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Resumen 
 

La óptica adaptativa es una técnica usada principalmente para mejorar el 

rendimiento de los sistemas ópticos (como por ejemplo los telescopios 

astronómicos) reduciendo el efecto de las perturbaciones en el frente de ondas 

introducidas por la atmósfera. Los sensores de onda más comunes (Shack-

Hartmann) producen una miríada de imágenes cuyo centroide hay que 

determinar para estimar las aberraciones. Como el tiempo de coherencia de la 

atmósfera está en torno al milisegundo, cada centroide debe ser estimado en el 

entorno de los microsegundos para que el sistema pueda dar una respuesta a 

tiempo. Debido a estas restricciones los algoritmos de centrado que se usan 

habitualmente son de baja precisión.  

 

Los algoritmos de centrado de máxima verosimilitud desarrollados para la 

misión Gaia de la ESA alcanzan una precisión muy cercana a la máxima posible 

matemáticamente hablando, la frontera de Crámer-Rao. A pesar del alto 

rendimiento, el algoritmo usa intensivamente cálculos en coma flotante, así 

que normalmente no alcanza las restricciones en el tiempo que aplican en 

óptica adaptativa.  

 

Para solucionar este problema una versión básica del algoritmo ha sido 

implementada en un sistema embebido basado en FPGA. Un módulo específico 

ha sido desarrollado con este propósito usando la herramienta de síntesis de 

alto nivel Vivado HLS. Para cumplir los requisitos temporales el algoritmo ha 

sido estructurado en un pipeline y paralelizado hasta un límite razonable. 

 

Aunque implementar la versión completa del algoritmo requerirá más 

desarrollo, los resultados alcanzados por esta primera aproximación son muy 

prometedores y refuerzan la relevancia de los sistemas basados en FPGA para 

aplicaciones astronómicas.  

 

  



ii 
 

Abstract 
 

Adaptive optics is a technique used mainly to improve the performance of 

optical systems (as astronomical telescopes) by reducing the effect of 

wavefront distortions introduced by the atmosphere. The most common 

wavefront sensors (Shack-Hartmann) produce a myriad of images which 

centroid has to be determined to estimate the aberrations. As the coherence 

tome of the atmosphere is around the millisecond, each centroid has to be 

estimated in a time around the microseconds, so the system is able to give an 

output in time. Due to these requirements the centroiding algorithms most 

commonly used achieve low precision.  

 

The maximum likelihood centroiding algorithm developed for the ESA Gaia 

mission provides a precision very close to the maximum mathematically 

achievable, which is the Crámer-Rao lower bound. Despite of its high 

performance, the algorithm is intensive in floating point calculation, so it is 

typically far from the strict time constraints.  

 

To solve this problem a basic version of the algorithm has been implemented 

in a FPGA based embedded system. A specific core has been developed for this 

purpose using the high level synthesis tool Vivado HLS. To meet the time 

constraints the algorithm has been parallelized and pipelined up to a 

reasonable degree.        

 

Although implementing the complete version of the algorithm will require 

further development, the results shown by this first approach are very 

promising and strengthen the relevance of FPGA based systems for 

astronomical applications.  
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1. Introduction 
 
This Project has been carried out within the framework of the European Space 

Astronomy Centre (ESAC) trainee program, which gives the opportunity to 

contribute to current missions to young student scientists and engineers. This 

project covers the design and implementation of a FPGA prototype, which has 

the purpose of accelerating a centroiding algorithm. It will be evaluated if 

FPGAs are adequate devices to implement adaptive optics algorithms, given the 

typical time constraints.  

1.1. Motivation and objectives 

 

Several astronomical applications require obtaining and analysing the centroid 

of images with a very high duty cycle. Two examples are adaptive optics and 

attitude and orbit control systems. The speed requirements can be very 

stringent (μs for typical adaptive optics applications), and inefficient but fast 

algorithms are typically used, such as the image centre of gravity.  

 

The maximum precision that any algorithm can achieve is given by the Crámer-

Rao lower bound [BAS04]. The maximum likelihood algorithms developed for 

the ESA Gaia mission [LIN08] provide a precision very close to the Crámer-Rao 

limit, and can be considered optimal in terms of performance. They are based 

on forward modelling: the weighted Gauss-Newton optimization of a function 

resembling the observed data. However, they are time consuming, and typically 

far from the speed requirements needed for time critical applications. 

 

FPGA based devices have been intensively used in the past in satellites and 

other ESA missions to process data on-board, and therefore to reduce the 

amount of data sent to Earth. They have been proven to be useful in several 

fields in the space industry, and accelerating heavy centroiding algorithms 

could be one of its uses.  

 

Although not within the scope of this thesis, an advanced version of the 

prototype that will result of this project would be connected in some way to a 
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Shack-Hartmann wavefront sensor, receiving the data that it outputs. Then it 

would reconstruct the wavefront for a potential restoration using deformable 

mirrors.  

 

The objectives of this project are listed next: 

 Design and implementation of a specific core that performs the 

mentioned centroiding calculation algorithm. 

 Optimization of the core that implements the centroiding calculation 

algorithm, adapting the hardware to the needs of the algorithm. 

 Testing of core functionality. 

 Design and implementation of a system that provides the core with data 

and general functionality.  

 Optimization of the system, to approach the 1 μs time scale. 

 Evaluation of the possibilities of a similar system to process in parallel 

several tens of lenslets, most likely accommodating an equal number of 

accelerating cores. 

 Evaluation of the suitability of FPGA system for this type of algorithm 

and time constraints. 

1.2. Document description 

 

After the introduction, section ‘2. State of the Art of Adaptive Optics’, explains 

the purpose of adaptive optics, the problem that this project issues, several 

clarification about the technology involved, and finally the implemented 

algorithm. Section ‘3. The use of Reconfigurable HW for adaptative optics’ 

explains why this technology could be relevant for adaptive optics, details the 

features of the evaluation board used in the project and also includes some 

considerations to understand the design decisions. In Section ‘4. First 

functional prototype’ it is explained how was carried out the prototype itself, 

including both the computing core and the general system. Sections 5 and 6 

present the results, the future work and the conclusions of the project. 
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2. State of the art of Adaptive 

Optics 

2.1. Introduction to adaptive optics 

 
Adaptive optics (AO) is the technology that is used to correct distortions in a 

wavefront (WF) in real-time. It works measuring the distortion and 

compensating for it with some device, usually a deformable mirror. AO 

systems are used in several fields, including ocular surgery and astronomical 

observation: 

 Ocular medicine and surgery: AO enable doctors to see the eye internal 

structure with precision due to its capacity to eliminate the eye 

aberration. It is also useful to measure the exact amount of correction 

needed when surgery is performed or even to model the results of it. 

 

 Astronomical observation: Before light reaches the focal plane of a 

ground based telescope it has been distorted by the atmosphere. The 

way the atmosphere is distorting the light is also changing continuously. 

Due to this effect the only way to achieve ground based diffraction 

limited imaging is to include an AO system integrated in the telescope. 

 

Adaptive optics in astronomy has been proved very useful in achieving more 

accurate images. As can be seen in Fig. 1 the pictures obtained with an AO 

system are much sharper and clear than the ones in which no AO system has 

been implemented.  

 
 

Fig. 1: Left, Neptune picture taken with AO; right, same picture 
without AO.  

 



 

10 
 

2.2. Problem in adaptive optics that is being solved  

 
One of the main problems of AO is that the system is required to work in real-

time, which in this case means that the whole process must be finish in a time 

scale of 1 ms. This time scale is called coherence time and depends on several 

parameters, as the Fried parameter and the average wind speed [DAV12].  So 

every step in a WF calculating algorithm should be completed in less than 1 

ms. In particular it means that each of the around 1000 centroiding operation 

must be carried out in the microsecond time range, in order to provide timely 

feedback. 

 

Why is this requirement a problem? Because the algorithm that has been 

chosen is particularly intensive in calculations. It involves several stages, each 

one of these including hundreds of floating point multiplications, hundreds of 

floating point sums and subtractions, a big amount of accesses to memory, etc.  

 

As you may have noticed, there are lots of operations with floating point data, 

which is a known field in which general purpose processors struggle. Due to its 

characteristics (they include just a few very complex cores) they excel at 

performing complex tasks over a small set of fixed precision data, whereas 

they have significantly less performance working with large sets of floating 

point data which usually require a great number of operations [UND04]. 

 

Given the real-time constraint it is obvious that a general purpose processor 

(CPU) is not the best suited hardware for this task. Furthermore, as can be read 

in the next subsection, the used algorithm can be easily parallelized, so it is 

clear that a CPU is not suitable for this job. 
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2.3. Wavefront sensor  

 
A wavefront sensor is an optical instrument that measures the deformation of 

a WF. In other words it calculates the phase divergence between the different 

parts of the WF. In order to do this it is composed of a lenslet array in which 

each one focuses the light that hits the corresponding fraction of the WFS in 

one point on a light gathering element. As the lenslet array will be set in a 

square regular pattern, the same shape is observed in the images, collected in 

the CCD detector located afterwards.  

 

 

 
Fig. 2: Wavefront sensor included in Gaia (exterior), from [MOR12b] 

 
 

As can be seen in Fig. 3, when a flat wavefront hits the lenslet array it produces 

a certain pattern of light dots, usually in a squared pattern (in this case it is set 

in a linear pattern since it is observed from one of its sides). If the wavefront is 

not in phase this pattern will be distorted, the distances between the light dots 

will not be the same. In this way the phase differences can be calculated from 

this ‘error’ in the position of the light point. The bigger the distance between 

the correct position and the real position, the less in phase is the wavefront. 

 

The WFS provides an image composed of different subimages (one per 

microlens). The centroid of each subimage is derived fitting the electron 

distribution recorder in the CCD image.  
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Fig. 3: WF schematic. Up, it shows a flat WF and the regular pattern that it produces; 

middle, an aberrated WF results in an irregular pattern; bottom, a deformable mirror is 
able to reconstruct a flat WF. 

