

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

PROYECTO DE FIN DE CARRERA

FPGA prototype for adaptive optics

algorithm acceleration

Ingeniería de telecomunicación

Raúl Martín Lesma

Mayo, 2014

FPGA prototype for adaptive optics

algorithm acceleration

AUTOR: Raúl Martín Lesma

TUTOR: Gustavo Sutter

High Performance Computing and Networking group

Dpto. de Ingeniería Telecomunicación

Escuela Politécnica Superior

Universidad Autónoma de Madrid

Mayo 2014

i

Resumen

La óptica adaptativa es una técnica usada principalmente para mejorar el

rendimiento de los sistemas ópticos (como por ejemplo los telescopios

astronómicos) reduciendo el efecto de las perturbaciones en el frente de ondas

introducidas por la atmósfera. Los sensores de onda más comunes (Shack-

Hartmann) producen una miríada de imágenes cuyo centroide hay que

determinar para estimar las aberraciones. Como el tiempo de coherencia de la

atmósfera está en torno al milisegundo, cada centroide debe ser estimado en el

entorno de los microsegundos para que el sistema pueda dar una respuesta a

tiempo. Debido a estas restricciones los algoritmos de centrado que se usan

habitualmente son de baja precisión.

Los algoritmos de centrado de máxima verosimilitud desarrollados para la

misión Gaia de la ESA alcanzan una precisión muy cercana a la máxima posible

matemáticamente hablando, la frontera de Crámer-Rao. A pesar del alto

rendimiento, el algoritmo usa intensivamente cálculos en coma flotante, así

que normalmente no alcanza las restricciones en el tiempo que aplican en

óptica adaptativa.

Para solucionar este problema una versión básica del algoritmo ha sido

implementada en un sistema embebido basado en FPGA. Un módulo específico

ha sido desarrollado con este propósito usando la herramienta de síntesis de

alto nivel Vivado HLS. Para cumplir los requisitos temporales el algoritmo ha

sido estructurado en un pipeline y paralelizado hasta un límite razonable.

Aunque implementar la versión completa del algoritmo requerirá más

desarrollo, los resultados alcanzados por esta primera aproximación son muy

prometedores y refuerzan la relevancia de los sistemas basados en FPGA para

aplicaciones astronómicas.

ii

Abstract

Adaptive optics is a technique used mainly to improve the performance of

optical systems (as astronomical telescopes) by reducing the effect of

wavefront distortions introduced by the atmosphere. The most common

wavefront sensors (Shack-Hartmann) produce a myriad of images which

centroid has to be determined to estimate the aberrations. As the coherence

tome of the atmosphere is around the millisecond, each centroid has to be

estimated in a time around the microseconds, so the system is able to give an

output in time. Due to these requirements the centroiding algorithms most

commonly used achieve low precision.

The maximum likelihood centroiding algorithm developed for the ESA Gaia

mission provides a precision very close to the maximum mathematically

achievable, which is the Crámer-Rao lower bound. Despite of its high

performance, the algorithm is intensive in floating point calculation, so it is

typically far from the strict time constraints.

To solve this problem a basic version of the algorithm has been implemented

in a FPGA based embedded system. A specific core has been developed for this

purpose using the high level synthesis tool Vivado HLS. To meet the time

constraints the algorithm has been parallelized and pipelined up to a

reasonable degree.

Although implementing the complete version of the algorithm will require

further development, the results shown by this first approach are very

promising and strengthen the relevance of FPGA based systems for

astronomical applications.

1

Table of contents

Resumen ...i

Abstract ... ii

Table of figures ... 3

Glossary .. 5

1. Introduction .. 7

1.1. Motivation and objectives ... 7

1.2. Document description ... 8

2. State of the art of Adaptive Optics ... 9

2.1. Introduction to adaptive optics ... 9

2.2. Problem in adaptive optics that is being solved .. 10

2.3. Wavefront sensor .. 11

2.4. Purpose of Adaptive Optics algorithm: Centroids, Crámer-Rao lower bound and
maximum likelihood algorithm ... 12

2.5. Problems in SW solution, options to solve it ... 15

2.6. Adaptive Optics algorithm ... 16

3. The use of reconfigurable HW for adaptive optics ... 19

3.1. Benefits of reconfigurable hardware and FPGAs .. 19

3.2. Commercial brands, main capabilities of some families 20

3.3. FPGA traditional design flow ... 21

3.4. High Level Synthesis tools: a new workflow ... 23

3.5. Platform description (Board features and components) 28

4. First functional prototype (reduced Look-up table set) ... 31

4.1. Matrix multiplication algorithm in Vivado HLS .. 31

4.1.1. Loop unroll directive ... 33

4.1.2. Pipeline directive ... 34

4.2. Code optimization: thinking in hardware .. 37

4.3. Design of complete System: Design decisions .. 42

4.3.1. Embedded system ... 42

4.3.2. System Control .. 42

4.3.3. External memory ... 43

4.3.4. Compact Flash ... 44

4.3.5. Algorithm core communications with the system .. 44

2

4.3.6. Complete System Schematic ... 46

5. Results ... 49

6. Conclusion and Future work ... 53

6.1. Conclusion ... 53

6.2. Future work and optimizations ... 54

7. References .. 57

Apéndice A: Introducción ... 59

Motivación y objetivos ... 59

Descripción del documento .. 60

Apéndice B: Conclusión y trabajo futuro .. 61

Conclusión .. 61

Trabajo futuro y optimizaciones ... 62

A. Presupuesto .. 65

B. Pliego de condiciones ... 67

Condiciones generales .. 67

Condiciones particulares .. 71

3

Table of figures

Fig. 1: Left, Neptune picture taken with AO; right, same picture without AO. 9

Fig. 2: Wavefront sensor included in Gaia (exterior), from [MOR12b] 11

Fig. 3: WF schematic. Up, it shows a flat WF and the regular pattern that it

produces; middle, an aberrated WF results in an irregular pattern; bottom,

a deformable mirror is able to reconstruct a flat WF. 12

Fig. 4: Airy disk produced by refraction of the light [SAK07]................................ 13

Fig. 5: A pair of deformed Airy disks produced by a WFS lenslet, and its

correspondent PSF, in a pixel matrix of 5x5. [JAM]. .. 14

Fig. 6: Traditional step by step design flow (from [XIL11a]) 21

Fig. 7: Typical high level synthesis tool workflow (combined with Xilinx tools),

from [BDT10] .. 24

Fig. 8: Typical HLSTs automatically generate RTL test benches in addition

to the RTL module implementing the design, from [BDT10] 25

Fig. 9: Directives are shown up in the place where they take effect. 27

Fig. 10: Picture of the actual ML605 board that has been used 28

Fig. 11: Schematic of the ML605 board from [XIL09] ... 29

Fig. 12: Example of 4×4 matrix multiplication .. 32

Fig. 13: Schematic of loop unrolling directive (From [XIL13]). 33

Fig. 14: Analysis view of the unrolled basic code in VHLS. 34

Fig. 15: Left: Loop without pipelining. Right: A totally pipelined loop uses all

the resources all the time, from [XIL13]. .. 34

Fig. 16: Non-perfect pipeline with II=4. ... 35

Fig. 17: Analysis view in which it is shown that fadd cannot start before fmul

finishes. .. 36

Fig. 18: The multipliers can be used at the same time in this approach, even if

fadd modules cannot. ... 37

Fig. 19: XPS view of the embedded modules.. 46

Fig. 20: Performance estimates for the final VHLS code. .. 49

Fig. 21: Actual resource usage of RTL code generated by VHLS 50

Fig. 22: Resource utilization estimate that VHLS does over the resources of the

Virtex-6 XC6VLX240T ... 50

Fig. 23: Resource usage resume in XPS ... 51

file:///C:/Users/Raul/Dropbox/Raul_Martin_ESA/PFC/FPGA%20prototype%20for%20adaptive%20optics%20algorithm%20acceleration%20(PFC)%20Versión%20final.docx%23_Toc388437740
file:///C:/Users/Raul/Dropbox/Raul_Martin_ESA/PFC/FPGA%20prototype%20for%20adaptive%20optics%20algorithm%20acceleration%20(PFC)%20Versión%20final.docx%23_Toc388437743
file:///C:/Users/Raul/Dropbox/Raul_Martin_ESA/PFC/FPGA%20prototype%20for%20adaptive%20optics%20algorithm%20acceleration%20(PFC)%20Versión%20final.docx%23_Toc388437748

4

Fig. 24: Resource usage resume in XPS (DSP)... 51

Fig. 25: This screen capture shows the inefficiency of the read stage of the

algorithm. It is one of the improvement points. .. 55

5

Glossary

AMBA Advanced Microcontroller Bus Architecture

AO Adaptive Optics

ASIC Application-specific Integrated Circuit

BPI Byte Peripheral Interface

BRAM Block RAM

CCD Charged-Coupled Device

CPU Central Processing Unit

DQPSK Differentially encoded Quadrature Phase-shift Keying

DSP Digital Signal Processor

ESA European Space Agency

ESAC European Space Astronomy Centre

FADD Floating Point Addition

FF Flip-flop

FIFO First In, First Out

FIG Figure

FMC FPGA Mezzanine Card

FMUL Floating Point Multiplication

FPGA Field Programmable Gate Array

GPU Graphics Processor Unit

HDL Hardware Description Language

HLS High Level Synthesis

HLST High Level Synthesis Tools

HPC High Performance Connection

HW Hardware

JTAG Joint Test Action Group

LPC Low Performance Connection

LUT Look-up Table

PSF Point Spread Function

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RMS Root Mean Square

RTL Register Transfer Level (Language)

6

SW Software

UART Universal Asynchronous Receiver-Transmitter

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHLS Vivado High Level Synthesis

WF Wavefront

WFS Wavefront sensor

XPS Xilinx Platform Studio

7

1. Introduction

This Project has been carried out within the framework of the European Space

Astronomy Centre (ESAC) trainee program, which gives the opportunity to

contribute to current missions to young student scientists and engineers. This

project covers the design and implementation of a FPGA prototype, which has

the purpose of accelerating a centroiding algorithm. It will be evaluated if

FPGAs are adequate devices to implement adaptive optics algorithms, given the

typical time constraints.

1.1. Motivation and objectives

Several astronomical applications require obtaining and analysing the centroid

of images with a very high duty cycle. Two examples are adaptive optics and

attitude and orbit control systems. The speed requirements can be very

stringent (μs for typical adaptive optics applications), and inefficient but fast

algorithms are typically used, such as the image centre of gravity.

The maximum precision that any algorithm can achieve is given by the Crámer-

Rao lower bound [BAS04]. The maximum likelihood algorithms developed for

the ESA Gaia mission [LIN08] provide a precision very close to the Crámer-Rao

limit, and can be considered optimal in terms of performance. They are based

on forward modelling: the weighted Gauss-Newton optimization of a function

resembling the observed data. However, they are time consuming, and typically

far from the speed requirements needed for time critical applications.

