Multimedia searching: Techniques and systems

Dr. Nastaran FATEMI
Institute of Information and Communication Technologies, HEIG-VD, Yverdon, Switzerland
Nastaran.Fatemi@heig-vd.ch

Objectives

- Give a brief introduction to the principles of multimedia information retrieval (MMIR)
- Present the fundamental challenges involved in building MMIR systems
- Highlight a few of the promising research directions in this field
Need for MMIR

- There is an ever-increasing amount of multimedia information
 - Multimedia enabled devices are emerging rapidly
 - Network bandwidth is augmenting
 - Mainstream media is moving to the Web
 - There are plenty of different applications
- Information is of no use unless you can actually access it!

MMIR application domains

- Medicine
 - Get diagnosis of cases with similar scans
- Law enforcement
 - Child pornography prosecution
 - Copyright infringement (music, videos, images)
 - CCTV video retrieval (car park, public spaces)
- Digital libraries
 - TV archives
 - Photo/video sharing and retrieval
 - Scientific image archives
 - Etc.

These application require searching, visualising, summarizing and browsing of MM data.
Text IR

- More than 30 years of research and development
- Extensive theoretical foundations
 - Retrieval models
 - Ranking algorithms
 - Indexing structures
- Effective implementations
 - Thousands of textual digital libraries and search engines, ex: Google!

Text IR: principles

- Documents and queries are represented as vectors of term weights.
- Term weights represent the importance of terms within documents. They can be calculated based on the frequency of the terms in the documents (TF*IDF).
- Measuring the similarity of the document and the query vectors determines the rank of the documents in the result set.

\[
\text{CosSim}(d_j, q) = \frac{\sum_{i} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i} w_{ij}^2 \cdot \sum_{i} w_{iq}^2}}
\]
Text IR: indexing

- Automatically built inverted indexes allow efficient resolution of queries.
- Inverted indexes give for each term a list of documents where the term appears, and the weight of the term in the document.

<table>
<thead>
<tr>
<th>Index terms</th>
<th>df</th>
<th>D_i, t_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td>3</td>
<td>D_1, 4</td>
</tr>
<tr>
<td>database</td>
<td>2</td>
<td>D_1, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>science</td>
<td>4</td>
<td>D_2, 4</td>
</tr>
<tr>
<td>system</td>
<td>1</td>
<td>D_2, 2</td>
</tr>
</tbody>
</table>

Differences between text and MM IR

- People are used to express their needs using natural language.
- Natural language queries are frequently used for text information retrieval.
- Matching between text queries and text documents is more or less straightforward.

- MM documents contain non-textual data.
- To allow text queries for MM documents, the document content should be described textually.
- MM queries are also sometimes expressed via examples or sketches.
Examples of MM queries

- Find pictures of rose flowers.
- Find pictures of Madrid city.
- Find video shots of people walking.
- Find video shots of at least 10 seconds showing a car race.
- Find shots with people crying victory
- Find scenes of debates between Nicolas Sarkozy and Ségolène Royal in the context of French 2007 presidential election.
- Find images similar to a given example.
- Find images similar to a given sketch.

Different categories of queries

- Queries expressed as a text description of what is desired:
 - Place/Person/Object/Event: Concepts
 - Visual/Audio/Thematic: Viewpoints
 - Shot/Scene: Granularities
- Queries expressed by providing an example/sketch similar to what is desired:
 - Low-level similarity: Colour/Shape/Texture similarity
 - High-level similarity: person, place, concept similarity
Content-based multimedia retrieval

- In the state-of-the-art, we often use the expression “Content-based multimedia retrieval” to indicate that the search will analyze the actual contents of the image/video.
- The term content in this context might refer colours, shapes, textures, or any other information that can be derived form the image/video itself.
- In this sense, content-based retrieval is opposed to metadata based retrieval, in which searches must rely on metadata such as keywords.

MM queries expressed in text

- The query is expressed in terms of “concepts”.
- How to extract concepts from MM content?
- Different approaches:
 1. Use the text parts of the MM
 2. Manually annotate concepts: provide text descriptions.
 3. Automatically extract concepts
 We now present these three approaches of indexing/retrieval for Images and Videos.
Image retrieval

Image retrieval based on text
Image retrieval based on text (ctd.)

- Using the text surrounding the image
 - Text close to the image in the containing document
 - URL: www.healthgene.com/canine/images/poodle.jpg
 - Alt text:
 - hyperlink: …The Standard Poodle is the original from…

- Using the text inside the image
 - Requires OCR technique

- Using manual annotations
 - Annotators (professional/non processional) can provide text descriptions of the images. This technique is quite expensive in time and resources.

