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Resumen

Resumen

El objetivo de este proyecto es el estudio, desarrollo y evaluación de un sistema robusto de rep-
resentación de trayectorias de objetos para vídeo vigilancia. El sistema debe permitir trabajar
de forma �exible con las trayectorias, generando una representación útil para aplicaciones de
más alto nivel.
La solución propuesta comprende cuatro fases, cada una con un propósito determinado. La
primera fase consiste en un algoritmo que se encarga de realizar las tareas necesarias para ex-
traer las trayectorias de los objetos en movimiento de los vídeos. La segunda fase o comprende
una serie de técnicas destinadas a mejorar y depurar la información obtenida en la fase ante-
rior. En la tercera etapa, las trayectorias se dividen para facilitar su posterior uso y análisis.
Por último, se desarrolla una representación precisa de las trayectorias que también permite la
reconstrucción de las trayectorias originales.
Para la evaluación del sistema se utilizan dos bases de datos distintas, tratando de incluir los
escenarios y situaciones más frecuentes en vídeo vigilancia. Cada técnica utilizada en el sistema
se evalúa de manera individual, determinando su e�cacia para la consecución del objetivo �nal.
Para la correcta evaluación de algunas partes del proyecto ha sido necesario construir una base
de datos en la que los objetos de interés han sido anotados manualmente para su comparación
con los objetos detectados por el sistema.

Palabras Clave

Video vigilancia, trayectorias de objetos en movimiento, representación de trayectorias, división
en subtrayectorias, �ltro de Saviztky-Golay, reconstrucción.
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Abstract

The main objective of this thesis is to �nd, develop and evaluate a robust system to represent
trajectories extracted from moving objects in surveillance videos. The proposed system should
allow a �exible and accurate work with trajectories, generating a useful trajectory representation
for high level applications.
The system is divided in four principal steps, each one with its own purpose. The �rst step is
in charge of extract the trajectories of moving objects from the target videos. The second step
applies a number of techniques to enhance the data obtained in the previous step. In the third
stage, trajectories are split to facilitate further work with trajectories. Finally, in the fourth
step, the subpaths previously obtained are characterized by a number of features that allow
further trajectory reconstruction.
To evaluate the performance of the proposed system, all the experiments are run over two
di�erent datasets. These datasets include the most common scenarios in video surveillance. Each
implemented step is analysed individually, determining its e�ectiveness towards reaching the
thesis objectives. A ground truth dataset has been created to evaluate some of the implemented
techniques. This ground truth is made of hand annotated objects from several videos of the
evaluation datasets.

Key words

Video surveillance, moving objects trajectories, trajectory representation, trajectory division in
subpaths, Saviztky-Golay �lter, trajectory reconstruction.
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1
Introduction

1.1 Motivation

In recent years, visual surveillance systems have been placed all over the world due to the in-
creasing people's concern about security and the new technological developments in this area.
Nowadays, cameras can be found everywhere, both in public areas such as airports, stations, city
streets; and private areas like industrial spaces, shops or even inside the homes. Consequently,
a huge amount of information is recorded everyday
These systems are often monitored by human beings, generating several disadvantages related
to e�ectiveness and economic problems. First, the enormous amount of data generated by the
surveillance systems makes impossible an e�ective control of the �lmed data without invest-
ing an enormous amount of money in human resources. Secondly, a non-automatic monitoring
implies to recheck the contents of the videos if new information is needed. For these reasons,
automatic video systems and applications are emerging as a solution to improve the quality and
opportunities of surveillance systems.
However, there are some common di�culties when working with surveillance videos such as il-
lumination changes, presence of noise and other disturbances related to the poor quality of the
videos. Additionally, other problems associated to video surveillance like occlusions can reduce
the performance of the system.
Many di�erent approaches have been developed to extract movement and behaviour information
through trajectory analysis. The information contained in the trajectories, which includes both
spatial and temporal data, is widely used in video surveillance. A large number of promising
applications have been developed in the area of automated surveillance systems, including crowd
statistical analysis, anomalous event detection, tra�c monitoring or human behaviour identi�ca-
tion. Due to the dependency to object trajectories of many of these systems, it is very important
to perform an accurate detection and representation of the trajectories of the objects that ap-
pear in the videos. Therefore, improving trajectory extraction and representation is necessary
to improve the quality and performance of many related applications.

1
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1.2 Objectives and approach

Our system aims to obtain an accurate and compact representation for the trajectories of all the
moving objects which appear in surveillance videos used as inputs to the system. Furthermore,
we aim to develop a complete system capable to overcome with the most common challenges in
video surveillance. The speci�c objectives of the research are:

• To �nd and study the viability of the actual solutions in the literature to handle occlusions,
noise and disturbances in trajectories and other challenges related to trajectories such as
dimensionality reduction or length normalization.

• To implement a method for detecting important temporal and spatial changes, making
possible to work independently with the subpaths, facilitating trajectory representation.

• To �nd and implement a set of features that represents with a small error the paths of the
objects, focusing on accuracy and complexity.

• To evaluate the performance and limitations of each of the implemented techniques.

• To evaluate the performance of the entire proposed system using surveillance video datasets.

1.3 Report structure

This report is structured as follows:

• Chapter 2: the most common problems and characteristics of video surveillance systems
are studied in this chapter. Furthermore, a literature review of the current state of art
is presented. This review includes some of the existing techniques in motion analysis,
trajectory enhance techniques, occlusion handling and trajectory representation.

• Chapter 3: this chapter introduces the proposed system, presenting each step separately
from the motion analysis to the evaluation step. Moreover, the selected algorithms and
techniques will be further explained, describing the advantages and disadvantages of the
proposed implementation against the state of art. Limitations and challenges found in the
system implementation are discussed as well, explaining for each case the adopted solution.

• Chapter 4: this chapter shows the results for all the experiments carried out during the
master thesis as well as a complete analysis of the achievements and limitations of the
proposed system. The datasets and the ground truth used to evaluate the proposed system
are also presented in this chapter.

• Chapter 5: conclusions and future work are presented in detail.

2 CHAPTER 1. INTRODUCTION



2
Literature Review

2.1 Principal challenges in video surveillance systems

Nowadays, surveillance systems can be found in public streets, shops, industrial plants, airports
or even inside vehicles such as trains or buses. CCTV systems have rise as a crime prevention
and reduction method in many countries. Additionally, these systems can provide evidences
for criminal investigations and court purposes. The e�ectiveness of implemented CCTV con-
trol rooms has been studied by Gill et al [3], concluding that CCTV cameras only e�ective in
reducing certain types of crimes while only displacing the rest. According to the authors, the
principal consequence of the installation of these kind of systems is the decrease in the 'fear of
the crime' among the public. The study concludes that there is a need of control support to
match the results that were expected. Due to the cost of maintaining a huge number of oper-
ators, the solution goes through the automation of surveillance systems. Moreover, improving
these systems should be a priority, moving from the operator-controlled systems to smart video
surveillance systems capable of performing high level tasks. Nowadays, the trend is to increase
the independence of the systems and reduce the level of human intervention [4].
Changes in technology have made possible the development and integration of new technolo-
gies and applications such as motion detection, face recognition, person and vehicle tracking
or crowd analysis. However, implemented devices are often a�ected by poor quality, caused
by economic and practical problems. As a consequence, the cost and complexity of developing
these technologies is highly increased. The problems associated to surveillance systems can be
related to the quality and performance of the devices and systems, or to external factors like
environmental conditions.

2.1.1 Problems related to devices and data acquisition

Several authors have studied the most common problems related to the devices used in video
surveillance systems. Most of them are a consequence of low quality equipments. Some others
are caused by the techniques used for data compression and acquisition. In addition, a bad
choice of the position and coverage area of the cameras could lead to poor results. The most
important problems are listed below [3, 5, 6]:

• Problems related with density, coverage area and positioning.

3
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Figure 2.1: Example of false alarms caused by a sudden illumination change

• Low quality recording equipment.

• Lack of contrast.

• Noise and disturbances.

• Blurring caused by motion or lack of focus.

• Geometric distortions (severely limiting the reconstruction. of the dimensions of the ob-
jects inside the image).

• Excessive digital video compression.

Additionally, other factors such as incorrect con�guration of the devices or poor camera location
or insu�cient disk space can decrease as well the �nal performance of the system.

2.1.2 Environmental and external challenges

Environmental and external factors can a�ect the system, reducing the �nal quality of the
video and causing false alarms 1. As a consequence of the enormous amount of data analysed,
surveillance systems must be robust against the typical events that can produce false alarms,
facilitating further work. Figure 2.1 shows an example of false alarms generated by a sudden
illumination change that causes the three false objects detected in the building's wall. Muller-
Schneiders et al provide some examples of the most common events that cause false alarms in
[7]:

• Moving trees

• Rain

• Camera motion

• Varying illumination conditions

1False alarms are events identi�ed as unusual events that do not imply any real danger or worries

4 CHAPTER 2. LITERATURE REVIEW
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Figure 2.2: Classic structure of a background subtraction algorithm

2.2 Motion Analysis Component

The primary task of video surveillance systems is the identi�cation of moving objects. Surveil-
lance systems must be capable of detect and separate target objects (frequently vehicles and
pedestrians) from the inanimate objects and the environment. Most of the systems use a combi-
nation of spatial segmentation and temporal segmentation (tracking) to extract the objects. The
task of the spatial segmentation algorithm is to discriminate between the pixels belonging to the
objects and the rest of the image. Usually, pixels belonging to the moving objects are known as
foreground while the rest are considered as background. Therefore, the spatial segmentation al-
gorithm classi�es every pixel of every frame in the video as foreground or background. The next
step is to �nd the relation of the pixels between frames, establishing which pixels belong to the
same object from frame to frame. This is known as object tracking. The principal segmentation
and tracking techniques are presented in the following paragraphs.

2.2.1 Spatial segmentation

In the case of static cameras (the case of our databases), the spatial segmentation usually consists
in a background subtraction algorithm. Background subtraction algorithms extract the relevant
information from the video (foreground), removing the quasi-constant background and reducing
the amount of resources necessary to analyse the video. Background subtraction techniques are
based in the generation of a model to represent the background. Each frame of the video with
be compared against the simulated model to extract the foreground. Therefore, the foreground
is the sum of all the detected pixels that have been found to be di�erent from the implemented
background model.
The most common problems that can a�ect to the performance of the background subtraction
algorithm are related to the maintenance of the background model and real-time needs [8, 9]. In
the following paragraphs, the most common problems that a�ect to the background maintenance
will be presented:

• Moved objects: sometimes background objects are moved by external factors like wind in
the case of the trees. These objects should not be consider part of the foreground.

• Time of the day: gradual changes in ambient illumination alter the appearance of the
background

• Light switch: sudden changes in illumination due to light switching (indoor scenes) or
moving clouds (outdoor scenes) change the appearance of the background.

• Camou�age: some objects pixels characteristics may be similar to the background.

• Bootstrapping: some background techniques require a training period that may be not
available in some environments, thus generating a background model in�uenced by fore-
ground information.

CHAPTER 2. LITERATURE REVIEW 5



Accurate trajectory representation for video surveillance

• Sleeping person: an object that became motionless sometimes cannot be distinguished of
the background after a period of time.

• Waking person: when an object initially in the background moves, both it and the newly
revealed parts of the background appear to change.

• Shadows: foreground objects often cast shadows that should be ignored as part of the
background.

According to [9], background subtraction algorithms normally consist of four steps: prepro-
cessing, background modelling, foreground detection and data validation.

1. Preprocessing: this step consist of a number of tasks to change the video settings, being
the objective obtain better results in further steps. The most common operations include
smoothing (to reduce noise), frame size or rate reduction and data format conversion.