FPGA based devices have been intensively used in the past in satellites and

other ESA missions to process data on-board, and therefore to reduce the

amount of data sent to Earth. They have been proven to be useful in several

fields in the space industry, and accelerating heavy centroiding algorithms

could be one of its uses.

Although not within the scope of this thesis, an advanced version of the

prototype that will result of this project would be connected in some way to a

8

Shack-Hartmann wavefront sensor, receiving the data that it outputs. Then it

would reconstruct the wavefront for a potential restoration using deformable

mirrors.

The objectives of this project are listed next:

 Design and implementation of a specific core that performs the

mentioned centroiding calculation algorithm.

 Optimization of the core that implements the centroiding calculation

algorithm, adapting the hardware to the needs of the algorithm.

 Testing of core functionality.

 Design and implementation of a system that provides the core with data

and general functionality.

 Optimization of the system, to approach the 1 μs time scale.

 Evaluation of the possibilities of a similar system to process in parallel

several tens of lenslets, most likely accommodating an equal number of

accelerating cores.

 Evaluation of the suitability of FPGA system for this type of algorithm

and time constraints.

1.2. Document description

After the introduction, section ‘2. State of the Art of Adaptive Optics’, explains

the purpose of adaptive optics, the problem that this project issues, several

clarification about the technology involved, and finally the implemented

algorithm. Section ‘3. The use of Reconfigurable HW for adaptative optics’

explains why this technology could be relevant for adaptive optics, details the

features of the evaluation board used in the project and also includes some

considerations to understand the design decisions. In Section ‘4. First

functional prototype’ it is explained how was carried out the prototype itself,

including both the computing core and the general system. Sections 5 and 6

present the results, the future work and the conclusions of the project.

9

2. State of the art of Adaptive

Optics

2.1. Introduction to adaptive optics

Adaptive optics (AO) is the technology that is used to correct distortions in a

wavefront (WF) in real-time. It works measuring the distortion and

compensating for it with some device, usually a deformable mirror. AO

systems are used in several fields, including ocular surgery and astronomical

observation:

 Ocular medicine and surgery: AO enable doctors to see the eye internal

structure with precision due to its capacity to eliminate the eye

aberration. It is also useful to measure the exact amount of correction

needed when surgery is performed or even to model the results of it.

 Astronomical observation: Before light reaches the focal plane of a

ground based telescope it has been distorted by the atmosphere. The

way the atmosphere is distorting the light is also changing continuously.

Due to this effect the only way to achieve ground based diffraction

limited imaging is to include an AO system integrated in the telescope.

Adaptive optics in astronomy has been proved very useful in achieving more

accurate images. As can be seen in Fig. 1 the pictures obtained with an AO

system are much sharper and clear than the ones in which no AO system has

been implemented.

Fig. 1: Left, Neptune picture taken with AO; right, same picture
without AO.

10

2.2. Problem in adaptive optics that is being solved

One of the main problems of AO is that the system is required to work in real-

time, which in this case means that the whole process must be finish in a time

scale of 1 ms. This time scale is called coherence time and depends on several

parameters, as the Fried parameter and the average wind speed [DAV12]. So

every step in a WF calculating algorithm should be completed in less than 1

ms. In particular it means that each of the around 1000 centroiding operation

must be carried out in the microsecond time range, in order to provide timely

feedback.

Why is this requirement a problem? Because the algorithm that has been

chosen is particularly intensive in calculations. It involves several stages, each

one of these including hundreds of floating point multiplications, hundreds of

floating point sums and subtractions, a big amount of accesses to memory, etc.

As you may have noticed, there are lots of operations with floating point data,

which is a known field in which general purpose processors struggle. Due to its

characteristics (they include just a few very complex cores) they excel at

performing complex tasks over a small set of fixed precision data, whereas

they have significantly less performance working with large sets of floating

point data which usually require a great number of operations [UND04].

Given the real-time constraint it is obvious that a general purpose processor

(CPU) is not the best suited hardware for this task. Furthermore, as can be read

in the next subsection, the used algorithm can be easily parallelized, so it is

clear that a CPU is not suitable for this job.

11

2.3. Wavefront sensor

A wavefront sensor is an optical instrument that measures the deformation of

a WF. In other words it calculates the phase divergence between the different

parts of the WF. In order to do this it is composed of a lenslet array in which

each one focuses the light that hits the corresponding fraction of the WFS in

one point on a light gathering element. As the lenslet array will be set in a

square regular pattern, the same shape is observed in the images, collected in

the CCD detector located afterwards.

Fig. 2: Wavefront sensor included in Gaia (exterior), from [MOR12b]

As can be seen in Fig. 3, when a flat wavefront hits the lenslet array it produces

a certain pattern of light dots, usually in a squared pattern (in this case it is set

in a linear pattern since it is observed from one of its sides). If the wavefront is

not in phase this pattern will be distorted, the distances between the light dots

will not be the same. In this way the phase differences can be calculated from

this ‘error’ in the position of the light point. The bigger the distance between

the correct position and the real position, the less in phase is the wavefront.

The WFS provides an image composed of different subimages (one per

microlens). The centroid of each subimage is derived fitting the electron

distribution recorder in the CCD image.

12

Fig. 3: WF schematic. Up, it shows a flat WF and the regular pattern that it produces;

middle, an aberrated WF results in an irregular pattern; bottom, a deformable mirror is
able to reconstruct a flat WF.

2.4. Purpose of Adaptive Optics algorithm:

Centroids, Crámer-Rao lower bound and maximum

likelihood algorithm

Although Shack-Hartmann wavefront sensors provide all the data which is

necessary to determine the WF slopes, there has to be an algorithm that

transforms all this information into a real wavefront. This process is divided in

two differentiated parts:

1. Determining the position of each microlens image: Given the output of

the WFS, the centroid of the point spread function (PSF) can be

determined. The more precision the system achieves, the better it will

work.

2. Wavefront reconstruction from centroid positions: Once all centroids

have been determined the wavefront can be reconstructed.

13

Determining the centroids is not easy. Due to the nature of the light, and

because of its diffractive properties, each “light point” mentioned in the

previous subsection is not exactly a point. Instead of this it would be more

similar to an Airy disk [GIA00] (fig. 4), if the optical system would be perfect.

In reality there are small aberrations in the lenses, so this Airy disk will be

deformed. This distorted Airy disk can be expressed by the number of

electrons that hit the sensor multiplied by a matrix of the probabilities of an

electron to hit a specific pixel. This matrix of probabilities is called point

spread function (PSF, fig. 5), and its centroid is the same that the original

deformed Airy disk had as its values are proportional to the initial ones.

Because of this the coordinates of the subimage that are needed are also the

coordinates of the centroid of the PSF.

Fig. 4: Airy disk produced by refraction of the light
[SAK07]

14

Fig. 5: A pair of deformed Airy disks produced by a WFS lenslet, and its correspondent
PSF, in a pixel matrix of 5x5. [JAM].

So a Shack-Hartmann Wavefront Sensor (WFS) provides information on the on

the wavefront slopes measuring the centroid displacement of each lenslet

image with respect to a given zero error reference. This process completely

depends on the centroiding precision achievable. There is a maximum

precision achievable for a centroiding algorithm: the Crámer-Rao lower bound.

Reaching this precision is not trivial, but it can be done fitting the coordinates

of the centroid, and some other nuisance variables, with a mathematical model

that depends on several variables. In this case this secondary data will be the

number of electrons that hit the sensor and a shape factor of the PSF. This

shape factor encapsulates information relative to effects such as PSF width,

microlens diameter, etc.

In this way the initial centroiding problem has been transformed to a weighted

least square minimization problem. There are many methods available to solve

this type of problem, such as Gauss-Newton [BJO96] or Levenberg-Marquardt

ones [MOR78].

15

2.5. Problems in SW solution, options to solve it

The PSF centroiding algorithm could be programmed in standard pc with a

normal CPU, and run correctly, but it will not satisfy the time requirements. As

it was stated in previous sections, for this algorithm to be effective it is

necessary that all the computation is done in a time-scale of a few hundreds of

μs, which is difficult to achieve with the most usual techniques.

The algorithm exposed is highly parallelizable, mainly in two ways:

There are lots of floating point matrix multiplications. This means that

hundreds of floating point multiplications could run in parallel in order to be

summed up after they are all finished.

In a standard Shack-Hartmann wavefront sensor there are between dozens and

hundreds of lenslets. Each one of these PSF centroids need to be calculated

with an algorithm like the one proposed before. So a solution to meet time

requirements would be to process every lenslet at the same time.

In order to implement these two basic ideas it seems clear that a standard CPU

program configuration will not do the job. Whereas the CPU solution is not an

option, two other ones arise:

 GPU (graphic processor unit): Whereas a standard processor only has a

few cores, a GPU usually includes from several hundreds to thousands.

This is useful because each one of those can deliver an operation at the

same time. Furthermore, they are specialized in floating point

operations.

 FPGA (field programmable gate array): Due to its ability to link logical

gates and create both logic and memory, this is one of the most flexible

options to perform whatever type of algorithm. It is possible to create

any hardware inside of an FPGA, so floating point operational hardware

could be replicated as many times as necessary, while there still are

resources available.

16

2.6. Adaptive Optics algorithm

The algorithm used in this project is based in a maximum likelihood algorithm

developed for the ESA Gaia mission, and described in deep in [MOR10]. It

provides a precision very close to the Crámer-Rao limit. It is based in a

forward-modelling algorithm: the weighted Gauss-Newton optimization of a

function similar to the observed data.

A noiseless image of nx by ny pixels (10 by 10 in this case) can be described as a

matrix, in which each number will be the electrons collected by each pixel. This

matrix can be described also as the total number of electrons produced by the

sensor multiplied by the PSF (described in 2.4 subsection):

Note that (xc, yc) are the PSF centroid, that is unknown, and s the shape factor

of the PSF. The PSF forward modelling function includes a priori knowledge of

the optical system, so N
i
 can be compared to the real number of electrons

collected O
i
 (the real image). There is then a set of parameters that characterize

N
i
:

These are the parameters that have to be fitted minimizing the weighted RMS

sum, and then providing the best match between N
i
 and O

i
.

 ∑

In this equation w
i
 are the weights that provide the maximum likelihood

[MOR12a].

The RMS optimization algorithm that is used is the Gauss-Newton algorithm. It

is an iterative method that uses an initial input for the vector and

approaches the optimal vector by summing the result values of the procedure

() to the previous vector. In each iteration is calculated according to:

17

In this equation M is a 4 × 100 values matrix (100 because of the 10 by 10 size

of the image matrix), O and N are respectively the observational and model

vectors composed by all the rows of its corresponding matrix (or image), W is a

diagonal matrix with the weights and J is the forward model Jacobian matrix.

The speed of the Gauss-Newton method depends on the speed with which the

matrix M and the vector N can be computed for each iteration. This is an

important point because the centroid has to be calculated within a time scale

of 1 μs. The steps to calculate these matrices include several non-trivial

integrations. A strategy has been developed to bypass this situation, pre-

computing in lookup tables (LUT) these matrices. A general description of the

algorithm would be:

1. Apply center of mass algorithm to obtain an initial guess for the final

centroid.

