
Optimization of the Accuracy and
Calibration of Binary and Multiclass

Pattern Recognizers, for Wide
Ranges of Applications

Niko Brümmer

Spescom DataVoice

Optimization of the Accuracy and
Calibration of Binary and Multiclass

Pattern Recognizers, for Wide
Ranges of Applications

Niko Brümmer
Spescom DataVoice

A very long story in two parts, in which we
will violently charge some old windmills
and gently re-calibrate some others.

Part I:Binary Pattern Recognition
Part II:Multiclass Pattern Recognition

El Ingenioso Hidalgo
Don Quijote de la Ciudad del Cabo

Rocinante el Tiburón

Don Quijote de la Ciudad del Cabo

Sancho

Contents

Part I
1. Introduction
2. Good old error-rate
3. Binary case:

Error-Rate → ROC → Cdet → Cllr

Part II: Multiclass

Introduction

1. What do we mean by pattern
recognition?

2. What is our goal with the
methodology discussed in this
talk.

3. Why the emphasis on evaluation?

1.What do we mean by
pattern recognition?

Pattern Recognizer

Hidden source, known to
belong to one of N ≥ 2 classes.

Estimated class of input.

Input, e.g.
speech recording,
image, etc.

… or more general and
potentially more useful:

Information about identity of source.

Pattern Recognizer

Hidden source, known to
belong to one of N ≥ 2 classes.

Input, e.g.
speech recording,
image, etc.

2. Goal

To create accurate, well-calibrated
and application-independent pattern
recognizers.

hard decision: point estimate of input class

input

application-dependent
pattern recognizer

class prior

misclassification costs

hard decision: point estimate of input class

input

application-dependent
pattern recognizer

class prior

misclassification costs

To make hard
decisions, you need
(implicit)
application-
dependent
assumptions about
prior and costs.

A principled approach to factoring out the
role of priors and costs is the Bayes
decision framework:

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

class prior

costs

class posterior

class likelihoods

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

class prior

costs

class posterior

class likelihoods

Application:
(standard implementation,
nothing to tune)

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

prior

costs

class posterior

class likelihoods

Application:
(standard implementation,
nothing to tune)

Agenda:
optimize likelihoods, to
make cost-effective
standard Bayes
decisions over a wide
range of applications,
with different priors and
costs.

3. Evaluation and Optimization

Before we can optimize performance, we need
to be able to evaluate performance!

• Much of this talk will concentrate on
evaluation.

• It is very useful if the evaluation criterion can
also be used as numerical optimization
objective function.

Part I

1. Introduction

2. Good old error-rate
3. Binary case:

Error-Rate → ROC → Cdet → Cllr

Traditional evaluation by
error-rate

1. Use supervised evaluation database
with input patterns of N classes.

2. Recognizer makes hard decisions,
– i.e. point estimates of input class.

3. Evaluator counts misclassification
errors:

– average error-rate
– class-conditional errors (confusion matrix)

Advantages of error-rate:

• Intuitive, easy to understand.
• Easy to compute.

These advantages are very important! We
don’t want to lose them. So we
generalize error-rate to create new
evaluation criteria which remain easy to
understand and to compute.

Disadvantages of error-rate

• Application dependent, assumes:
– fixed, equal costs for all types of

misclassifications.
– class priors are fixed and equal to relative

proportions in evaluation database.

• Forces recognizer to make hard
decisions:
– Hard decisions are non-invertible and

therefore lose information.
– Recognizer can be applied only to that one

fixed recognition task.

Disadvantages of error-rate

• Average error-rate tends to increase
with perplexity (number of classes, N).
– results difficult to compare for different N.

– results look pessimistic for large N.

Disadvantages of error-rate

• Poor objective function for numerical
optimization in discriminative training:
– Not differentiable.

– Even if approximated with smooth
differentiable function, tends to lead to non-
convex optimization problems.

– Vulnerable to over-training.

Part I

1. Introduction

2. Good old error-rate

3. Binary case:
Error-Rate → ROC→ Cdet → Cllr

How to fix the disadvantages of
error-rate?

Binary recognizer case

Previous approaches

We summarize these to:
• Appreciate their advantages and

disadvantages, and to
• Review some terminology that we will

need later.

Previous approaches

1. ROC / DET- curves
2. Detection Cost Function: Cdet

– used in NIST Speaker/Language
Recognition Evaluations.

ROC / DET-curves

• ROC = Receiver Operating Curve

• DET = Detection-Error-Tradeoff curve
(equivalent to ROC, but with specially
warped axes).

ROC / DET

• ROC/DET works best for binary
classification problems.
– Several kinds of ROC analysis for

multiclass pattern recognition have been
proposed, but it remains an open problem
…

ROC / DET

�This analysis attains independence of
prior and costs by requiring soft
decisions from recognizer.