2.4. Purpose of Adaptive Optics algorithm: 

Centroids, Crámer-Rao lower bound and maximum 

likelihood algorithm 

 
Although Shack-Hartmann wavefront sensors provide all the data which is 

necessary to determine the WF slopes, there has to be an algorithm that 

transforms all this information into a real wavefront. This process is divided in 

two differentiated parts: 

 

1. Determining the position of each microlens image: Given the output of 

the WFS, the centroid of the point spread function (PSF) can be 

determined. The more precision the system achieves, the better it will 

work. 

 

2. Wavefront reconstruction from centroid positions: Once all centroids 

have been determined the wavefront can be reconstructed. 
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Determining the centroids is not easy. Due to the nature of the light, and 

because of its diffractive properties, each “light point” mentioned in the 

previous subsection is not exactly a point. Instead of this it would be more 

similar to an Airy disk [GIA00] (fig. 4), if the optical system would be perfect.  

 

 

 

In reality there are small aberrations in the lenses, so this Airy disk will be 

deformed. This distorted Airy disk can be expressed by the number of 

electrons that hit the sensor multiplied by a matrix of the probabilities of an 

electron to hit a specific pixel. This matrix of probabilities is called point 

spread function (PSF, fig. 5), and its centroid is the same that the original 

deformed Airy disk had as its values are proportional to the initial ones. 

Because of this the coordinates of the subimage that are needed are also the 

coordinates of the centroid of the PSF. 

 

Fig. 4: Airy disk produced by refraction of the light 
[SAK07] 
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Fig. 5: A pair of deformed Airy disks produced by a WFS lenslet, and its correspondent 
PSF, in a pixel matrix of 5x5. [JAM]. 

 
 

So a Shack-Hartmann Wavefront Sensor (WFS) provides information on the on 

the wavefront slopes measuring the centroid displacement of each lenslet 

image with respect to a given zero error reference.  This process completely 

depends on the centroiding precision achievable. There is a maximum 

precision achievable for a centroiding algorithm: the Crámer-Rao lower bound.  

 

Reaching this precision is not trivial, but it can be done fitting the coordinates 

of the centroid, and some other nuisance variables, with a mathematical model 

that depends on several variables. In this case this secondary data will be the 

number of electrons that hit the sensor and a shape factor of the PSF. This 

shape factor encapsulates information relative to effects such as PSF width, 

microlens diameter, etc.  

 

In this way the initial centroiding problem has been transformed to a weighted 

least square minimization problem. There are many methods available to solve 

this type of problem, such as Gauss-Newton [BJO96] or Levenberg-Marquardt 

ones [MOR78].  
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2.5. Problems in SW solution, options to solve it 

 
The PSF centroiding algorithm could be programmed in standard pc with a 

normal CPU, and run correctly, but it will not satisfy the time requirements. As 

it was stated in previous sections, for this algorithm to be effective it is 

necessary that all the computation is done in a time-scale of a few hundreds of 

μs, which is difficult to achieve with the most usual techniques.  

 

The algorithm exposed is highly parallelizable, mainly in two ways: 

 

There are lots of floating point matrix multiplications. This means that 

hundreds of floating point multiplications could run in parallel in order to be 

summed up after they are all finished.  

 

In a standard Shack-Hartmann wavefront sensor there are between dozens and 

hundreds of lenslets. Each one of these PSF centroids need to be calculated 

with an algorithm like the one proposed before. So a solution to meet time 

requirements would be to process every lenslet at the same time.  

 

In order to implement these two basic ideas it seems clear that a standard CPU 

program configuration will not do the job. Whereas the CPU solution is not an 

option, two other ones arise: 

 

 GPU (graphic processor unit): Whereas a standard processor only has a 

few cores, a GPU usually includes from several hundreds to thousands. 

This is useful because each one of those can deliver an operation at the 

same time. Furthermore, they are specialized in floating point 

operations. 

 

 FPGA (field programmable gate array): Due to its ability to link logical 

gates and create both logic and memory, this is one of the most flexible 

options to perform whatever type of algorithm. It is possible to create 

any hardware inside of an FPGA, so floating point operational hardware 

could be replicated as many times as necessary, while there still are 

resources available.  
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2.6. Adaptive Optics algorithm  

 

The algorithm used in this project is based in a maximum likelihood algorithm 

developed for the ESA Gaia mission, and described in deep in [MOR10]. It 

provides a precision very close to the Crámer-Rao limit. It is based in a 

forward-modelling algorithm: the weighted Gauss-Newton optimization of a 

function similar to the observed data.  

 

A noiseless image of nx by ny pixels (10 by 10 in this case) can be described as a 

matrix, in which each number will be the electrons collected by each pixel. This 

matrix can be described also as the total number of electrons produced by the 

sensor multiplied by the PSF (described in 2.4 subsection): 

 

                            

 

Note that (xc, yc) are the PSF centroid, that is unknown, and s the shape factor 

of the PSF. The PSF forward modelling function includes a priori knowledge of 

the optical system, so N
i
 can be compared to the real number of electrons 

collected O
i
 (the real image). There is then a set of parameters that characterize 

N
i
:  

               

 

These are the parameters that have to be fitted minimizing the weighted RMS 

sum, and then providing the best match between N
i
 and O

i
. 

 

     ∑          
 

    

   

 

 

In this equation w
i
 are the weights that provide the maximum likelihood 

[MOR12a].  

 

The RMS optimization algorithm that is used is the Gauss-Newton algorithm. It 

is an iterative method that uses an initial input for the vector   and 

approaches the optimal vector by summing the result values of the procedure 

(  ) to the previous vector. In each iteration    is calculated according to: 
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In this equation M is a 4 × 100 values matrix (100 because of the 10 by 10 size 

of the image matrix), O and N are respectively the observational and model 

vectors composed by all the rows of its corresponding matrix (or image), W is a 

diagonal matrix with the weights and J is the forward model Jacobian matrix. 

 

The speed of the Gauss-Newton method depends on the speed with which the 

matrix M and the vector N can be computed for each iteration. This is an 

important point because the centroid has to be calculated within a time scale 

of 1 μs. The steps to calculate these matrices include several non-trivial 

integrations. A strategy has been developed to bypass this situation, pre-

computing in lookup tables (LUT) these matrices. A general description of the 

algorithm would be: 

 

1. Apply center of mass algorithm to obtain an initial guess for the final 

centroid. 

2. Construct observation vector (O) by linking together the rows of the 

10×10 image received. 

3. Retrieve from LUT the M and N matrices that match the values of the 

initial guess.  

4. Compute the operation:           

5. Update initial parameters:              

6. Return to 3. and repeat until the difference between one iteration and 

the next one is below a certain threshold.  

 

The LUT has to be indexed by the four parameters of the vector  , and it needs 

enough nodes to achieve the precision noted above (Crámer-Rao lower bound). 

The following number of nodes has been proposed in [MOR12a]: 21 elements 

for each variable (       ) and 20 for   . It results in                    

nodes. Every node requires one matrix M and one matrix N, this is 500 

elements in total. Each element will be stored in floating point single precision 

format (4 bytes). This makes a total of: 
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The knots of every variable are distributed in the segment where is most likely 

to have values in a real scenario. The points for the different parameters are: 

 

    and   : 21 points distributed from the centre of the image (in this 

case 4.5 in both axes) in both directions, from the start of pixel 4 to the 

start of pixel 6. 

  : 21 knots covering a reasonable interval of values (usually from     to 

    μm). 

  : 20 points from 500 to 10000 electrons, in steps of 500. 

 

Although this is the size of the LUT that is needed to achieve an adequate 

precision, it was proposed to start creating a prototype that used a smaller 

LUT due to the problems of allocating and accessing large data arrays in an 

external memory from an FPGA. This smaller LUT was made with just 81 nodes 

(3 for each parameter), which makes a file size of 162 KB. All the work from 

now on will focus on this approach. 
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3. The use of reconfigurable HW 

for adaptive optics 

3.1. Benefits of reconfigurable hardware and FPGAs 

 
Reconfigurable hardware is a valuable option when very restricting time 

constraints exist in the problem to solve. This is due to the capacity of 

modelling specific devices which are perfectly adapted to the algorithm to 

perform, and that are not useful in any other one. Both FPGA and ASIC are 

devices that provides these capabilities. 

 
Since many years reconfigurable hardware (FPGA) is a growing alternative to 

the classic ASIC (application-specific integrated circuit) approach to custom 

application hardware chips. Nowadays there are powerful several million logic 

cells FPGA, that are a cheap alternative to ASIC. 

 

These are some of the most important benefit of FPGA technology: 

 

 Performance: FPGA surpass the capabilities of digital signal processors 

by taking the advantage of hardware parallelism instead of keeping with 

sequential execution. They allow you to control what is happening to the 

lowest level, which in the end provides faster response times. FPGA are 

capable of reproduce complex systems as full System on a chip (SOC), 

with an integrated processor, RAM memory, etc. 

 

 Time to prototype: FPGA offers quick prototype capabilities in 

comparison with other technologies, allowing the designer to test a 

concept directly on hardware and then even implement incremental 

changes. 

 

 Cost: Whether ASICs are only affordable when making thousands of 

units per year, FPGA are economically viable from dozens to hundreds 

of devices.  
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 Reliability: FPGA provide a true hardware implementation of a program, 

instead of running it on a full system. Its lack of operative system and 

few abstraction layers allow designers to perform time-critical tasks 

without the risk of another one interrupting due to true parallelism. 

3.2. Commercial brands, main capabilities of some 

families 

 
There are two main manufacturers of high performance FPGA: Xilinx and 

Altera. These are their more powerful series of products: 

 

 Xilinx Virtex 7: With nearly 2 million of logic cells this family of FPGAs 

is one of the most powerful FPGA in the market. Built in 28 nm they are 

capable of lower power consumption than older generations, even with 

a greater performance. This new generation comes with 85 Mb in BRAM, 

which is the largest capacity among common families of FPGA. It also 

has up to 3600 DSP, which are the main blocks used for float 

operations, for example. It supports DDR3 external RAM memory at up 

to 1,866 Mbps [XIL14].   

 

 Xilinx Virtex 6: Although built in 40 nm, the previous top series of Xilinx 

is still a reference in FPGA technology. It is able to manage a high 

bandwidth interface with DDR3 external RAM and high performance 

logic. There are different models for various necessities. Each sub-family 

contains a different ratio of features to most efficiently address the 

needs of a wide variety of logic designs. For example, it should be noted 

that among others there are models with up to 2,016 DSP, which makes 

this family of FPGA very appropriate for implementing heavy calculation 

algorithms [XIL12a]. 