2. Construct observation vector (O) by linking together the rows of the

10×10 image received.

3. Retrieve from LUT the M and N matrices that match the values of the

initial guess.

4. Compute the operation:

5. Update initial parameters:

6. Return to 3. and repeat until the difference between one iteration and

the next one is below a certain threshold.

The LUT has to be indexed by the four parameters of the vector , and it needs

enough nodes to achieve the precision noted above (Crámer-Rao lower bound).

The following number of nodes has been proposed in [MOR12a]: 21 elements

for each variable () and 20 for . It results in

nodes. Every node requires one matrix M and one matrix N, this is 500

elements in total. Each element will be stored in floating point single precision

format (4 bytes). This makes a total of:

18

The knots of every variable are distributed in the segment where is most likely

to have values in a real scenario. The points for the different parameters are:

 and : 21 points distributed from the centre of the image (in this

case 4.5 in both axes) in both directions, from the start of pixel 4 to the

start of pixel 6.

 : 21 knots covering a reasonable interval of values (usually from to

 μm).

 : 20 points from 500 to 10000 electrons, in steps of 500.

Although this is the size of the LUT that is needed to achieve an adequate

precision, it was proposed to start creating a prototype that used a smaller

LUT due to the problems of allocating and accessing large data arrays in an

external memory from an FPGA. This smaller LUT was made with just 81 nodes

(3 for each parameter), which makes a file size of 162 KB. All the work from

now on will focus on this approach.

19

3. The use of reconfigurable HW

for adaptive optics

3.1. Benefits of reconfigurable hardware and FPGAs

Reconfigurable hardware is a valuable option when very restricting time

constraints exist in the problem to solve. This is due to the capacity of

modelling specific devices which are perfectly adapted to the algorithm to

perform, and that are not useful in any other one. Both FPGA and ASIC are

devices that provides these capabilities.

Since many years reconfigurable hardware (FPGA) is a growing alternative to

the classic ASIC (application-specific integrated circuit) approach to custom

application hardware chips. Nowadays there are powerful several million logic

cells FPGA, that are a cheap alternative to ASIC.

These are some of the most important benefit of FPGA technology:

 Performance: FPGA surpass the capabilities of digital signal processors

by taking the advantage of hardware parallelism instead of keeping with

sequential execution. They allow you to control what is happening to the

lowest level, which in the end provides faster response times. FPGA are

capable of reproduce complex systems as full System on a chip (SOC),

with an integrated processor, RAM memory, etc.

 Time to prototype: FPGA offers quick prototype capabilities in

comparison with other technologies, allowing the designer to test a

concept directly on hardware and then even implement incremental

changes.

 Cost: Whether ASICs are only affordable when making thousands of

units per year, FPGA are economically viable from dozens to hundreds

of devices.

20

 Reliability: FPGA provide a true hardware implementation of a program,

instead of running it on a full system. Its lack of operative system and

few abstraction layers allow designers to perform time-critical tasks

without the risk of another one interrupting due to true parallelism.

3.2. Commercial brands, main capabilities of some

families

There are two main manufacturers of high performance FPGA: Xilinx and

Altera. These are their more powerful series of products:

 Xilinx Virtex 7: With nearly 2 million of logic cells this family of FPGAs

is one of the most powerful FPGA in the market. Built in 28 nm they are

capable of lower power consumption than older generations, even with

a greater performance. This new generation comes with 85 Mb in BRAM,

which is the largest capacity among common families of FPGA. It also

has up to 3600 DSP, which are the main blocks used for float

operations, for example. It supports DDR3 external RAM memory at up

to 1,866 Mbps [XIL14].

 Xilinx Virtex 6: Although built in 40 nm, the previous top series of Xilinx

is still a reference in FPGA technology. It is able to manage a high

bandwidth interface with DDR3 external RAM and high performance

logic. There are different models for various necessities. Each sub-family

contains a different ratio of features to most efficiently address the

needs of a wide variety of logic designs. For example, it should be noted

that among others there are models with up to 2,016 DSP, which makes

this family of FPGA very appropriate for implementing heavy calculation

algorithms [XIL12a].

 Altera Stratix 5: Stratix are one of the highest performance series in

Altera. Built in 28 nm as the Virtex 7 they are also capable of variable

precision signal processing and low power functioning. Stratix V devices

are available in four variants, each one of them targeted for a different

set of applications. The GS series supports up to 3,926 DSP, which

makes it very appropriate for calculation intensive applications [ALT14].

21

It is clear that the power and computation resources have risen to a point

where these devices are much more versatile than they were years ago.

Describing the amount of DSP by thousands and having the capability to hold

DDR3 RAM external memories allow a much more easy adaptation of

algorithms developed for other platforms, or a high performance approach to

traditional optimized ones.

3.3. FPGA traditional design flow

Design flow in hardware design, in general, and in FPGA in particular is quite

different than in software design. This is due mainly to the level of abstraction

that software developing implies. This subsection describes the usual

workflow when developing hardware in FPGA environment.

Fig. 6: Traditional step by step design flow (from [XIL11a])

22

The process can be divided in seven important parts:

1. Write code or design schematic: It is needed to write code for every

independent module, specifying its inputs and outputs, and the

function itself. A top module needs to be written in order to link all the

other modules, also specifying the final inputs and outputs of the

design. It is usually written in VHDL or Verilog, languages that describe

the operation of the circuit, but not how it is translated into logic gates.

2. Hardware Description Language (HDL)/Register Transfer Level (RTL)

simulation: Once the modules have been created the first step is to

make sure that the system operation is correct. This is done creating a

Testbench, which is another code –independent from the functional

one– that is connected to the first one, and analyses if it is working

properly in every situation. This is often very time-consuming, even

more than writing the hardware itself, due to the theoretical need of

trying all the input combinations, so the hardware responds to every

possible stimulus as it should. Usually doing a complete test is not

possible, and only the most relevant possibilities are tested.

3. Synthesize: After it is known that the hardware works correctly, it is

needed that a logic synthesis tool reads the VHDL, and outputs a

definition of the physical implementation of the circuit. In other words,

synthesis will take the RTL and generate a gate level description that

can then be placed and routed. This procedure outputs several netlist

files.

4. Functional simulation: This is a gate level simulation that checks that

every behavioural characteristic of the RTL description is kept when

synthesized.

5. Implement: This process consists of three stages: merging different

design files into the final netlist of the circuit; grouping logical symbols

(gates) into physical components in the FPGA; and place these

components in the FPGA chip, creating in addition a timing report.

23

6. Timing closure and simulation: Once a timing report is created, it is

more likely that some connections –usually between modules- are not

time consistent. This can be solved introducing some time constraints

that change the place and routing of the circuit. Sometimes the design

still does not meet every time requirement, so some strategies can be

applied: multi-cycle constraints, false path constraints, map-timing

options, changing manually the floorplan and even changing the code so

as to avoid large critical paths. If the circumstances lead to this latter

option it will mean start the process all over again. After every change a

time simulation will be run.

7. Bit file creation: After this whole process the created structure needs to

be passed to the FPGA in a format that it understands. This format is a

‘.bit’ file, which is a sequence of bits that programs the FPGA changing

the links between the different elements consecutively.

It can be guessed that this process is not an effortless one, since especially

steps 1, 2 and 6 requires immense amounts of time. Among the difficulties of

this design flux one has to be particularly noted: if a carried out design needs

to be changed for some reason (e.g. a calculation system that needs to be more

parallel), it will need a major restructuration in a high probability. This means

that it is difficult to change an existing system, so it is better to carefully plan

the system rather than doing later alterations.

3.4. High Level Synthesis tools: a new workflow

In the previous subsection it is described the whole traditional design flux, and

it is stated that one of its main advantages is that it allows the developer to

control every step, and to plan meticulously the design of the circuit at a very

low level. It also has some important cons. For example, the process is time

consuming; furthermore, it implies a big amount of work for some of the steps

when compared to software development.

In the last paragraph it was highlighted a relevant problem of this working

method: once the design is finished, if it requires further changes they will be

24

very difficult and time consuming to carry out. This is a very common

situation for different reasons, for example because of timing specifications

that are not completely met in the final implementation and the program

cannot solve through constraints or just because it has been found a better

way to accomplish some action. It is even worse for some type of problems

that require fast prototyping, and cannot admit restructuring the project from

top to bottom frequently. For these kinds of projects a new workflow is

needed.

Fig. 7: Typical high level synthesis tool workflow (combined with Xilinx tools), from
[BDT10]

For applications as the ones described before and also for complex algorithms

or applications that would take a lot of time to implement, there are other

options. One that is creating lots of expectations as it is becoming more

common to use is High Level Synthesis tools (as Vivado HLS). It allows

developers to create custom modules from C, C++ or System C code. It then

creates VHDL or Verilog files as output, so these modules can be included in a

classic electronic design or in an embedded system with other components. In

this way the program allows the developer to create hardware without having

25

to manually create RTL files. This has several advantages compared to the

traditional design flux:

 The same algorithm in a higher level language is easier to create, and

conceptually closer to the traditional way of programming.

 It is faster to rewrite a piece of high level language than a module.

Usually it is more intuitive.

 The testbench can also be created in C, C++ or System C, which leads to

really fast check of the specifications.

 C and C++ are broadly used languages, which means that a big base of

programs can be implemented in hardware with relative little effort.

 Easy directive driven optimization of algorithms and processes. It allows

more control on the synthesis that Vivado HLS does, and then more

control over the result module.

 Vivado HLS uses automatically on-chip memories (block RAM and flip-

flops) and also arranges DSP elements – using floating-point libraries if

they are required, for example–.

Fig. 8: Typical HLSTs automatically generate RTL test benches in addition to the
RTL module implementing the design, from [BDT10]

26

In opposition of the positive features these tools also have some negative ones:

 High-level synthesis tools cost considerably more than DSP processor

software development tools, and more than the average tool used for

the same aims.

 HLS tools take away part of the freedom RTL languages contribute to.

As the last point suggest, although Vivado HLS and other high level synthesis

programs can be very convenient, this new work flow simplifies the process so

much that nearly everything in the final hardware configuration is left to be

decided by the synthesizer. In this context it can imply two different results:

whether the synthesizer is really competent and outputs a very decent result;

or it is not so good and then programming hardware in such a way is not a

good idea.

The answer is something in between. This question has been addressed in a

number of studies. One of the most interesting ones was requested by Xilinx

before buying the program that would be Vivado HLS in the future [BDT10]. In

this publication two algorithms, which are very often implemented in FPGAs,

were programed both in RTL and C in Vivado HLS (AutoESL), or with DSP

processor implementation and VHLS. These two methods were a video

processing algorithm (Optical Flow Workload) and a wireless communications

receiver baseband application (DQPSK Receiver Workload). Then its results

were studied to have a general view over what performance high level language

synthesizers could achieve.