× but it ignores calibration.
– Does not test ability to set decisions

thresholds.
– Cannot be used as sole evaluation criterion

in applications where hard decisions need
to be made.

ROC: 5-minute tutorial

Binary misclassification errors
(detection terminology)

�false-alarmnon-target

miss�target

rejectaccept

decisions

cl
as

se
s

targetsnon-targets

score

target/
non-target

inputbinary classifier
(detector)

score distributions

target/
non-target

inputbinary classifier
(detector)

score

targetsnon-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

target/
non-target

inputbinary classifier
(detector)

score

Pmiss

Pfa

targets

ROC

non-targets

threshold
acceptreject

DET ≡ ROC

• DET-curve is equivalent to ROC
• uses warping of axes to make curves

approximately linear
• good for displaying comparative

performance of multiple binary
classifiers

Example

0.1 0.2 0.5 1 2 5 10 20 30 40

0.1

0.2

0.5

 1

 2

 5

10

20

30

40

Fa lse Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ilit
y

(in
 %

)

DET1: 1conv4w-1conv4w

sub-systems

fusion

STBU sub-systems
and fusion,
NIST SRE 2006

Scalar Representations of
DET/ROC

• AUC = Area-Under-Curve
– works for ROC (but undefined for DET-

curve)
– popular in medical literature

• EER = Equal-Error-Rate
– works for both ROC and DET

– popular in speaker recognition

P
m

is
s

Pfa

ROC

P m
iss

=
P fa

0

1

1

EER: Equal-Error-Rate

EER

P
m

is
s

Pfa

ROC

0

1

1

AUC: Area-Under-Curve

DET/ROC Advantages

• Very useful summary of the potential of
recognizers to discriminate between two
classes over a wide spectrum of
applications involving different priors
and/or misclassification costs.

(Speaker recognition researchers love
DET-curves!)

DET/ROC Disadvantages

• Does not measure actual decision-
making ability
– thresholds are set by evaluator, not by the

technology under evaluation.

• Gives overoptimistic estimates of the
average cost, or average error-rate,
when applying the recognizer to make
hard decisions.

DET/ROC Disadvantages

• EER and AUC are difficult to use as
numerical optimization objectives.

DET/ROC Disadvantages

• Problematic for multiclass (N > 2)
– Conflicting definitions

– Difficult to compute
– Error-rate increases with N

Previous approaches

1. ROC / DET

2. Detection Cost Function:
Cdet

Detection Cost Function

• Naturally applicable and well-defined for
binary classification problems (i.e.
speaker detection)

• Can be applied (with moderate
complexity and some pitfalls) to
indirectly evaluate multiclass
recognizers (e.g. NIST LRE Language
Detection Task)

Detection Cost Function

�Does require hard decisions and
therefore does evaluate calibration of
recognizer under evaluation, but

× Evaluates only for a fixed application.
The ability of the recognizer in other
applications is not exercised.

Cdet: 5-minute tutorial

Detection Cost Function

fafatar

missmisstardet

PCP

PCPC

)1(−+
=

Expected cost of using recognizer for a specific
application.

Detection Cost Function

fafatar

missmisstardet

PCP

PCPC

)1(−+
=

Ptar : application-dependent target prior.

Detection Cost Function

fafatar

missmisstardet

PCP

PCPC

)1(−+
=

Cmiss , Cfa : application-dependent mis-
classification costs.

fafatar

missmisstardet

PCP

PCPC

)1(−+
=

Cdet is a weighted linear combination
of the two misclassification error-
rates, Pmissand Pfa .

fafatar

missmisstardet

PCP

PCPC

)1(−+
=

geometric interpretation

P
m

is
s

Pfa

ROC

0

1

1

Cdet

Weighted linear
combination of
Pmiss and Pfa .

• Relative
weighting (slope)
depends on priors
and costs of a
specific
application.

P
m

is
s

Pfa

ROC

0

1

1

Cdet

1. Evaluator chooses
application (cost,
prior) which
determines slope.

2. Evaluee chooses
threshold, which
determines
operating point.

P
m

is
s

Pfa

ROC

0

1

1

C de
t

Cdet

1. Evaluator chooses
slope.

2. Evaluee chooses
operating point.

3. Cdet is the linear
combination of the
two error-rates, as
indicated by the
projection onto the
sloped line.

P
m

is
s

Pfa

ROC

0

1

1

• Evaluee chooses
operating point
(threshold) without
access to true
class labels.
(Cannot see ROC
curve.)

• Threshold may be
suboptimal.

• Difference is
calibration loss.

Calibration loss

Cdet

Cdet

�Does evaluate calibration,
but

× Evaluates only for a fixed
application.