Image retrieval based on text (ctd.)

- Pros
 - Easy to implement and use
 - Useful for simple and non-professional image retrieval

- Cons
 - It is incomplete and subjective
 - Some features are difficult to define in text such as texture or object shape
 - It is difficult to describe all image contents
Image retrieval based on text (ctd.)

- An image is worth 1000 words!
- However, these 1000 words may differ from one individual to another depending on their perspective and/or knowledge of the image context.

Old or young woman? One or two faces?

Content-based image retrieval (CBIR)

- The commonly accepted way is to show a sample image, or draw a sketch of the desired images to the system, and ask the system to retrieve all the images similar to that sample image or sketch.
- Examples
 - retrievr
 - Imageseek

http://labs.systemone.at/retrievr
CBIR (Ctd.)

- CBIR relies on visual features that can be **automatically extracted** from the image. These features include:
 - Low/pixel level features describing the colour, texture, and/or (primitive) shapes within the image.
 - The objects, identified within an image.
- Visual descriptors are used to form the basis for one or more image **signatures** that can be indexed.
 - An image query is analyzed using the same descriptor techniques giving a **query signature**, which is then compared to the image signatures to determine similarity between the query specification and the database image signatures.

Images containing similar colours

- Examining images based on the colours they contain is one of the most widely used techniques because it does not depend on image size or orientation.
- Various techniques are used:
 - Colour histograms
 - Colour Moments
 - Colour Sets: Map RGB Colour space to Hue Saturation Value, & quantize
 - Colour layout: local colour features by dividing image into regions
 - Colour correlograms
Colour histograms

- Colour histograms give an estimation of the distribution of the colours in the image.
- The colour space is partitioned and for each partition the pixels within its range are counted, resulting in a representation of the relative frequencies of the occurring colours.

Images containing similar texture

- Texture measures look for visual patterns in images and how they are spatially defined.
- Various techniques are use
 - Co-occurrence matrix
 - Orientation and distance on gray-scale pixels
 - Wavelet Transforms
 - Gabor Filters
 - Tamura features corresponding to human visual perception (*coarseness*, *contrast*, *directionality*, *linelikeness*, *regularity*, *roughness*)
Various techniques are used:
- Outer Boundary based vs. region based
- Fourier descriptors
- Moment invariants
- 3-D object representations using similar invariant features
- Well-known edge detection algorithms.

Images containing similar shape (ctd.)

- Shapes are often determined by first applying segmentation or edge detection to an image.
- In some cases accurate shape detection requires human intervention because methods like segmentation are very difficult to completely automate.
Images containing similar content

- Challenge
 - The term “similarity” has different meaning for different people.
 - Even the same person uses different similarity measures in different situations.
 - Similarity of the “content” is hardly measurable using low-level features!

Variety of Similarity

- Similar colour distribution ➔ Histogram matching
- Similar texture pattern ➔ Texture analysis
- Similar shape ➔ Image Segmentation, Pattern recognition
- Similar real content ➔ Eternal goal :-)
The semantic gap

- Computers are very good at automatically computing **low-level features** such as colour histograms.
- Computers are rather poor in extracting **high-level semantic features**, such as objects and their meanings, actions, feelings, etc.
- High level features are indeed more useful than low-level features in content-based retrieval!

The semantic gap

1. 120,000 pixels with a particular spatial colour distribution
2. human faces, white and yellow clothes
3. victory, triumph, etc.

- The gap between low-level features and high-level semantic descriptions is often referred to as the **semantic gap**.
Bridging the semantic gap

- The low-level features are practical from a computational point of view.
 - If a system uses these low-level features, it has to provide a way to bridge the semantic gap between these features and the high-level semantics required by the users.
- Establishing this bridge has turned out to be very difficult.
 - All steps towards reducing the semantic gap represent a significant leap from the current state-of-the-art in content-based retrieval.

One approach is to use machine learning techniques to combine different low-level features into semantic concept models.

Example

(Taken from Stefan Rüger et al., Content-based Multimedia Information Retrieval: Challenges & Opportunities)
- Region segmentation + region classification (grass, water, etc.)
- Using simple models for complex concepts (grass + plates + people = barbecue)
Region classifiers

- Visual categories
 - grass, sky (blue), sky (cloudy), skin, trees, wood, water, sand, brick, snow, tarmac
- Give regions a probability of membership

Positive Examples → Cluster → Prune

Negative Examples → Cluster

Test region → Cluster → Nearest Neighbors → Probability

Example: grass classifier

very likely
may be
probably not
Modelling semantic concepts

Bayesian networks

Bridging the semantic gap

- Another approach is using relevance feedback in which the system learns from the user:
 - The user provides a first query and asks for similar images;
 - The system returns a set of images considered as similar to the user’s query;
 - The user re-ranks the results based on his/her notion of similarity;
 - The system re-computes optimal parameters for this specific query automatically.
CBIR: discussion

- Problems
 - One must have an example image.
 - Example image is 2-D, hence only that view of the object will be returned.
 - Large amount of image data is required.
 - Similar colour/texture/shape does not equal similar image.