In the video processing algorithm the FPGA implementations created using

high-level synthesis tools achieved roughly 40X the performance of the DSP

processor implementation. BDTI also evaluated the efficiency of the HLST-

based FPGA implementations of the DQPSK workload versus the same problem

implemented using hand-coded RTL. Here, too, the HLSTs performed very well.

The code produced by the HLS tool was comparable in resource efficiency to

the hand-written RTL code.

Clearly, FPGAs used with high-level synthesis tools can provide a compelling

performance advantages for some types of applications.

27

Although these tools have proved to be very useful, they do not get the work

done by themselves. It is needed that the engineer ‘helps’ them with some kind

of guidelines where the synthesizer can hold on: directives. Directives are code

instructions for the synthesizer to read that will usually restrict the freedom of

the toll, so it does what the developer chooses. These directives are usually

aimed at certain parts of the code that can be optimized in a specific way, –

such as loops–, or to variables that can be stored, outputted, read, etc. more

conveniently.

Directives can be added with a dialog window, which allows the user to choose

the type and set a few parameters of it. For example, among the options of the

directive unroll there is one that allows the user to select how many sets of

hardware will be created, the option

‘factor’. This gives directives a great

flexibility, allowing countless

possibilities. The directives added in this

way are specified by the program in a

special file called “directives.tcl”, which

is unique for every solution. It simplifies

the process of using new directives, and

comparing the results given by each one.

Although adding directives in this way may seem comfortable, it is very

common to have a set of directives that are well known, i.e. interface ones.

Because of this Vivado HLS allows the user to write them directly in the code

file, so this directives will be permanent between solutions, and maybe more

important, it makes it very easy to copy the code to another project without

having to set each one of them.

It is clear that high level synthesis is a very valuable option, especially when a

project is limited in time or budget, or when it is needed to prototype several

times before having a final system. In the future using Vivado HLS and other

high level language synthesizers will be very common in all kinds of projects

as synthesizers are improved and more capable of dealing with a broader

variety of problems.

Fig. 9: Directives are shown up in the
place where they take effect.

28

3.5. Platform description (Board features and

components)

The platform chosen to implement the system of this project is the Virtex-6

FPGA ML605 evaluation board [XIL11b]. It includes all the basic components of

hardware, design tools, IP, and a reference design for system designs that

demand high-performance, high speed connectivity and advanced memory

interfaces.

Fig. 10: Picture of the actual ML605 board that has been used

These components are the main ones:

 Virtex-6 XC6VLX240T-1FFG1156 FPGA: It belongs to the LXT family

(inside the Virtex 6 one) which is the one specialized in high-

performance logic and advanced serial connectivity. It includes more

than 31,000 slices (each one with four LUTs, flip-flops, multiplexers and

arithmetic logic) and 768 DSP. Nearly 15 Mb of block RAM are also

embedded. It supports configuration both from JTAG (USB and CF) and

from the Linear BPI Flash device.

 512 MB DDR3 SO-DIMM RAM: This external memory has been tested up

to 800 MT/s, and its socket offers support up to 2GB of DDR3 memory.

29

 32 MB Linear BPI Flash: This non-volatile storage is often used to

configure the FPGA when a connection with the JTAG USB is not

provided, or it is being used without a PC.

 System ACE CF and CompactFlash Connector: This is a key feature of

the board for this project. It includes a 2 GB Compact Flash card where

files can be stored and read. It also enables the configuration of the

Virtex-6 FPGA from the CF. System ACE CF controller supports up to

eight configuration files. It also enables an embedded processor to

access the files stored in the CF. easily.

 10/100/1000 Tri-Speed Ethernet: As this board is specialized in fast

serial connections it includes a physical Ethernet connection with

Gigabit speed, which enables the board to be fed in a very efficient way

from a PC or a server.

 USB UART: The ML605 contains a USB-to-UART bridge device, which

allows connection to a host computer with a USB cable. Drivers are

provided so the connection appears as a COM in the host PC.

Fig. 11: Schematic of the ML605 board from [XIL09]

31

4. First functional prototype

(reduced Look-up table set)

4.1. Matrix multiplication algorithm in Vivado HLS

The embedded system that has been developed consists on different

interconnected modules. Most of them are commonly used ones (i.e. RAM

controller, general purpose microprocessor…) that have been already

developed by Xilinx. Even though, the most important part of the system is the

particular purpose hardware module that performs the algorithm itself.

As it is stated in the 2.6 section, the algorithm that has to be implemented in

hardware, optimized and therefore parallelized, consists on several parts. The

most important and more time consuming one is the matrix multiplication.

The main multiplication is:

Where M is a Matrix of 4x100 dimension, and O and N are both matrix of

100x1 size. This gives as result a matrix of 4x1, being each one of the

individual values a necessary parameter:

From left to right these variables represent the position of the centroid in the

horizontal axis, in the vertical axis, the number of electrons that hit the sensor,

and finally the shape factor.

To find out the best way to optimize a matrix multiplication with so many

elements (in this case 400 in one matrix and 100 in the other one) is difficult,

so it is more reasonable to start with a general case that multiplies two 4 by 4

matrix. This size is big enough to give a good perspective about the process,

yet not as large as to be unmanageable. In this case it is needed to do 4

multiplications and from 3 to 4 sums (depending on the way the algorithm

operates) to produce each element of the result matrix.

32

Fig. 12: Example of 4×4 matrix multiplication

One of the simplest C code which is capable of performing the full

multiplication, remember that this hardware module is being programmed in

Vivado HLS, is this one:

// Iterate over the rows of the A matrix
for(int i = 0; i < MAT_A_ROWS; i++) {
 // Iterate over the columns of the B matrix
 for(int j = 0; j < MAT_B_COLS; j++) {
 res[i][j] = 0;
 // Do the inner product of a row of A and col of B
 for(int k = 0; k < MAT_B_ROWS; k++) {
 res[i][j] += A[i][k] * B[k][j];
 }
 }
}

Code piece 1: Basic code for matrix multiplication

The operation that this code is doing for each value of the result matrix is the

following one (in this case for the element of the row 3 and column 3 of the

result matrix):

R33 = A30·B03 + A31·B13 + A32·B23 + A33·B33

This code is only using one accumulator and one multiplier, so it is just doing

one action at a time, using a tiny fraction of the resources, but performing a lot

of cycles. The result is that it takes for this algorithm 617 clock cycles to finish

one complete operation and be ready to start again (latency).

From this initial state several optimizations can be made. For every

optimization there has to be at least one directive in the code, which will

usually affect to part of the code.

33

4.1.1. Loop unroll directive

The first directive that will be used is “loop unroll”. As its name suggest this

directive has effect in a loop. By default loops are rolled in Vivado HLS, so it

will instance hardware only for one iteration, and therefore each one will be

done successively. Loop unroll will force Vivado HLS to set more hardware

when it “translates” a loop. By default it will create independent hardware for

each iteration, so if the loop has to be repeated four times it will create the

four sets of hardware. This will only occur if each iteration is independent

from the results of each other, which depends on the case [12].

Fig. 13: Schematic of loop unrolling directive (From [XIL13]).

In Fig. 13 it is shown a schematic of how a loop can be rolled (right), partially

unrolled (middle) or completely unrolled (left). Clock cycles are represented in

vertical in the figure, while the number of hardware sets is the number of

columns.

Applying this directive over the most inner loop with a factor of 2 creates 2

sets of hardware, and therefore the process is accelerated. In this case the

latency goes down to 457 clock cycles. It does not duplicate the performance

due to dependencies between the iterations. It is clear that to do each iteration

of the most inner loop it needs the result of the previous one, so it cannot do

34

two iterations at the same time. Despite of this, it is faster because it does not

need to wait until the whole loop is finished to start multiplying the following

numbers.

Fig. 14: Analysis view of the unrolled basic code in VHLS.

Dependencies are so strong that even with a full unroll, which creates 4 sets of

hardware, the latency is still 361 clock cycles. A quick look to the analysis view

in Vivado HLS reveals that, even though there are two float adders and two

float multipliers, the program cannot use them efficiently due to dependencies

in the data.

4.1.2. Pipeline directive

Another interesting directive is “pipeline”. This directive will create a pipeline

in the loop where it is taking effect. In this way it will try to maximize the time

that every stage of the loop is used by executing several of them concurrently.

So, for example, if the loop implies reading a data and then adding it to other

one, when it starts adding the first stage starts reading the next data. This

usually leads to a better overall performance [12].

Fig. 15: Left: Loop without pipelining. Right: A totally pipelined loop uses all the
resources all the time, from [XIL13].

35

A key concept in a pipeline is what Xilinx calls the initiation interval (II) [12]. It

is the amount of cycles that are needed from the start of one loop iteration

until the start of the next one. It is important because it determines how

efficiently a pipeline is set, and then how efficiently the hardware resources

are used, which is the aim of the pipeline itself. In the pipeline in the figure X

(right picture) the initiation interval is one, because each iteration starts only

one cycle after the previous one has done so. This is the most efficient way to

set a pipeline. A II number greater than one indicates that there are

dependencies between the iterations, and then the pipeline is not the best it

can be. In figure 16 it can be seen that a pipeline composed by these two

stages (fmul and fadd) would have an Initiation Interval of 4, because it would

need 4 clock cycles between one iteration and another one, and thus it would

not be an optimal pipeline.

Fig. 16: Non-perfect pipeline with II=4.

By default the pipeline directive unrolls the loops that are inside the pipelined

loop. In this way it uses more resources, but under normal conditions it is

much more efficient. Pipelining the most inner loop (without the unrolling

directive which was applied before) reduces de latency to 385 clock cycles. It

can be seen in the figure 15 that the improvement should be much bigger for a

number of cycles this big. This is, again, because of dependencies in the code.

It is shown in fig. 17 how the fadd stage cannot start until the fmul one is not

finished. This happens because of the operation order that the algorithm used

imposes: it first needs the result of the multiplication of the elements to start

summing it with the previous result.

36

Fig. 17: Analysis view in which it is shown that fadd cannot start before fmul finishes.

It is also an option to put the pipeline directive in the intermediate loop. In this

manner (because of the default settings of the directive in Vivado HLS) the

synthesizer will unroll the most inner loop, helping to create more parallelisms

in hardware, and possibly improving the results.

The results improve dramatically with this approach. The algorithm is

performed with a latency of only 54 cycles. It can be seen now in the figure 18

(analysis view in VHLS) that four multipliers and four adders are created, and

as the dependencies are only in between one addition and the next one, the

whole process of delivering one result element can be performed in nearly the

time needed for the sums. Then the upper loop is pipelined and the calculation

for one matrix element is independent from the calculation of another one. In

this case there are 4 sets of hardware, so the iterations of this loop can be

correctly pipelined, with an initiation interval of only 2 (due to the reading of

the data).

37

Fig. 18: The multipliers can be used at the same time in this approach, even if fadd
modules cannot.

