≥ 2 classes.

Estimated class of input.

Input, e.g.
speech recording, 
image, etc.



… or more general and 
potentially more useful:



Information about identity of source.

Pattern Recognizer

Hidden source, known to 
belong to one of N ≥ 2 classes.

Input, e.g.
speech recording, 
image, etc.



2. Goal

To create accurate, well-calibrated 
and application-independent pattern 
recognizers.



hard decision: point estimate of input class

input

application-dependent 
pattern recognizer

class prior

misclassification costs



hard decision: point estimate of input class

input

application-dependent 
pattern recognizer

class prior

misclassification costs

To make hard 
decisions, you need 
(implicit) 
application-
dependent 
assumptions about 
prior and costs.



A principled approach to factoring out the 
role of priors and costs is the Bayes
decision framework:



hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected 
cost of decisions

class prior

costs

class posterior

class likelihoods
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hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected 
cost of decisions

prior

costs

class posterior

class likelihoods

Application:
(standard implementation,
nothing to tune)

Agenda:
optimize likelihoods, to 
make cost-effective 
standard Bayes
decisions over a wide 
range of applications, 
with different priors and 
costs.



3. Evaluation and Optimization

Before we can optimize performance, we need 
to be able to evaluate performance!

• Much of this talk will concentrate on 
evaluation.

• It is very useful if the evaluation criterion can 
also be used as numerical optimization 
objective function.



Part I

1. Introduction

2. Good old error-rate
3. Binary case: 

Error-Rate → ROC → Cdet → Cllr



Traditional evaluation by 
error-rate

1. Use supervised evaluation database 
with input patterns of N classes.

2. Recognizer makes hard decisions, 
– i.e. point estimates of input class.

3. Evaluator counts misclassification 
errors:

– average error-rate
– class-conditional errors (confusion matrix)



Advantages of error-rate:

• Intuitive, easy to understand.
• Easy to compute.

These advantages are very important! We 
don’t want to lose them. So we 
generalize  error-rate to create new 
evaluation criteria which remain easy to 
understand and to compute.



Disadvantages of error-rate

• Application dependent, assumes:
– fixed, equal costs for all types of 

misclassifications.
– class priors are fixed and equal to relative 

proportions in evaluation database.  

• Forces recognizer to make hard 
decisions:
– Hard decisions are non-invertible and 

therefore lose information.
– Recognizer can be applied only to that one 

fixed recognition task.



Disadvantages of error-rate

• Average error-rate tends to increase 
with perplexity (number of classes, N). 
– results difficult to compare for different N.

– results look pessimistic for large N. 



Disadvantages of error-rate

• Poor objective function for numerical 
optimization in discriminative training:
– Not differentiable.

– Even if approximated with smooth 
differentiable function, tends to lead to non-
convex optimization problems.

– Vulnerable to over-training.



Part I

1. Introduction

2. Good old error-rate

3. Binary case: 
Error-Rate → ROC→ Cdet → Cllr



How to fix the disadvantages of 
error-rate?

Binary recognizer case



Previous approaches

We summarize these to:
• Appreciate their advantages and 

disadvantages, and to
• Review some terminology that we will 

need later. 



Previous approaches

1. ROC / DET- curves
2. Detection Cost Function: Cdet

– used in NIST Speaker/Language 
Recognition Evaluations. 



ROC / DET-curves

• ROC = Receiver Operating Curve

• DET = Detection-Error-Tradeoff curve 
(equivalent to ROC, but with specially 
warped axes). 



ROC / DET

• ROC/DET works best for binary
classification problems.
– Several kinds of ROC analysis for 

multiclass pattern recognition have been 
proposed, but it remains an open problem 
…



ROC / DET

�This analysis attains independence of 
prior and costs by requiring soft 
decisions from recognizer.

× but it ignores calibration.
– Does not test ability to set decisions 

thresholds.
– Cannot be used as sole evaluation criterion 

in applications where hard decisions need 
to be made.