2. Background Modelling: generation of a background model. Actual approaches can be
classi�ed in two groups: non-recursive and recursive [9]. The principal di�erence between
the two approaches is how they upgrade the background model. The non-recursive tech-
niques use a sliding-window that only takes in account several frames, ignoring the past
story of the frames; recursive techniques upgrade the model with every input, allowing
past frames to a�ect the current model. Non recursive models have the advantage of being
highly adaptive while recursive techniques can generate more accurate models using pixel's
history.

3. Foreground detection: there are two common approaches to foreground detection: estimat-
ing the absolute di�erence between the input pixels and the background model or using a
threshold based on normalized statistics.

4. Data validation: this step consists in improving the foreground using information obtained
outside the background model. There are three typical problems when using a background
subtraction algorithm:

• Lack of information of the pixels neighbours correlation: the result of this problem is
the appearance of small false or positive regions.

• Incorrect rate of adaption: the rate of adaption does not match the moving speed of
the foreground objects. This can result in the appearance of ghosts2. Some common
solutions include running several model at di�erent rates and colour segmentation.

• Shadow cast: caused by moving objects. A comparison of shadow removal algorithms
can be found in [10].

2.2.2 Temporal segmentation

Temporal segmentation or tracking is the following step after spatial segmentation. The frames
belonging to the foreground have been extracted, but it is necessary to �nd the relation of these
pixels between the frames. The aim of object tracking is to �nd these relations, allowing the
obtaining of high level concepts like trajectory. Tracking algorithms can be classi�ed depending
on the features used to match the blobs. In [11] the authors propose a classi�cation based on
three concepts: point tracking, kernel tracking and silhouette tracking. In the next paragraphs,
these approaches will be further explained:

2Ghosts are large areas of false foreground
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• Points: The detected objects are represented by points. The association of the points
is done with the information of the previous object state. This method requires an ex-
ternal detector to detect the objects in every frame. This techniques can be divided in
deterministic models and statistical models.

� Deterministic models: deterministic methods de�ne a cost of associating each object
in frame t − 1 to a single object in frame t using a set of motion constraints. Min-
imization of the cost is formulated as a combinatorial optimization problem. Used
constraints include proximity, maximum speed or common movement.

� Statistical models: use the state space approach to model the object properties such as
position, velocity, and acceleration. These measurements are used to predict object's
position. Some of the most important statistical methods include Kalman �lter,
particles �lter or multiple hypotheses tracking (MHT).

• Kernel: kernel is related to the objects shape and appearance. Objects are tracked by
calculating the motion of the kernel in consecutive frames. These techniques can be divided
in two groups:

� Template and density-based techniques: these techniques perform the matching by
comparing a template or a de�ned geometric shape of the detected foreground in the
current frame. Widely used due to their low computational cost.

� Multi-view techniques: use di�erent views of an object to perform the tracking.

• Silhouette: these algorithms estimate the object region in each frame. Silhouette tech-
niques can be classi�ed in two subgroups:

� Contour evolution: iteratively evolves an initial contour adapting to the new object's
position.

� Shape matching: looks for a concrete shape in each frame by comparing the existing
ones with the modelled shape. This model is upgraded regularly.

2.3 Occlusion handling

One of the main challenges in video surveillance systems is the problem of occlusions in video
sequences. Occlusion occurs when an object is not visible in a frame because other object or
static structure is blocking its view. The problem of occlusion is normally treated as a tracking
issue, as position and velocity of an occluded object are di�cult to determine. However, some
authors propose parallel or post-tracking occlusion handling techniques in the case the tracking
algorithm is not robust enough or cannot deal with occlusions [12, 13]. Javed and Shah di�erence
three types of occlusions [1]:

• Inter-object occlusion: an object blocks the view of other objects in the visual �eld of the
camera. An special case in inter-object occlusion is when objects are entering/leaving the
�lmed area. Since people usually move in groups, which results in frequent inter-object
occlusion so detecting and resolving inter-object occlusion is important for surveillance
applications. Moreover, tra�c monitoring applications must deal also with lots of inter-
object occlusions.

• Occlusion of objects due to thin structures: poles or trees can split the detected object in
two di�erent regions. This problem is aggravated when multiple objects are occluded by
the same structure.
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Figure 2.3: Example of occlusion provided by [1]

• Occlusion of objects due to large structures: the object disappears for a certain amount
of time. It is necessary to determine the possibility of reappearance and exit of the scene.
This type of occlusion is quite common in videos �lmed in outdoor areas such as streets
or parks.

Other proposed occlusion classi�cations based on tracking include additional types such as
apparent occlusions or self-occlusions [14]. A brief study of the some of the most common
approaches to occlusion solving can be found in [15]. All the techniques mentioned in the work
are tracking approaches, the most relevant are the following:

• Usage of a ground plane representation combined with an estimation of the object size.

• The addition of an extra pixel model characterizing occlusion pixels, hence, using three
di�erent models: foreground pixels, background pixels and foreground occluding pixels.

• Learning a model of scene occlusions from the track of moving agents using minimum
description length. This model creates successively more detailed models by dividing the
scene into layers.

• Modelling of occlusion location based on a classi�cation of long-term, short-term and
border occlusions.

Scene modelling can be useful for occlusion handling (specially with entering/leaving objects)
and can be implemented along with the occlusion prevention algorithm. In [16] Stau�er describes
a method based on modelling entrances and exits with Gaussian Mixture Models (GMM).The
techniques based on post-tracking processing must resolve the problem of the missing informa-
tion. Ivanov et al [12] use an interpolation algorithm to �ll in the blank space.

2.4 Trajectory processing

As mentioned in the section Principal challenges in video surveillance systems, there are several
problems to deal with in an video surveillance system. One of the main problems, occlusion,
was explained in the section before along with the most representative techniques used to solve
it. However, most of the e�ort for trajectory representation and classi�cation is spent in several
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Figure 2.4: Summary of the principal techniques in trajectory processing

di�erent operations to adapt raw trajectories to a more desirable form. Usually, two di�erent
problems are taken into account: excessive spatial variation due to noise and issues related to
the tracker technique; and unequal length caused by the time-varying nature of the trajectories.
The �rst problem a�ects directly to the quality of the detected paths and complicates further
operations. One of the most common approaches to solve this problem is data smoothing.
The second problem must be solved to allow the application of clustering techniques, which
normally require equal length in input data. Most researches use a combination of trajectory
normalization and dimensionality reduction in order to prepare raw trajectories for clustering.

2.4.1 Data smoothing

Noise and disturbances a�ect directly to the �nal e�ciency and performance of the video surveil-
lance systems. Moreover, noise contamination is a common problem in many digital systems,
specially when the quality of the input is questionable. Data smoothing is a wide used technique
in lots of di�erent �elds to reduce the e�ect of noise on input data. Additionally, this solution
can help to eliminate little irregularities in the captured data, providing a clearer view on the
behaviour of the trajectories. There are lots of di�erent approaches to data smoothing depend-
ing on the needs of the particular �eld or application of study. Some of the most representative
techniques applied to surveillance systems are mentioned in [17]:

• Moving average �lter: is a type of �nite impulse response �lter commonly used to analyse
a set of points by creating a series of averages of di�erent subsets of the full data set.
Moving average techniques are commonly used with time series data to smooth out short-
term variations and highlight longer-term trends.

• Savitzky-Golay �lter: performs a local polynomial regression on a series of values to deter-
mine the smoothed value for each point. Savitzky-Golay �lter is used for smoothing and
di�erentiation in many �elds and has been well studied in literature [18].

• Wavelets: this technique is based in the decomposition of the signal in two: a high fre-
quency and a low frequency signal. The low frequency signal preserves the main structure
characteristics of the original signal. Thus, the low frequency signal can be viewed as a
smoothed version of the original signal.

• Other low-pass �lters: most of the �lters used in data smoothing are low-pass, including
some of the mentioned above.
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2.4.2 Normalization

Normalization consists in ensure that all the trajectories have the same length, which is a
necessary condition to further clustering. Normally, the chosen length is the length of the
longest trajectory. There are two di�erent approaches: length extension and resampling. In
[17], these two techniques are further explained:

• Length extension: consists in the addition of a number of new samples to reach the required
length. The two most common approaches are zero padding and track extension. Zero
padding is based on add extra zero samples concatenated at the end of the trajectory. Track
extension consists in estimate the value of the new samples using dynamic information of
the trajectory.

• Resampling: uses interpolation to guarantee that all the trajectories have the same length.
The most popular technique is linear interpolation. If sample reduction is necessary, then
subsampling is the best choice.

2.4.3 Dimensionality reduction

Dimensionality reduction techniques are widely used in many �elds to reduce the dimensionality
of the original data prior to any modelling of the data. In trajectory processing, these techniques
are used to map trajectories to a more computationally manageable space. The new space should
be chosen using the parameters that best characterize the trajectory model. Morris and Trivedi
[17], describe some of the most important methods:

• Vector quantization: based on limit the number of possible trajectories to a �nite alphabet
of prototypical vectors.

• Least-squares polynomial reduction: approximation of the trajectory based on least squares
method, modelling the trajectory as a 2-D curve.

• Wavelet techniques: representation of a trajectory at di�erent levels of resolution.

• Continuous Gaussian emission hidden Markov models: used to characterize the trajectory
by its temporal dependencies between samples and then use the parameters obtained to
represent the trajectory with lower dimensionality.

• Principal component analysis (PCA): a popular method based on an orthogonal transfor-
mation to convert a set of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components.

• Spectral methods: uses eigenvalues obtained from a matrix constructed with the training
trajectory set and then a transformation to the spectral space to obtain the new low
dimensionality trajectories.

2.5 Trajectory segmentation

Trajectories extracted from moving objects in videos are normally used to represent the objects
movement in surveillance systems. However, object movement can be complex and the trajec-
tory can be divided in subpaths, each one containing a fraction of the total information. Every
point of the original path must belong to one the subpaths. Thus, rejoining the subpaths in
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chronological order must result in obtaining the original trajectory. The criteria used to divide
the trajectory can be of spatial or temporal nature. The segmentation algorithm detects the
points where there is a change in the motion such as a direction change or a speed increment.
Consequently, each subpath represents a portion of the trajectory in which motion features re-
main constant or quasi-constant.
The main advantage of trajectory segmentation is the simpli�cation of further analysis, using
subpaths instead of the complete trajectory. Moreover, as each subpath represents a concrete
part of the total movement, is easier to extract and isolate particular behaviours. This informa-
tion can be used in combination with the analysis of the complete trajectory, obtaining a more
robust model. Trajectory segmentation can be also used to obtain a reduced dimensionality
model, using the transition points between subpaths as the new trajectory points. Although
this simpli�cation means that the original points cannot be recovered, interpolation can be used
if is necessary to increment the number of points of the trajectory. The procedure to detect the
points where there is a signi�cant change in the spatio-temporal characteristics of the trajectory,
known as breakpoints, is normally based on geometrical and temporal analysis. Despite some
of the surveillance systems and applications based on trajectories do not use a segmentation
phase, several authors include this step in their systems with promising results. Piotto et al [2]
propose a system based in three di�erent algorithms. After the segmentation, breakpoints are
characterized by a set of features and then mapped to a syntactic alphabet. This leads to a
simple matching step that can be used in high level applications such as automatic detection of
anomalous events. The authors classify the breakpoints in two types:

• Temporal breakpoints: detect sharp velocity discontinuities in the object motion. In par-
ticular, this breakpoints are useful to detect stops/re-start events in the trajectory.

• Spatial breakpoints: denote changes in the direction of the object. In this category, is
necessary to distinguish between short-term variations and long-term variations using a
di�erent algorithm for each type.

Bashir et al [19] use curvature changes in trajectory to segment the paths, and then PCA to
represent the subpaths. The subpaths are grouped using clustering and then a HMM represen-
tation to build a motion recognition system.