It can also be observed in the figure U that only one data of each matrix can be

loaded at the same time (instructions a_load and b_load at the top left corner

and below), and this is delaying one cycle each iteration. This detail will be

addressed in depth in the following section.

Another interesting detail that a perceptive observer would see in fig. U is that

the second data loads (a_load_2 and b_load_2) starts in the second cycle (C2),

while at the same time the first loads have not finished yet. Although this

design can only load one data of each matrix at a time (because a and b matrix

are each one placed in one blockram), as the operation of loading a data of this

size takes less than 15 ns, and each clock cycle lasts 10 ns, it is possible that

two sequential reads take place in two consecutive cycles. So both loads are

not happening at the same time in real-time. This situation is usual and

happens often.

4.2. Code optimization: thinking in hardware

In the last subsections has been described how to optimize the way in which

Vivado HLS synthesizes the C code into hardware. But in both cases

dependencies in the code have made impossible for the directives to be

efficient. It turns out that the simplest code to perform matrix multiplications

38

has direct dependencies in its inner loop, because it needs the result of the

previous iteration to sum it up with the next one.

It is known that the calculation of each element of the result matrix is not

dependent from the calculation of another one. Reordering the loops and

adding an accumulator for each row of the matrix will solve the previous

dependencies while keeping the algorithm at the same level of complexity. This

design will use the same resources than the previous one, with the exception

that it will need more registers to store the accumulators, in fact as many more

as the number of rows.

From now on the pieces of code that are going to be shown work with the final

configuration of the operation. In other words, the matrix multiplication will

be actual one: sizes 4×100 and 100×1. It can be noted that the result matrix

will be now a 4×1 matrix. The purpose of doing this is that continuing to make

changes on the algorithm over an operation which is not the real one could

potentially lead to misguided progress.

Within the necessary changes to adapt the code to a different size matrix

multiplication, it is notorious that the number of loops has been reduced from

3 to 2. This is due to the special size of the second matrix, which is 100×1. The

algorithm is the following one:

// Iterate over the cols of the A matrix or the rows of the B matrix
Prod: for(int k = 0; k < MAT_B_ROWS; k++) {
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 temp[i] = a[i][k] * b[k];

 if (k == 0) acc[i] = temp[i];
 //Accumulate on acc
 else acc[i] += temp[i];

 if (k == (MAT_B_ROWS-1)) res[i] = acc[i];
 }
 }

Code piece 2: New algorithm applied to a multiplication of matrix of sizes 4×100 and
100×1

39

As it can be seen now the middle loop in the initial code (code piece 1) has

been erased, because it was going through the second matrix columns, and in

this case the size of it is 100×1, so no loop is needed.

After this consideration the inner and outer loops have been reversed. So the

now named ‘Prod’ loop was before the inner loop, and ‘Row’ loop was the outer

one, although they still go through the same indexes, which are the rows of the

second matrix (or the columns of the first one) and the rows of the first

matrix. From now on the matrix will be called A and B, for the 4×100 and the

100×1 respectively.

This inversion of the loop order makes the algorithm work differently,

achieving the same results. In this way the first loop repeats itself 100 times,

one for every column, and for every column of the matrix A the second loop

performs 4 multiplications. It is easier to explain with a table the behaviour of

the matrix multiplication:

i

Res.

Elem.

Prod Loop

iteration

k=0

Prod loop

iteration

k=1

Prod loop

iteration

k=2

Prod loop

iteration

k

Prod loop

iteration

k=N-1

0 C0 A10∙B0 A11∙B1 A12∙B2 A1k∙Bk A1(N-1)∙B(N-1)

1 C1 A20∙B0 A21∙B1 A22∙B2 A2k∙Bk A2(N-1)∙B(N-1)

2 C2 A30∙B0 A31∙B1 A32∙B2 A3k∙Bk A3(N-1)∙B(N-1)

3 C3 A40∙B0 A41∙B1 A42∙B2 A4k∙Bk A4(N-1)∙B(N-1)

In each iteration of the ‘Prod’ loop the whole corresponding column is

performed. In each column, a row is the equivalent to one iteration of the ‘Row’

loop. And every result element is the sum of the N elements in a row of the

table.

The result of this loop reordering is that there are no dependencies between

the iterations of the inner loop. It is so because there are no dependencies

between the calculation of each result element, and this loop is calculating one

part (of the N existent ones) of each of the four result numbers (C0, C1, C2, C3).

40

Another important change is that four accumulators have been added (‘acc’).

These accumulators prevent the constant writing in the final value, allowing

the synthesizer to organize it in a more efficient way. It has also been

differentiated the first multiplication, which only needs to be stored, from the

rest of them, which in contrast need to be summed up to the previous result,

because of the same reason.

When this approach is synthesized and its results analyzed it is clear that a big

amount of reads are delaying the pipeline, making each iteration last more.

This is due to the storage placing of variables A and B. They are supposed to

come from the outside of this core (there is more information about this in the

next section ‘Design decisions’), so it is slow to read them over and over in

each iteration. A solution to this situation is that if it is the first time that they

are read, they must be stored in an internal variable, which is much faster to

read. This alternative is expressed in code piece 3 (below).

// Iterate over the cols of the A matrix or the rows of the B matrix
Prod: for(int k = 0; k < MAT_B_ROWS; k++) {
 // Iterate over the rows of the A matrix
 Row: for(int i = 0; i < MAT_A_ROWS; i++) {

 //If first read of c => save c, which is cache of c
 if (i==0) c_copy[k] = c[k];

//If first read of b => save b, which is cache of b
 if (i==0) b_copy[k] = b[k];
 if (i==0) diff[k] = c[k] - b[k];

 //Read a from a internal variable, and not from the FIFO
 a_i_k = a[i][k];

//Actual multiplication
 temp[i] = a_i_k * diff[k];

 if (k == 0) acc[i] = temp[i];
 //Accumulate on acc
 else acc[i] += temp[i];

 if (k == (MAT_B_ROWS-1)) res[i] = acc[i];
 }
 }

Code piece 3: Modified multiplication code. It includes some optimizations and
changes.

41

In code piece 3 there is also another important change relative to the nature of

the algorithm. In section 2.6 it is explained that the vector that is called B now

comes from the subtraction of the model vector from the observational vector.

The code has also included this detraction as vectors ‘c’ and ‘b’, and its results

as ‘diff’.

In addition to the changes in the algorithm itself, there are two directives that

are fundamental for the performance. One of those is pipeline, just as it is

commented above. In this case it takes effect in the ‘Prod’ loop, which is the

outer one. This leads to an unroll of the ‘Row’ loop that replicates the

hardware for the operations four times, parallelizing in this way the algorithm.

Despite the fact that the pipeline creates ‘four paths’, they need to be fed

properly if the whole hardware is wanted to work without bottlenecks. This is

not the case now, because in every stage it needs four elements from the

matrix A, and A is stored in only one block RAM, and comes to this block RAM

from an external storage element by element. The way to optimize this is

setting the ‘Array partition directive’.

This directive divides an array variable, in this case the matrix A, in different

sets of variables, stored and managed separately in hardware. This effectively

increases the amount of read and writes ports for the storage, improving the

throughput of the design, and reducing the Initiation interval of the pipeline.

In this particular code the directive is followed by the option ‘complete dim=1’

because it is convenient that the matrix is partitioned in the four rows, because

then each of them will feed the data to the four identical data paths.

To this late code it is added this last piece:

if (k == (MAT_B_ROWS-1)) {
 res[i] = acc[i];
 index_res[i] = (int)(round((acc[i]-start[i])/step[i]));
 res_index[i] = index_res[i];
}

Code Piece 4: New line to calculate result index

42

As it shows, two lines are added in the ‘if’ structure that is executed when a

final result is finished. They close the algorithm cycle by returning to the

processor through ‘res_index’ the new values of the vector, so the

next iteration has a starting point. To be able to do this the start point and the

step length has to be received from the processor in order to know the range

of the parameters.

The results in performance and resource usage efficiency of the final code are

shown in the section 5. Results.

4.3. Design of complete System: Design decisions

This section describes some of the decisions that have been made during the

development of the system that envelops the AO algorithm core.

4.3.1. Embedded system

In the beginning of the project the nature of the whole prototype was not

decided, with the only exception of the FPGA base. It was clear that a new

specific hardware needed to be created, and it needed to be provided with

data, control, etc. Creating specific hardware for these functionalities would be

very time consuming, and as the project is limited both in time and resources

the best option is to reuse components that are general for most systems. This

type of systems is called embedded ones. They are specific purpose systems,

but they use lots of common components.

4.3.2. System Control

All the hardware that is going to be included in the system has to be

coordinated, so every module knows when to start its functioning, and every

action is performed in time. In a simple system usually specific control logic is

developed for it. It saves area on the FPGA, although is generally limited in

functions.

43

In more complex systems, or if a quick approach to the problem wants to be

developed, general purpose microprocessors can be used. Because of the

limitation in resources in a FPGA platform these processors tend to be

simplified ARM architecture ones, or reduced instruction set cores (RISC). This

lead to a relatively low performance, but it is typically enough for the

requisites of the application, because (as it is the case) the complicated and

specific parts of the algorithm are left to other modules.

This latter alternative was chosen in this project because of its ease of

implementation. The model of microprocessor used was the Xilinx microblaze

[XIL12b]. It was chosen because it is integrated in the embedded system tool

that is used in the project (Xilinx Platform Studio, XPS [XIL12c]), so it allows an

ease of use with some other standard Xilinx modules, which are necessary for

the communication of the processor with peripherals.

Some useful features of the microblaze processor are:

 It is a soft core processor, which means that it can be wholly

implemented using logic synthesis. In other words, it can be embedded

inside of an FPGA, and optimized for this use.

 It is highly configurable, allows the user to choose what features are

needed, therefore saving resources.

 It is compatible with every driver module that Xilinx provides, for

example RAM or Ethernet ones.

4.3.3. External memory

It was explained in 2.6 section that the planned system requires a

multidimensional look-up table (LUT) that stores pre-computed data to feed

the implemented algorithm. It was also discussed that the storage space

needed was 370.4 MB. It is clear that the internal memory in the FPGA block

RAM is not enough (it is roughly 3.65 MB), so another resource must be used.

In this case the ML605 board includes 512 MB of DDR3 RAM memory, which is

sufficient for the purposes of the project.

44

This memory comes in a SO-DIMM format, and these are its main features

(from [XIL11b] and [MIC07]):

 64-bit wide interface, tested up to 800 MT/s.

 It is directly wired to the FPGA, so the memory controller must be

embedded in it.

 Bandwidth up to 8.5 GB/s.

4.3.4. Compact Flash

This LUT file has to be written to the DDR3 RAM in the initialization of the

system, because RAM memory is volatile. This means that the file must be

stored in some permanent memory if the system is wanted to work

independently. The easiest option is to store it in the Compact Flash (CF)

included in the ML605 Kit (its size is 2 GB).