ROC: 5-minute tutorial



Binary misclassification errors
(detection terminology)

�false-alarmnon-target

miss�target

rejectaccept

decisions

cl
as

se
s



targetsnon-targets

score

target/
non-target

inputbinary classifier
(detector)

score distributions
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inputbinary classifier
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score

Pmiss
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targets
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non-targets

threshold
acceptreject



DET ≡ ROC

• DET-curve is equivalent to ROC
• uses warping of axes to make curves 

approximately linear
• good for displaying comparative 

performance of multiple binary 
classifiers

Example
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Scalar Representations of 
DET/ROC

• AUC = Area-Under-Curve
– works for ROC (but undefined for DET-

curve)
– popular in medical literature  

• EER = Equal-Error-Rate
– works for both ROC and DET

– popular in speaker recognition
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EER: Equal-Error-Rate

EER
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DET/ROC Advantages

• Very useful summary of the potential of 
recognizers to discriminate between two 
classes over a wide spectrum of 
applications involving different priors 
and/or misclassification costs.

(Speaker recognition researchers love
DET-curves!)



DET/ROC Disadvantages

• Does not measure actual decision-
making ability 
– thresholds are set by evaluator, not by the 

technology under evaluation.

• Gives overoptimistic estimates of the 
average cost, or average error-rate, 
when applying the recognizer to make 
hard decisions.



DET/ROC Disadvantages

• EER and AUC are difficult to use as 
numerical optimization objectives.



DET/ROC Disadvantages

• Problematic for multiclass (N > 2)
– Conflicting definitions

– Difficult to compute
– Error-rate increases with N



Previous approaches

1. ROC / DET

2. Detection Cost Function: 
Cdet



Detection Cost Function

• Naturally applicable and well-defined for 
binary classification problems (i.e. 
speaker detection)

• Can be applied (with moderate 
complexity and some pitfalls) to 
indirectly evaluate multiclass
recognizers (e.g. NIST LRE Language 
Detection Task)



Detection Cost Function

�Does require hard decisions and 
therefore does evaluate calibration of 
recognizer under evaluation, but

× Evaluates only for a fixed application. 
The ability of the recognizer in other 
applications is not exercised.



Cdet: 5-minute tutorial



Detection Cost Function

fafatar

missmisstardet

PCP

PCPC

)1( −+
=

Expected cost of using recognizer for a specific 
application.



Detection Cost Function

fafatar

missmisstardet

PCP

PCPC

)1( −+
=

Ptar : application-dependent target prior.



Detection Cost Function

fafatar

missmisstardet

PCP

PCPC

)1( −+
=

Cmiss , Cfa : application-dependent mis-
classification costs.



fafatar

missmisstardet

PCP

PCPC

)1( −+
=

Cdet is a weighted linear combination 
of the two misclassification error-
rates, Pmissand Pfa .



fafatar

missmisstardet

PCP

PCPC

)1( −+
=

geometric interpretation
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Cdet

Weighted linear 
combination of 
Pmiss and Pfa .

• Relative 
weighting (slope) 
depends on priors 
and costs of a 
specific 
application.
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Cdet

1. Evaluator chooses 
application (cost, 
prior) which 
determines slope.

2. Evaluee chooses 
threshold, which 
determines 
operating point.
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C de
t

Cdet

1. Evaluator chooses 
slope.

2. Evaluee chooses 
operating point.

3. Cdet is the linear 
combination of the 
two error-rates, as 
indicated by the 
projection onto the 
sloped line.
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• Evaluee chooses 
operating point 
(threshold) without
access to true 
class labels. 
(Cannot see ROC 
curve.)

• Threshold may be 
suboptimal.

• Difference is 
calibration loss.

Calibration loss

Cdet



Cdet

�Does evaluate calibration, 
but

× Evaluates only for a fixed 
application. 



Summary of previous 
approaches

��
evaluates 
calibration

��
application-
independent

CdetROC



Part I

1. Introduction
2. Good old error-rate

3. Binary case: 

Error-Rate → ROC → Cdet → Cllr



New approach: Cllr

• Combines ROC and Cdet to get good 
qualities of both:

– Application-independent
– Evaluates Calibration



New approach: Cllr

ROC and Cdet are combined by integrating
Cdet over the whole ROC-curve.