2.6 Trajectory representation

Trajectory representation techniques are often used in high level applications to facilitate pro-
cedures like clustering and matching. There are several approaches to obtain a more robust and
e�cient model. Moreover, a good representation strategy should be able to highlight similarities
and di�erences between trajectories, as same spatial trajectories could be associated to di�erent
motion patterns. Basically, there are two approaches to trajectory representation. On the �rst
hand, some authors use a set of features to represent the main characteristics of the trajecto-
ries, applying in some cases a transformation to the obtained features to improve robustness or
reduce dimensionality [20, 12, 2]. On the other hand, some others, use direct transformations
on trajectories such as PCA [19]. Porikli and Haga propose a feature classi�cation in [20]. This
classi�cation divides the features in two groups: object-based features and frame-based features.
The �rst type describes properties of individual objects while the latter represents the properties
of a frame using the properties of objects existing in the frame. The main features described in
each group are the following:
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Figure 2.5: Summary of the principal features used in trajectory representation

• Object-based features

� Histograms: aspect radio, slant, orientation, speed, colour, size.

� HMM's: features transferred to a parameter space λ that is characterized by a set of
HMM parameters. This type includes: coordinate, orientation, speed.

� Scalar: duration, length, displacement, global direction.

• Frames-based features

� Histograms: orientation, location, speed.

� Scalar: number of objects, size.

To reduce the high dimensionality of most of the proposed features, the authors use an eigenvec-
tor decomposition on the similarity feature matrices. Recent work with this type of features has
been developed by several authors. The following paragraph describes some of these approaches:
Ivanov et al [12] propose a representation based on model every trajectory with high level fea-
tures such as velocity and acceleration. These features are re-sampled to ensure the same length
for all the trajectories and then fed to a SVM system for training. In [2], the authors propose
also a system based in features extraction. Nevertheless, features extraction is done for every
breakpoint calculated in a previous step. The features used are angle, velocity and duration.
Then, these parameters are quantized and prepared for the matching procedures.
Bashir et al [19] estimate the PCA coe�cients of the previously obtained subpaths to represent
the trajectories in an accurate and compact way. To achieve invariance, input trajectories are
�rst low-pass �ltered and normalized. Other common approaches to dimensionality reduction
used in trajectory representation can be found in Section 2.4.3.
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3
System design and development

The aim of this chapter is to present the di�erent functional stages in which the framework is
composed of, and provide the reasons to justify the technologies used. The chapter is subdivided
following the structure of the system.

Figure 3.1: System structure

The main objectives of the system are:

• Extract trajectories of moving objects from surveillance videos.

• Re�ne the raw trajectories to facilitate further work.

• Find a suitable model for the representation of the re�ned trajectories.
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The project is divided in four main stages: motion analysis component, trajectory preprocessing,
angle-based trajectory division and trajectory representation. All the proposed techniques and
algorithms have been implemented in C/C++.

1. Motion Analysis Component (section 3.1) receives the surveillance video and detects
the moving objects in the video, providing the raw trajectories that will be further anal-
ysed in the next steps. The objects in the video are spatially and temporally segmented
to remove the non-relevant information, basically the parts of the frames not belonging
to the objects, therefore reducing the amount of the information that will be analysed.
Thus, the motion analysis component yields a background subtraction method, an object
segmentation algorithm and an object tracker. The information provided includes the size,
coordinates of the centroid and frame numbers where the detected objects appear.

2. Trajectory preprocessing stage (section 3.2) although the motion analysis component
is based on a robust technique, some matters like noise and occlusions can lead to a
more di�cult and less accurate results in the next steps. Consequently, is essential to
enhance this data. Several operations are de�ned in this step: separation of mismatched
trajectories1, joining the subpaths of a trajectory split by occlusions, a smooth step based
in Saviztky-Golay �lters and a �nal false object2 removal step.

3. Angle based trajectory division stage (section 3.3) consists in the separation of each
trajectory into several subpaths. Trajectories are scanned to �nd the points where there
is an important spatial or temporal change, that is, the breakpoints.

4. Trajectory representation (section 3.4) once the breakpoints have been calculated, the
next step is to extract the features that characterize the subpaths existing between break-
points. Finally, these features can be used to reconstruct the subpaths. The aim of this
stage is to procure a method to model and represent trajectories which have been previ-
ously pre-processed.

In the following paragraphs each of the presented stages will be further detailed along with the
techniques applied in each stage.

3.1 Motion Analysis Component

The �rst stage of our framework is the Motion Analysis Component. Its objective is the ex-
traction of the moving objects that appear in the surveillance videos. Relevant information is
contained in the movement objects such as vehicles or pedestrians, while the background remains
quasi-constant in time. Therefore, it is necessary to separate the foreground objects from the
background to allow the analysis of this information. Moreover, this process leads to low com-
putational cost and faster procedures, reducing the amount of information processed. However,
some operations like resizing and changing the input video format are necessary before start-
ing the analysis. The stages that compose the Motion Analysis Component are the following:
preprocessing operations, background subtraction algorithm, spatial segmentation and object
tracking.

1Mismatched trajectories are trajectories that belong to di�erent objects but have been merged by the tracker

algorithm as if they belong to the same object.
2False objects are detected objects not extracted from the detection of a real object but created by noise or

other disturbances.
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• Input preprocessing step grants that the input video will match the system requirements
of size and format. A video edition tool is used to change the video parameters.

• Background modelling is necessary to separate foreground objects from the background.
The technique used is based in modelling the background as a mixture of Gaussians.

• Object detection step �nds out the spatial nexus of the detected foreground pixels in
each frame. The method used is a two-pass connected component algorithm based on a
8-neighbour connection.

• Object tracking provides the relation of the objects detected between di�erent frames. The
implemented solution is based on a linearly predictive multi-hypothesis tracking algorithm.

The Motion Analysis Component fundamentals and steps are explained in further detail in the
next paragraphs.

3.1.1 Background subtraction algorithm

In this step,the objective is to calculate a mathematical background model, based in the work
of Stau�er and Grimson [21]. This approach provides an adaptive background subtraction tech-
nique that deals robustly with illumination changes, slow moving objects and other external
problems that a�ect typically to background subtraction procedures. This method is also suit-
able for working on real-time applications using low resolutions. In the approach of Stau�er
and Grimson [21], the separation between the foreground of an image and the background is
performed by modelling the background as a mixture of Gaussians. Stationary objects are con-
sidered as part of the background, while moving objects are subscribed to the foreground.
For a particular pixel, the probability of belonging to the background or the foreground is cal-
culated based on the persistence and the variance of each of the Gaussians of the mixture.
Furthermore, this value is directly related to the intensity and colour distribution of the pixel in
that certain image. As a result of this method, each pixel is classi�ed, considering foreground
pixels those which do not �t any background distribution. Due to possible light changing con-
ditions, the model must be based in adaptive Gaussians. The main advantages of adaptive
Gaussians are: the robustness against external changes and the capacity of deal with sleep walk-
ing objects. The later advantage comes from the fact that the previous background still exists
but with a lower ω.
The recent history of each pixel is modelled as a mixture of K Gaussian distributions. The
probability of observing the current pixel value is:

P (Xt) =
K∑
i=1

ωi,t ∗ η (Xt, µi,t, εi,t) (3.1)

where K is the number of distributions; ωi,t is an estimate of the weight of the ith Gaussian in
the mixture at time t; µi,t and εi,t are the mean value and covariance matrix of the ith Gaussian
in the mixture at time t; and η is a Gaussian probability density function. Every time a new
pixel value Xt is obtained, this value is checked against the existing K Gaussian distributions
until a match is found. In this process, the authors de�ne match as a pixel value within 2.5
standard deviations of the checked distribution. Nevertheless, in the case of mismatch, the least
probable distribution is replaced with a new distribution, using the current value as its mean
value, and an initially high variance and low prior weight.
Once the pixel has been classi�ed its model needs to be adjusted, thus, the weight, average and
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Figure 3.2: Object segmentation method example

variance are updated following the formulae 3.2, 3.3, 3.4 and 3.5.

ωk,t = (1− α)ωk,t−1 + α (Mk,t) (3.2)

where α is the learning rate and Mk,t is the result of the pixel classi�cation (1 when the model
is matched and 0 otherwise).

µt = (1− ρ)µt−1 + ρXt (3.3)

σ2t = (1− ρ)σ2t−1 + ρ (Xt − µt)T (Xt − µt) (3.4)

where ρ

ρ = αη (Xt|µk, σk) (3.5)

In the case of mismatch, only the weights are updated.

3.1.2 Spatial segmentation

After the pixels are classi�ed, foreground pixels are grouped using a two-pass connected com-
ponents algorithm. The algorithm scans the image until it �nds a pixel classi�ed as foreground.
Each pixel has a label attached to it; zero if belongs to the background and an integer otherwise.
Then, basing on the label of the four neighbours that have been already scanned the pixel is
updated as foreground or background. After the �rst pass, the scan is repeated again because
the connected components algorithm is two-pass. Furthermore, each label is associated with a
class, in the form of an identi�cation number. This number is replaced by its equivalent label
during the second scan. Hence, foreground objects are segmented spatially in every frame of the
video.
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Figure 3.3: Example of raw trajectory

3.1.3 Multiple hypotheses object tracking algorithm

Once the objects have been spatially segmented, the next step is to establish the correspondence
of these objects between frames, that is, to initiate temporal segmentation. This process is
accomplished using a linearly predictive multiple hypotheses tracking algorithm. Each analysed
frame has an associated pool of Kalman models, obtained using Kalman �lters. The models are
probabilistically matched to the connected components that they could explain. Each match
with a small error is used to update the model. These models will be used in the following
frame. If no match is found for a particular model, this model will still be propagated but the
probability of being used will be decreased. The unmatched models from the current frame
and the two previous ones are used to hypothesize new models, basing on pairs of unmatched
components. If the current frame contains a match with small error, the model is added. Finally,
least probable models are removed if excessive models exist.

3.1.4 Summary

In conclusion, the motion analysis component consists in three di�erent operations: (i) back-
ground modelling to remove video redundant information (which is mainly the scene back-
ground); (ii) object detection using connected component analysis to group the extracted fore-
ground pixels; (iii) object tracking based on Kalman �lters.
The analysis of the trajectories extracted in this component is discussed in the subsequent
chapters. An example of these raw trajectories can be found in Figure 3.3

3.2 Trajectory preprocessing

The raw trajectories provided by the previous component (Section 3.1) are re�ned in this stage,
in order to facilitate and improve the results for further operations. The main challenges to
deal with are: incorrect assignment between trajectories and objects produced by crossings and
occlusions, and distortion and imperfections caused by noise. The former di�culty can cause two
types of confusions: the �rst, assigning di�erent trajectories to the same object; and the second
one, assign di�erent parts of the same trajectory to di�erent objects. The latter, increases the
complexity of the trajectories, thus, increasing the di�culty of further stages. Moreover, noise
related to illumination changes and re�ections in objects and surfaces can introduce false objects
in the system. Several solutions have been implemented to deal these challenges:
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1. Separation of objects with di�erent trajectories is the �rst stage of the trajectory
preprocessing component. To deal with the matter of di�erent trajectories assigned to the
same object, raw trajectories are analysed and split if the one of the conditions (further
explained in Subsection 3.2.1) is ful�lled.

2. Joining of trajectories that belong to the same object. The main cause of the
division of some of the trajectories in the videos into several subpaths are occlusions and
crossings caused by obstacles and other objects. The technique proposed to solve this is
based in Bresenham's line drawing algorithm (see subsection 3.2.2 for more details).

3. Trajectory smoothing is the third stage of the trajectory preprocessing component. The
aim of this stage is reduce the noise and imperfection of the raw trajectories. The method
implemented is based in Saviztky-Golay �lter (details in subsection 3.2.3 ).