A Compact flash driver (‘axi_sysace’ module [XIL11c]) will be included in the

system. It will be connected with the Compact Flash reader in one side, and in

the other one with the Microblaze, so it can handle all the communication

between the CF and the DDR3. This option was chosen because this process

does not have any time constraint, since it will be done just during the

initialization of the system, and will not affect any other process.

4.3.5. Algorithm core communications with the system

The specific core that has been designed has to have connections with the rest

of the modules. These buses belong to the Axi family [XIL11d], which is a part

of ARM AMBA, a family of micro controller buses. There are three different

types of Axi buses, and all of them are used in this project:

 Axi4: Is a high-performance bus. It is used when memory-mapped data

needs to be accessed.

 Axi4 Lite: It is a simpler version of the original Axi 4. It is used when

data is accessed by address, but there is no need of a high throughput.

45

 Axi4 Stream: It is the simplest bus of the three. It allows high speeds,

but the data cannot be addressed, so they have to be accessed in the

same order they are stored.

Depending on the requirements of each port it is implemented with one type

or another one. The implementation is represented as one or several directives

in Vivado HLS, and the different buses created in Xilinx Platform Studio (the

Xilinx tool for embedded system design). The piece of code 6 shows the

directives used to connect the core with the rest of the system:

/******** AXI4Lite **********/
#pragma HLS RESOURCE variable=return core=AXI4LiteS
#pragma HLS RESOURCE variable=base_addr_ext core=AXI4LiteS
/******** DDR3 RAM **********/
#pragma HLS INTERFACE ap_bus port=ddr3
#pragma HLS RESOURCE variable=ddr3 core=AXI4M
/******** FIFO + AXI4Stream *********/
#pragma HLS INTERFACE ap_fifo port=c
#pragma HLS INTERFACE ap_fifo port=start
#pragma HLS INTERFACE ap_fifo port=step
#pragma HLS INTERFACE ap_fifo port=res
#pragma HLS INTERFACE ap_fifo port=res_index
#pragma HLS INTERFACE ap_fifo port=param
#pragma HLS RESOURCE variable=c core=AXI4Stream
#pragma HLS RESOURCE variable=start core=AXI4Stream
#pragma HLS RESOURCE variable=step core=AXI4Stream
#pragma HLS RESOURCE variable=res core=AXI4Stream
#pragma HLS RESOURCE variable=res_index core=AXI4Stream
#pragma HLS RESOURCE variable=param core=AXI4stream

Code piece 5: Input and output directives in Vivado HLS

The directives are divided in three blocks, one corresponding to each type of

bus.

Axi4 bus is only used for the external RAM connection because, although it has

a big impact on the resources, it is critical for the performance of the

algorithm that the matrix stored in the LUT are accessed in the fastest way

possible. It is also needed that this bus is memory-mapped, since the RAM

needs an address to be accessed.

Axi4 Lite is used for two purposes: the default return parameters that Vivado

HLS sets by default and the base address of the LUT stored in the external

RAM. The default parameters are several data that the processor (control logic)

46

must know to manage the specialized core. Among these parameters there are

signals as start, stop, idle, etc. In the base address case this type of bus is used

because there is no need of high performance here (it is only a 32 bit address

which will be received).

All the other signals –param, res, res_index, c, step and start– are set as both

FIFO and axi4 stream ports. This is done because they share some

characteristics: they are crucial for the timing in the algorithm and they only

need to be accessed in order (they do not need an address). Also the stream

bus is the one that consumes less resources.

4.3.6. Complete System Schematic

This subsections aims to give a global view of the embedded system that has

been developed, avoiding unnecessary complexity and showing clear bonds

between the different modules that have been used.

Fig. 19: XPS view of the embedded modules.

In the figure 19 Xilinx Platform Studio shows how the different modules are

interconnected. The dark blue colored bus to the left is the AXI4 one, which

links DDR3 RAM, Microblaze and indextomem_top_0 (the specific core that

47

performs the AO algorithm). The dark green bus to the right of the AXI4 is the

AXI4 Lite, which bonds mainly the Microblaze, Compact Flash module

(SysACE_CompactFlash in the figure), the indextomem core and the RS232

UART. Lastly each of the light blue lines is a AXI4 Stream bus. Actually there

are only 4 of this buses, but they are all duplex (can be used in both directions

at the same time) and only two of the back channels are being used. Blue LMB

buses are not relevant for this project.

49

5. Results

A prototype of adaptive optics algorithm accelerator has been built and it

covers a basic functionality:

 Storing reduced LUT in external memory.

 Performs the algorithm with initial data from processor.

 Returns results prepared for next iteration.

In terms of timing performance these are the estimates results given by Vivado

HLS (in clock cycles, at 10ns/cycle):

Fig. 20: Performance estimates for the final VHLS code.

The real time has been also measured during the actual execution in the FPGA

prototype, with a result from the activation of the algorithm core until the

results are returned and held by the processor of 2979 clock cycles, which

makes 29.83 µs. This result only applies for one iteration of the algorithm,

even though several are needed to finish it (most likely between 3 and 10). It is

an acceptable result, because even though it is said in [MOR12a] that time-

scales of 1 µs in the algorithm resolution are needed, several tens of this

hardware modules can be embedded in a Virtex-6 FPGA. This latter conclusion

can be derived from

50

Even if the result is only acceptable more optimization can be still carried out,

and therefore Vivado HLS proves capable of synthesizing hardware modules

for intensive floating-point calculation modules.

In terms of resource usage it is concluded (for what can be seen in figures 21

and 22) that the algorithm core uses around a 2% of the available LUTs in the

Virtex-6 FPGA, around a 1% of the flip-flops, nearly a 2% of the DSPs and less

than a 1% of the block RAM. Comparing the results from figures 21 and 22 it

can be seen that the estimations of Vivado HLS before getting the actual

results have a good accuracy.

Fig. 21: Actual resource usage of RTL code generated by VHLS

Fig. 22: Resource utilization estimate that VHLS does over the resources of the Virtex-6
XC6VLX240T

51

Taking a look at the whole system, figures 23 and 24 show the total use of

resources. The difference in the resource usage is mainly because of the

Microblaze processor, which according with the numbers uses around a 1% of

the FF, a 6% of the LUTs, and less than 1% of the DSPs.

Fig. 23: Resource usage resume in XPS

Fig. 24: Resource usage resume in XPS (DSP)

53

6. Conclusion and Future work

6.1. Conclusion

These are main of the conclusions that can be extracted from this project:

 High-level Synthesis tools are capable of implementing several types of

algorithms (especially the ones that are intensive in floating-point

calculations) with a good overall result and taking less time than with

the equivalent traditional work flow.

 FPGA are devices capable of implementing adaptive optics centroiding

algorithms with a good performance. It seems clear that, with further

development, algorithms which precision is very close to the limit of the

information given can be implemented with the necessary performance

for the whole system to be useful.

 Although HLS tools simplify the process of creating hardware, they let

the developer choose over a broad variety of parameters, particularly

where optimizing has become a commonplace (as loops and memory

resources).

 Embedded systems have proven to be very useful when many elements

of it can be taken and implemented without having to be made ‘by

hand’.

54

6.2. Future work and optimizations

This preliminary work can be improved and extended in the following

directions:

Upgrading to actual LUT: As it is discussed in 2.6. section, all the previously

explained work is done with the little LUT of only 81 nodes. This made

possible to have results in time, but also means that the work has to continue.

Next step is to upgrade the prototype from the 162 KB LUT to the 370 MB one.

Some difficulties can maybe be encountered accessing to the file in the

Compact Flash.

Optimal number of iterations: The hardware module is currently set to

perform just an iteration of the Gauss-Newton algorithm. However, this

algorithm consists of several ones. The number of them depends on the

required precision for the application or on the limit provided by the number

of nodes of the LUT.

At this moment it is prepared to find out this number using the code run in

the processor, because it will be easier to set a few conditions. When the

number of iterations is set, it will be required to integrate it in the hardware as

‘for’ loop that will include every other code. This loop will not be able to be

pipelined, because the first data that needs to be introduced in it will be the

last one to get out.

Reliability and accuracy test: It will be necessary to develop a specific test

that assures the robustness of the system to invalid data, or to unexpected

formats. In addition to this, and because this system is expected to be used

with scientific purposes, an accuracy test must be developed. An option of

design for this test would consist on running the embedded system, and then a

Java program that executes the same algorithm with the same initial images.

Then a comparison between the final results would be done.

Optimizing: The system has strong time requirements to be useful, so further

optimization will be most likely needed. This optimization can go from more

parallelization of the original hardware module to critical changes in the

55

structure of the whole system. Incremental changes should be implemented,

until a certain objective is achieved or until the improvements are negligible

Although several optimizations have been made (especially in the AO

algorithm core) there are a few points that need further optimization. For

example nearly none optimization has been done in the processor code due to

the lack of time.

Fig. 25: This screen capture shows the inefficiency of the read stage of the algorithm. It
is one of the improvement points.

This figure shows the first clock cycles of an iteration of the matrices

multiplication loop. It can be seen that there are time and resources wasted

when it is reading the initial parameters.

Another point of optimization would be to evaluate if the inefficiencies in the

algorithm core are really affecting the timing results in comparison with the

memory access. If it happens to be so the multiplication algorithm could be

more parallelized dividing the matrix multiplication in two sets of columns

(even and odd for example) and then summing the results at the end. This

mechanism can be repeated several times, if necessary.

57

7. References

[ALT14] Altera Corporation. ‘SV51001 Stratix V Device Overview’ (2014),

available at: http://www.altera.com/literature/

[BAS04] Bastian, U. ‘The maximum reachable astronomic precision – The

Cramer-Rao Limit’ (2004), available at:

http://www.cosmos.esa.int/web/gaia/public-dpac-documents

[BDT10] Berkeley Design Technology Inc. “An independent evaluation of: High-

Level Synthesis Tools for Xilinx FPGAs” (2010),

http://www.xilinx.com/technology/dsp/BDTI_techpaper.pdf

[DAV12] Richard Davies, Markus Kasper. ‘Adaptive Optics for Astronomy’

(2012), available at: http://www.arxiv.org/

[GIA00] Giancoli, D. C., ‘Physics for Scientists and Engineers’ (3rd edition), p.

896, Prentice-Hall (2000).

[JAM] Space Telescope Science Institute, ‘James Webb Space Telescope Near

Infrared Camera PSFs’,

http://www.stsci.edu/jwst/instruments/nircam/PSFs/

[Kel99] Kelley, C. T. ‘Iterative methods for optimization’ (Vol. 18) Siam, (1999).

[LIN08] Lindegren, L., ‘A general Maximum-Likelihood algorithm for model

fitting to CCD sample data’ (2008), available at:

http://www.cosmos.esa.int/web/gaia/public-dpac-documents

[MIC07] Micron Technology Inc. ‘DDR3 SDRAM SODIMM MT4JSF6464H –

512MB’ (2007). Available at: http://www.datasheetlib.com

[MOR10] Alcione Mora, ‘WFS sub-pixel centroiding’ (2010).