 

 Altera Stratix 5: Stratix are one of the highest performance series in 

Altera. Built in 28 nm as the Virtex 7 they are also capable of variable 

precision signal processing and low power functioning. Stratix V devices 

are available in four variants, each one of them targeted for a different 

set of applications. The GS series supports up to 3,926 DSP, which 

makes it very appropriate for calculation intensive applications [ALT14].  
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It is clear that the power and computation resources have risen to a point 

where these devices are much more versatile than they were years ago. 

Describing the amount of DSP by thousands and having the capability to hold 

DDR3 RAM external memories allow a much more easy adaptation of 

algorithms developed for other platforms, or a high performance approach to 

traditional optimized ones. 

3.3. FPGA traditional design flow 

 

Design flow in hardware design, in general, and in FPGA in particular is quite 

different than in software design. This is due mainly to the level of abstraction 

that software developing implies. This subsection describes the usual 

workflow when developing hardware in FPGA environment. 

 

 

Fig. 6: Traditional step by step design flow (from [XIL11a]) 
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The process can be divided in seven important parts: 

 

1. Write code or design schematic: It is needed to write code for every 

independent module, specifying its inputs and outputs, and the 

function itself. A top module needs to be written in order to link all the 

other modules, also specifying the final inputs and outputs of the 

design. It is usually written in VHDL or Verilog, languages that describe 

the operation of the circuit, but not how it is translated into logic gates.   

 

2. Hardware Description Language (HDL)/Register Transfer Level (RTL) 

simulation: Once the modules have been created the first step is to 

make sure that the system operation is correct. This is done creating a 

Testbench, which is another code –independent from the functional 

one– that is connected to the first one, and analyses if it is working 

properly in every situation. This is often very time-consuming, even 

more than writing the hardware itself, due to the theoretical need of 

trying all the input combinations, so the hardware responds to every 

possible stimulus as it should. Usually doing a complete test is not 

possible, and only the most relevant possibilities are tested. 

 

3. Synthesize: After it is known that the hardware works correctly, it is 

needed that a logic synthesis tool reads the VHDL, and outputs a 

definition of the physical implementation of the circuit. In other words, 

synthesis will take the RTL and generate a gate level description that 

can then be placed and routed. This procedure outputs several netlist 

files. 

 

4. Functional simulation: This is a gate level simulation that checks that 

every behavioural characteristic of the RTL description is kept when 

synthesized.  

 

5. Implement: This process consists of three stages: merging different 

design files into the final netlist of the circuit; grouping logical symbols 

(gates) into physical components in the FPGA; and place these 

components in the FPGA chip, creating in addition a timing report.  
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6. Timing closure and simulation: Once a timing report is created, it is 

more likely that some connections –usually between modules- are not 

time consistent. This can be solved introducing some time constraints 

that change the place and routing of the circuit. Sometimes the design 

still does not meet every time requirement, so some strategies can be 

applied: multi-cycle constraints, false path constraints, map-timing 

options, changing manually the floorplan and even changing the code so 

as to avoid large critical paths. If the circumstances lead to this latter 

option it will mean start the process all over again. After every change a 

time simulation will be run.  

  

7. Bit file creation: After this whole process the created structure needs to 

be passed to the FPGA in a format that it understands. This format is a 

‘.bit’ file, which is a sequence of bits that programs the FPGA changing 

the links between the different elements consecutively.  

 

 

It can be guessed that this process is not an effortless one, since especially 

steps 1, 2 and 6 requires immense amounts of time. Among the difficulties of 

this design flux one has to be particularly noted: if a carried out design needs 

to be changed for some reason (e.g. a calculation system that needs to be more 

parallel), it will need a major restructuration in a high probability. This means 

that it is difficult to change an existing system, so it is better to carefully plan 

the system rather than doing later alterations.   

3.4. High Level Synthesis tools: a new workflow 

 

In the previous subsection it is described the whole traditional design flux, and 

it is stated that one of its main advantages is that it allows the developer to 

control every step, and to plan meticulously the design of the circuit at a very 

low level. It also has some important cons. For example, the process is time 

consuming; furthermore, it implies a big amount of work for some of the steps 

when compared to software development.  

 

In the last paragraph it was highlighted a relevant problem of this working 

method:  once the design is finished, if it requires further changes they will be 
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very difficult and time consuming to carry out. This is a very common 

situation for different reasons, for example because of timing specifications 

that are not completely met in the final implementation and the program 

cannot solve through constraints or just because it has been found a better 

way to accomplish some action. It is even worse for some type of problems 

that require fast prototyping, and cannot admit restructuring the project from 

top to bottom frequently. For these kinds of projects a new workflow is 

needed. 

 

 

Fig. 7: Typical high level synthesis tool workflow (combined with Xilinx tools), from 
[BDT10] 

 

For applications as the ones described before and also for complex algorithms 

or applications that would take a lot of time to implement, there are other 

options. One that is creating lots of expectations as it is becoming more 

common to use is High Level Synthesis tools (as Vivado HLS). It allows 

developers to create custom modules from C, C++ or System C code. It then 

creates VHDL or Verilog files as output, so these modules can be included in a 

classic electronic design or in an embedded system with other components. In 

this way the program allows the developer to create hardware without having 
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to manually create RTL files. This has several advantages compared to the 

traditional design flux: 

 

 The same algorithm in a higher level language is easier to create, and 

conceptually closer to the traditional way of programming. 

 

 It is faster to rewrite a piece of high level language than a module. 

Usually it is more intuitive.  

 

 The testbench can also be created in C, C++ or System C, which leads to 

really fast check of the specifications.  

 

 C and C++ are broadly used languages, which means that a big base of 

programs can be implemented in hardware with relative little effort.  

 

 Easy directive driven optimization of algorithms and processes. It allows 

more control on the synthesis that Vivado HLS does, and then more 

control over the result module. 

 

 Vivado HLS uses automatically on-chip memories (block RAM and flip-

flops) and also arranges DSP elements – using floating-point libraries if 

they are required, for example–. 

 

 

Fig. 8: Typical  HLSTs  automatically  generate  RTL  test benches  in  addition  to  the  
RTL  module  implementing  the design, from [BDT10] 
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In opposition of the positive features these tools also have some negative ones: 

 

 High-level synthesis tools cost considerably more than DSP processor 

software development tools, and more than the average tool used for 

the same aims. 

 HLS tools take away part of the freedom RTL languages contribute to.  

 

As the last point suggest, although Vivado HLS and other high level synthesis 

programs can be very convenient, this new work flow simplifies the process so 

much that nearly everything in the final hardware configuration is left to be 

decided by the synthesizer. In this context it can imply two different results: 

whether the synthesizer is really competent and outputs a very decent result; 

or it is not so good and then programming hardware in such a way is not a 

good idea.  

 

The answer is something in between. This question has been addressed in a 

number of studies. One of the most interesting ones was requested by Xilinx 

before buying the program that would be Vivado HLS in the future [BDT10]. In 

this publication two algorithms, which are very often implemented in FPGAs, 

were programed both in RTL and C in Vivado HLS (AutoESL), or with DSP 

processor implementation and VHLS. These two methods were a video 

processing algorithm (Optical Flow Workload) and a wireless communications 

receiver baseband application (DQPSK Receiver Workload). Then its results 

were studied to have a general view over what performance high level language 

synthesizers could achieve.  

 

In the video processing algorithm the FPGA implementations created using 

high-level synthesis tools achieved roughly 40X the performance of the DSP 

processor implementation. BDTI also evaluated the efficiency of the HLST-

based FPGA implementations of the DQPSK workload versus the same problem 

implemented using hand-coded RTL. Here, too, the HLSTs performed very well. 

The code produced by the HLS tool was comparable in resource efficiency to 

the hand-written RTL code. 

 

Clearly, FPGAs used with high-level synthesis tools can provide a compelling 

performance advantages for some types of applications.  
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Although these tools have proved to be very useful, they do not get the work 

done by themselves. It is needed that the engineer ‘helps’ them with some kind 

of guidelines where the synthesizer can hold on: directives. Directives are code 

instructions for the synthesizer to read that will usually restrict the freedom of 

the toll, so it does what the developer chooses. These directives are usually 

aimed at certain parts of the code that can be optimized in a specific way, –

such as loops–, or to variables that can be stored, outputted, read, etc. more 

conveniently. 

 

Directives can be added with a dialog window, which allows the user to choose 

the type and set a few parameters of it. For example, among the options of the 

directive unroll there is one that allows the user to select how many sets of 

hardware will be created, the option 

‘factor’. This gives directives a great 

flexibility, allowing countless 

possibilities. The directives added in this 

way are specified by the program in a 

special file called “directives.tcl”, which 

is unique for every solution. It simplifies 

the process of using new directives, and 

comparing the results given by each one. 

 

Although adding directives in this way may seem comfortable, it is very 

common to have a set of directives that are well known, i.e. interface ones. 

Because of this Vivado HLS allows the user to write them directly in the code 

file, so this directives will be permanent between solutions, and maybe more 

important, it makes it very easy to copy the code to another project without 

having to set each one of them.  

 

It is clear that high level synthesis is a very valuable option, especially when a 

project is limited in time or budget, or when it is needed to prototype several 

times before having a final system. In the future using Vivado HLS and other 

high level language synthesizers will be very common in all kinds of projects 

as synthesizers are improved and more capable of dealing with a broader 

variety of problems.   

Fig. 9: Directives are shown up in the 
place where they take effect. 
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3.5. Platform description (Board features and 

components) 

 

The platform chosen to implement the system of this project is the Virtex-6 

FPGA ML605 evaluation board [XIL11b]. It includes all the basic components of 

hardware, design tools, IP, and a reference design for system designs that 

demand high-performance, high speed connectivity and advanced memory 

interfaces.  