∫=
ROC detllr CC
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Cllr

Cllr integrates cost of decisions made with 
suboptimal thresholds chosen by evaluee.

Cdet



Calibration loss: 
extra cost because of 
suboptimal thresholds

Discrimination loss: 
integrated decision cost at  
thresholds optimized by evaluator.



Questions

1. How does evaluee set thresholds?

2. How does evaluator perform the 
integral?



How does evaluee 
(recognizer) set thresholds?

To answer this, let’s review our agenda.



hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected 
cost of decisions

class prior

costs

class posterior

class likelihoods We want the 
recognizer to 
output 
likelihoods.



In the binary (detection) case, 
this can be simplified …



accept / reject

input
application-independent
detector

)target-non | score(

) target| score(

P

P

likelihood-
ratio

compare to threshold
compute Bayes
threshold

prior, costs



What detector (evaluee) does 

input
generative (e.g. GMM) or 
discriminative (e.g. SVM)
modeling

(uncalibrated) score

calibration transformation

(calibrated)
likelihood-ratio



What detector (evaluee) does 

input
generative (e.g. GMM) or 
discriminative (e.g. SVM)
modeling

(uncalibrated) score

calibration transformation

(calibrated)
likelihood-ratio

to application 
or evaluator



Bayes
decision

prior(θ ) , 
costs(θ )

likelihood-ratiocount errors
accept / 
reject

Cdet

Cllrθθ dCDET∫ )(

θ

Pmiss , Pfa

What evaluator does 



Here is another view …



score
in
log(LR)
form

decision
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α , β Cdet= αPmiss+ βPfa
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Questions

1. How does evaluee set thresholds?

2. How does the evaluator perform the 
integral?



How does the evaluator 
perform the integral?

Cllr
θθ dCdet∫ )(



How does the evaluator 
perform the integral?

prior(θ ) , 
costs(θ )

Cllr
θθ dCdet∫ )(

θ

We have to choose appropriate ways to vary
prior and cost as a function of θ .



Choice of functions: 
prior(θ ) and costs(θ )

There exist choices for these functions, so that:

• Integral is solved analytically (easy to 
compute).

• Cllr represents recognizer performance over a 
wide range of applications.

• Cllr has intuitive information-theoretic 
interpretation (cross-entropy).

• Cllr serves as good numerical optimization 
objective function (logistic regression).



10
1

1
)1(,

1

≤≤
−

=−=

θ
θθ fatarmisstar CPCP

The magic formula:

Notice infinities at θ =0 and θ =1. This is 
good! We want Cllr to represent a wide range 
of applications, including those with very 
high misclassification costs.
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This gives:

• Ok, this looks like a nice integral, but 
how does one compute it?
• and why is it called Cllr?



Why is it called Cllr ?

Cllr is a cost function to evaluate detector 
scores in log-likelihood-ratio format.

(For practical reasons log-likelihood-ratio 
format is better than likelihood-ratio 
format.)



• Computation of Cllr from a supervised 
evaluation database is just as easy as 
computation of error-rates, or Cdet .  

How to compute Cllr



How to compute Cllr
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ST is the set of target trials
SN is the set of non-target trials
llrt is the log-likelihood-ratio under evaluation for 

trial t 



Properties of Cllr

• Cllr = 0 (perfect): llr = +∞ for every target and 
llr = - ∞ for every non-target.

• 0 < Cllr < 1 (useful):  well-calibrated, real-
world detector.

• Cllr = 1 (reference): well-calibrated but 
useless, gives no discrimination, outputs llr
= 0 for every trial.

• 1 < Cllr ≤ ∞ (badly calibrated): makes worse 
decisions than not using any detector at all 
(i.e. worse than reference detector).



Information-theoretic 
interpretation

Cllr can be shown to be equivalent to an 
empirical cross-entropy, which gives the 
effective amount of information (in the 
sense of Shannon’s Information Theory) 
that the detector delivers to the user. 



Information-theoretic 
interpretation

The target prior gives information about 
the presence of the target, e.g.:

• If  Ptar = 1, we know the target is there. 
This is 1 bit of information.

• If Ptar = 0, we know the target is not 
there. This is also 1 bit of information.