[MOR12a] Alcione Mora. ‘FPGA image centroiding’, internal report ESAC, (2012)

[MOR12b] Alcione Mora, Amir Vosteen. ‘Gaia in-orbit realignment. Overview

and data analysis’ (2012), available at: http://www.arxiv.org/

[MOR78] Jorge J. Moré, ‘The Levenberg-Marquardt algorithm: implementation

and theory’ (1978),

http://www.osti.gov/scitech/servlets/purl/7256021

http://www.altera.com/literature/
http://www.cosmos.esa.int/web/gaia/public-dpac-documents
http://www.xilinx.com/technology/dsp/BDTI_techpaper.pdf
http://books.google.com/books?lr=&cd=3&id=maQeAQAAIAAJ&dq=giancoli&q=

58

[SAK07] User Sakurambo. Available at http://en.wikipedia.org/wiki/File:Airy-

pattern.svg (2007)

[UND04] Keith Underwood ‘FPGAs vs. CPUs: Trends in Peak Floating-Point

Performance’ (2004), available at: http://www.uoguelph.ca/

[BJO96] Björck, A. (1996). Numerical methods for least squares problems.

SIAM, Philadelphia. ISBN 0-89871-360-9

[XIL09] Xilinx Inc. ‘ML605 Block Diagram’ (2009). Available at:

http://www.xilinx.com/support/

[XIL11a] Xilinx Inc. ‘Xilinx Tool Flow’ (2011), from Electra Training Org. Course.

[XIL11b] Xilinx Inc. ‘UG534 ML605 Hardware User Guide’ (2011). Available at:

http://www.xilinx.com/support/documentation

[XIL11c] Xilinx Inc. ‘DS789 LogiCORE IP AXI System ACE Interface Controller

(axi_sysace) (v1.01.a)’ (2011). Available at:

http://www.xilinx.com/support/documentation

[XIL11d] Xilinx Inc. ‘UG761 AXI Reference Guide’ (2011). Available at:

http://www.xilinx.com/support/documentation

[XIL12a] Xilinx Inc. “DS150 Virtex-6 Family Overview” (2012), available at:

http://www.xilinx.com/support/documentation

[XIL12b] Xilinx Inc. ‘UG081 Microblaze Processor Reference Guide’ (2012)

[XIL12c] Xilinx Inc. ‘Embedded System Tools Reference Manual’ (2012), p. 13.

Available at:

http://www.xilinx.com/support/documentation/sw_manuals

[XIL13] Xilinx Inc. ‘UG902 Vivado Design Suite User Guide High Level Synthesis’

(2013), available at: http://www.xilinx.com/support/documentation

[XIL14] Xilinx Inc. “DS180 7 Series FPGAs Overview” (2014), available at:

http://www.xilinx.com/support/documentation

http://en.wikipedia.org/wiki/File:Airy-pattern.svg
http://en.wikipedia.org/wiki/File:Airy-pattern.svg
http://www.xilinx.com/support/
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support/documentation/sw_manuals
http://www.xilinx.com/support/documentation
http://www.xilinx.com/support/documentation

59

Apéndice A: Introducción

El proyecto ha sido llevado a cabo en el marco del programa de becarios del

centro de astronomía de la agencia espacial europea (ESAC), que da

oportunidad de contribuir a las misiones en curso a jóvenes estudiantes de

ciencia y de ingeniería. Este proyecto abarca el diseño y la implementación de

un prototipo en FPGA, cuyo propósito es acelerar un algoritmo de centrado.

También será evaluado si las FPGA son dispositivos adecuados para

implementar algoritmos de óptica adaptativa, dadas las típicas restricciones en

el tiempo.

Motivación y objetivos

Diversas aplicaciones astronómicas requieren la obtención y el análisis del

centroide de imágenes con un rápido ciclo de trabajo. Dos ejemplos son los

sistemas de óptica adaptiva y los de control orbital de actitud. Los requisitos

de velocidad pueden ser muy restrictivos (μs para la aplicaciones típicas de

óptica adaptativa), y los algoritmos que típicamente se usan son ineficientes

pero rápidos, como el centro de gravedad de imágenes.

La máxima precisión que cualquier algoritmo puede alcanzar está determinada

por la frontera de Crámer-Rao [BAS04]. Los algoritmos de máxima

verosimilitud desarrollados para la misión Gaia de la ESA [LIN08] tienen una

precisión muy cercana al límite de Crámer-Rao, y pueden ser considerados

óptimos en términos de rendimiento. Están basados en el modelado previo: la

optimización ponderada de Gauss-Newton de una función similar a los datos

observados. A pesar de esto son lentos, y típicamente lejos de los requisitos de

velocidad necesitados para aplicaciones críticas en el tiempo.

Los dispositivos basados en FPGA han sido usados en una gran variedad de

satélites y otras misiones de la ESA para procesar datos a bordo, y en

consecuencia reducir la cantidad de datos mandados a la Tierra. Su utilidad ha

sido probada en varios campos de la industria espacial, y la aceleración de

algoritmos de centrado pesados podría ser uno de sus usos.

60

Aunque no está entre los propósitos de esta tésis, una versión avanzada del

prototipo que resultará de este proyecto pordía ser conectado de alguna forma

a un sensor de frente de onda Shack-Hartmann, recibiendo los datos que este

produzca. Entonces el frente de ondas sería reconstruido para una potencial

restauración del mismo usando espejos deformables.

Los objetivos de este proyecto se listan a continuación:

 Diseñar e implementar un módulo específico que ejecute el mencionado

algoritmo de cálculo de centroides.

 Optimizar el módulo que implementa el algoritmo de cálculo de

centroides, adaptando el hardware a las necesidades del algoritmo.

 Probar la funcionalidad del módulo.

 Diseño e implementación de un sistema que provea al módulo con datos

y soporte.

 Optimización del sistema, para aproximarse a la escala de 1 μs.

 Evaluación de las posibilidades de un sistema similar que procese en

paralelo varias decenas de microlentes, probablemente con un número

igual de módulos aceleradores.

 Evaluación de la conveniencia de un sistema FPGA para este tipo de

algoritmo y sus restricciones en el tiempo.

Descripción del documento

Después de la introducción, la sección ‘2. State of the Art of Adaptive Optics’,

explica el propósito de la óptica adaptative, el problema que este proyecto

aborda, varias clarificaciones sobre la tecnología implicada, y finalmente el

algoritmo implementado. La sección ‘3. The use of Reconfigurable HW for

adaptative optics’ explica por qué esta tecnología podría ser relevante para la

óptica adaptativa, detalla las características de la placa de evaluación usada en

el proyecto y también incluye algunas consideraciones necesarias para

entender las decisiones de diseño. En la sección ‘4. First functional prototype’

se explica como se ha llevado a cabo el prototipo en sí mismo, incluyendo

tanto el módulo de computación como el sistema en general. Las secciones 5 y

6 presentan los resultados, el trabajo futuro y las conclusiones del proyecto.

61

Apéndice B: Conclusión y trabajo

futuro

Conclusión

Estas son las principales conclusiones que pueden ser extraídas de este

proyecto:

 Las herramientas de síntesis de alto nivel son capaces de implementar

distintos tipos de algoritmos (especialmente los intensivos en cálculo en

punto flotante) con un buen resultado general y costando menos tiempo

de trabajo que con el flujo de trabajo equivalente.

 Las FPGA son dispositivos capaces de implementar algoritmos de

centrado de óptica adaptativa de una manera eficiente. Parece claro que,

con más tiempo de desarrollo, los algoritmos cuya precisión está muy

cercana a límite de la información dada pueden ser implementados con

el necesario rendimiento para que el sistema completo sea útil.

 Aunque las herramientas HLS simplifican el proceso de creación de

hardware, permiten al desarrollador la elección de una amplia variedad

de parámetros, particularmente donde la optimización es más común

(como bucles y recursos de memoria).

 Los sistemas embebidos han probado ser muy útiles cuando muchos

elementos de ellos pueden ser tomados e implementados sin hacerlos ‘a

mano’.

62

Trabajo futuro y optimizaciones

Este trabajo preliminar puede ser mejorado y extendido en las siguientes

direcciones:

Usando las LUTs reales: Como fue argumentado en la sección 2.6., todo el

trabajo explicado ha sido hecho con la LUT pequeña de 81 nodos. Esto hizo

posible la obtención de resultados en plazo, pero también significa que el

trabajo debe continuar. El siguiente paso es mejorar el prototipo usando la

nueva LUT de 370 MB en vez de la de 162 KB. Esto puede causar algunas

dificultades accediendo al archivo en la Compact Flash.

Número óptimo de iteraciones: El módulo hardware está actualmente

realizando una sóla iteración del algoritmo de Gauss-Newton. Aunque este

algoritmo se compone de varias. El número exacto depende de la precisión

requerida para la aplicación o del límite que el número de nodos en la LUT

impone.

En este momento el sistema está preparado para encontrar este número

usando el código que corre en el procesador, porque es más sencillo poner

algunas condiciones aquí. Cuando el número de iteraciones esté fijo, habrá que

integrarlo en el hardware como un bucle “for” que incluya todo el resto del

código. Este bucle no podrá ser puesto hecho pipeline porque cada iteración

necesita al comienzo los datos que la anterior da.

Test de fiabilidad y precisión: Será necesario desarrollar un test específico

que asegure la robustez del sistema a datos no válidos, o formatos no

esperados. Además de esto, y debido a que el sistema será usado con fines

científicos, un test de precisión deberá ser desarrollado. Una posibilidad de

diseño para este test consistiría en comparar el sistema con un programa Java

que ejecute exactamente el mismo algoritmo con las mismas imágenes

iniciales. Entonces se haría una comparación entre los resultados finales.

Optimización: El sistema tiene fuertes restricciones en el tiempo para que sea

útil, así que probablemente necesite más optimización. Esta puede ir desde

más paralelización del módulo hardware a cambios dramáticos en la

estructura del sistema completo. Se deberían implementar cambios

63

incrementales, hasta que un cierto objetivo sea alcanzado o hasta que las

mejoras sean despreciables.

Aunque se han hecho diferentes optimizaciones (especialmente en el módulo

del algoritmo de AO) hay una seria de puntos que necesitan ir más allá. Por

ejemplo casi ninguna optimización ha sido llevada a cabo en el código del

procesador debido a la falta de tiempo.

Esta figura muestra los primeros ciclos de reloj de una iteración del bucle de la

multiplicación de matrices. Puede verse que tanto recursos como tiempo son

desperdiciados cuando está leyendo los parámetros iniciales.

Otro punto para optimizar sería evaluar si las ineficiencias del algoritmo de

centrado están realmente afectando a los tiempos resultantes en comparación

con los accesos de memoria. Si es así, el algoritmo de multiplicación podría ser

más paralelizado dividiendo la multiplicación de matrices en dos conjuntos de

columnas (pares e impares por ejemplo) y entonces sumando los resultados al

final. Este mecanismo puede ser repetido varias veces si es necesario.