- Compromise
 - Usually the best results come from a combination of both text and content searching
 - Use existing texts (title, subject, caption)
 - Use content information (colour, texture, shape, etc.)

Video retrieval
Video retrieval approaches

- Text-based retrieval
 - Same as for images, videos can be described by text and text-based indexing/retrieval methods can be applied to retrieve videos.

- Content-based retrieval
 - Video is a spatio-temporal media
 - Spatial features: ex. shape of the objects in the frames
 - Temporal features: ex. movement of objects, temporal relationships between events, duration of shots, etc.
 - Content-based retrieval should allow spatio-temporal content description
 - Ex. retrieve a sunset (yellow circle going from the top to the bottom)
 - Ex. retrieve a scene showing a car race with the duration of at least 10 seconds

Content-based video retrieval

- VisualSEEK (Columbia University)

[Image of VisualSEEK interface]

http://persia.ee.columbia.edu:8080/search.html
Text-based video retrieval

- Query by example tools have a limited scope of application.
- In practice, most of the video retrieval systems, such as TV and film archives require high-level semantic querying and browsing tools.
- Such tools require exploiting the video logical structure and the video high-level semantic descriptions.

Video content description

- Automatic description
 - **Text parts** of video, such as subtitles and Tele-texts are automatically detected using OCR techniques.
 - **Speech parts** of the video are automatically recognised (ASR) and transcribed. The text is used to index the video.
 - **Concepts** such as persons, faces, objects, are automatically detected and used for text description.
Video content description (ctd.)

- **Manual description**
 - Human annotators (professional/non professional) manually attach descriptions to video parts.
 - There are still many archive systems which use this approach.

- **Semi-automatic description**
 - Totally automatic description not yet realistic.
 - Manual description is expensive.
 - In practice, most systems use a mixture of automatic and manual descriptions.

Video segmentation

- Video descriptions are usually attached to parts of video and not the whole video.
- These parts correspond to the structure of video.
- If dealing with text, then text structure is obvious:
 - paragraph, section, topic, page, etc.
 - all text-based indexing, retrieval, linking, etc. builds upon this structure;
- If dealing with video, then first it needs to be structured, automatically.
Automatic structuring of video

- Video “programmes” are structured into logical scenes, and physical shots.

Diagram:
- Video
 - Scenes
 - Shots
 - Frames

Automatic structuring of video (ctd.)
Video temporal segmentation

- **Shot** is a sequence of frames generated during a continuous camera operation.
 - Shots are separated by different types of transitions (cuts, progressive transitions such as fade-in, fade-out, dissolves or wipes)
- There are various algorithms for **automatic shot transition detection**
 - Colour histogram comparison
 - Edge detection (good for detecting gradual transitions)
 - MPEG macroblocks
 - Combination of different approaches

Video temporal segmentation (ctd.)

- **Scene** is collection of usually adjacent shots focusing on the same objects or describing the same actions that are related in time and space.
- **Scene detection** is more complicated than shot detection, as it requires a higher level of semantic analysis of audiovisual content.
 - a first step of shot boundary detection,
 - followed by applying various methods to regroup shots into scenes.
Keyframe selection

- **Keyframes** are representative frames of a video segment.
- Keyframes are very useful
 - they are suitable for video indexing, browsing and retrieval.
 - they reduce video down to manageable size
- There are various algorithms for **keyframe detection**.
- The keyframe should be selected in a way that its visual content is the best representative of the corresponding segment.

Video content description

- Video segments are described based on different features
 - Camera movements
 - Camera movement detection algorithms
 - Objects/persons present in the segment
 - Object shape/movement detection
 - Face detection
 - Face recognition
 - Automatic text descriptions
 - Manual text descriptions
Video content description (ctd.)

- Example: MpegLog developed at HEIG-VD (University of Applied Sciences of Western Switzerland, Yverdon).
 - Semi-automatic video description tool for Lausanne City Archives
 - Automatic detection of shots and keyframes
 - Semi-automatic detection of scenes and stories
 - Manual description of the content
 - Browsing based on the video structure

Video semi-automatic description: MpegLog
Video semi-automatic description: MpegLog (ctd.)

Example: Físchlár-TV, Centre for Digital Video Processing, DCU, Ireland.