• If Ptar = 0.5, this gives least information, 
namely 0 bits.



A detector that outputs a llr score gives 
additional information about the presence of 
the target, which (if well-calibrated) can be 
optimally combined (via Bayes’ Rule) with the 
prior information.

Bayes’ Rule

minimize 
expected cost

cost

decisions

prior

input detector llr

posterior

prior info

additional info

combined info

applied info



Information-theoretic 
interpretation

The complement, 1 - Cllr measures the average 
amount of additional information (in bits per 
trial) contributed by the llr scores of the 
detector, when there is least prior information: 
Ptar = 0.5. 

• Note, if the detector is badly calibrated, then 
1 - Cllr < 0, 

(negative amount of info!) with the 
interpretation that the information is 
misleading and would lead to bad decisions.



Cllr and Forensics

Daniel Ramos and others have done 
much work to motivate that measures 
based on Cllr are suitable for evaluating 
the quality of detection likelihood-ratios, 
when likelihood-ratios are used as 
evidence in Forensic Speaker 
Recognition.



Cllr as numerical optimization 
objective

Numerically optimizing Cllr is just a form of the 
well-known logistic regression. It is an 
attractive optimization objective because:

• It tends to lead to a convex optimization 
surface with a unique optimum.

• Efficient algorithms, like conjugate gradient 
can be used to find the optimum.



Cllr as numerical optimization 
objective

Logistic regression can be used to perform 
supervised training of the parameters of:

• a calibration stage for any existing binary 
recognizer that outputs a score, or

• a fusion of multiple speaker recognition sub-
systems to give a single, well-calibrated and 
more accurate output.
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Cllr : Adopted by others

• Cllr has been the basis of further publications 
by MIT Lincoln Lab (USA), ATVS-UAM 
(Spain),  TNO (Netherlands) and others;

• has been adopted by NIST for use as 
evaluation metric in both speaker detection 
(2006,2008) and language detection (2007);

• was used (as numerical optimization 
objective) by 5 of the best-performing teams 
at the last NIST Speaker Recognition 
Evaluation (2006).  



Cllr tools

FoCal: Tools for Fusion and Calibration

• Free MATLAB toolkit.
• Applicable to binary pattern recognizers.
• Evaluation with Cllr  

– including graphical  calibration/discrimination 
decompositions (APE-curves).

• Calibration and Fusion with logistic 
regression. 

See: www.dsp.sun.ac.za/~nbrummer/focal
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1. What we want to do
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5. Experimental demonstration of our 
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1. What we want to do

To create an evaluation criterion that is: 
• application-independent,
• sensitive to calibration, and
• useful as numerical optimization 

objective



2. Why cost and error-rate 
don’t work.

• Average error-rate is 
– application-dependent
– increases with N

• Conditional error-rate analysis
– ROC is ill-defined and computationally problematic
– does not evaluate calibration

• Misclassification Cost Functions
– application-dependent
– complexity increases as N 2

• None of the above give good numerical 
optimization objectives.



3. How NIST did it.

• NIST’s Language Recognition Evaluation 
(LRE) is a multiclass pattern recognition 
problem (14 languages in 2007).

• NIST presented it as 14 different, one-
against-the-rest detection tasks, with the 
evaluation criterion being average detection 
cost over all 14. 

• This approach has both good and bad 
consequences:



Advantages of LRE strategy

• LRE’07 averaged over 14 different
detection tasks. This encouraged some
application-independence in the 
resulting recognizers.

• The evaluation is calibration-sensitive.



Disadvantages of LRE 
strategy

Casting language recognition in the mold of a 
detection task gives it some of the attributes 
of a binary recognition problem. 

• But treating it as binary pattern recognition 
task, has contributed to 2 significant 
problems. (Both problems arose because the 
14 detection tasks are not independent, but 
were treated as such.)



1. Pooling of scores across targets for 
ROC analysis produces meaningless
results. (many researchers did this, me 
too.)

Problems induced by rotated 
language detection:



2. Sub-optimal calibration strategies 
were used by several teams:

– pooling scores across targets and then 
attempting a global 2-class calibration 

(A very bad idea---see experiments 
below!)