Summary of previous
approaches

��
evaluates
calibration

��
application-
independent

CdetROC

Part I

1. Introduction
2. Good old error-rate

3. Binary case:

Error-Rate → ROC → Cdet → Cllr

New approach: Cllr

• Combines ROC and Cdet to get good
qualities of both:

– Application-independent
– Evaluates Calibration

New approach: Cllr

ROC and Cdet are combined by integrating
Cdet over the whole ROC-curve.

∫=
ROC detllr CC

Pfa

ROC

0

1

1

Cdet

Pfa

ROC

0

1

1

Cdet

Pfa

ROC

0

1

1

Cdet

P
m

is
s

Pfa

ROC

0

1

1

Cdet

P
m

is
s

Pfa

ROC

0

1

1

Cdet

P
m

is
s

Pfa

ROC

0

1

1

Cdet

P
m

is
s

Pfa

ROC

0

1

1

Cdet

P
m

is
s

Pfa

ROC

0

1

1

Cdet

P
m

is
s

Pfa

ROC

0

1

1

Cdet

P
m

is
s

Pfa

ROC

0

1

1

Cllr
Cdet

Cllr

Cllr integrates cost of decisions made with
suboptimal thresholds chosen by evaluee.

Cdet

Calibration loss:
extra cost because of
suboptimal thresholds

Discrimination loss:
integrated decision cost at
thresholds optimized by evaluator.

Questions

1. How does evaluee set thresholds?

2. How does evaluator perform the
integral?

How does evaluee
(recognizer) set thresholds?

To answer this, let’s review our agenda.

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

class prior

costs

class posterior

class likelihoods We want the
recognizer to
output
likelihoods.

In the binary (detection) case,
this can be simplified …

accept / reject

input
application-independent
detector

)target-non | score(

) target| score(

P

P

likelihood-
ratio

compare to threshold
compute Bayes
threshold

prior, costs

What detector (evaluee) does

input
generative (e.g. GMM) or
discriminative (e.g. SVM)
modeling

(uncalibrated) score

calibration transformation

(calibrated)
likelihood-ratio

What detector (evaluee) does

input
generative (e.g. GMM) or
discriminative (e.g. SVM)
modeling

(uncalibrated) score

calibration transformation

(calibrated)
likelihood-ratio

to application
or evaluator

Bayes
decision

prior(θ) ,
costs(θ)

likelihood-ratiocount errors
accept /
reject

Cdet

Cllrθθ dCDET∫)(

θ

Pmiss , Pfa

What evaluator does

Here is another view …

score
in
log(LR)
form

decision

fa

miss

T

T

C
C

P
P
−− 1log

PT
Cmiss , Cfa

α , β Cdet= αPmiss+ βPfa

∫ detCCllr

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10
20
30
40

Fa lse Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ilit
y

(in
 %

)

count
errors

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10
20
30
40

Fa lse Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ilit
y

(in
 %

)

count
errors

decision

Cdet= αPmiss+ βPfa
PT
Cmiss , Cfa

fa

miss

T

T

C
C

P
P
−− 1log

α , β

∫ detCCllr

score
in
log(LR)
form

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10
20
30
40

Fa lse Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ilit
y

(in
 %

)

count
errors

decision

Cdet= αPmiss+ βPfa
PT
Cmiss , Cfa

fa

miss

T

T

C
C

P
P
−− 1log

α , β

∫ detCCllr

score
in
log(LR)
form

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10
20
30
40

Fa lse Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ilit
y

(in
 %

)

count
errors

decision

Cdet= αPmiss+ βPfa
PT
Cmiss , Cfa

fa

miss

T

T

C
C

P
P
−− 1log

α , β

∫ detCCllr

score
in
log(LR)
form

0.10.20.5 1 2 5 10 20 30 40

0.1
0.2
0.5
 1
 2
 5

10
20
30
40

Fa lse Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ilit
y

(in
 %

)

count
errors

decision

Cdet= αPmiss+ βPfa
PT
Cmiss , Cfa

fa

miss

T

T

C
C

P
P
−− 1log

α , β

∫ detCCllr

score
in
log(LR)
form

Questions

1. How does evaluee set thresholds?

2. How does the evaluator perform the
integral?

How does the evaluator
perform the integral?

Cllr
θθ dCdet∫)(

How does the evaluator
perform the integral?

prior(θ) ,
costs(θ)

Cllr
θθ dCdet∫)(

θ

We have to choose appropriate ways to vary
prior and cost as a function of θ .

Choice of functions:
prior(θ) and costs(θ)

There exist choices for these functions, so that:

• Integral is solved analytically (easy to
compute).

• Cllr represents recognizer performance over a
wide range of applications.

• Cllr has intuitive information-theoretic
interpretation (cross-entropy).

• Cllr serves as good numerical optimization
objective function (logistic regression).