4. False objects removal is the last stage. In order to eliminate the false objects introduced
by noise e�ects, the objects that have been smoothed have to ful�l a number of conditions
(details in subsection 3.2.4 ).

3.2.1 Separation of objects with di�erent trajectories

Sometimes, when two objects pass near each other or their paths cross, the motion analysis
component assigns the paths as belonging to the same object. Therefore, it is necessary to
analyse raw trajectories to �nd and separate the di�erent paths. A set of conditions is de�ned
to determine when a trajectory should be divided. These conditions are strictly spatial, no
temporal information is considered, because the paths involved are always consecutive in time.
The conditions are the following:

1. Distance between two consecutive points: the distance is de�ned as the Euclidean
distance:

εn =

√
(xn+1 − xn)2 + (yn+1 − yn)2 (3.6)

If εn exceeds a pre-de�ned threshold ε the condition is satis�ed and the object divided.

2. Angle β (de�ned in Beta breakpoints 3.3.2) condition is satis�ed if the angle exceeds
the threshold α1. The election of the threshold is based on the idea that moving objects
extracted from surveillance videos rarely change abruptly their direction.

3.2.2 Joining of trajectories that belong to the same object

Occlusion is one of the main problems when working with video surveillance videos. Pedestrians
and cars often get occluded by a number of static obstacles like tra�c lights, trees or posting
signs. In addition to these obstacles, other targets can produce the same e�ect when passing over
the focused object. As a result, the trajectories are split into several others, not representing the
real behaviour of the object. To detect occlusions, the system compares each trajectory with all
the others, and if they satisfy a number of conditions, the trajectories are joined:

• Spatio-temporal proximity: the distance between the last point of the �rst path
P 1
end(the one that goes before in time) and the �rst point of the second path P 2

beg, must
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Figure 3.4: Bresenham's algorithm

be under than a prede�ned number N (the measure of distance is the same as in Formula
3.6). In addition to this, the di�erence between the number of the frame of P 1

end and P
2
beg

cannot exceed F . This conditions ensures that only spatio-temporal close paths can be
joined.

• Similar direction: this condition is similar to the beta angle condition of the previous
stage, but in an opposite way. The end of the �rst path and the beginning of the second
one are analysed using the same formula as in 3.2.1. The condition is satis�ed if the
value obtained is below a prede�ned threshold α2. This condition prevent the system from
joining paths of di�erent crossing objects that would probably satisfy the rest of conditions.

• Consecutive paths: to ensure the second path is consecutive in time, the number of
frame in which appears the last point of the �rst path (F 1

end) must be smaller than the
number of frame of the �rst point of the second path (F 2

beg). Non temporally consecutive
paths cannot belong to the same object.

• Similar size: for each path, an average size is calculated. A maximum increment ∆S is
de�ned, discarding the compared paths that overcome that value. This condition avoids
the system from joining paths from di�erent objects that have satis�ed the spatio-temporal
proximity condition ignoring the e�ect of the image depth. This e�ect can be detected
comparing the size of the objects. Additionally, can help to avoid joining di�erent kind of
objects, for example pedestrians and cars.

Whenever two trajectories are joined, there is always an empty gap between them. The missing
trajectory segment is completed using the �lling process described in [12]. This process is based
in the Bresenham's line drawing algorithm [22], whose operation principles are fully detailed the
next paragraphs.

Bresenham's drawing algorithm

The Bresenham drawing algorithm determines which points in a n-dimensional space should be
selected to form the line between two given points. The principal advantages of the algorithm
are its simplicity and its low computational cost (as it uses only cheap computational operations
such as integer addition, integer subtraction and bit shifting). Our implementation of Bresen-
ham's line drawing algorithm is described in the following paragraphs.
The �rst stage is the initialization of the variables used by the algorithm. The �rst operation is
to calculate the variables dx and dy:

dx = x1 − x0 (3.7)

dy = y1 − y0 (3.8)
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Figure 3.5: Comparison between pre-smoothing trajectory (left) and post-smoothing trajectory
(right)

where (x0, y0) are the coordinates of the initial point and (x1, y1) represent the coordinates of
the �nal point The values obtained are used to calculate inc:

inc = 2 ∗ dy − dx (3.9)

The second part of the algorithm is a loop where the stopping criterion is to reach x = x1. In
each iteration, the value of x is increased in a unit. The value of y can be updated depending on
inc, which is also updated in each iteration. There are two di�erent possibilities: inc > 0 and
inc <= 0. If inc > 0, y will be updated and the current point (x, y) will be extracted. Then
the variable inc will be updated with the formula inc = inc+ (2 ∗ dy− 2 ∗ dx). In the case that
inc <= 0, y will not be updated and inc = inc+ 2 ∗ dy.

3.2.3 Trajectory smoothing

The object trajectories obtained after separation and �lling remain noisy and imperfect. The
objective of the trajectory smoothing is to reduce the e�ects of illumination changes, noise and
other imprecisions related to external factors . Besides, smoothing reduces the complexity of the
trajectories, facilitating representation as the number of features necessary to characterize them
decreases. A solution to smooth the trajectories obtained is presented in [12]. Authors propose
an implementation based on Saviztky-Golay �lter. In the next paragraphs this �lter and its
implementation are further explained ir order to facilitate the comprehension of the proposed
system.

Saviztky-Golay �lter

Saviztky-Goaly �lter is based on the calculation of a polynomial regression to determine the
value of each point. The �lter has three parameters: order, polynomial degree and length. The
order of the �lter is the order of the nth derivative that the �lter would apply to the entrance
(zero order is equal to smoothing). The polynomial degree is related to the polynomial regression
used to calculate the values of the �lter. Finally, the length of the �lter is the number of points
of the �lter used, must be always an odd number and higher than the polynomial order. The
number of points of the trajectories must be at least the length of the �lter.
For a certain order, �lter coe�cients are dependent on the polynomial degree and length. As the
polynomial degree decreases or the length increases, the noise variance is reduced, nonetheless
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this implies losing some details of the input signal [18]. The main advantage of the Saviztky-
Golay �lter is that it tends to preserve the features of the distribution such as minima and
maxima relative values. According to the results obtained by Ivanov et al [12], the selection of
a proper polynomial order and window length leads to lower computational complexity and a
good approximation of the trajectories. The parameters are set to the values proposed in [12]:
polynomial degree p = 4 and length n = 21. Figure 3.5 shows the e�ects of the �ltering over a
raw trajectory with p = 4 and n = 21.
The steps followed for the implementation of the �lter are described in the next paragraphs:

1. This �rst point consists in obtaining the matrix A. A is a matrix of nx(p + 1), where n
is the length of the �lter and p is the polynomial degree. This matrix is calculated k + 1
times, where k = n−1

2 , using the following formula:

Am = (OT
m ∗Q)∀m = 1, 2...k + 1 (3.10)

where Om is a vector containing the numbers from (1−m) to (n−m) and Q is a vector
of (p+ 1) one values. Finally, each column of Am is raised to the (r− 1) power where r is
the number of that column.

2. The second step is �nding A+
m the pseudo-inverse matrix of Am. The method used to

compute A+
m is the single value decomposition (SVD) [23]. The single value decomposition

consists in a factorization of the form Am = Um ∗ Sm ∗ (V ∗m)T , where Un is a n x (p + 1)
matrix, Sm is a diagonal matrix of (p + 1) x (p + 1) dimensions and Vm is a matrix of
(p+ 1) x (p+ 1) dimensions. The implementation of the SVD method is mathematically
complex, consequently, our approach is based on the implementation described by Press
et al [24]. Once the U , S and V matrices are calculated, the pseudo inverse is obtained by
the following operation:

A+
m = Vm ∗ S+

m ∗ UT
m (3.11)

where S+
m, the pseudo inverse of a diagonal matrix, can be calculated by taking the recip-

rocal of each non-zero element on the diagonal and transposing the resulting matrix. The
�rst row of the matrix A+

m corresponds to the mth row of the �lter, Fm.

3. The procedure presented in steps 1 and 2 is performed k + 1 times, thus, obtaining the
�rst k + 1 rows of the �lter. The remaining rows from i = k + 2 to n are calculated by
using Fi = F inv

n−i−1, where F
inv is the same matrix as F but with the values of the rows

sorted inversely.

3.2.4 False objects removal

False objects are created by rapid illumination changes and re�ections in objects and surfaces.
Additionally, little movements of parts of the background such as trees can contribute to increase
this e�ect. All these challenges are further explained in Section 2.1.2. In order to eliminate false
objects, objects are checked against a number of conditions. These conditions are the following:

• Minimum time duration: the object must appear more than one second
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• Minimum number of points: the number of points of the trajectory (which is invariant
during the trajectory pre-processing) must be above a prede�ned minimum κ. False object
trajectories are normally short due to its dependence to rapid and chaotic changes in noise
and illumination. Moreover, trajectories with a very short number of points provide little
or none information of the behaviour of the object. Consequently, trajectories with less
points than κ will be removed in this stage. κ is bounded below by the selected length of
the Saviztky-Golay �lter (see Saviztky-Golay Filter 3.2.3).

• Minimum stroke: the object must change its position in more than a certain number
of pixels. The reason beneath this condition is that objects created by external factors
are normally stationary, moving little around the same position. The stroke condition
implementation consists of a minimum distance from the initial point that the object must
overcome.

• Minimum size: the object must have a minimum size. Objects smaller than a pedes-
trian should not be taken into consideration. Additionally, pedestrians smaller than a
certain size cannot be distinguished as a moving object. Regarding this, a size threshold
is implemented. The value of the threshold is set experimentally.

3.2.5 Summary

The main objective of the presented section is to enhance the information obtained in the motion
analysis component. As previously stated, the trajectory preprocessing component consists
of: (i) Separation of objects with di�erent trajectories, to prevent several trajectories to be
arti�cially joined in one object (ii) Joining of trajectories that belong to the same object, to
deal with occlusion and split paths that belong to the same object; (iii) Trajectory smoothing,
to remove noise and reduce the complexity of the trajectories; and �nally, (iv) False objects
removal to eliminate objects arti�cially created by noise. After these operations, the resulting
trajectories pass to the next step.

3.3 Angle-based trajectory division

The main objective of this stage is to procure a method to divide trajectories which have been
previously preprocessed in several subpaths. In the videos, the objects change their movement
in di�erent ways such as stops, deviations and turns. Hence, these changes are re�ected in their
trajectories which evolve temporally and spatially. To represent trajectories, is easier to divide
them in several subpaths, trying to separate parts of the trajectory with di�erent behaviour.
The points where trajectories change are known as breakpoints, and their detection is the �rst
step for trajectory division. After the detection, trajectories are divided into several subpaths,
each of them starting and �nishing in a breakpoint. Consequently, each subpaths represents a
part of the trajectory with a di�erent behaviour compared to the ones before and after.
In our approach, we di�erentiate three di�erent types of breakpoints: temporal, beta-spatial and
gamma-spatial. Temporal breakpoints mark the points where the velocity of the object detected
is null, which often indicates a following change in the trajectory. Moreover, stops usually are
related to external factors such as tra�c lights or meetings between peasants, thus, important
information for behaviour understanding.
Spatial breakpoints denote changes in direction. These changes can be abrupt and local or cumu-
lative and extended in a long period. Therefore, two di�erent criteria are implemented to detect
these deviations: beta breakpoints and gamma breakpoints. The breakpoints implemented in
the system are de�ned in [2]. In the next paragraphs, the di�erent types of breakpoints will be
further explained.
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Figure 3.6: Angles used by Piotto et al [2] (a) Local variation angle (b) Long-term deviation

3.3.1 Temporal breakpoints

Temporal breakpoints mark stops in the trajectory. To detect these stops, each point is evaluated
using a temporal window of length k. Furthermore, to prevent the small deviations produced by
noise in the object centroid position, a guard area proportional to the object's size is established.
If the following k points are inside the guard area, the point is marked as a temporal breakpoint.
In the system, k is set experimentally based on the range recommended in [2].