– calibrating separate detectors for every 
target (Suboptimal compared to global 
multiclass calibration---see experiments 
below.) 

Problems induced by rotated 
language detection:



• Let us return to treating language 
recognition as a full multiclass problem 
and to solving the calibration problem in 
a way which is as application-
independent as possible.

• Then we can solve not only language 
detection tasks, but also many other 
recognition tasks.

Back to our own agenda …



Part II: Multiclass

1. What we want to do
2. Why cost and error-rate don’t work.
3. How NIST did it.

4. How we propose to do it.
5. Experimental demonstration of our 

proposal.



Let’s recapitulate our 
application-independent 

recipe.



hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected 
cost of decisions

prior

costs

class posterior

class likelihoods

Application:
(standard implementation,
nothing to tune)

Agenda:
optimize likelihoods, to 
make cost-effective 
standard Bayes
decisions over a wide
range of applications, 
with different priors and 
costs.



hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected 
cost of decisions

prior

costs

class posterior

class likelihoods

Application:
(standard implementation,
nothing to tune)

To optimize, 
we need to 
evaluate.
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hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected 
cost of decisions

prior

costs

class posterior

class likelihoods

Replace application with evaluation 
method that represents a wide range of
Bayes decision applications, with 
different costs and priors.



To understand how to vary the 
application, we need to understand how 
to vary the prior and costs.

Evaluation over different priors 
and costs



Prior

1,) class(
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The prior can be varied inside an
(N-1) dimensional simplex.



Multiclass Cost Functions: 
2-minute tutorial

( In which many important and interesting facts are ignored. )



Cost Function Complexity

There are N 2 - N different types of 
misclassification error, all of which could have 
different costs.
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There can be N 2 - N different cost 
coefficients.



We will instead use a 
simplified cost function:



Simplified cost function

Let the cost be:
• Dependent on the true class, 
• but independent of the estimated class:

Cmiss(i) is the cost of missing true class i 
when misclassifying it as any other 
class.



…Cmiss(N)Cmiss(N)N

…………

Cmiss(2)…Cmiss(2)2

Cmiss(1)…Cmiss(1)1

N…21

tr
ue

 c
la

ss
estimated class

There are N different types of misses, all of 
which could have different costs.



Simplified cost function: 
Expected miss cost
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Simplified cost function: 
Expected miss cost
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Pi : prior for class i.



Simplified cost function: 
Expected miss cost
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Cmiss(i) : cost of missing class i.



Simplified cost function: 
Expected miss cost

∑
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Pmiss(i) : empirical miss-rate for 
class i.



What recognizer (evaluee) 
does 

input
generative (e.g. GMM) or 
discriminative (e.g. SVM)
modeling

(uncalibrated) 
N-component
score-vector

calibration 
transformation

(calibrated)
class log-likelihoods:
log P ( score-vector | class i ),
i = 1, 2, …, N

to application 
or evaluator



Bayes
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Bayes
decision

class 
likelihoods
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Cmiss
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Again: this 
choice is 
critical! 
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The magic formula:

Note 1: x  is an N-vector of parameters, 
which has the form of a probability 
distribution.

θ
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The magic formula:

Note 2: We don’t need to vary cost and prior 
separately, because in expected-cost 
calculations they always act together as 
prior-cost products.
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The magic formula:

Note 3: Notice again the infinities at the 
edges of the parameter simplex ( at θi = 0 ). 
This ensures that we include applications 
with arbitrarily large cost in our evaluation.



which gives our new 
evaluation objective:
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We integrate a weighted combination of 
empirical miss-rate over the whole 
parameter simplex.
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• OK, this is another impressive-
looking integral, but how do you 
compute it?
• And why is it called Cmxe?



Why is it called Cmxe ?

• Cmxe refers to multiclass-cross-entropy
( In the 2-class case: Cllr = Cmxe )

• When there are N > 2 classes, scores in 
likelihood-ratio form are inconvenient---so we  
work with scores in log-likelihood form. 
(Again: log is for practical reasons.)



• Computation of Cmxe from a supervised 
evaluation database is just as easy as 
computation of error-rates.  