10
1

1
)1(,

1

≤≤
−

=−=

θ
θθ fatarmisstar CPCP

The magic formula:

Notice infinities at θ =0 and θ =1. This is
good! We want Cllr to represent a wide range
of applications, including those with very
high misclassification costs.

0 0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

θ

θ
1

θ−1

1

∞∞

weights reach infinity, but …

0 0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

θ

Pfa
Pmiss

θ
1

θ−1

1

for a well-calibrated recognizer,
respective errors vanish at 0
and 1,
so that Cdet remains small.

0 0.2 0.4 0.6 0.8 1
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

θ

Pfa
Pmiss

θ
1

θ−1

1

famissdet PPC
θθ −

+=
1

11

∫ −
+=

1

0

)(
1

1
)(

1 θθ
θ

θ
θ

dPPkC famissllr

This gives:

• Ok, this looks like a nice integral, but
how does one compute it?
• and why is it called Cllr?

Why is it called Cllr ?

Cllr is a cost function to evaluate detector
scores in log-likelihood-ratio format.

(For practical reasons log-likelihood-ratio
format is better than likelihood-ratio
format.)

• Computation of Cllr from a supervised
evaluation database is just as easy as
computation of error-rates, or Cdet .

How to compute Cllr

How to compute Cllr

()

()∑

∑

∈

∈

++

−+=

N

T

St
t

N

St
t

T
llr

llr
S

llr
S

C

)exp(1log
2

1

)exp(1log
2

1

2

2

ST is the set of target trials
SN is the set of non-target trials
llrt is the log-likelihood-ratio under evaluation for

trial t

Properties of Cllr

• Cllr = 0 (perfect): llr = +∞ for every target and
llr = - ∞ for every non-target.

• 0 < Cllr < 1 (useful): well-calibrated, real-
world detector.

• Cllr = 1 (reference): well-calibrated but
useless, gives no discrimination, outputs llr
= 0 for every trial.

• 1 < Cllr ≤ ∞ (badly calibrated): makes worse
decisions than not using any detector at all
(i.e. worse than reference detector).

Information-theoretic
interpretation

Cllr can be shown to be equivalent to an
empirical cross-entropy, which gives the
effective amount of information (in the
sense of Shannon’s Information Theory)
that the detector delivers to the user.

Information-theoretic
interpretation

The target prior gives information about
the presence of the target, e.g.:

• If Ptar = 1, we know the target is there.
This is 1 bit of information.

• If Ptar = 0, we know the target is not
there. This is also 1 bit of information.

• If Ptar = 0.5, this gives least information,
namely 0 bits.

A detector that outputs a llr score gives
additional information about the presence of
the target, which (if well-calibrated) can be
optimally combined (via Bayes’ Rule) with the
prior information.

Bayes’ Rule

minimize
expected cost

cost

decisions

prior

input detector llr

posterior

prior info

additional info

combined info

applied info

Information-theoretic
interpretation

The complement, 1 - Cllr measures the average
amount of additional information (in bits per
trial) contributed by the llr scores of the
detector, when there is least prior information:
Ptar = 0.5.

• Note, if the detector is badly calibrated, then
1 - Cllr < 0,

(negative amount of info!) with the
interpretation that the information is
misleading and would lead to bad decisions.

Cllr and Forensics

Daniel Ramos and others have done
much work to motivate that measures
based on Cllr are suitable for evaluating
the quality of detection likelihood-ratios,
when likelihood-ratios are used as
evidence in Forensic Speaker
Recognition.

Cllr as numerical optimization
objective

Numerically optimizing Cllr is just a form of the
well-known logistic regression. It is an
attractive optimization objective because:

• It tends to lead to a convex optimization
surface with a unique optimum.

• Efficient algorithms, like conjugate gradient
can be used to find the optimum.

Cllr as numerical optimization
objective

Logistic regression can be used to perform
supervised training of the parameters of:

• a calibration stage for any existing binary
recognizer that outputs a score, or

• a fusion of multiple speaker recognition sub-
systems to give a single, well-calibrated and
more accurate output.

0.1 0.2 0.5 1 2 5 10 20 30 40

0.1

0.2

0.5

 1

 2

 5

10

20

30

40

Fa lse Alarm probability (in %)

M
is

s
 p

ro
b

a
b

ilit
y

(in
 %

)

DET1: 1conv4w-1conv4w

sub-systems

fusion

best system in NIST SRE
2006 was a logistic
regression fusion of 10 sub-
systems

Cllr : Adopted by others

• Cllr has been the basis of further publications
by MIT Lincoln Lab (USA), ATVS-UAM
(Spain), TNO (Netherlands) and others;

• has been adopted by NIST for use as
evaluation metric in both speaker detection
(2006,2008) and language detection (2007);

• was used (as numerical optimization
objective) by 5 of the best-performing teams
at the last NIST Speaker Recognition
Evaluation (2006).