3.3.2 Spatial breakpoints

Beta breakpoints indicate sharp deviations in the trajectory. These deviations can be caused
by big direction changes (for example turning a road cross), objects dodging others or inani-
mate obstacles. The detection criteria is derivative, therefore useful to detect short-term abrupt
changes. To �nd the beta breakpoints, each point of the trajectory is evaluated with the follow-
ing formula:

βk = tan−1
∣∣∣∣ mk−1 −mk

1−mk−1mk

∣∣∣∣ (3.12)

First, the slopes (mk−1,mk) belonging to the lines (Pk−2, Pk−1) and (Pk−1, Pk) are calculated.
Then, the result of applying the formula above is compared with a prede�ned threshold β. If
βk > β, the point is marked as a beta breakpoint. Figure 3.6 shows the angle used for beta
breakpoint detection.
The criterion used for beta breakpoints in this section cannot detect changes generated by suc-
cessive small deviations. To detect these long-term variations, it is necessary to de�ne a new
criterion, in this case of integrative nature. The points detected with this technique are known
as gamma-breakpoints. The objective is to calculate the area γ subtend by the trajectory from
the last breakpoint to Pk. The integrative criterion is presented below:

γ(k−g,k)) =
1

2

k∑
q=k−g

[(
hiq + hiq+1

) (
Ri

q+1 −Ri
q

)]
(3.13)
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As shown in Figure 3.6, r is the line that joins the last breakpoint with the point being evalu-
ated Pk, (hiq is the distance between the trajectory and r, and Ri

k−g is the distance between the
projections of the trajectory points Pk−g and Pk−g+1 in r. Again, if γj > γ, the point is marked
as a breakpoint. The values of β and γ are discussed in the next chapter.

3.3.3 Summary

The Angle based trajectory division stage is divided in two parts: (i) Temporal breakpoints and
(ii) Spatial breakpoints. Each one is related to a di�erent type of breakpoint, and indicates a
di�erent change detected in the trajectory. In the next section, the subpaths de�ned by the
detected breakpoints, are characterized by a set of features (angle, velocity, duration), used to
represent and rebuild the trajectories in an accurately and compact way.

3.4 Trajectory representation

According to the spatio-temporal analysis presented in the previous section Angle based trajec-

tory division, the trajectory can be described as a chain of breakpoints Bi
n ∀ n=1,2,...M (being

M the number of breakpoints for the ith object). Each pair of breakpoints, Bi
n, B

i
n+1, identi�es

a subpath Si
j = (Bi

j , B
i
j+1) that approximates a portion of the original path. Consequently,

the trajectory can be represented by a description of the subpath chain. In our representation,
based on [2], each subpath is characterized by three features: angle (Θi

j), duration (∆tij) and
velocity (νij). With these features it is possible to describe a wide variety of trajectories and
perform di�erent analysis. Some examples include the identi�cation and representation of tra-
jectories with similar spatial behaviour but di�erent speed, detection of sleep walker objects,
discriminate between cars and pedestrians based on their velocity and moving patterns and the
detection of concrete behaviour patterns. Additionally, the implementation of the features is
simple and compact, and the trajectory can be easily rebuilt from the feature values. In case the
temporal information is not relevant, the samples with null velocity can be dropped, obtaining a
pure geometric representation. Moreover, duration and velocity can be merged to form a more
compact representation if looking only for spatial information.
The implemented representation is inherently invariant to rotation and translation. Only the
coordinates and orientation of the �rst segment refer to an absolute positioning (the �rst point
is always necessary to rebuild the trajectory), but this information can be easily discarded to
achieve invariance to translation and orientation. The features are presented in the formulae
below.

Θi
j = tan−1

(
−mi

j

)
+ tan−1

(
mi

j−1
)

(3.14)

∆tm = tj − tj−1 (3.15)

νij =
d
(
Bi

j −Bi
j−1

)
∆tj

(3.16)
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Figure 3.7: Theta angle

Direction and duration are computed with respect to the previous segment, while velocity is
calculated as the length of the segment divided by its duration. Θi

j is calculated using the slopes
mi

j belonging to the line de�ned by (Bi
j−1, B

i
j); and mi

j−1 which is de�ned by (Bi
j−2, B

i
j−1).

Figure 3.7 shows the angle Θ. In the �gure, rn−1 is the line that connects Bi
j−2andB

i
j−1; rn the

one that connects Bi
j−1, B

i
j .∆tj uses tj and tj−1 which are the absolute time references for Bi

j

and Bi
j−1. Finally, in the velocity equation, d(Bi

j −Bi
j−1) is the Euclidean distance between the

two breakpoints.
In our representation, Θ angle marks, along with the distance obtained by the multiplication of
velocity and duration, the position of the next point. Starting from the initial point, the system
calculates the features presented above for every breakpoint detected in the Angle Based Tra-

jectory Division step. Although the three features selected are the ones proposed by Piotto et
al [2], the de�nition of Θ used in the system (see Equation (3.14)) is di�erent from the proposed
by the authors. The implemented de�nition maintains the properties of the feature set, while
makes easier the trajectory rebuilding due to its simpler de�nition. Additionally, the velocity
can be positive or negative, the sign has a purpose in trajectory rebuilding.

3.4.1 Trajectory rebuilding

The last step is to perform the rebuilding of the trajectory using the features presented above.
The system starts from the �rst point of the trajectory, and then calculates the �rst breakpoint
using the three feature values previously obtained. Then, starting from the obtained breakpoint,
calculates the next one using the next group of features.
To calculate the next breakpoint, the system uses the slope of the prior segment mk−1(except in
the case of the second point, because no prior segment exists) and the angle Θ to get the slope
of the new segment using the formula 3.11 to obtain mk. Secondly, the system calculates the
distance to the new point by multiplying distance and velocity, hence, obtaining the circumfer-
ence of all the points that are at that distance from the actual point. The segment intersects
the circumference in two points, being one of them the required point. Finally, the sign of the
velocity feature is used to choose between the points. Figure 3.8 shows the process used to
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Figure 3.8: Process to rebuild βj

rebuild the trajectory. R represent the radius of the circumference, obtained by multiplying
velocity and duration.

3.4.2 Summary

In this section, three di�erent features are obtained for every breakpoint in each trajectory. The
representation build using these features is invariant to rotation and orientation and can be used
to perform a wide variety of analysis. Moreover, it is possible to rebuild the original trajectory
using the features proposed.
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4
Experiments and Results

The objective of this chapter is to present the experiments done to adjust and test the developed
system. Moreover, the chapter introduces the databases used to evaluate the stages explained
in the previous chapter. The conclusions extracted from the results of the run experiments
are commented in chapter 5. There is an evaluation point for each stage described in chapter
3. Additionally a �nal evaluation is included to test the performance of the system used to
discriminate between cars and pedestrians. The chapter is divided as follows:

1. Dataset: brief introduction to the datasets used to evaluate the system. The ground
truth used in the experiments is also presented.

2. Preprocessing module: description of the experiments designed to check the e�ective-
ness of each stage of the preprocessing module.

3. Segmentation module: presents the experiment run to set the thresholds related to
the detection of breakpoints. Moreover, the e�cacy of the �ltering stage decreasing the
number of breakpoints necessary to represent the trajectory is also evaluated.

4. Trajectory features: tests the capacity of the implemented features to represent the
original trajectory from which they were extracted. The accuracy in the reconstruction of
the original trajectory is also checked.

5. Trajectory representation: the tests consist in evaluate the performance of the pro-
posed system for object recognition.

6. Real-time performance: test the time performance of the system to evaluate the pos-
sibility of working in real-time applications.

4.1 Dataset

In order to consider several scenarios, the system has been tested with surveillance videos from
two di�erent datasets. The videos included, present a variety of situations and conditions in-
cluding indoors/outdoors scenarios and parked/road environments.
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Figure 4.1: Examples from i-LIDS dataset

Figure 4.2: Examples from TRECVID 2008 dataset

• i-LIDS dataset: i-LIDS consists of a library of CCTV video datasets with di�erent six
scenarios including parked vehicle detection and road surveillance scenarios. All the videos
are recorded in outdoors environments. The footage accurately represents real operating
conditions. The Figure 4.1 shows some examples of i-LIDS videos.

• TREVCID 2008 dataset: TREC Video Retrieval Evaluation (TRECVid) is an interna-
tional benchmarking activity to promote research in video information retrieval by pro-
viding a large test collection and uniform scoring procedures. The 2008 dataset includes
several indoors scenarios, most of them in crowded environments.

4.1.1 Ground truth

The ground truth has been built by selecting a small sized set extracted from the dataset and
manually annotating it for two di�erent concepts: car and person. In total, 171 objects were
included in the ground truth dataset. The dataset includes most of the scenarios available in
the datasets described above. Furthermore, the training set used in the experiments described
in 4.5 is obtained from the ground dataset. The ground truth was built using the Viper-GT
tool [25]. This tool generates an output �le with information of the manually annotated objects
including position, size and frame of every point. To extract and reformat this information in
order to compare it with the one extracted from the system was necessary to implement a new
program. The platform selected to implement it was Java. Finally, the data obtained was used
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Figure 4.3: Annotating a video using Viper-GT tool

in several of the experiments explained in the next paragraphs.

4.2 Preprocessing step

4.2.1 Separation of di�erent trajectories parameters

When paths from di�erent objects cross or pass near each other, sometimes are confused as
belonging to the same object. To detect the trajectories joined this way, the system analyses
each trajectory and checks if any of the conditions de�ned in section 3.2.1 is satis�ed. The
conditions check the Euclidean distance between every two consecutive points (Pk, Pk+1), εk,k+1,
and the β angle de�ned in section 3.3.2. If εn,n+1 > ε or βk > β, the trajectory is divided in two
from Pk.
The �gure 4.4 shows, in the part above, a situation where the paths of two di�erent cars pass
near each other and are confused to belong to the same trajectory. The �gures below show the
trajectory extracted by the motion analysis component, and the trajectories after the Separation
of Di�erent Trajectories step.
To evaluate this step, the number of joined trajectories after the Motion Component Analysis
was counted for the test videos. The parameters were evaluated in terms of how many of these
cases were able to solve. Additionally, the results were checked to �nd incorrect separations.
The measures used to evaluate the e�ectiveness of this step are de�ned below:

• Hit rate:

Hit rate =
Resolved cases

Total bad joined cases
(4.1)
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Figure 4.4: Example of trajectory separation

Hit rate Error rate
0.916 0

Table 4.1: Hit and error rates for Separation of di�erent trajectories experiments

• Error rate:

Error rate =
Separated paths belonging to the same object

Total number of trajectories
(4.2)

To set the value of ε is important to take into account two important facts: the �rst, is the
possibility of �nd occlusions in the trajectory; the second, that the higher the distance between
two points, the less the probability of belonging both to the same trajectory. Thus, a low value
for ε will result in the separation of most of the trajectories with little occlusions, while a high
value will make the complete stage useless. Regarding these two points, ε was varied in the
experiments to a range of values and was �nally set to the value with the best performance in
terms of solved cases. The election of a value for the threshold β is based on the idea that the
changes in the paths of cars and pedestrians are normally smooth, and the sharp turns are rare
in the surveillance videos environments. The experiments were run with an initial value for β
and using increments of 10 degrees to the �nal value.
The table 4.2.1 shows the results obtained from the analysis of the videos included in the ground
truth. The proposed solution was able to resolve more than 90% of the cases. Moreover, the
solution helps to eliminate noise from the trajectories in certain circumstances as shown in �gure
4.5.