How to compute Cmxe



How to compute Cmxe
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N is the number of classes.
Si is the set of trials of class i .
llit = log P ( trial t | class i ).

is the log-likelihood under evaluation 
for class i, given the data of trial t.



Properties of Cmxe

• Cmxe = 0 (perfect): for i ≠ j, outputs llit - lljt = +∞
, whenever i is the true class.

• 0 < Cmxe < log2 N (useful):  well-calibrated, 
real-world detector.

• Cllr = log2 N (reference): well-calibrated but 
useless, gives no discrimination, outputs llit = 
lljt for any i, j and t.

• log2 N < Cllr ≤ ∞ (badly calibrated): makes 
worse decisions than not using any detector 
at all (i.e. worse than reference detector).



Information-theoretic 
interpretation

Cmxe can be shown to be equivalent to an 
empirical cross-entropy.

∆ = log2 N - Cmxe gives the effective amount of 
information (in bits of Shannon entropy) that 
the recognizer delivers to the user, relative to 
a maximally uncertain prior of 

Pi = 1 / N. 



Information view is optimistic!
• This information view of multiclass recognizer 

performance gives an optimistic view for large 
N: For a given recognizer strategy, the 
amount of effective recognized information,

∆ = log2 N - Cmxe tends to increase with N.
As problem perplexity increases, experiments 
show we can also manage to extract more 
and more information. 

• This is in marked contrast to error-rates, 
which appear to be more and more 
pessimistic for large N.



Cmxe as numerical optimization 
objective

Again: 
Numerically optimizing Cmxe is just a form 

of multiclass logistic regression, which 
can also be solved with conjugate 
gradient methods.



Part II: Multiclass

1. What we want to do
2. Why cost and error-rate don’t work.
3. How NIST did it.
4. How we propose to do it.

5. Experimental demonstration of 
our proposal.



Experimental demonstration

We experiment with 7 different language 
recognizers, which were submitted by 7 
different teams for NIST 2007 Language 
Recognition Evaluation.

• Here N = 14 languages.



Experimental demonstration

• We demonstrate that we can calibrate (by 
multiclass logistic regression) the scores of 
several different language recognizers, to act 
as well-calibrated language likelihoods.

• We practically demonstrate well-
calibratedness by successfully applying these 
likelihoods to make Bayes decisions for 
thousands of different applications.



Calibration strategies

2 of the 7 submitted recognizers had used 
the same multiclass logistic regression 
calibration that we are proposing in this 
talk. 

• Both used my own calibration software. 
(Available as MATLAB toolkit, see 
below.)



Score transformation 
strategies

The other 5 recognizers were designed 
specifically for the LRE task of detecting one 
target language at a time, while the 13 other 
languages are considered non-targets. 

• Their scores were presented in an 
application-dependent form, suitable for that 
task.

• We transformed these scores to act as 
multiclass language likelihoods. We used two 
different transformation strategies:



Score Transformations

1. Projection: A quick-and-dirty, parameterless, 
non-linear, non-invertible score transformation 
which converted the 14 separate detection-log-
likelihood-ratios to assume the formof a 14-
dimensional multiclass log-likelihood-vector.

2. Re-calibration: A parametrized, affine, 
invertible calibration transformation of scores to 
obtain the multiclass log-likelihood-vectors. 
Parameters were trained with multiclass logistic 
regression, using a separateset of training data 
specially provided by each team. 



16369 Applications!

• The focus of LRE’07 was one-against-
the-rest detection, within a closed 
subset of 14 languages. 
– The LRE’07 evaluation criterion was called 

Cavg which is an average of 14 detection 
cost functions, one for each target.  

• We used this same framework for our 
demonstration, using the same Cavg
evaluation criterion, but we applied it 
also to the other 16368 non-trivial 
subsets of these 14 languages. 



16369 Applications!

In summary: We did a total of 16369 
different NIST evaluations, with 
language sets of sizes 2, 3, …, 14.