65

A. Presupuesto

1) Ejecución Material 3.650 €

Compra de ordenador personal (Software incluido) 1500 €

Compra Virtex-6 ML605 Evaluation Kit y licencia 2000 €

Alquiler de impresora láser durante 6 meses 50 €

Material de oficina 150 €

2) Gastos generales 545 €

15% sobre la "Ejecución Material" 545 €

3) Beneficio industrial 365 €

10% sobre la "Ejecución Material" 365 €

4) Honorarios Proyecto 19.200 €

960 horas a 20 €/hora 19.200 €

5) Material fungible 400 €

Gastos de impresión 100 €

Encuadernación 300 €

Subtotal Presupuesto (1+2+3+4+5) 24160 €

IVA 21% s/subtotal 5.073 €

 Total Presupuesto 29.223 €

67

B. Pliego de condiciones

Este documento contiene las condiciones legales que guiarán la realización de

este proyecto. En lo que sigue, se supondrá que el proyecto ha sido encargado

por una empresa cliente a una empresa consultora con la finalidad de realizar

dicho sistema.

Dicha empresa ha debido desarrollar una línea de investigación con objeto de

elaborar el proyecto. Esta línea de investigación, junto con el posterior

desarrollo de los programas está amparada por las condiciones particulares

del siguiente pliego.

Supuesto que la utilización industrial de los métodos recogidos en el presente

proyecto ha sido decidida por parte de la empresa cliente o de otras, la obra a

realizar se regulará por las siguientes:

Condiciones generales

1. La modalidad de contratación será el concurso. La adjudicación se hará, por

tanto, a la proposición más favorable sin atender exclusivamente al valor

económico, dependiendo de las mayores garantías ofrecidas. La empresa que

somete el proyecto a concurso se reserva el derecho a declararlo desierto.

2. El montaje y mecanización completa de los equipos que intervengan será

realizado totalmente por la empresa licitadora.

3. En la oferta, se hará constar el precio total por el que se compromete a

realizar la obra y el tanto por ciento de baja que supone este precio en relación

con un importe límite si este se hubiera fijado.

68

4. La obra se realizará bajo la dirección técnica de un Ingeniero Superior de

Telecomunicación, auxiliado por el número de Ingenieros Técnicos y

Programadores que se estime preciso para el desarrollo de la misma.

5. Aparte del Ingeniero Director, el contratista tendrá derecho a contratar al

resto del personal, pudiendo ceder esta prerrogativa a favor del Ingeniero

Director, quien no estará obligado a aceptarla.

6. El contratista tiene derecho a sacar copias a su costa de los planos, pliego de

condiciones y presupuestos. El Ingeniero autor del proyecto autorizará con su

firma las copias solicitadas por el contratista después de confrontarlas.

7. Se abonará al contratista la obra que realmente ejecute con sujeción al

proyecto que sirvió de base para la contratación, a las modificaciones

autorizadas por la superioridad o a las órdenes que con arreglo a sus

facultades le hayan comunicado por escrito al Ingeniero Director de obras

siempre que dicha obra se haya ajustado a los preceptos de los pliegos de

condiciones, con arreglo a los cuales, se harán las modificaciones y la

valoración de las diversas unidades sin que el importe total pueda exceder de

los presupuestos aprobados. Por consiguiente, el número de unidades que se

consignan en el proyecto o en el presupuesto, no podrá servirle de fundamento

para entablar reclamaciones de ninguna clase, salvo en los casos de rescisión.

8. Tanto en las certificaciones de obras como en la liquidación final, se

abonarán los trabajos realizados por el contratista a los precios de ejecución

material que figuran en el presupuesto para cada unidad de la obra.

9. Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase a

las condiciones de la contrata pero que sin embargo es admisible a juicio del

Ingeniero Director de obras, se dará conocimiento a la Dirección, proponiendo

a la vez la rebaja de precios que el Ingeniero estime justa y si la Dirección

resolviera aceptar la obra, quedará el contratista obligado a conformarse con la

rebaja acordada.

10. Cuando se juzgue necesario emplear materiales o ejecutar obras que no

figuren en el presupuesto de la contrata, se evaluará su importe a los precios

69

asignados a otras obras o materiales análogos si los hubiere y cuando no, se

discutirán entre el Ingeniero Director y el contratista, sometiéndolos a la

aprobación de la Dirección. Los nuevos precios convenidos por uno u otro

procedimiento, se sujetarán siempre al establecido en el punto anterior.

11. Cuando el contratista, con autorización del Ingeniero Director de obras,

emplee materiales de calidad más elevada o de mayores dimensiones de lo

estipulado en el proyecto, o sustituya una clase de fabricación por otra que

tenga asignado mayor precio o ejecute con mayores dimensiones cualquier

otra parte de las obras, o en general, introduzca en ellas cualquier

modificación que sea beneficiosa a juicio del Ingeniero Director de obras, no

tendrá derecho sin embargo, sino a lo que le correspondería si hubiera

realizado la obra con estricta sujeción a lo proyectado y contratado.

12. Las cantidades calculadas para obras accesorias, aunque figuren por

partida alzada en el presupuesto final (general), no serán abonadas sino a los

precios de la contrata, según las condiciones de la misma y los proyectos

particulares que para ellas se formen, o en su defecto, por lo que resulte de su

medición final.

13. El contratista queda obligado a abonar al Ingeniero autor del proyecto y

director de obras así como a los Ingenieros Técnicos, el importe de sus

respectivos honorarios facultativos por formación del proyecto, dirección

técnica y administración en su caso, con arreglo a las tarifas y honorarios

vigentes.

14. Concluida la ejecución de la obra, será reconocida por el Ingeniero Director

que a tal efecto designe la empresa.

15. La garantía definitiva será del 4% del presupuesto y la provisional del 2%.

16. La forma de pago será por certificaciones mensuales de la obra ejecutada,

de acuerdo con los precios del presupuesto, deducida la baja si la hubiera.

17. La fecha de comienzo de las obras será a partir de los 15 días naturales del

replanteo oficial de las mismas y la definitiva, al año de haber ejecutado la

70

provisional, procediéndose si no existe reclamación alguna, a la reclamación de

la fianza.

18. Si el contratista al efectuar el replanteo, observase algún error en el

proyecto, deberá comunicarlo en el plazo de quince días al Ingeniero Director

de obras, pues transcurrido ese plazo será responsable de la exactitud del

proyecto.

19. El contratista está obligado a designar una persona responsable que se

entenderá con el Ingeniero Director de obras, o con el delegado que éste

designe, para todo relacionado con ella. Al ser el Ingeniero Director de obras el

que interpreta el proyecto, el contratista deberá consultarle cualquier duda que

surja en su realización.

20. Durante la realización de la obra, se girarán visitas de inspección por

personal facultativo de la empresa cliente, para hacer las comprobaciones que

se crean oportunas. Es obligación del contratista, la conservación de la obra ya

ejecutada hasta la recepción de la misma, por lo que el deterioro parcial o total

de ella, aunque sea por agentes atmosféricos u otras causas, deberá ser

reparado o reconstruido por su cuenta.

21. El contratista, deberá realizar la obra en el plazo mencionado a partir de la

fecha del contrato, incurriendo en multa, por retraso de la ejecución siempre

que éste no sea debido a causas de fuerza mayor. A la terminación de la obra,

se hará una recepción provisional previo reconocimiento y examen por la

dirección técnica, el depositario de efectos, el interventor y el jefe de servicio o

un representante, estampando su conformidad el contratista.

 22. Hecha la recepción provisional, se certificará al contratista el resto de la

obra, reservándose la administración el importe de los gastos de conservación

de la misma hasta su recepción definitiva y la fianza durante el tiempo

señalado como plazo de garantía. La recepción definitiva se hará en las mismas

condiciones que la provisional, extendiéndose el acta correspondiente. El

Director Técnico propondrá a la Junta Económica la devolución de la fianza al

contratista de acuerdo con las condiciones económicas legales establecidas.

71

23. Las tarifas para la determinación de honorarios, reguladas por orden de la

Presidencia del Gobierno el 19 de Octubre de 1961, se aplicarán sobre el

denominado en la actualidad “Presupuesto de Ejecución de Contrata” y

anteriormente llamado ”Presupuesto de Ejecución Material” que hoy designa

otro concepto.

Condiciones particulares

La empresa consultora, que ha desarrollado el presente proyecto, lo entregará

a la empresa cliente bajo las condiciones generales ya formuladas, debiendo

añadirse las siguientes condiciones particulares:

1. La propiedad intelectual de los procesos descritos y analizados en el

presente trabajo, pertenece por entero a la empresa consultora representada

por el Ingeniero Director del Proyecto.

2. La empresa consultora se reserva el derecho a la utilización total o parcial

de los resultados de la investigación realizada para desarrollar el siguiente

proyecto, bien para su publicación o bien para su uso en trabajos o proyectos

posteriores, para la misma empresa cliente o para otra.

3. Cualquier tipo de reproducción aparte de las reseñadas en las condiciones

generales, bien sea para uso particular de la empresa cliente, o para cualquier

otra aplicación, contará con autorización expresa y por escrito del Ingeniero

Director del Proyecto, que actuará en representación de la empresa consultora.

 4. En la autorización se ha de hacer constar la aplicación a que se destinan sus

reproducciones así como su cantidad.

 5. En todas las reproducciones se indicará su procedencia, explicitando el

nombre del proyecto, nombre del Ingeniero Director y de la empresa

consultora.

72

6. Si el proyecto pasa la etapa de desarrollo, cualquier modificación que se

realice sobre él, deberá ser notificada al Ingeniero Director del Proyecto y a

criterio de éste, la empresa consultora decidirá aceptar o no la modificación

propuesta.

7. Si la modificación se acepta, la empresa consultora se hará responsable al

mismo nivel que el proyecto inicial del que resulta el añadirla.

8. Si la modificación no es aceptada, por el contrario, la empresa consultora

declinará toda responsabilidad que se derive de la aplicación o influencia de la

misma.

9. Si la empresa cliente decide desarrollar industrialmente uno o varios

productos en los que resulte parcial o totalmente aplicable el estudio de este

proyecto, deberá comunicarlo a la empresa consultora.

10. La empresa consultora no se responsabiliza de los efectos laterales que se

puedan producir en el momento en que se utilice la herramienta objeto del

presente proyecto para la realización de otras aplicaciones.

11. La empresa consultora tendrá prioridad respecto a otras en la elaboración

de los proyectos auxiliares que fuese necesario desarrollar para dicha

aplicación industrial, siempre que no haga explícita renuncia a este hecho. En

este caso, deberá autorizar expresamente los proyectos presentados por otros.

12. El Ingeniero Director del presente proyecto, será el responsable de la

dirección de la aplicación industrial siempre que la empresa consultora lo

estime oportuno. En caso contrario, la persona designada deberá contar con la

autorización del mismo, quien delegará en él las responsabilidades que

ostente.