4.2.2 Occlusion conditions

Objects trajectories are split when the detected objects in the videos get occluded by either
inanimate or detected objects. In order to recover the original trajectory and prevent the e�ects
of the occlusions, a set of conditions is de�ned. These conditions are presented and explained
in detail in section 3.2.2. The �gure 4.6 shows a pedestrian being occluded by a cyclist. Below,
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Figure 4.5: Example of noise removal in Separation of Di�erent Trajectories step

Figure 4.6: Example of occlusion and trajectory joining
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the paths detected by the motion analysis component and the �nal joined path are represented.
The measures used in this experiments are similar to the ones used in the previous section.
The di�erence is that the occlusions were count directly on the annotations. The e�ects of the
variables values are discussed in the next paragraphs:

• Spatio-temporal proximity: to join two paths, �rst is necessary to check their spatio-
temporal proximity. Two thresholds N and F were implemented to check this condition.
A small value for N decreases overly the chance to make joints, due to the merge of objects
in the motion analysis component. This happens when an object occults other, and the
motion analysis component treat them like a new object for an interval of time δt. If δt is
bigger enough, the chance of recover the trajectory by joining the separated paths is very
low. Therefore, a big value ensures to resolve more occlusions,in spite of increasing the
chance to make an incorrect joining as well. In the case of F , the reference chosen was a
maximum of 1 second between paths.

• Similar direction: this condition is necessary to avoid joining close paths of similar objects
that move in di�erent directions. To set the value for the threshold α2, several values were
tested in the experiments. Finally the value was set trying to minimize the error rate.

• Similar size: the Spatio-temporal proximity condition ensures that the paths being anal-
ysed must be close in distance. This means the e�ect of the image depth can not a�ect
much to the size of the object. Thus, if the two paths belong to the same object, their
size must be similar. To ensure the paths have a similar average size a maximum size
increment threshold is implemented. The size increment measurement ∆S is de�ned in
formula 5.1:

|S1−S2|
S1

< ∆S (5.1)

In the experiments, to �nd an appropriate value for ∆S; examples of the most common
objects, pedestrians and vehicles, were extracted in positions separated N (see the �rst
condition spatio-temporal proximity). For each sample, a size increment was calculated.
Then, the value of ∆S was set using the results shown in table 4.2.2.

Average size increment ∆S

Pedestrians 0.013
Vehicles 0.035

Table 4.2: Average ∆S for cars and pedestrians

Hit rate Error rate
0.125 0.008

Table 4.3: Occlusion scores

The table 4.2.2 shows the results for occlusion handling based on the analysis of the selected
video dataset. The proposed solution is e�ective in only 12.5% of the cases.
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4.2.3 False objects removal conditions

In section 3.2.4, the steps to perform the false object removal are explained in detail. Some
of the conditions that the objects need to check to be considered proper objects are de�ned as
thresholds or variables. The performance measures used in this experiments are again the ones
de�ned in Section 4.2.1. In the next paragraphs, the values for these thresholds and variables
are set and justi�ed.

• Minimum stroke: a measurement based in Euclidean distance is used to calculate the
stroke. The reason beneath the implementation is to �lter most of the false objects caused
by light re�ections, which are frequently static but active. Low values increase the number
of false objects in the system while a bigger value can discard real trajectories as if they
were false.

• Minimum size: the minimum size threshold was established using examples of pedestrians
in the farthest distance from the camera as possible. The experiments indicated that is
one the less important factors in the task of eliminating false objects.

Hit rate Error rate
0.875 0.041

Table 4.4: False object removal scores

The table 4.2.3 shows the results for false object removal. The implemented solution is e�ective
in the 87.5% of the cases.

4.3 Angle-based trajectory division step

4.3.1 Beta and gamma thresholds selection

To adjust the thresholds to the values best �tted to the system, the trajectories were separated
into three groups: long (>120 points), medium (>60 and <120 points) and short trajectories
(<60 points). For each group, 10 trajectories were selected from videos belonging to the test
dataset, including both trajectories with big deviations and plain trajectories. In the experi-
ments, both the beta and gamma threshold were set to di�erent values. Beta low values resulted
in bad approximations to the trajectories, while values over a certain angle do not have signi�-
cance e�ects in the number of breakpoints.
For each pair of values, two output parameters were analysed: a similarity score between the
rebuilt trajectory and the preprocessed one, based in Euclidean distance; and the number of
breakpoints used to represent the trajectory. The objective was to �nd a good relation between
the two parameters, leading to a compact and accurate representation. To compare the prepro-
cessed trajectory with the one rebuilt from the features, the values between each reconstructed
breakpoint were calculated using linear interpolation. The formula used to calculate the simi-
larity score is detailed below:

∑i=n
i=1

√(
xai − xbi

)2
+
(
yai − ybi

)2
n

(4.3)

where (xai , y
a
i ) are the ith coordinates of the original trajectory, (xbi , y

b
i ) the ith coordinates of
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the rebuilt trajectory and n is the number of points of that particular trajectory.
As shown in Figure 4.7, the result of using a beta threshold of 50 degrees is a reduction in
the number of breakpoints used to characterize the trajectory, although implies an increase in
the distance measurement. This increase is only relevant in the medium trajectories, however,
the score value for β = 50 is close to the values for short trajectories. In the case of the long
trajectories, values between γ = 40 and γ = 50 are even lower for β = 50 than for β = 30.
Therefore, the selected value was β = 50.
Gamma value a�ects in a similar way each group of trajectories, increasing this variable always
leads to decrease the number of breakpoints and increase the score value. Nonetheless, as shown
in �gure 4.8, from γ = 40 − 50 the reduction in the number of breakpoints is small compared
to the big increase in the score of the long trajectories (�gure 4.7). The average score for the
long trajectories doubles its value between γ = 40 and γ = 80, only decreasing in 2 the average
number of breakpoints. For the rest of the cases (short and medium trajectories), none of the
parameters changes substantially between γ = 40 and γ = 60. Thus, the �nal value was set to
γ = 45.
The table 4.3.1 shows the value of the output parameters for β = 50 and γ = 45

Average score Average number of breakpoints
Long trajectories 3.79 9.8
Medium trajectories 3.24 6.6
Short trajectories 2.77 3.9

Table 4.5: Output parameters for β = 50 and γ = 45

4.3.2 Filter optimization

In the stage of trajectory smoothing, the result of the �ltering depends on two parameters: the
polynomial degree (P ) and the �lter length (N) (see section 3.2.3). Starting from the values
recommended in [12], P = 4 and N = 21 a number of experiments were performed to test the
e�ectiveness of the �ltering and try to �nd best parameters values than the initial ones. New
possible values for these parameters are conditioned to the restrictions presented in section 3.2.3:

• N must be odd.

• N must be smaller than the number of points of the trajectory to be �ltered.

• N > P .

These conditions restrict the possible values of N , to the odd values between P and the value
set in the False objects removal section, which is the minimum point value to consider the object
valid (see section 4.2.3).
The �rst experiment tries to �nd out if the application of �ltering is really decreasing the
number of breakpoints necessary to represent the trajectory. All the videos contained in the
test dataset were analysed twice: one including �ltering and another time without the �lter
algorithm. The results are contained in the table 4.3.2. The objective of the second experiment
was to improve the results obtained in the �rst experiment changing the �lter parameters. To
analyse the behaviour of the �lter depending on N , this parameter was set to di�erent values.
The polynomial degree was maintained to the initial value. The best results occurred for the
highest values of N . The second part of the experiment, consisted in �nding the best P value
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Figure 4.7: Average score for β = 30 and β = 50
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Figure 4.8: Average number of breakpoints for β = 30 and β = 50
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Breakpoints with �ltering Breakpoints without �ltering
8.27 15.38

Table 4.6: Number of breakpoints using or not �ltering

Figure 4.9: An example of a rebuilt trajectory

for the selected N . The �nal values were tested against the initial values. The results showed
that the initial values perform better.

4.4 Trajectory rebuilding

The objective of this experiment is to determine how accurate are the proposed features repre-
senting the information contained in the trajectories. As stated in section 3.4, three di�erent
features are extracted: angle, velocity and duration. To check if these features can approxi-
mate the original trajectory, an algorithm has been implemented. The algorithm starts from the
breakpoints, and using the features related to them, is able to reconstruct the original trajectory.
In most of the cases, the reconstructed trajectory is almost identical to the original. However, in
some cases, the reconstructed one is not that similar, but it conserves the main characteristics
such as global direction and directionality. The error between the trajectories can be measured
using the process described in Section 4.3.1 for the score measure. In the �gure 4.9 there is a
representation of both the �ltered trajectory (in black) and the rebuilt trajectory (in blue). The
red points represent the breakpoints.
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4.5 Object recognition based on velocity

This experiment pursues to determine if the velocity feature extracted is e�ective to discriminate
between vehicles and pedestrians. The main reason to select this feature is that is reasonably
think that there will be big di�erences in the velocity of cars and pedestrians even in an urban
environments. Using the examples hand-annotated (from videos of i-LIDS dataset) for the
ground truth, a number of velocity vectors is used to train a system of SVMs [26]. The test
dataset is compose of extracted objects from the i-LIDS dataset.The reason for choosing all the
test trajectories from the same dataset is that the velocity is extracted in pixels/second which
means that is high dependent on the distance between the camera and the object.
In the measurements extracted from the SVM system, the di�erence expected between the
velocity of vehicles and pedestrians was not enough to make a correct classi�cation. The classi�er
was unable to distinguish between the two concepts of object, thus demonstrating the ine�cacy
of velocity to perform object recognition.

4.6 Real-time performance

The Motion Analysis Component described in chapter 3 can be used to work in real-time appli-
cations with low resolutions. The objective of this experiment is evaluate if the whole system is
able to work in real-time. To measure this capacity, the system was run with di�erent videos,
estimating the performance time of the implemented parts of the system over the performance
time of the Motion Analysis Component. The results show that the total time of performance
is an 8 − 10% more than the Motion Analysis Component performance time. This result is
promising, despite of not been sustained using a real-time application.
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Conclusions and future work

5.1 Conclusions

Video surveillance related applications have emerged as a technology covering the increasingly
need for automated security systems. In these applications, trajectory-based techniques are
widely used to model the behaviour of moving objects in a big variety of scenarios. The ob-
jective of this thesis was to design and develop a robust system capable of obtain an accurate
representation for these trajectories. Moreover, the implemented system had to be able to re-
construct the original trajectory with the less error possible.
The results of the experiments probe that the implemented system works good in most of the
scenarios used to test the performance. The system is robust against most of the problems en-
countered in video surveillance applications, despite of the results for the occlusion case, which
are quite improvable. The path division technique has demonstrate to be e�ective in �nding the
points which held the information needed to describe the whole trajectory. This fact, together
with the good performance of the selected features in the trajectory reconstruction step assures
an accurate reconstruction of the original trajectories. However, the velocity feature demon-
strated to be ine�ective for object recognition.
The results ensure, therefore, that the implemented system meets the objectives presented in
Chapter 1. Moreover, the experiments show promising results for real-time performance which is
an important requirement for many actual systems. The conclusions for each of the experiments
for each step are presented below:

• Preprocessing step: the experiments were ran to test the performance of the system against
the most common challenges in video surveillance systems. The experiments probe that
the implemented systems deals good in most of the cases, with results near to a 90% of
solved cases, with the exception of the occlusion handling solution. The geometrical and
temporal conditions implemented to solve occlusions are not e�ective in most of the cases.
The addition of a data smoothing step has been proof useful to decrease the number of
breakpoints necessary to represent the trajectory.