 

 

Fig. 10: Picture of the actual ML605 board that has been used 

 

These components are the main ones: 

 

 Virtex-6 XC6VLX240T-1FFG1156 FPGA: It belongs to the LXT family 

(inside the Virtex 6 one) which is the one specialized in high-

performance logic and advanced serial connectivity. It includes more 

than 31,000 slices (each one with four LUTs, flip-flops, multiplexers and 

arithmetic logic) and 768 DSP. Nearly 15 Mb of block RAM are also 

embedded. It supports configuration both from JTAG (USB and CF) and 

from the Linear BPI Flash device.  

 

 512 MB DDR3 SO-DIMM RAM: This external memory has been tested up 

to 800 MT/s, and its socket offers support up to 2GB of DDR3 memory.  
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 32 MB Linear BPI Flash: This non-volatile storage is often used to 

configure the FPGA when a connection with the JTAG USB is not 

provided, or it is being used without a PC.  

 

 System ACE CF and CompactFlash Connector: This is a key feature of 

the board for this project. It includes a 2 GB Compact Flash card where 

files can be stored and read. It also enables the configuration of the 

Virtex-6 FPGA from the CF. System ACE CF controller supports up to 

eight configuration files. It also enables an embedded processor to 

access the files stored in the CF. easily.  

 
 10/100/1000 Tri-Speed Ethernet: As this board is specialized in fast 

serial connections it includes a physical Ethernet connection with 

Gigabit speed, which enables the board to be fed in a very efficient way 

from a PC or a server. 

 
 USB UART: The ML605 contains a USB-to-UART bridge device, which 

allows connection to a host computer with a USB cable. Drivers are 

provided so the connection appears as a COM in the host PC.  

 

 

Fig. 11: Schematic of the ML605 board from [XIL09] 
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4. First functional prototype 

(reduced Look-up table set) 

4.1. Matrix multiplication algorithm in Vivado HLS 

 

The embedded system that has been developed consists on different 

interconnected modules. Most of them are commonly used ones (i.e. RAM 

controller, general purpose microprocessor…) that have been already 

developed by Xilinx. Even though, the most important part of the system is the 

particular purpose hardware module that performs the algorithm itself.  

 

As it is stated in the 2.6 section, the algorithm that has to be implemented in 

hardware, optimized and therefore parallelized, consists on several parts. The 

most important and more time consuming one is the matrix multiplication. 

The main multiplication is: 

        

Where M is a Matrix of 4x100 dimension, and O and N are both matrix of 

100x1 size. This gives as result a matrix of 4x1, being each one of the 

individual values a necessary parameter: 

          

From left to right these variables represent the position of the centroid in the 

horizontal axis, in the vertical axis, the number of electrons that hit the sensor, 

and finally the shape factor. 

 

To find out the best way to optimize a matrix multiplication with so many 

elements (in this case 400 in one matrix and 100 in the other one) is difficult, 

so it is more reasonable to start with a general case that multiplies two 4 by 4 

matrix. This size is big enough to give a good perspective about the process, 

yet not as large as to be unmanageable.  In this case it is needed to do 4 

multiplications and from 3 to 4 sums (depending on the way the algorithm 

operates) to produce each element of the result matrix.  
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Fig. 12: Example of 4×4 matrix multiplication 
 
 

 

One of the simplest C code which is capable of performing the full 

multiplication, remember that this hardware module is being programmed in 

Vivado HLS, is this one: 

 

// Iterate over the rows of the A matrix 
for(int i = 0; i < MAT_A_ROWS; i++) { 
 // Iterate over the columns of the B matrix 
 for(int j = 0; j < MAT_B_COLS; j++) { 
  res[i][j] = 0; 
  // Do the inner product of a row of A and col of B 
  for(int k = 0; k < MAT_B_ROWS; k++) { 
   res[i][j] += A[i][k] * B[k][j]; 
  } 
 } 
}  

Code piece 1: Basic code for matrix multiplication 
 
 

 

The operation that this code is doing for each value of the result matrix is the 

following one (in this case for the element of the row 3 and column 3 of the 

result matrix):  

R33 = A30·B03 + A31·B13 + A32·B23 + A33·B33 

 

This code is only using one accumulator and one multiplier, so it is just doing 

one action at a time, using a tiny fraction of the resources, but performing a lot 

of cycles. The result is that it takes for this algorithm 617 clock cycles to finish 

one complete operation and be ready to start again (latency).  

From this initial state several optimizations can be made. For every 

optimization there has to be at least one directive in the code, which will 

usually affect to part of the code.  
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4.1.1. Loop unroll directive 

 

The first directive that will be used is “loop unroll”. As its name suggest this 

directive has effect in a loop. By default loops are rolled in Vivado HLS, so it 

will instance hardware only for one iteration, and therefore each one will be 

done successively. Loop unroll will force Vivado HLS to set more hardware 

when it “translates” a loop. By default it will create independent hardware for 

each iteration, so if the loop has to be repeated four times it will create the 

four sets of hardware. This will only occur if each iteration is independent 

from the results of each other, which depends on the case [12].  

 

 

Fig. 13: Schematic of loop unrolling directive (From [XIL13]). 
 
 

In Fig. 13 it is shown a schematic of how a loop can be rolled (right), partially 

unrolled (middle) or completely unrolled (left). Clock cycles are represented in 

vertical in the figure, while the number of hardware sets is the number of 

columns. 

 

Applying this directive over the most inner loop with a factor of 2 creates 2 

sets of hardware, and therefore the process is accelerated. In this case the 

latency goes down to 457 clock cycles. It does not duplicate the performance 

due to dependencies between the iterations. It is clear that to do each iteration 

of the most inner loop it needs the result of the previous one, so it cannot do 
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two iterations at the same time. Despite of this, it is faster because it does not 

need to wait until the whole loop is finished to start multiplying the following 

numbers.  

 

 

Fig. 14: Analysis view of the unrolled basic code in VHLS. 
 

 

Dependencies are so strong that even with a full unroll, which creates 4 sets of 

hardware, the latency is still 361 clock cycles. A quick look to the analysis view 

in Vivado HLS reveals that, even though there are two float adders and two 

float multipliers, the program cannot use them efficiently due to dependencies 

in the data. 

4.1.2. Pipeline directive 

 
Another interesting directive is “pipeline”. This directive will create a pipeline 

in the loop where it is taking effect. In this way it will try to maximize the time 

that every stage of the loop is used by executing several of them concurrently. 

So, for example, if the loop implies reading a data and then adding it to other 

one, when it starts adding the first stage starts reading the next data. This 

usually leads to a better overall performance [12].  

 

 

Fig. 15: Left: Loop without pipelining. Right: A totally pipelined loop uses all the 
resources all the time, from [XIL13]. 
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A key concept in a pipeline is what Xilinx calls the initiation interval (II) [12]. It 

is the amount of cycles that are needed from the start of one loop iteration 

until the start of the next one. It is important because it determines how 

efficiently a pipeline is set, and then how efficiently the hardware resources 

are used, which is the aim of the pipeline itself. In the pipeline in the figure X 

(right picture) the initiation interval is one, because each iteration starts only 

one cycle after the previous one has done so. This is the most efficient way to 

set a pipeline. A II number greater than one indicates that there are 

dependencies between the iterations, and then the pipeline is not the best it 

can be. In figure 16 it can be seen that a pipeline composed by these two 

stages (fmul and fadd) would have an Initiation Interval of 4, because it would 

need 4 clock cycles between one iteration and another one, and thus it would 

not be an optimal pipeline. 

 

 

Fig. 16: Non-perfect pipeline with II=4.  
 

 

By default the pipeline directive unrolls the loops that are inside the pipelined 

loop. In this way it uses more resources, but under normal conditions it is 

much more efficient. Pipelining the most inner loop (without the unrolling 

directive which was applied before) reduces de latency to 385 clock cycles. It 

can be seen in the figure 15 that the improvement should be much bigger for a 

number of cycles this big. This is, again, because of dependencies in the code. 

It is shown in fig. 17 how the fadd stage cannot start until the fmul one is not 

finished. This happens because of the operation order that the algorithm used 

imposes: it first needs the result of the multiplication of the elements to start 

summing it with the previous result.  
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Fig. 17: Analysis view in which it is shown that fadd cannot start before fmul finishes. 
 

 

It is also an option to put the pipeline directive in the intermediate loop. In this 

manner (because of the default settings of the directive in Vivado HLS) the 

synthesizer will unroll the most inner loop, helping to create more parallelisms 

in hardware, and possibly improving the results.  

 

The results improve dramatically with this approach. The algorithm is 

performed with a latency of only 54 cycles. It can be seen now in the figure 18 

(analysis view in VHLS) that four multipliers and four adders are created, and 

as the dependencies are only in between one addition and the next one, the 

whole process of delivering one result element can be performed in nearly the 

time needed for the sums. Then the upper loop is pipelined and the calculation 

for one matrix element is independent from the calculation of another one. In 

this case there are 4 sets of hardware, so the iterations of this loop can be 

correctly pipelined, with an initiation interval of only 2 (due to the reading of 

the data). 
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Fig. 18: The multipliers can be used at the same time in this approach, even if fadd 
modules cannot.  

 
 

 

It can also be observed in the figure U that only one data of each matrix can be 

loaded at the same time (instructions a_load and b_load at the top left corner 

and below), and this is delaying one cycle each iteration. This detail will be 

addressed in depth in the following section. 

 

Another interesting detail that a perceptive observer would see in fig. U is that 

the second data loads (a_load_2 and b_load_2) starts in the second cycle (C2), 

while at the same time the first loads have not finished yet. Although this 

design can only load one data of each matrix at a time (because a and b matrix 

are each one placed in one blockram), as the operation of loading a data of this 

size takes less than 15 ns, and each clock cycle lasts 10 ns, it is possible that 

two sequential reads take place in two consecutive cycles. So both loads are 

not happening at the same time in real-time. This situation is usual and 

happens often. 

4.2. Code optimization: thinking in hardware 

 
In the last subsections has been described how to optimize the way in which 

Vivado HLS synthesizes the C code into hardware. But in both cases 

dependencies in the code have made impossible for the directives to be 

efficient. It turns out that the simplest code to perform matrix multiplications 
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has direct dependencies in its inner loop, because it needs the result of the 

previous iteration to sum it up with the next one.  