- Supports recording, analysis, browsing, and playback of digital TV video, from 8 channels.
- Users select programmes from a TV schedule with programme genre automatically assigned.
- At transmission time, the systems captures video, detects shots, scenes & Keyframes and places videos in a library of content.
- Users browse programme genres or otherwise locate programmes, and select a program for viewing;
- Initially, users are allowed to browse Keyframes and then playback;
Video browsing: Físchlár-TV

Multimedia retrieval: discussion

- Recent approaches to the problem of multimedia IR are mostly based on the extraction of text/audiovisual features
- Extraction/creation of descriptions is complex and expensive
 - Manual approaches are time consuming
 - Automatic approaches are not always possible, some are not sufficiently accurate
- Multimedia descriptions are very precious
 - Applications need to exchange them
 - Created descriptions should be conserved
=> Important need for a standard multimedia description language
Standard multimedia description language: MPEG-7

- MPEG-7 is a member of MPEG standard family
 - International standard: October 2001
 - is formally defined as “Multimedia Content Description Interface”.
 - standardises the description of various types of multimedia information.
 - does not comprise the (automatic) extraction of descriptors, nor does it specify the search engine that can make use of the description.

MPEG-7 provides a standard library for audiovisual data description in order to facilitate their exchange between various applications.
MPEG standards family

MPEG-21 Content access

MPEG-1 / 2 / 4
Content coding

Example of MPEG-7 description (I)

TV news image
Example of MPEG-7 description (II)

Type

Example of MPEG-7 description (III)

Spatial decomposition

Spatial decomposition Type
Example of MPEG-7 description (IV)

```xml
<Mpeg7>
  <StillRegion id = "news">
    <SegmentDecomposition
decompositionType = "spatial">
      <StillRegion id = "background">
        <DominantColor> 110 108 140 </DominantColor>
      </StillRegion>
    </SegmentDecomposition>
    <StillRegion id = "speaker">
    </StillRegion>
    <StillRegion id = "topic">
    </StillRegion>
  </StillRegion>
</Mpeg7>
```

Example of MPEG-7 description (V)

```xml
<Mpeg7>
  <StillRegion id = "news">
    <SegmentDecomposition
decompositionType = "spatial">
      <StillRegion id = "background">
      </StillRegion>
    </SegmentDecomposition>
    <StillRegion id = "speaker">
      <FreeTextAnnotation> Journalist Judite Sousa </FreeTextAnnotation>
    </StillRegion>
    <StillRegion id = "topic">
      <Poly>
        <Coords> 80 288, 100 200, ..., 352 288 </Coords>
      </Poly>
    </StillRegion>
  </StillRegion>
</Mpeg7>
```
MPEG-7: discussion

- Recent standard, not yet widely implemented in commercial applications
- A few MPEG-7 compatible research applications:
 - ex: Caliph and Emir
 http://www.semanticmetadata.net/features/
- Very big standard: we need to determine useful parts for a specific application: profiles.
- Great potential for multimedia reuse, indexing and retrieval.

Conclusions:
Promising directions for MMIR

- Multi-modal indexing/retrieval
 - Combining different features, using machine learning approaches to model the combination of features into higher-level semantics (INFORMEDIA project, CMU)
 - Query-class-dependency: classification of queries and resolving them using specific class-dependent tools (Prof. Shih-Fu Chang, DVMM lab, Columbia University, NY.)
Conclusions:
Promising directions for MMIR

- **Using folksonomies**
 - A folksonomy is a user generated taxonomy used to categorize and retrieve web content such as Web pages, photographs and Web links, using open-ended labels called tags.
 - Folksonomies can help to provide collaborative description of media resources and therefore facilitate access to their content.
 - Examples of use: flickr.com et del.icio.us.

Conclusions:
Promising directions for MMIR

- **Multimedia data mining**
 - Enriching descriptions based on correlations between concepts
 - Using large scale video description corpus
 - TRECvid: TREC Video Retrieval Evaluation (http://www-nlpir.nist.gov/projects/t01v/)
 - LSCOM: Large Scale Concept Ontology for Multimedia (http://www.ee.columbia.edu/ln/dvmm/lscom/)
 - Discovering association rules between annotated concepts.
 - Applying rules to a partially described content to derive new descriptions.
 - See LSVAM project (HEIG-VD and DCU).
Conclusions: Promising directions for MMIR

- **Be imaginative!**

 As the most effective solutions are not necessarily the most complex ones.

- Google currently proposes a fun way of image indexing.
 - Players on the Web are presented an image in parallel. If two players propose the same description for the image, they gain points...
 - See http://images.google.com/imagelabeler/

Thank you for your attention!