Cllr tools

FoCal: Tools for Fusion and Calibration

• Free MATLAB toolkit.
• Applicable to binary pattern recognizers.
• Evaluation with Cllr

– including graphical calibration/discrimination
decompositions (APE-curves).

• Calibration and Fusion with logistic
regression.

See: www.dsp.sun.ac.za/~nbrummer/focal

Contents

Part I
1. Introduction
2. Good old error-rate
3. Binary case:

Error-rate → ROC → Cdet → Cllr

Part II: Multiclass
Error-rate → ROC → Cmiss → Cmxe

Part II: Multiclass

1. What we want to do
2. Why cost and error-rate don’t work.
3. How NIST did it.
4. How we propose to do it.
5. Experimental demonstration of our

proposal.

1. What we want to do

To create an evaluation criterion that is:
• application-independent,
• sensitive to calibration, and
• useful as numerical optimization

objective

2. Why cost and error-rate
don’t work.

• Average error-rate is
– application-dependent
– increases with N

• Conditional error-rate analysis
– ROC is ill-defined and computationally problematic
– does not evaluate calibration

• Misclassification Cost Functions
– application-dependent
– complexity increases as N 2

• None of the above give good numerical
optimization objectives.

3. How NIST did it.

• NIST’s Language Recognition Evaluation
(LRE) is a multiclass pattern recognition
problem (14 languages in 2007).

• NIST presented it as 14 different, one-
against-the-rest detection tasks, with the
evaluation criterion being average detection
cost over all 14.

• This approach has both good and bad
consequences:

Advantages of LRE strategy

• LRE’07 averaged over 14 different
detection tasks. This encouraged some
application-independence in the
resulting recognizers.

• The evaluation is calibration-sensitive.

Disadvantages of LRE
strategy

Casting language recognition in the mold of a
detection task gives it some of the attributes
of a binary recognition problem.

• But treating it as binary pattern recognition
task, has contributed to 2 significant
problems. (Both problems arose because the
14 detection tasks are not independent, but
were treated as such.)

1. Pooling of scores across targets for
ROC analysis produces meaningless
results. (many researchers did this, me
too.)

Problems induced by rotated
language detection:

2. Sub-optimal calibration strategies
were used by several teams:

– pooling scores across targets and then
attempting a global 2-class calibration

(A very bad idea---see experiments
below!)

– calibrating separate detectors for every
target (Suboptimal compared to global
multiclass calibration---see experiments
below.)

Problems induced by rotated
language detection:

• Let us return to treating language
recognition as a full multiclass problem
and to solving the calibration problem in
a way which is as application-
independent as possible.

• Then we can solve not only language
detection tasks, but also many other
recognition tasks.

Back to our own agenda …

Part II: Multiclass

1. What we want to do
2. Why cost and error-rate don’t work.
3. How NIST did it.

4. How we propose to do it.
5. Experimental demonstration of our

proposal.

Let’s recapitulate our
application-independent

recipe.

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

prior

costs

class posterior

class likelihoods

Application:
(standard implementation,
nothing to tune)

Agenda:
optimize likelihoods, to
make cost-effective
standard Bayes
decisions over a wide
range of applications,
with different priors and
costs.

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

prior

costs

class posterior

class likelihoods

Application:
(standard implementation,
nothing to tune)

To optimize,
we need to
evaluate.

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

prior

costs

class posterior

class likelihoods

Application

hard decisions

input
application-independent
pattern recognizer

Bayes’ Rule

minimize expected
cost of decisions

prior

costs

class posterior

class likelihoods

Replace application with evaluation
method that represents a wide range of
Bayes decision applications, with
different costs and priors.

To understand how to vary the
application, we need to understand how
to vary the prior and costs.

Evaluation over different priors
and costs

Prior

1,) class(
1

== ∑
=

N

i
ii PiPP

The prior can be varied inside an
(N-1) dimensional simplex.

Multiclass Cost Functions:
2-minute tutorial

(In which many important and interesting facts are ignored.)

Cost Function Complexity

There are N 2 - N different types of
misclassification error, all of which could have
different costs.

…CN2CN1N

……………

C2N…C212

C1N…C121

N…21

tr
ue

 c
la

ss

estimated class

There can be N 2 - N different cost
coefficients.

We will instead use a
simplified cost function:

Simplified cost function

Let the cost be:
• Dependent on the true class,
• but independent of the estimated class:

Cmiss(i) is the cost of missing true class i
when misclassifying it as any other
class.

…Cmiss(N)Cmiss(N)N

…………

Cmiss(2)…Cmiss(2)2

Cmiss(1)…Cmiss(1)1

N…21

tr
ue

 c
la

ss
estimated class

There are N different types of misses, all of
which could have different costs.