Sanity check: 

Did re-calibration affect the 
original 

14-language Cavg ?
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Multiclass logistic regression re-
calibration improved 
performance in all cases where 
it was applied.

system: 1          2          3          4          5         6 7       
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Improvement was dramatic for 
systems 3 and 4. (These 
systems had originally used 
global calibration, trained on 
pooled scores.)

system: 1          2          3          4          5         6 7       



Now all 16369 subsets:



System 1 (projected scores)



{English, Hindustani}

System 2 (original scores)



System 3 (projected, re-calibrated)



System 4 (projected, re-calibrated)



System 5 (original scores)



{English, Hindustani}

System 6 (re-calibrated)



System 7 (projected, re-calibrated)



LRE Subsets Experiment: 
Conclusions 

1. We used multiclass logistic regression 
(optimization of Cmxe ), to improve the
performance of systems that had specifically 
been designed for LRE’07.

Our calibration was application-independent 
(not targeted at a specific application) but 
nevertheless it improved upon systems that 
had been specially designed for the LRE’07 
detection application. 



LRE Subsets Experiment: 
Conclusions 

2. Our re-calibration allowed these same 
(previously application-dependent) 
language recognizers to also be applied 
successfully to thousands of other 
applications, even though those recognizers 
were not specifically designed for such use. 



Cmxe tools: FoCal Multiclass

Free MATLAB toolkit for fusion, calibration, 
evaluation and bayes decisions for 
Multiclass Pattern Recognition

See: 
http://niko.brummer.googlepages.com/focalmulticlass
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Conclusion
The following are all equivalent (and all are 

good things to do):
• Calibrating pattern recognition outputs as 

likelihoods.

• Optimizing the amount of effective information
delivered by pattern recognizers.

• Optimizing recognition error-rates over wide 
ranges of the priors.

• Optimizing recognizer decision cost over wide 
ranges of cost and prior parameters.
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Summary
It is common practice in many fields 
of basic pattern recognition
research to evaluate performance as 
the misclassification error-rate
on a given evaluation database. A 
limitation of this approach is that
it implicitly assumes that all types of 
misclassification have equal
cost and that the prior class 
distribution equals the relative
proportions of classes in the 
evaluation database.

In this talk, we generalize the 
traditional error-rate evaluation, to
create an evaluation criterion that 
allows optimization of pattern
recognizers for wide ranges of 
applications, having different class
priors and misclassification costs. 
We further show that this same
strategy optimizes the amount of 
relevant information that recognizers
deliver to the user.

In particular, we consider a class of 
evaluation objectives known as
"proper scoring rules", which 
effectively optimize the ability of
pattern recognizers to make 
minimum-expected-cost Bayes
decisions. In
this framework, we design our 
pattern recognizers to:

- extract from the input as much 
relevant information as possible
about the unknown classes, and
- to output this information in the form 
of well-calibrated class likelihoods.
We refer to this form of output as 
"application-independent". Then
when application-specific priors and 
costs are added, the likelihoods
can be used in a straight-forward and 
standard way to make
minimum-expected-cost Bayes 
decisions.

A given proper scoring rule can be 
interpreted as a weighted
combination of misclassification 
costs, with a weight distribution
over different costs and/or priors. On 
the other hand, proper scoring
rules can also be interpreted as 
generalized measures of uncertainty
and therefore as generalized 
measures of information.  We show 
that
there is a particular weighting 
distribution which forms the
logarithmic proper scoring rule, and 
for which the associated
uncertainty measure is Shannon's 
entropy, which is the canonical
information measure. We conclude 
that optimizing the logarithmic
scoring rule not only minimizes error-

rates and misclassification
costs, but it also maximizes the 
effective amount of relevant
information delivered to the user by 
the recognizer.

We discuss separately our strategies 
for binary and multiclass pattern
recognition:
- We illustrate the binary case with 
the example of speaker
recognition, where the calibration of 
detection scores in
likelihood-ratio form is of particular 
importance for forensic
applications.
- We illustrate the multiclass case 
with examples from the recent 2007
NIST Language Recognition 
Evaluation, where we experiment 
with the
language recognizers of 7 different 
research teams, all of which had
been designed with one particular 
language detection application in
mind. We show that by re-calibrating 
these recognizers by optimization
of a multiclass logarithmic scoring 
rule, they can be successfully
applied to a range of thousands of 
other applications.