 

It is known that the calculation of each element of the result matrix is not 

dependent from the calculation of another one. Reordering the loops and 

adding an accumulator for each row of the matrix will solve the previous 

dependencies while keeping the algorithm at the same level of complexity. This 

design will use the same resources than the previous one, with the exception 

that it will need more registers to store the accumulators, in fact as many more 

as the number of rows.  

 

From now on the pieces of code that are going to be shown work with the final 

configuration of the operation. In other words, the matrix multiplication will 

be actual one: sizes 4×100 and 100×1. It can be noted that the result matrix 

will be now a 4×1 matrix. The purpose of doing this is that continuing to make 

changes on the algorithm over an operation which is not the real one could 

potentially lead to misguided progress.   

 

Within the necessary changes to adapt the code to a different size matrix 

multiplication, it is notorious that the number of loops has been reduced from 

3 to 2. This is due to the special size of the second matrix, which is 100×1. The 

algorithm is the following one: 

 

// Iterate over the cols of the A matrix or the rows of the B matrix  
Prod: for(int k = 0; k < MAT_B_ROWS; k++) { 
  // Iterate over the rows of the A matrix 
 Row: for(int i = 0; i < MAT_A_ROWS; i++) { 
 
   temp[i] = a[i][k] * b[k];  

   
      if (k == 0) acc[i] = temp[i]; 
   //Accumulate on acc 
      else acc[i] += temp[i]; 
     
          if (k == (MAT_B_ROWS-1)) res[i] = acc[i]; 
    } 
  } 

 

Code piece 2: New algorithm applied to a multiplication of matrix of sizes 4×100 and 
100×1 
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As it can be seen now the middle loop in the initial code (code piece 1) has 

been erased, because it was going through the second matrix columns, and in 

this case the size of it is 100×1, so no loop is needed.  

 

After this consideration the inner and outer loops have been reversed. So the 

now named ‘Prod’ loop was before the inner loop, and ‘Row’ loop was the outer 

one, although they still go through the same indexes, which are the rows of the 

second matrix (or the columns of the first one) and the rows of the first 

matrix. From now on the matrix will be called A and B, for the 4×100 and the 

100×1 respectively. 

 

This inversion of the loop order makes the algorithm work differently, 

achieving the same results. In this way the first loop repeats itself 100 times, 

one for every column, and for every column of the matrix A the second loop 

performs 4 multiplications. It is easier to explain with a table the behaviour of 

the matrix multiplication: 

 

 

i 

Res. 

Elem. 

Prod Loop 

iteration 

k=0 

Prod loop 

iteration 

k=1 

Prod loop 

iteration 

k=2 

Prod loop 

iteration  

k 

Prod loop 

iteration 

k=N-1 

0 C0 A10∙B0 A11∙B1 A12∙B2 A1k∙Bk A1(N-1)∙B(N-1) 

1 C1 A20∙B0 A21∙B1 A22∙B2 A2k∙Bk A2(N-1)∙B(N-1) 

2 C2 A30∙B0 A31∙B1 A32∙B2 A3k∙Bk A3(N-1)∙B(N-1) 

3 C3 A40∙B0 A41∙B1 A42∙B2 A4k∙Bk A4(N-1)∙B(N-1) 

  

 

In each iteration of the ‘Prod’ loop the whole corresponding column is 

performed. In each column, a row is the equivalent to one iteration of the ‘Row’ 

loop. And every result element is the sum of the N elements in a row of the 

table.  

 

The result of this loop reordering is that there are no dependencies between 

the iterations of the inner loop. It is so because there are no dependencies 

between the calculation of each result element, and this loop is calculating one 

part (of the N existent ones) of each of the four result numbers (C0, C1, C2, C3). 
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Another important change is that four accumulators have been added (‘acc’). 

These accumulators prevent the constant writing in the final value, allowing 

the synthesizer to organize it in a more efficient way. It has also been 

differentiated the first multiplication, which only needs to be stored, from the 

rest of them, which in contrast need to be summed up to the previous result, 

because of the same reason. 

 

When this approach is synthesized and its results analyzed it is clear that a big 

amount of reads are delaying the pipeline, making each iteration last more.  

This is due to the storage placing of variables A and B. They are supposed to 

come from the outside of this core (there is more information about this in the 

next section ‘Design decisions’), so it is slow to read them over and over in 

each iteration. A solution to this situation is that if it is the first time that they 

are read, they must be stored in an internal variable, which is much faster to 

read. This alternative is expressed in code piece 3 (below).  

 

// Iterate over the cols of the A matrix or the rows of the B matrix  
Prod: for(int k = 0; k < MAT_B_ROWS; k++) { 
  // Iterate over the rows of the A matrix 
 Row: for(int i = 0; i < MAT_A_ROWS; i++) { 
 
   //If first read of c => save c, which is cache of c 
   if (i==0) c_copy[k] = c[k]; 

//If first read of b => save b, which is cache of b 
   if (i==0) b_copy[k] = b[k];        
   if (i==0) diff[k] = c[k] - b[k]; 
 
   //Read a from a internal variable, and not from the FIFO 
      a_i_k = a[i][k];  

//Actual multiplication 
   temp[i] = a_i_k * diff[k];  
   
      if (k == 0) acc[i] = temp[i]; 
   //Accumulate on acc 
      else acc[i] += temp[i]; 
     
          if (k == (MAT_B_ROWS-1)) res[i] = acc[i]; 
    } 
  } 

 

Code piece 3: Modified multiplication code. It includes some optimizations and 
changes.  

 

 

 



 

41 
 

In code piece 3 there is also another important change relative to the nature of 

the algorithm. In section 2.6 it is explained that the vector that is called B now 

comes from the subtraction of the model vector from the observational vector. 

The code has also included this detraction as vectors ‘c’ and ‘b’, and its results 

as ‘diff’. 

 

In addition to the changes in the algorithm itself, there are two directives that 

are fundamental for the performance. One of those is pipeline, just as it is 

commented above. In this case it takes effect in the ‘Prod’ loop, which is the 

outer one. This leads to an unroll of the ‘Row’ loop that replicates the 

hardware for the operations four times, parallelizing in this way the algorithm. 

 

Despite the fact that the pipeline creates ‘four paths’, they need to be fed 

properly if the whole hardware is wanted to work without bottlenecks. This is 

not the case now, because in every stage it needs four elements from the 

matrix A, and A is stored in only one block RAM, and comes to this block RAM 

from an external storage element by element. The way to optimize this is 

setting the ‘Array partition directive’.  

 

This directive divides an array variable, in this case the matrix A, in different 

sets of variables, stored and managed separately in hardware. This effectively 

increases the amount of read and writes ports for the storage, improving the 

throughput of the design, and reducing the Initiation interval of the pipeline. 

In this particular code the directive is followed by the option ‘complete dim=1’ 

because it is convenient that the matrix is partitioned in the four rows, because 

then each of them will feed the data to the four identical data paths. 

 

To this late code it is added this last piece:  

 

if (k == (MAT_B_ROWS-1)) { 
    res[i] = acc[i]; 
    index_res[i] = (int)(round((acc[i]-start[i])/step[i])); 
    res_index[i] = index_res[i];   
} 

 

Code Piece 4: New line to calculate result index 
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As it shows, two lines are added in the ‘if’ structure that is executed when a 

final result is finished. They close the algorithm cycle by returning to the 

processor through ‘res_index’ the new values of the              vector, so the 

next iteration has a starting point. To be able to do this the start point and the 

step length has to be received from the processor in order to know the range 

of the parameters.  

 

The results in performance and resource usage efficiency of the final code are 

shown in the section 5. Results. 

4.3. Design of complete System: Design decisions 

 

This section describes some of the decisions that have been made during the 

development of the system that envelops the AO algorithm core.  

4.3.1. Embedded system 

 

In the beginning of the project the nature of the whole prototype was not 

decided, with the only exception of the FPGA base. It was clear that a new 

specific hardware needed to be created, and it needed to be provided with 

data, control, etc. Creating specific hardware for these functionalities would be 

very time consuming, and as the project is limited both in time and resources 

the best option is to reuse components that are general for most systems. This 

type of systems is called embedded ones. They are specific purpose systems, 

but they use lots of common components. 

4.3.2. System Control 

 

All the hardware that is going to be included in the system has to be 

coordinated, so every module knows when to start its functioning, and every 

action is performed in time. In a simple system usually specific control logic is 

developed for it. It saves area on the FPGA, although is generally limited in 

functions.  
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In more complex systems, or if a quick approach to the problem wants to be 

developed, general purpose microprocessors can be used. Because of the 

limitation in resources in a FPGA platform these processors tend to be 

simplified ARM architecture ones, or reduced instruction set cores (RISC). This 

lead to a relatively low performance, but it is typically enough for the 

requisites of the application, because (as it is the case) the complicated and 

specific parts of the algorithm are left to other modules.  

 

This latter alternative was chosen in this project because of its ease of 

implementation. The model of microprocessor used was the Xilinx microblaze 

[XIL12b]. It was chosen because it is integrated in the embedded system tool 

that is used in the project (Xilinx Platform Studio, XPS [XIL12c]), so it allows an 

ease of use with some other standard Xilinx modules, which are necessary for 

the communication of the processor with peripherals.  

 

Some useful features of the microblaze processor are: 

 

 It is a soft core processor, which means that it can be wholly 

implemented using logic synthesis. In other words, it can be embedded 

inside of an FPGA, and optimized for this use. 

 It is highly configurable, allows the user to choose what features are 

needed, therefore saving resources. 

 It is compatible with every driver module that Xilinx provides, for 

example RAM or Ethernet ones. 

4.3.3. External memory 

 

It was explained in 2.6 section that the planned system requires a 

multidimensional look-up table (LUT) that stores pre-computed data to feed 

the implemented algorithm. It was also discussed that the storage space 

needed was 370.4 MB. It is clear that the internal memory in the FPGA block 

RAM is not enough (it is roughly 3.65 MB), so another resource must be used. 

In this case the ML605 board includes 512 MB of DDR3 RAM memory, which is 

sufficient for the purposes of the project.  
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This memory comes in a SO-DIMM format, and these are its main features 

(from [XIL11b] and [MIC07]): 

 

 64-bit wide interface, tested up to 800 MT/s. 