Simplified cost function:
Expected miss cost

∑
=

=
N

i
missmissimiss iPiCPC

1

)()(

Simplified cost function:
Expected miss cost

∑
=

=
N

i
missmissimiss iPiCPC

1

)()(

Pi : prior for class i.

Simplified cost function:
Expected miss cost

∑
=

=
N

i
missmissimiss iPiCPC

1

)()(

Cmiss(i) : cost of missing class i.

Simplified cost function:
Expected miss cost

∑
=

=
N

i
missmissimiss iPiCPC

1

)()(

Pmiss(i) : empirical miss-rate for
class i.

What recognizer (evaluee)
does

input
generative (e.g. GMM) or
discriminative (e.g. SVM)
modeling

(uncalibrated)
N-component
score-vector

calibration
transformation

(calibrated)
class log-likelihoods:
log P (score-vector | class i),
i = 1, 2, …, N

to application
or evaluator

Bayes
decision

class
likelihoods

count errors
estimated
class

Cmiss

Cmxe∫ ∫ ∫ θθ
��

⋯ dCmiss)(

Pmiss(1), …, Pmiss(N)

What evaluator does

)(costs

),(prior

θ
θ
�

�

θ
�

Bayes
decision

class
likelihoods

count errors
estimated
class

Cmiss

Cmxe∫ ∫ ∫ θθ
��

⋯ dCmiss)(

Pmiss(1), …, Pmiss(N)

What evaluator does

)(costs

),(prior

θ
θ
�

�

θ
�

Again: this
choice is
critical!

i
missi

N

i
ii

iCP
θ

θθθ

1
)(

1,10:
1

=

=≤≤ ∑
=

�

The magic formula:

i
missi

N

i
ii

iCP
θ

θθθ

1
)(

1,10:
1

=

=≤≤ ∑
=

�

The magic formula:

Note 1: x is an N-vector of parameters,
which has the form of a probability
distribution.

θ
�

i
missi

N

i
ii

iCP
θ

θθθ

1
)(

1,10:
1

=

=≤≤ ∑
=

�

The magic formula:

Note 2: We don’t need to vary cost and prior
separately, because in expected-cost
calculations they always act together as
prior-cost products.

i
missi

N

i
ii

iCP
θ

θθθ

1
)(

1,10:
1

=

=≤≤ ∑
=

�

The magic formula:

Note 3: Notice again the infinities at the
edges of the parameter simplex (at θi = 0).
This ensures that we include applications
with arbitrarily large cost in our evaluation.

which gives our new
evaluation objective:

∑

∫ ∫ ∫∑
−

=

−
=

−=

=

1

1

1

0

1

1

0

2

1

0

1
1

1

)(
1

N

i
iN

N

N

i
miss

i
mxe dddiPkC

θθ

θθθ
θ

⋯⋯

∑

∫ ∫ ∫∑
−

=

−
=

−=

=

1

1

1

0

1

1

0

2

1

0

1
1

1

)(
1

N

i
iN

N

N

i
miss

i
mxe dddiPkC

θθ

θθθ
θ

⋯⋯

We integrate a weighted combination of
empirical miss-rate over the whole
parameter simplex.

∑

∫ ∫ ∫∑
−

=

−
=

−=

=

1

1

1

0

1

1

0

2

1

0

1
1

1

)(
1

N

i
iN

N

N

i
miss

i
mxe dddiPkC

θθ

θθθ
θ

⋯⋯

• OK, this is another impressive-
looking integral, but how do you
compute it?
• And why is it called Cmxe?

Why is it called Cmxe ?

• Cmxe refers to multiclass-cross-entropy
(In the 2-class case: Cllr = Cmxe)

• When there are N > 2 classes, scores in
likelihood-ratio form are inconvenient---so we
work with scores in log-likelihood form.
(Again: log is for practical reasons.)

• Computation of Cmxe from a supervised
evaluation database is just as easy as
computation of error-rates.

How to compute Cmxe

How to compute Cmxe

∑ ∑
∑

= ∈

==
N

i St it

N

j jt

i
mxe

i
ll

ll

SN
C

1

1
2)exp(

)exp(
log

11

N is the number of classes.
Si is the set of trials of class i .
llit = log P (trial t | class i).

is the log-likelihood under evaluation
for class i, given the data of trial t.

Properties of Cmxe

• Cmxe = 0 (perfect): for i ≠ j, outputs llit - lljt = +∞
, whenever i is the true class.

• 0 < Cmxe < log2 N (useful): well-calibrated,
real-world detector.

• Cllr = log2 N (reference): well-calibrated but
useless, gives no discrimination, outputs llit =
lljt for any i, j and t.

• log2 N < Cllr ≤ ∞ (badly calibrated): makes
worse decisions than not using any detector
at all (i.e. worse than reference detector).