• Angle-based division step: the division of the trajectories into subpaths reduced the num-
ber of points necessary to represent the trajectory to less a 10% of the original ones.
Also, this division in subpaths makes the system more �exible, allowing to work with the
subpaths or the entire reconstructed trajectories.
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• Trajectory rebuilding: the experiments demonstrate that the reconstructed trajectories
can approximate the original ones with little error, which at the same time is a proof of
the good performance of the extracted trajectories in trajectory rebuilding. In addition,
the amount of information to represent the trajectories has been reduced, thus meeting
the objective of �nding an accurate and simple representation.

• Object recognition based on velocity: the results for the test of e�ectiveness of the veloc-
ity to discriminate between vehicles and pedestrians were poor, thus, an indication that
velocity has no discrimination power. There was no real di�erence between the velocity of
cars and pedestrians, which can be explained due to the low speed of the vehicles in urban
areas. Additionally, most of the videos were �lmed in places such as pedestrian crossings
and tra�c lights, contributing to slow the average speed of the vehicles.

5.2 Future work

Based on the work done in this thesis, two options are open to continue: enhance the system
and/or extend it developing a high-level application over it. The principal points to enhance in
the system include: robustness against occlusions, extension of the ground truth and increase
the number of features of the system.
In the case of occlusion handling, the proposed solutions have not been e�ective. As most of the
actual work in occlusion handling is based on robust tracking algorithms, two options must be
considered: change the current tracking algorithm for other more robust against occlusions or
�nd a way to improve the implemented one. Change the algorithm can result in worse results
depending on the substitute but the complexity of the current algorithm makes di�cult to
improve the actual implementation.
The features used in the system have probed their e�ectiveness, but most of the actual high
level applications need to extract more information from the videos to perform correctly. Thus,
the implementation of new features can facilitate further work on high level concepts.
The extension of the ground truth can be an important enhancement. Increasing object examples
can lead to more accurate and complete experiments in the future.
The development of a high level application over the system must be studied carefully, because
depending on the election the system will need to be changed in consequence. Some possible
applications to extend the presented approach include event detection, crowd analysis or object
identi�cation.
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A
Presupuesto

1) Ejecución Material

• Compra de ordenador personal (Software incluido) 2.000 ¤

• Material de o�cina 250 ¤

• Total de ejecución material 2.250 ¤

2) Gastos generales

• sobre Ejecución Material 360 ¤

3) Bene�cio Industrial

• sobre Ejecución Material 135 ¤

4) Honorarios Proyecto

• 1800 horas a 15 ¤/ hora 27000 ¤

5) Material fungible

• Gastos de impresión 200 ¤

• Encuadernación 160 ¤

6) Subtotal del presupuesto

• Subtotal Presupuesto 30.105 ¤

7) I.V.A. aplicable

• 21% Subtotal Presupuesto 6322.05 ¤

8) Total presupuesto

• Total Presupuesto 36427.05 ¤

Madrid, Enero 2013

El Ingeniero Jefe de Proyecto

Fdo.: Gonzalo Varela Bartrina

Ingeniero Superior de Telecomunicación
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B
Pliego de condiciones

Pliego de condiciones

Este documento contiene las condiciones legales que guiarán la realización, en este proyecto, de
un Accurate trajectory representation for video surveillance. En lo que sigue, se supondrá que el
proyecto ha sido encargado por una empresa cliente a una empresa consultora con la �nalidad
de realizar dicho sistema. Dicha empresa ha debido desarrollar una línea de investigación con
objeto de elaborar el proyecto. Esta línea de investigación, junto con el posterior desarrollo de
los programas está amparada por las condiciones particulares del siguiente pliego.

Supuesto que la utilización industrial de los métodos recogidos en el presente proyecto ha
sido decidida por parte de la empresa cliente o de otras, la obra a realizar se regulará por las
siguientes:

Condiciones generales.

1. La modalidad de contratación será el concurso. La adjudicación se hará, por tanto, a la
proposición más favorable sin atender exclusivamente al valor económico, dependiendo de
las mayores garantías ofrecidas. La empresa que somete el proyecto a concurso se reserva
el derecho a declararlo desierto.

2. El montaje y mecanización completa de los equipos que intervengan será realizado total-
mente por la empresa licitadora.

3. En la oferta, se hará constar el precio total por el que se compromete a realizar la obra
y el tanto por ciento de baja que supone este precio en relación con un importe límite si
este se hubiera �jado.

4. La obra se realizará bajo la dirección técnica de un Ingeniero Superior de Telecomunicación,
auxiliado por el número de Ingenieros Técnicos y Programadores que se estime preciso para
el desarrollo de la misma.

5. Aparte del Ingeniero Director, el contratista tendrá derecho a contratar al resto del per-
sonal, pudiendo ceder esta prerrogativa a favor del Ingeniero Director, quien no estará
obligado a aceptarla.
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6. El contratista tiene derecho a sacar copias a su costa de los planos, pliego de condiciones y
presupuestos. El Ingeniero autor del proyecto autorizará con su �rma las copias solicitadas
por el contratista después de confrontarlas.

7. Se abonará al contratista la obra que realmente ejecute con sujeción al proyecto que sirvió
de base para la contratación, a las modi�caciones autorizadas por la superioridad o a las
órdenes que con arreglo a sus facultades le hayan comunicado por escrito al Ingeniero
Director de obras siempre que dicha obra se haya ajustado a los preceptos de los pliegos
de condiciones, con arreglo a los cuales, se harán las modi�caciones y la valoración de las
diversas unidades sin que el importe total pueda exceder de los presupuestos aprobados.
Por consiguiente, el número de unidades que se consignan en el proyecto o en el presupuesto,
no podrá servirle de fundamento para entablar reclamaciones de ninguna clase, salvo en
los casos de rescisión.

8. Tanto en las certi�caciones de obras como en la liquidación �nal, se abonarán los trabajos
realizados por el contratista a los precios de ejecución material que �guran en el presupuesto
para cada unidad de la obra.

9. Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase a las condiciones
de la contrata pero que sin embargo es admisible a juicio del Ingeniero Director de obras, se
dará conocimiento a la Dirección, proponiendo a la vez la rebaja de precios que el Ingeniero
estime justa y si la Dirección resolviera aceptar la obra, quedará el contratista obligado a
conformarse con la rebaja acordada.

10. Cuando se juzgue necesario emplear materiales o ejecutar obras que no �guren en el pre-
supuesto de la contrata, se evaluará su importe a los precios asignados a otras obras o
materiales análogos si los hubiere y cuando no, se discutirán entre el Ingeniero Director
y el contratista, sometiéndolos a la aprobación de la Dirección. Los nuevos precios con-
venidos por uno u otro procedimiento, se sujetarán siempre al establecido en el punto
anterior.

11. Cuando el contratista, con autorización del Ingeniero Director de obras, emplee materiales
de calidad más elevada o de mayores dimensiones de lo estipulado en el proyecto, o sustituya
una clase de fabricación por otra que tenga asignado mayor precio o ejecute con mayores
dimensiones cualquier otra parte de las obras, o en general, introduzca en ellas cualquier
modi�cación que sea bene�ciosa a juicio del Ingeniero Director de obras, no tendrá derecho
sin embargo, sino a lo que le correspondería si hubiera realizado la obra con estricta sujeción
a lo proyectado y contratado.

12. Las cantidades calculadas para obras accesorias, aunque �guren por partida alzada en el
presupuesto �nal (general), no serán abonadas sino a los precios de la contrata, según las
condiciones de la misma y los proyectos particulares que para ellas se formen, o en su
defecto, por lo que resulte de su medición �nal.

13. El contratista queda obligado a abonar al Ingeniero autor del proyecto y director de obras
así como a los Ingenieros Técnicos, el importe de sus respectivos honorarios facultativos
por formación del proyecto, dirección técnica y administración en su caso, con arreglo a
las tarifas y honorarios vigentes.

14. Concluida la ejecución de la obra, será reconocida por el Ingeniero Director que a tal efecto
designe la empresa.

15. La garantía de�nitiva será del 4

16. La forma de pago será por certi�caciones mensuales de la obra ejecutada, de acuerdo con
los precios del presupuesto, deducida la baja si la hubiera.
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17. La fecha de comienzo de las obras será a partir de los 15 días naturales del replanteo o�cial
de las mismas y la de�nitiva, al año de haber ejecutado la provisional, procediéndose si no
existe reclamación alguna, a la reclamación de la �anza.

18. Si el contratista al efectuar el replanteo, observase algún error en el proyecto, deberá
comunicarlo en el plazo de quince días al Ingeniero Director de obras, pues transcurrido
ese plazo será responsable de la exactitud del proyecto.

19. El contratista está obligado a designar una persona responsable que se entenderá con el
Ingeniero Director de obras, o con el delegado que éste designe, para todo relacionado
con ella. Al ser el Ingeniero Director de obras el que interpreta el proyecto, el contratista
deberá consultarle cualquier duda que surja en su realización.

20. Durante la realización de la obra, se girarán visitas de inspección por personal facultativo
de la empresa cliente, para hacer las comprobaciones que se crean oportunas. Es obligación
del contratista, la conservación de la obra ya ejecutada hasta la recepción de la misma,
por lo que el deterioro parcial o total de ella, aunque sea por agentes atmosféricos u otras
causas, deberá ser reparado o reconstruido por su cuenta.

21. El contratista, deberá realizar la obra en el plazo mencionado a partir de la fecha del
contrato, incurriendo en multa, por retraso de la ejecución siempre que éste no sea debido
a causas de fuerza mayor. A la terminación de la obra, se hará una recepción provisional
previo reconocimiento y examen por la dirección técnica, el depositario de efectos, el inter-
ventor y el jefe de servicio o un representante, estampando su conformidad el contratista.

22. Hecha la recepción provisional, se certi�cará al contratista el resto de la obra, reservándose
la administración el importe de los gastos de conservación de la misma hasta su recepción
de�nitiva y la �anza durante el tiempo señalado como plazo de garantía. La recepción
de�nitiva se hará en las mismas condiciones que la provisional, extendiéndose el acta
correspondiente. El Director Técnico propondrá a la Junta Económica la devolución de la
�anza al contratista de acuerdo con las condiciones económicas legales establecidas.

23. Las tarifas para la determinación de honorarios, reguladas por orden de la Presidencia
del Gobierno el 19 de Octubre de 1961, se aplicarán sobre el denominado en la actual-
idad "Presupuesto de Ejecución de Contrata" y anteriormente llamado "Presupuesto de
Ejecución Material" que hoy designa otro concepto.

Condiciones particulares.

La empresa consultora, que ha desarrollado el presente proyecto, lo entregará a la empresa
cliente bajo las condiciones generales ya formuladas, debiendo añadirse las siguientes condiciones
particulares:

1. La propiedad intelectual de los procesos descritos y analizados en el presente trabajo,
pertenece por entero a la empresa consultora representada por el Ingeniero Director del
Proyecto.

2. La empresa consultora se reserva el derecho a la utilización total o parcial de los resultados
de la investigación realizada para desarrollar el siguiente proyecto, bien para su publicación
o bien para su uso en trabajos o proyectos posteriores, para la misma empresa cliente o
para otra.

3. Cualquier tipo de reproducción aparte de las reseñadas en las condiciones generales, bien
sea para uso particular de la empresa cliente, o para cualquier otra aplicación, contará
con autorización expresa y por escrito del Ingeniero Director del Proyecto, que actuará en
representación de la empresa consultora.
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4. En la autorización se ha de hacer constar la aplicación a que se destinan sus reproducciones
así como su cantidad.

5. En todas las reproducciones se indicará su procedencia, explicitando el nombre del proyecto,
nombre del Ingeniero Director y de la empresa consultora.