 It is directly wired to the FPGA, so the memory controller must be 

embedded in it. 

 Bandwidth up to 8.5 GB/s. 

4.3.4. Compact Flash 

 

This LUT file has to be written to the DDR3 RAM in the initialization of the 

system, because RAM memory is volatile. This means that the file must be 

stored in some permanent memory if the system is wanted to work 

independently. The easiest option is to store it in the Compact Flash (CF) 

included in the ML605 Kit (its size is 2 GB).  

 

A Compact flash driver (‘axi_sysace’ module [XIL11c]) will be included in the 

system. It will be connected with the Compact Flash reader in one side, and in 

the other one with the Microblaze, so it can handle all the communication 

between the CF and the DDR3. This option was chosen because this process 

does not have any time constraint, since it will be done just during the 

initialization of the system, and will not affect any other process.  

4.3.5. Algorithm core communications with the system 

 
The specific core that has been designed has to have connections with the rest 

of the modules. These buses belong to the Axi family [XIL11d], which is a part 

of ARM AMBA, a family of micro controller buses. There are three different 

types of Axi buses, and all of them are used in this project: 

 

 Axi4: Is a high-performance bus. It is used when memory-mapped data 

needs to be accessed. 

 Axi4 Lite: It is a simpler version of the original Axi 4. It is used when 

data is accessed by address, but there is no need of a high throughput.  
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 Axi4 Stream: It is the simplest bus of the three. It allows high speeds, 

but the data cannot be addressed, so they have to be accessed in the 

same order they are stored. 

 

Depending on the requirements of each port it is implemented with one type 

or another one. The implementation is represented as one or several directives 

in Vivado HLS, and the different buses created in Xilinx Platform Studio (the 

Xilinx tool for embedded system design). The piece of code 6 shows the 

directives used to connect the core with the rest of the system: 

 

/******** AXI4Lite **********/ 
#pragma HLS RESOURCE variable=return core=AXI4LiteS 
#pragma HLS RESOURCE variable=base_addr_ext core=AXI4LiteS 
/******** DDR3 RAM **********/ 
#pragma HLS INTERFACE ap_bus port=ddr3 
#pragma HLS RESOURCE variable=ddr3 core=AXI4M 
/******** FIFO + AXI4Stream *********/ 
#pragma HLS INTERFACE ap_fifo port=c 
#pragma HLS INTERFACE ap_fifo port=start 
#pragma HLS INTERFACE ap_fifo port=step 
#pragma HLS INTERFACE ap_fifo port=res 
#pragma HLS INTERFACE ap_fifo port=res_index 
#pragma HLS INTERFACE ap_fifo port=param 
#pragma HLS RESOURCE variable=c core=AXI4Stream 
#pragma HLS RESOURCE variable=start core=AXI4Stream 
#pragma HLS RESOURCE variable=step core=AXI4Stream 
#pragma HLS RESOURCE variable=res core=AXI4Stream 
#pragma HLS RESOURCE variable=res_index core=AXI4Stream 
#pragma HLS RESOURCE variable=param core=AXI4stream 

 

Code piece 5: Input and output directives in Vivado HLS 

 

The directives are divided in three blocks, one corresponding to each type of 

bus.  

 

Axi4 bus is only used for the external RAM connection because, although it has 

a big impact on the resources, it is critical for the performance of the 

algorithm that the matrix stored in the LUT are accessed in the fastest way 

possible. It is also needed that this bus is memory-mapped, since the RAM 

needs an address to be accessed. 

 

Axi4 Lite is used for two purposes: the default return parameters that Vivado 

HLS sets by default and the base address of the LUT stored in the external 

RAM. The default parameters are several data that the processor (control logic) 
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must know to manage the specialized core. Among these parameters there are 

signals as start, stop, idle, etc. In the base address case this type of bus is used 

because there is no need of high performance here (it is only a 32 bit address 

which will be received). 

 

All the other signals –param, res, res_index, c, step and start– are set as both 

FIFO and axi4 stream ports. This is done because they share some 

characteristics: they are crucial for the timing in the algorithm and they only 

need to be accessed in order (they do not need an address). Also the stream 

bus is the one that consumes less resources. 

4.3.6. Complete System Schematic 

 

This subsections aims to give a global view of the embedded system that has 

been developed, avoiding unnecessary complexity and showing clear bonds 

between the different modules that have been used.  

 

 

Fig. 19: XPS view of the embedded modules. 

 

In the figure 19 Xilinx Platform Studio shows how the different modules are 

interconnected. The dark blue colored bus to the left is the AXI4 one, which 

links DDR3 RAM, Microblaze and indextomem_top_0 (the specific core that 
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performs the AO algorithm). The dark green bus to the right of the AXI4 is the 

AXI4 Lite, which bonds mainly the Microblaze, Compact Flash module 

(SysACE_CompactFlash in the figure), the indextomem core and the RS232 

UART. Lastly each of the light blue lines is a AXI4 Stream bus. Actually there 

are only 4 of this buses, but they are all duplex (can be used in both directions 

at the same time) and only two of the back channels are being used. Blue LMB 

buses are not relevant for this project. 
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5. Results 
 

A prototype of adaptive optics algorithm accelerator has been built and it 

covers a basic functionality: 

 

 Storing reduced LUT in external memory.  

 Performs the algorithm with initial data from processor. 

 Returns results prepared for next iteration. 

 

In terms of timing performance these are the estimates results given by Vivado 

HLS (in clock cycles, at 10ns/cycle):  

 

 

Fig. 20: Performance estimates for the final VHLS code.  

 

The real time has been also measured during the actual execution in the FPGA 

prototype, with a result from the activation of the algorithm core until the 

results are returned and held by the processor of 2979 clock cycles, which 

makes 29.83 µs. This result only applies for one iteration of the algorithm, 

even though several are needed to finish it (most likely between 3 and 10).  It is 

an acceptable result, because even though it is said in [MOR12a] that time-

scales of 1 µs in the algorithm resolution are needed, several tens of this 

hardware modules can be embedded in a Virtex-6 FPGA. This latter conclusion 

can be derived from  
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Even if the result is only acceptable more optimization can be still carried out, 

and therefore Vivado HLS proves capable of synthesizing hardware modules 

for intensive floating-point calculation modules. 

 

In terms of resource usage it is concluded (for what can be seen in figures 21 

and 22) that the algorithm core uses around a 2% of the available LUTs in the 

Virtex-6 FPGA, around a 1% of the flip-flops, nearly a 2% of the DSPs and less 

than a 1% of the block RAM. Comparing the results from figures 21 and 22 it 

can be seen that the estimations of Vivado HLS before getting the actual 

results have a good accuracy.  

 

Fig. 21: Actual resource usage of RTL code generated by VHLS 

 

 

Fig. 22: Resource utilization estimate that VHLS does over the resources of the Virtex-6 
XC6VLX240T 
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Taking a look at the whole system, figures 23 and 24 show the total use of 

resources. The difference in the resource usage is mainly because of the 

Microblaze processor, which according with the numbers uses around a 1% of 

the FF, a 6% of the LUTs, and less than 1% of the DSPs. 

 

 

Fig. 23: Resource usage resume in XPS 

 

 

 

Fig. 24: Resource usage resume in XPS (DSP) 
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6. Conclusion and Future work  

6.1. Conclusion 

 

These are main of the conclusions that can be extracted from this project: 

 

 High-level Synthesis tools are capable of implementing several types of 

algorithms (especially the ones that are intensive in floating-point 

calculations) with a good overall result and taking less time than with 

the equivalent traditional work flow. 

 

 FPGA are devices capable of implementing adaptive optics centroiding 

algorithms with a good performance. It seems clear that, with further 

development, algorithms which precision is very close to the limit of the 

information given can be implemented with the necessary performance 

for the whole system to be useful. 

 

 Although HLS tools simplify the process of creating hardware, they let 

the developer choose over a broad variety of parameters, particularly 

where optimizing has become a commonplace (as loops and memory 

resources).  

 

 Embedded systems have proven to be very useful when many elements 

of it can be taken and implemented without having to be made ‘by 

hand’.   
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6.2. Future work and optimizations 

 

This preliminary work can be improved and extended in the following 

directions: 

 

Upgrading to actual LUT: As it is discussed in 2.6. section, all the previously 

explained work is done with the little LUT of only 81 nodes. This made 

possible to have results in time, but also means that the work has to continue. 

Next step is to upgrade the prototype from the 162 KB LUT to the 370 MB one. 

Some difficulties can maybe be encountered accessing to the file in the 

Compact Flash.  

 

Optimal number of iterations: The hardware module is currently set to 

perform just an iteration of the Gauss-Newton algorithm. However, this 

algorithm consists of several ones. The number of them depends on the 

required precision for the application or on the limit provided by the number 

of nodes of the LUT.  

 

At this moment it is prepared to find out this number using the code run in 

the processor, because it will be easier to set a few conditions. When the 

number of iterations is set, it will be required to integrate it in the hardware as 

‘for’ loop that will include every other code. This loop will not be able to be 

pipelined, because the first data that needs to be introduced in it will be the 

last one to get out. 

 

Reliability and accuracy test: It will be necessary to develop a specific test 

that assures the robustness of the system to invalid data, or to unexpected 

formats. In addition to this, and because this system is expected to be used 

with scientific purposes, an accuracy test must be developed. An option of 

design for this test would consist on running the embedded system, and then a 

Java program that executes the same algorithm with the same initial images. 

Then a comparison between the final results would be done. 

 
Optimizing: The system has strong time requirements to be useful, so further 

optimization will be most likely needed. This optimization can go from more 

parallelization of the original hardware module to critical changes in the 
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structure of the whole system. Incremental changes should be implemented, 

until a certain objective is achieved or until the improvements are negligible 

 

Although several optimizations have been made (especially in the AO 

algorithm core) there are a few points that need further optimization. For 

example nearly none optimization has been done in the processor code due to 

the lack of time.  

 

 
 

Fig. 25: This screen capture shows the inefficiency of the read stage of the algorithm. It 
is one of the improvement points. 

 

This figure shows the first clock cycles of an iteration of the matrices 

multiplication loop. It can be seen that there are time and resources wasted 

when it is reading the initial parameters.  