Information-theoretic
interpretation

Cmxe can be shown to be equivalent to an
empirical cross-entropy.

∆ = log2 N - Cmxe gives the effective amount of
information (in bits of Shannon entropy) that
the recognizer delivers to the user, relative to
a maximally uncertain prior of

Pi = 1 / N.

Information view is optimistic!
• This information view of multiclass recognizer

performance gives an optimistic view for large
N: For a given recognizer strategy, the
amount of effective recognized information,

∆ = log2 N - Cmxe tends to increase with N.
As problem perplexity increases, experiments
show we can also manage to extract more
and more information.

• This is in marked contrast to error-rates,
which appear to be more and more
pessimistic for large N.

Cmxe as numerical optimization
objective

Again:
Numerically optimizing Cmxe is just a form

of multiclass logistic regression, which
can also be solved with conjugate
gradient methods.

Part II: Multiclass

1. What we want to do
2. Why cost and error-rate don’t work.
3. How NIST did it.
4. How we propose to do it.

5. Experimental demonstration of
our proposal.

Experimental demonstration

We experiment with 7 different language
recognizers, which were submitted by 7
different teams for NIST 2007 Language
Recognition Evaluation.

• Here N = 14 languages.

Experimental demonstration

• We demonstrate that we can calibrate (by
multiclass logistic regression) the scores of
several different language recognizers, to act
as well-calibrated language likelihoods.

• We practically demonstrate well-
calibratedness by successfully applying these
likelihoods to make Bayes decisions for
thousands of different applications.

Calibration strategies

2 of the 7 submitted recognizers had used
the same multiclass logistic regression
calibration that we are proposing in this
talk.

• Both used my own calibration software.
(Available as MATLAB toolkit, see
below.)

Score transformation
strategies

The other 5 recognizers were designed
specifically for the LRE task of detecting one
target language at a time, while the 13 other
languages are considered non-targets.

• Their scores were presented in an
application-dependent form, suitable for that
task.

• We transformed these scores to act as
multiclass language likelihoods. We used two
different transformation strategies:

Score Transformations

1. Projection: A quick-and-dirty, parameterless,
non-linear, non-invertible score transformation
which converted the 14 separate detection-log-
likelihood-ratios to assume the formof a 14-
dimensional multiclass log-likelihood-vector.

2. Re-calibration: A parametrized, affine,
invertible calibration transformation of scores to
obtain the multiclass log-likelihood-vectors.
Parameters were trained with multiclass logistic
regression, using a separateset of training data
specially provided by each team.

16369 Applications!

• The focus of LRE’07 was one-against-
the-rest detection, within a closed
subset of 14 languages.
– The LRE’07 evaluation criterion was called

Cavg which is an average of 14 detection
cost functions, one for each target.

• We used this same framework for our
demonstration, using the same Cavg
evaluation criterion, but we applied it
also to the other 16368 non-trivial
subsets of these 14 languages.

16369 Applications!

In summary: We did a total of 16369
different NIST evaluations, with
language sets of sizes 2, 3, …, 14.

Sanity check:

Did re-calibration affect the
original

14-language Cavg ?

atvs tss4 ing iir but ptt mit
0

1

2

3

4

5

6

C
a

vg
 [%

]

Genera l LR, closed-set, a ll 14 languages, 30s

submitted
projected
re-ca libra ted

system: 1 2 3 4 5 6 7

atvs tss4 ing iir but ptt mit
0

1

2

3

4

5

6

C
a

vg
 [%

]

Genera l LR, closed-set, a ll 14 languages, 30s

submitted
projected
re-ca libra ted

Multiclass logistic regression re-
calibration improved
performance in all cases where
it was applied.

system: 1 2 3 4 5 6 7

atvs tss4 ing iir but ptt mit
0

1

2

3

4

5

6

C
a

vg
 [%

]

Genera l LR, closed-set, a ll 14 languages, 30s

submitted
projected
re-ca libra ted

Improvement was dramatic for
systems 3 and 4. (These
systems had originally used
global calibration, trained on
pooled scores.)

system: 1 2 3 4 5 6 7

Now all 16369 subsets:

System 1 (projected scores)

{English, Hindustani}

System 2 (original scores)

System 3 (projected, re-calibrated)

System 4 (projected, re-calibrated)

System 5 (original scores)

{English, Hindustani}

System 6 (re-calibrated)

System 7 (projected, re-calibrated)

LRE Subsets Experiment:
Conclusions

1. We used multiclass logistic regression
(optimization of Cmxe), to improve the
performance of systems that had specifically
been designed for LRE’07.

Our calibration was application-independent
(not targeted at a specific application) but
nevertheless it improved upon systems that
had been specially designed for the LRE’07
detection application.

LRE Subsets Experiment:
Conclusions

2. Our re-calibration allowed these same
(previously application-dependent)
language recognizers to also be applied
successfully to thousands of other
applications, even though those recognizers
were not specifically designed for such use.