6. Si el proyecto pasa la etapa de desarrollo, cualquier modi�cación que se realice sobre él,
deberá ser noti�cada al Ingeniero Director del Proyecto y a criterio de éste, la empresa
consultora decidirá aceptar o no la modi�cación propuesta.

7. Si la modi�cación se acepta, la empresa consultora se hará responsable al mismo nivel que
el proyecto inicial del que resulta el añadirla.

8. Si la modi�cación no es aceptada, por el contrario, la empresa consultora declinará toda
responsabilidad que se derive de la aplicación o in�uencia de la misma.

9. Si la empresa cliente decide desarrollar industrialmente uno o varios productos en los que
resulte parcial o totalmente aplicable el estudio de este proyecto, deberá comunicarlo a la
empresa consultora.

10. La empresa consultora no se responsabiliza de los efectos laterales que se puedan pro-
ducir en el momento en que se utilice la herramienta objeto del presente proyecto para la
realización de otras aplicaciones.

11. La empresa consultora tendrá prioridad respecto a otras en la elaboración de los proyectos
auxiliares que fuese necesario desarrollar para dicha aplicación industrial, siempre que no
haga explícita renuncia a este hecho. En este caso, deberá autorizar expresamente los
proyectos presentados por otros.

12. El Ingeniero Director del presente proyecto, será el responsable de la dirección de la apli-
cación industrial siempre que la empresa consultora lo estime oportuno. En caso contrario,
la persona designada deberá contar con la autorización del mismo, quien delegará en él las
responsabilidades que ostente.
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C
Introducción

C.1 Motivación

En los últimos años, se ha incrementado sensiblemente la presencia de sistemas de vídeo vigi-
lancia en muchas partes del mundo. El incremento en la demanda de seguridad y la innovación
tecnológica han posibilitado la expansión de estos sistemas. Hoy en día se pueden encontrar
cámaras tanto en espacios públicos como aeropuertos o estaciones, como en espacios privados
tales como áreas industriales, tiendas o en los hogares. Esto supone que, cada día, se graba una
enorme cantidad de información.
La mayoría de los sistemas implementados son monitorizados en su mayor parte por personal
de seguridad, lo que conlleva una pérdida de efectividad y una serie de costes que se explicarán
a continuación. En primer lugar, la enorme cantidad de material �lmado implica que es im-
posible mantener un control efectivo sobre el material �lmado sin invertir una cantidad muy
grande de dinero en recursos humanos. En segundo lugar, la monitorización no-automática de
los contenidos de los vídeos signi�ca que será necesaria una segunda revisión de los mismos en
el caso de querer extraer nueva información del vídeo. Ante estos problemas, los sistemas y
aplicaciones de vídeo automáticos están surgiendo como una solución para mejorar la calidad y
las oportunidades futuras de los sistemas de vídeo vigilancia.
Sin embargo, hay una serie de problemas comunes a todos los sistemas de vídeo vigilancia con los
que es necesario tratar. Estos problemas incluyen: cambios de iluminación, presencia de ruido
en la grabación o problemas asociados a la baja calidad de los vídeos �lmados. Adicionalmente,
pueden aparecer otros problemas relacionados con el contenido del vídeo en cuestión como oclu-
siones u objetos inanimados movidos por el viento que pueden empeorar el rendimiento de los
sistemas asociados.
Muchas de las aplicaciones propuestas o implementadas en el área de la vídeo vigilancia se
basan en la información extraída a partir de la trayectorias de los objetos que se mueven en
los vídeos analizados. Esta información extraída, de naturaleza espacial y temporal, es luego
utilizada por aplicaciones de alto nivel para realizar tareas como monitorización del trá�co, de-
tección de eventos inusuales o discriminación de objetos detectados. Dada la dependencia de
estos sistemas a la información contenida en las trayectorias, es importante lograr una extracción
y representación precisa de las mismas. Por tanto, cualquier mejora en la extracción y repre-
sentación de las trayectorias es paso hacia delante en la mejora de la calidad y los resultados de
muchas aplicaciones en el campo de la vídeo vigilancia.

49



Accurate trajectory representation for video surveillance

C.2 Objetivos

El objetivo de este proyecto es el diseño e implementación de un sistema capaz de extraer y
representar de forma precisa las trayectorias de los objetos en movimiento de los vídeos analiza-
dos. Además, se pretende que la implementación sea capaz de afrontar los desafíos comunes a
todo sistema automático de vídeo vigilancia como son el tratamiento de ruido, oclusiones y otros
problemas relacionados. Para la consecución de estos objetivos, es necesario completar una serie
de objetivos parciales que se muestran a continuación:

• Estudiar en la literatura la viabilidad de las soluciones actuales a los problemas de ruido,
oclusión, reducción de la dimensionalidad y otros problemas asociados a los sistemas basa-
dos en la extracción de trayectorias.

• Implementar un método para la detección de cambios espaciales y temporales, haciendo
posible la fragmentación de la trayectoria en partes con un comportamiento homogéneo
internamente, facilitando de esta manera la posterior representación de las trayectorias.

• Encontrar e implementar una serie de características que representen las trayectorias de
los objetos detectados, centrándose en la precisión y complejidad de las mismas.

• Evaluar el funcionamiento y comportamiento de cada una de las técnicas implementadas.

• Evaluar el funcionamiento del sistema completo usando bases de datos de vídeo vigilancia
estándar, a régimen de poder dotar de signi�cado a los resultados.

C.3 Estructura del documento

El documento se ha estructurado como se expone a continuación:

• Capítulo segundo: en este capítulo se realiza el estudio y la exposición de los problemas y
desafíos presentes en los sistemas de vídeo vigilancia. Además se exponen las principales
técnicas encontradas en la literatura para el análisis de los objetos en movimiento en
vídeos, solución de los problemas de oclusión , mejora de la calidad de las trayectorias y
representación de éstas últimas.

• Capítulo tercero: en este capítulo se introduce el sistema propuesto, presentando cada
etapa del mismo desde el análisis de movimiento hasta la etapa de evaluación. Los al-
goritmos y técnicas son explicados a fondo, detallando las ventajas y desventajas de la
implementación elegida. Adicionalmente, se analizan los problemas y limitaciones halla-
dos en su implementación, explicando para cada caso la solución adoptada.

• Capítulo cuarto: en este capítulo se presentan los experimentos llevados a cabo para evaluar
el sistema. Las bases de datos elegidas para realizar los experimentos son presentadas al
inicio del capítulo.

• Capítulo quinto: las conclusiones extraídas y las posibilidades de trabajo futuro se analizan
en este capítulo.
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D
Conclusiones y trabajo futuro

D.1 Conclusiones

Las aplicaciones y sistemas de vídeo vigilancia han surgido para cubrir la demanda de sistemas
de vídeo seguridad automáticos. Entre estas aplicaciones, una importante proporción utiliza
técnicas basadas en la extracción de trayectorias para analizar y modelar el comportamiento de
los objetos en movimiento en una gran variedad de escenarios. El objetivo �nal de este proyecto
era diseñar y desarrollar un sistema robusto capaz de generar una representación precisa de las
trayectorias. Así mismo, el sistema debía ser capaz de reconstruir las trayectorias originales con
el menor error posible. Los resultados de los experimentos muestran que el sistema propuesto
cumple los objetivos en la mayor parte de los escenarios usados para probar su rendimiento. El
sistema es robusto contra casi todos los problemas encontrados en vídeo vigilancia, exceptuando
el caso de las oclusiones, donde el rendimiento es bastante bajo.
La técnica de división de trayectorias ha mostrado ser efectiva para encontrar los puntos clave de
donde se puede extraer la información para describir el comportamiento de la trayectoria. Este
hecho, junto al éxito de la reconstrucción partiendo de las características extraídas, hace posible
la reconstrucción de las trayectorias originales. Sin embargo, la característica velocidad demostró
ser completamente ine�caz a la hora de realizar una tarea de reconocimiento de objetos.
Los resultados aseguran, por tanto, que el sistema presentado cumple la mayoría de los objetivos
marcados presentados en el capítulo 1. Adicionalmente, los experimentos sobre el tiempo de
ejecución adelantan un buen rendimiento en sistemas de tiempo real de baja resolución (donde
el Motion Analysis Component puede trabajar en tiempo real).
Las conclusiones parciales para cada uno de los experimentos se muestran a continuación:

• Experimentos de la etapa de pre-procesamiento: los experimentos llevados a cabo dieron
buenos resultados contra los problemas más comunes en vídeo vigilancia, con resultados
cercanos al 90% de casos resueltos. La excepción es el caso de la oclusión, donde los resul-
tados fueron bastante peores. Las condiciones geométricas y temporales implementadas
para detectar los casos de oclusiones resultados ine�caces en la mayoría de los casos. Por
el contrario, el suavizado por �ltrado de las trayectorias demostró ser muy e�caz dismin-
uyendo el número de puntos de corte necesarios para representar la trayectoria.
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• Experimentos de la etapa de división de la trayectorias: esta etapa permitió representar
(reconstruyendo posteriormente) las trayectorias con tan solo el 10% aproximadamente
de los puntos originales. Además, la división de las trayectorias permite trabajar con las
trayectorias reconstruidas o con las partes surgidas de la división.

• Experimentos de la etapa de reconstrucción de las trayectorias: los experimentos muestran
que es posible reconstruir las trayectorias originales, manteniendo las características glob-
ales y aproximándose bastante al recorrido original. Así mismo, la cantidad de información
necesaria para representar las trayectorias se ha reducido enormemente, cumpliendo los ob-
jetivos marcados en el capítulo 1.

• Experimento de reconocimiento de objetos basado en la velocidad: el experimento llevado
a cabo con el �n de determinar si la característica de velocidad era útil para realizar tareas
de reconocimiento de objetos arrojó pobres resultados. El clasi�cador no fue capaz de
discriminar entre velocidades de peatones y vehículos. Este hecho puede ser explicado en
parte debido a la baja velocidad de los vehículos en entornos urbanos, donde las cámaras
frecuentemente estaban posicionadas cerca de semáforos y pasos de peatones.

D.2 Trabajo futuro

Una vez extraídas las conclusiones �nales, se abren dos opciones: mejorar el sistema y/o ex-
tenderlo desarrollando una aplicación de alto nivel sobre el mismo. Los principales puntos a
mejorar son: la robustez del sistema contra oclusiones, incrementar el número de características
extraídas y la ampliación de los bancos de pruebas, tanto el ground truth como las bases de
datos utilizadas.
En el caso de la oclusión, la solución propuesta ha demostrado ser ine�caz. Dado que la mayoría
del trabajo frente a la oclusión se basa en el diseño de algoritmos de tracking robustos, hay
dos decisiones posibles. La primera consistiría en cambiar el algoritmo actual por otro más
robusto, mientas que la segunda supone intentar mejorar el algoritmo implementado. Cambiar
el algoritmo requeriría probablemente reajustar partes del sistema pero la alta complejidad del
algoritmo actual hace que su mejora pueda resultar una tarea bastante complicada.
Las características elegidas para la implementación han probado su utilidad, sobre todo en
cuanto a representación de trayectorias. Sin embargo, muchas de las aplicaciones de alto nivel
requieren más información de la que estas características pueden proporcionar, por lo que la
implementación de nuevas características puede facilitar mucho el trabajo posterior.
La extensión de las bases de datos de pruebas y sobre todo del ground truth conllevaría la obten-
ción de unos resultados más precisos y la posibilidad de realizar experimentos más completos.
El desarrollo de una aplicación sobre el sistema debe ser meditado con anterioridad, ya que
dependiendo de la aplicación elegida habrá que cambiar partes del sistema en consecuencia
(reajustar parámetros, implementar nuevas características). Algunos ejemplos de aplicaciones
que podrían implementarse sobre el sistema serían detección de eventos inusuales o análisis del
comportamiento de los objetos detectados.
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