 

Another point of optimization would be to evaluate if the inefficiencies in the 

algorithm core are really affecting the timing results in comparison with the 

memory access. If it happens to be so the multiplication algorithm could be 

more parallelized dividing the matrix multiplication in two sets of columns 

(even and odd for example) and then summing the results at the end. This 

mechanism can be repeated several times, if necessary.  
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Apéndice A: Introducción 
 
El proyecto ha sido llevado a cabo en el marco del programa de becarios del 

centro de astronomía de la agencia espacial europea (ESAC), que da 

oportunidad de contribuir a las misiones en curso a jóvenes estudiantes de 

ciencia y de ingeniería. Este proyecto abarca el diseño y la implementación de 

un prototipo en FPGA, cuyo propósito es acelerar un algoritmo de centrado. 

También será evaluado si las FPGA son dispositivos adecuados para 

implementar algoritmos de óptica adaptativa, dadas las típicas restricciones en 

el tiempo. 

 

Motivación y objetivos 

 

Diversas aplicaciones astronómicas requieren la obtención y el análisis del 

centroide de imágenes con un rápido ciclo de trabajo. Dos ejemplos son los 

sistemas de óptica adaptiva y los de control orbital de actitud. Los requisitos 

de velocidad pueden ser muy restrictivos (μs para la aplicaciones típicas de 

óptica adaptativa), y los algoritmos que típicamente se usan son ineficientes 

pero rápidos, como el centro de gravedad de imágenes. 

 

La máxima precisión que cualquier algoritmo puede alcanzar está determinada 

por la frontera de Crámer-Rao [BAS04]. Los algoritmos de máxima 

verosimilitud desarrollados para la misión Gaia de la ESA [LIN08] tienen una 

precisión muy cercana al límite de Crámer-Rao, y pueden ser considerados 

óptimos en términos de rendimiento. Están basados en el modelado previo: la 

optimización ponderada de Gauss-Newton de una función similar a los datos 

observados. A pesar de esto son lentos, y típicamente lejos de los requisitos de 

velocidad necesitados para aplicaciones críticas en el tiempo. 

 

Los dispositivos basados en FPGA han sido usados en una gran variedad de 

satélites y otras misiones de la ESA para procesar datos a bordo, y en 

consecuencia reducir la cantidad de datos mandados a la Tierra. Su utilidad ha 

sido probada en varios campos de la industria espacial, y la aceleración de 

algoritmos de centrado pesados podría ser uno de sus usos.  
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Aunque no está entre los propósitos de esta tésis, una versión avanzada del 

prototipo que resultará de este proyecto pordía ser conectado de alguna forma 

a un sensor de frente de onda Shack-Hartmann, recibiendo los datos que este 

produzca. Entonces el frente de ondas sería reconstruido para una potencial 

restauración del mismo usando espejos deformables.  

 

Los objetivos de este proyecto se listan a continuación: 

 Diseñar e implementar un módulo específico que ejecute el mencionado 

algoritmo de cálculo de centroides.  

 Optimizar el módulo que implementa el algoritmo de cálculo de 

centroides, adaptando el hardware a las necesidades del algoritmo.  

 Probar la funcionalidad del módulo.  

 Diseño e implementación de un sistema que provea al módulo con datos 

y soporte.  

 Optimización del sistema, para aproximarse a la escala de 1 μs.  

 Evaluación de las posibilidades de un sistema similar que procese en 

paralelo varias decenas de microlentes, probablemente con un número 

igual de módulos aceleradores.  

 Evaluación de la conveniencia de un sistema FPGA para este tipo de 

algoritmo y sus restricciones en el tiempo. 

 

Descripción del documento 

 

Después de la introducción, la sección ‘2. State of the Art of Adaptive Optics’, 

explica el propósito de la óptica adaptative, el problema que este proyecto 

aborda, varias clarificaciones sobre la tecnología implicada, y finalmente el 

algoritmo implementado. La sección ‘3. The use of Reconfigurable HW for 

adaptative optics’ explica por qué esta tecnología podría ser relevante para la 

óptica adaptativa, detalla las características de la placa de evaluación usada en 

el proyecto y también incluye algunas consideraciones necesarias para 

entender las decisiones de diseño. En la sección ‘4. First functional prototype’ 

se explica como se ha llevado a cabo el prototipo en sí mismo, incluyendo 

tanto el módulo de computación como el sistema en general. Las secciones 5 y 

6 presentan los resultados, el trabajo futuro y las conclusiones del proyecto.  
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Apéndice B: Conclusión y trabajo 

futuro 
 

Conclusión 

 

Estas son las principales conclusiones que pueden ser extraídas de este 

proyecto: 

 

 Las herramientas de síntesis de alto nivel son capaces de implementar 

distintos tipos de algoritmos (especialmente los intensivos en cálculo en 

punto flotante) con un buen resultado general y costando menos tiempo 

de trabajo que con el flujo de trabajo equivalente.  

 

 Las FPGA son dispositivos capaces de implementar algoritmos de 

centrado de óptica adaptativa de una manera eficiente. Parece claro que, 

con más tiempo de desarrollo, los algoritmos cuya precisión está muy 

cercana a límite de la información dada pueden ser implementados con 

el necesario rendimiento para que el sistema completo sea útil.  

 
 Aunque las herramientas HLS simplifican el proceso de creación de 

hardware, permiten al desarrollador la elección de una amplia variedad 

de parámetros, particularmente donde la optimización es más común 

(como bucles y recursos de memoria). 

 
 Los sistemas embebidos han probado ser muy útiles cuando muchos 

elementos de ellos pueden ser tomados e implementados sin hacerlos ‘a 

mano’.  
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Trabajo futuro y optimizaciones 

 

Este trabajo preliminar puede ser mejorado y extendido en las siguientes 

direcciones: 

Usando las LUTs reales: Como fue argumentado en la sección 2.6., todo el 

trabajo explicado ha sido hecho con la LUT pequeña de 81 nodos. Esto hizo 

posible la obtención de resultados en plazo, pero también significa que el 

trabajo debe continuar. El siguiente paso es mejorar el prototipo usando la 

nueva LUT de 370 MB en vez de la de 162 KB. Esto puede causar algunas 

dificultades accediendo al archivo en la Compact Flash.  

 

Número óptimo de iteraciones: El módulo hardware está actualmente 

realizando una sóla iteración del algoritmo de Gauss-Newton. Aunque este 

algoritmo se compone de varias. El número exacto depende de la precisión 

requerida para la aplicación o del límite que el número de nodos en la LUT 

impone.  

 

En este momento el sistema está preparado para encontrar este número 

usando el código que corre en el procesador, porque es más sencillo poner 

algunas condiciones aquí. Cuando el número de iteraciones esté fijo, habrá que 

integrarlo en el hardware como un bucle “for” que incluya todo el resto del 

código. Este bucle no podrá ser puesto hecho pipeline porque cada iteración 

necesita al comienzo los datos que la anterior da.  

 

Test de fiabilidad y precisión: Será necesario desarrollar un test específico 

que asegure la robustez del sistema a datos no válidos, o formatos no 

esperados. Además de esto, y debido a que el sistema será usado con fines 

científicos, un test de precisión deberá ser desarrollado. Una posibilidad de 

diseño para este test consistiría en comparar el sistema con un programa Java 

que ejecute exactamente el mismo algoritmo con las mismas imágenes 

iniciales. Entonces se haría una comparación entre los resultados finales.  

 

Optimización: El sistema tiene fuertes restricciones en el tiempo para que sea 

útil, así que probablemente necesite más optimización. Esta puede ir desde 

más paralelización del módulo hardware a cambios dramáticos en la 

estructura del sistema completo. Se deberían implementar cambios 
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incrementales, hasta que un cierto objetivo sea alcanzado o hasta que las 

mejoras sean despreciables.  

 

Aunque se han hecho diferentes optimizaciones (especialmente en el módulo 

del algoritmo de AO) hay una seria de puntos que necesitan ir más allá. Por 

ejemplo casi ninguna optimización ha sido llevada a cabo en el código del 

procesador debido a la falta de tiempo. 

 

 

 

Esta figura muestra los primeros ciclos de reloj de una iteración del bucle de la 

multiplicación de matrices. Puede verse que tanto recursos como tiempo son 

desperdiciados cuando está leyendo los parámetros iniciales.  

 

Otro punto para optimizar sería evaluar si las ineficiencias del algoritmo de 

centrado están realmente afectando a los tiempos resultantes en comparación 

con los accesos de memoria. Si es así, el algoritmo de multiplicación podría ser 

más paralelizado dividiendo la multiplicación de matrices en dos conjuntos de 

columnas (pares e impares por ejemplo) y entonces sumando los resultados al 

final. Este mecanismo puede ser repetido varias veces si es necesario.  
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A. Presupuesto 
 

1) Ejecución Material  3.650 € 

 

Compra de ordenador personal (Software incluido) 1500 € 

 
Compra Virtex-6 ML605 Evaluation Kit y licencia 2000 € 

 

Alquiler de impresora láser durante 6 meses  50 € 

 

Material de oficina  150 € 

  
 

2) Gastos generales 545 € 

 

15% sobre la "Ejecución Material" 545 € 

  
 

3) Beneficio industrial 365 € 

 

10% sobre la "Ejecución Material" 365 € 

  
 

4) Honorarios Proyecto 19.200 € 

 

960 horas a 20 €/hora 19.200 € 

 
  

5) Material fungible 400 € 

 

Gastos de impresión 100 € 

 

Encuadernación 300 € 

  
 

 

Subtotal Presupuesto (1+2+3+4+5) 24160 € 

  
 

 

IVA 21% s/subtotal 5.073 € 

  
 

 

 Total Presupuesto 29.223 € 
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B. Pliego de condiciones 
 

Este documento contiene las condiciones legales que guiarán la realización de 

este proyecto. En lo que sigue, se supondrá que el proyecto ha sido encargado 

por una empresa cliente a una empresa consultora con la finalidad de realizar 

dicho sistema.  

 

Dicha empresa ha debido desarrollar una línea de investigación con objeto de 

elaborar el proyecto. Esta línea de investigación, junto con el posterior 

desarrollo de los programas está amparada por las condiciones particulares 

del siguiente pliego.  