Cmxe tools: FoCal Multiclass

Free MATLAB toolkit for fusion, calibration,
evaluation and bayes decisions for
Multiclass Pattern Recognition

See:
http://niko.brummer.googlepages.com/focalmulticlass

Contents

Part I

Part II

Conclusion
Bibliography

Conclusion
The following are all equivalent (and all are

good things to do):
• Calibrating pattern recognition outputs as

likelihoods.

• Optimizing the amount of effective information
delivered by pattern recognizers.

• Optimizing recognition error-rates over wide
ranges of the priors.

• Optimizing recognizer decision cost over wide
ranges of cost and prior parameters.

Bibliography

1. Cllr references
2. FSR References
3. Cmxe References

Cllr references

1. Niko Brümmer, “Application-Independent
Evaluation of Speaker Detection”, Odyssey
2004: The Speaker and Language Recognmition
Workshop, Toledo.

2. Niko Brümmer and Johan du Preez,
“Application-Independent Evaluation of Speaker
Detection”, Computer Speech and Language,
2006, pp. 230-275.

3. David van Leeuwen and Niko Brümmer, “An
Introduction to Application-Independent
Evaluation of Speaker Recognition Systems”, in
Speaker Classification vol 1,Ed. Christian
Müller, Springer, 2007, pp. 330-353.

FSR References

1. Daniel Ramos-Castro et al., “Likelihood Ratio
Calibration in a Transparent and Testable
Forensic Speaker Recognition Framework”,
Proc. IEEE Odyssey 2006: The Speaker and
Language Recognition Workshop, San Juan,
2006. (Best student paper award!)

2. W.M. Campbell et al., “Understanding scores in
Forensic Speaker Recognition”, Proc. IEEE
Odyssey 2006: The Speaker and Language
Recognition Workshop, San Juan, 2006.

CmxeReferences

1. David van Leeuwen and Niko Brümmer,” On
Calibration of Language Recognition Scores”,
Proc. IEEE Odyssey 2006: The Speaker and
Language Recognition Workshop, San Juan,
2006.

2. Niko Brümmer, FoCal Multi-class: Toolkit for
Evaluation, Fusion and Calibration of Multi-
class Recognition Scores: Tutorial and User
Manual, online:
http://niko.brummer.googlepages.com/FoCal_M
ultiClass_Manual.pdf

Summary
It is common practice in many fields
of basic pattern recognition
research to evaluate performance as
the misclassification error-rate
on a given evaluation database. A
limitation of this approach is that
it implicitly assumes that all types of
misclassification have equal
cost and that the prior class
distribution equals the relative
proportions of classes in the
evaluation database.

In this talk, we generalize the
traditional error-rate evaluation, to
create an evaluation criterion that
allows optimization of pattern
recognizers for wide ranges of
applications, having different class
priors and misclassification costs.
We further show that this same
strategy optimizes the amount of
relevant information that recognizers
deliver to the user.

In particular, we consider a class of
evaluation objectives known as
"proper scoring rules", which
effectively optimize the ability of
pattern recognizers to make
minimum-expected-cost Bayes
decisions. In
this framework, we design our
pattern recognizers to:

- extract from the input as much
relevant information as possible
about the unknown classes, and
- to output this information in the form
of well-calibrated class likelihoods.
We refer to this form of output as
"application-independent". Then
when application-specific priors and
costs are added, the likelihoods
can be used in a straight-forward and
standard way to make
minimum-expected-cost Bayes
decisions.

A given proper scoring rule can be
interpreted as a weighted
combination of misclassification
costs, with a weight distribution
over different costs and/or priors. On
the other hand, proper scoring
rules can also be interpreted as
generalized measures of uncertainty
and therefore as generalized
measures of information. We show
that
there is a particular weighting
distribution which forms the
logarithmic proper scoring rule, and
for which the associated
uncertainty measure is Shannon's
entropy, which is the canonical
information measure. We conclude
that optimizing the logarithmic
scoring rule not only minimizes error-

rates and misclassification
costs, but it also maximizes the
effective amount of relevant
information delivered to the user by
the recognizer.

We discuss separately our strategies
for binary and multiclass pattern
recognition:
- We illustrate the binary case with
the example of speaker
recognition, where the calibration of
detection scores in
likelihood-ratio form is of particular
importance for forensic
applications.
- We illustrate the multiclass case
with examples from the recent 2007
NIST Language Recognition
Evaluation, where we experiment
with the
language recognizers of 7 different
research teams, all of which had
been designed with one particular
language detection application in
mind. We show that by re-calibrating
these recognizers by optimization
of a multiclass logarithmic scoring
rule, they can be successfully
applied to a range of thousands of
other applications.