 

Supuesto que la utilización industrial de los métodos recogidos en el presente 

proyecto ha sido decidida por parte de la empresa cliente o de otras, la obra a 

realizar se regulará por las siguientes:  

 

Condiciones generales  

 

  

1. La modalidad de contratación será el concurso. La adjudicación se hará, por 

tanto, a la proposición más favorable sin atender exclusivamente al valor 

económico, dependiendo de las mayores garantías ofrecidas. La empresa que 

somete el proyecto a concurso se reserva el derecho a declararlo desierto.  

 

2. El montaje y mecanización completa de los equipos que intervengan será 

realizado totalmente por la empresa licitadora.  

 

3. En la oferta, se hará constar el precio total por el que se compromete a 

realizar la obra y el tanto por ciento de baja que supone este precio en relación 

con un importe límite si este se hubiera fijado.  
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4. La obra se realizará bajo la dirección técnica de un Ingeniero Superior de 

Telecomunicación, auxiliado por el número de Ingenieros Técnicos y 

Programadores que se estime preciso para el desarrollo de la misma.  

 

5. Aparte del Ingeniero Director, el contratista tendrá derecho a contratar al 

resto del personal, pudiendo ceder esta prerrogativa a favor del Ingeniero 

Director, quien no estará obligado a aceptarla.  

 

6. El contratista tiene derecho a sacar copias a su costa de los planos, pliego de 

condiciones y presupuestos. El Ingeniero autor del proyecto autorizará con su 

firma las copias solicitadas por el contratista después de confrontarlas.  

 

7. Se abonará al contratista la obra que realmente ejecute con sujeción al 

proyecto que sirvió de base para la contratación, a las modificaciones 

autorizadas por la superioridad o a las órdenes que con arreglo a sus 

facultades le hayan comunicado por escrito al Ingeniero Director de obras 

siempre que dicha obra se haya ajustado a los preceptos de los pliegos de 

condiciones, con arreglo a los cuales, se harán las modificaciones y la 

valoración de las diversas unidades sin que el importe total pueda exceder de 

los presupuestos aprobados. Por consiguiente, el número de unidades que se 

consignan en el proyecto o en el presupuesto, no podrá servirle de fundamento 

para entablar reclamaciones de ninguna clase, salvo en los casos de rescisión.   

 

8. Tanto en las certificaciones de obras como en la liquidación final, se 

abonarán los trabajos realizados por el contratista a los precios de ejecución 

material que figuran en el presupuesto para cada unidad de la obra.  

 

9. Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase a 

las condiciones de la contrata pero que sin embargo es admisible a juicio del 

Ingeniero Director de obras, se dará conocimiento a la Dirección, proponiendo 

a la vez la rebaja de precios que el Ingeniero estime justa y si la Dirección 

resolviera aceptar la obra, quedará el contratista obligado a conformarse con la 

rebaja acordada.  

 

10. Cuando se juzgue necesario emplear materiales o ejecutar obras que no 

figuren en el presupuesto de la contrata, se evaluará su importe a los precios 
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asignados a otras obras o materiales análogos si los hubiere y cuando no, se 

discutirán entre el Ingeniero Director y el contratista, sometiéndolos a la 

aprobación de la Dirección. Los nuevos precios convenidos por uno u otro 

procedimiento, se sujetarán siempre al establecido en el punto anterior.  

 

11. Cuando el contratista, con autorización del Ingeniero Director de obras, 

emplee materiales de calidad más elevada o de mayores dimensiones de lo 

estipulado en el proyecto, o sustituya una clase de fabricación por otra que 

tenga asignado mayor precio o ejecute con mayores dimensiones cualquier 

otra parte de las obras, o en general, introduzca en ellas cualquier 

modificación que sea beneficiosa a juicio del Ingeniero Director de obras, no 

tendrá derecho sin embargo, sino a lo que le correspondería si hubiera 

realizado la obra con estricta sujeción a lo proyectado y contratado.  

 

12. Las cantidades calculadas para obras accesorias, aunque figuren por 

partida alzada en el presupuesto final (general), no serán abonadas sino a los 

precios de la contrata, según las condiciones de la misma y los proyectos 

particulares que para ellas se formen, o en su defecto, por lo que resulte de su 

medición final.  

 

13. El contratista queda obligado a abonar al Ingeniero autor del proyecto y 

director de obras así como a los Ingenieros Técnicos, el importe de sus 

respectivos honorarios facultativos por formación del proyecto, dirección 

técnica y administración en su caso, con arreglo a las tarifas y honorarios 

vigentes.  

                                                        

14. Concluida la ejecución de la obra, será reconocida por el Ingeniero Director 

que a tal efecto designe la empresa.  

 

15. La garantía definitiva será del 4% del presupuesto y la provisional del 2%.  

 

16. La forma de pago será por certificaciones mensuales de la obra ejecutada, 

de acuerdo con los precios del presupuesto, deducida la baja si la hubiera.  

 

17. La fecha de comienzo de las obras será a partir de los 15 días naturales del 

replanteo oficial de las mismas y la definitiva, al año de haber ejecutado la 
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provisional, procediéndose si no existe reclamación alguna, a la reclamación de 

la fianza.  

 

18. Si el contratista al efectuar el replanteo, observase algún error en el 

proyecto, deberá comunicarlo en el plazo de quince días al Ingeniero Director 

de obras, pues transcurrido ese plazo será responsable de la exactitud del 

proyecto.  

 

19. El contratista está obligado a designar una persona responsable que se 

entenderá con el Ingeniero Director de obras, o con el delegado que éste 

designe, para todo relacionado con ella. Al ser el Ingeniero Director de obras el 

que interpreta el proyecto, el contratista deberá consultarle cualquier duda que 

surja en su realización.  

 

20. Durante la realización de la obra, se girarán visitas de inspección por 

personal facultativo de la empresa cliente, para hacer las comprobaciones que 

se crean oportunas. Es obligación del contratista, la conservación de la obra ya 

ejecutada hasta la recepción de la misma, por lo que el deterioro parcial o total 

de ella, aunque sea por agentes atmosféricos u otras causas, deberá ser 

reparado o reconstruido por su cuenta.  

 

21. El contratista, deberá realizar la obra en el plazo mencionado a partir de la 

fecha del contrato, incurriendo en multa, por retraso de la ejecución siempre 

que éste no sea debido a causas de fuerza mayor. A la terminación de la obra, 

se hará una recepción provisional previo reconocimiento y examen por la 

dirección técnica, el depositario de efectos, el interventor y el jefe de servicio o 

un representante, estampando su conformidad el contratista.  

 

 22. Hecha la recepción provisional, se certificará al contratista el resto de la 

obra, reservándose la administración el importe de los gastos de conservación 

de la misma hasta su recepción definitiva y la fianza durante el tiempo 

señalado como plazo de garantía. La recepción definitiva se hará en las mismas 

condiciones que la provisional, extendiéndose el acta correspondiente. El 

Director Técnico propondrá a la Junta Económica la devolución de la fianza al  

contratista de acuerdo con las condiciones económicas legales establecidas.  
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23. Las tarifas para la determinación de honorarios, reguladas por orden de la 

Presidencia del Gobierno el 19 de Octubre de 1961, se aplicarán sobre el 

denominado en la actualidad “Presupuesto de Ejecución de Contrata” y 

anteriormente llamado ”Presupuesto de Ejecución Material” que hoy designa 

otro concepto.  

 

Condiciones particulares  

 

  

La empresa consultora, que ha desarrollado el presente proyecto, lo entregará 

a la empresa cliente bajo las condiciones generales ya formuladas, debiendo 

añadirse las siguientes condiciones particulares:  

 

1. La propiedad intelectual de los procesos descritos y analizados en el 

presente trabajo, pertenece por entero a la empresa consultora representada 

por el Ingeniero Director del Proyecto.  

 

2. La empresa consultora se reserva el derecho a la utilización total o parcial 

de los resultados de la investigación realizada para desarrollar el siguiente 

proyecto, bien para su publicación o bien para su uso en trabajos o proyectos 

posteriores, para la misma empresa cliente o para otra.  

 

3. Cualquier tipo de reproducción aparte de las reseñadas en las condiciones 

generales, bien sea para uso particular de la empresa cliente, o para cualquier 

otra aplicación, contará con autorización expresa y por escrito del Ingeniero 

Director del Proyecto, que actuará en representación de la empresa consultora.  

 

 4. En la autorización se ha de hacer constar la aplicación a que se destinan sus 

reproducciones así como su cantidad.  

 

 5. En todas las reproducciones se indicará su procedencia, explicitando el 

nombre del proyecto, nombre del Ingeniero Director y de la empresa 

consultora.  
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6. Si el proyecto pasa la etapa de desarrollo, cualquier modificación que se 

realice sobre él, deberá ser notificada al Ingeniero Director del Proyecto y a 

criterio de éste, la empresa consultora decidirá aceptar o no la modificación 

propuesta.  

 

7. Si la modificación se acepta, la empresa consultora se hará responsable al 

mismo nivel que el proyecto inicial del que resulta el añadirla.  

 

8. Si la modificación no es aceptada, por el contrario, la empresa consultora 

declinará toda responsabilidad que se derive de la aplicación o influencia de la 

misma.  

 

9. Si la empresa cliente decide desarrollar industrialmente uno o varios 

productos en los que resulte parcial o totalmente aplicable el estudio de este 

proyecto, deberá comunicarlo a la empresa consultora.  

 

10. La empresa consultora no se responsabiliza de los efectos laterales que se 

puedan producir en el momento en que se utilice la herramienta objeto del 

presente proyecto para la realización de otras aplicaciones.  

 

11. La empresa consultora tendrá prioridad respecto a otras en la elaboración 

de los proyectos auxiliares que fuese necesario desarrollar para dicha 

aplicación industrial, siempre que no haga explícita renuncia a este hecho. En 

este caso, deberá autorizar expresamente los proyectos presentados por otros.  

 

12. El Ingeniero Director del presente proyecto, será el responsable de la 

dirección de la aplicación industrial siempre que la empresa consultora lo 

estime oportuno. En caso contrario, la persona designada deberá contar con la 

autorización del mismo, quien delegará en él las responsabilidades que 

ostente. 

 

 


