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Resumen

Resumen

En nuestra vida cotidiana estamos acostumbrados a experimentar el fenó-

meno, fruto del constante avance tecnológico, de la sustitución por obsoles-

cencia de muchos dispositivos por otros tecnológicamente más avanzados, de

menor coste, o con mejores características de uso o manejabilidad. De esta

forma, controladores físicos (mandos por cable, teclados, ratones, interrup-

tores, etc.) normalmente empleados en la comunicación hombre-máquina,

tanto videoconsolas, como ordenadores e incluso nuevos dispositivos domóti-

cos están siendo paulatinamente sustituidos, primero por dispositivos in-

alámbricos y, recientemente, por aplicaciones basadas en el reconocimiento

de imágenes recogidas por cámaras 3D. El convencimiento de que esta nueva

tecnología se ha convertido, de facto, en el nuevo estándar para el manejo

de cualquier dispositivo inteligente es la que me ha impulsado a acometer

este proyecto, el estudio de descriptores gestuales estáticos sobre capturas

de imágenes 3D.

A lo largo de este proyecto se han implementado dos extractores de de-

scripciones: Tanibata [1]y Roussos [2]. El primero de estos descriptores se

basa en la descripción de imagenes mediante la extracción de caracteríticas

de una elipse alineada con la palma de la mano, mientras que el segundo

describe las imágenes con los pesos obtenidos al ser proyectadas en un base

construida a partir una subselección de imágenes. Tras realizar algunas mod-

i�caciones sobre los descriptores propuestos, éstos han sido implementados y

evaluados con el �n de encontrar un modelo de manos que permita recono-

cer posturas estáticas, con independencia a la variación que presenten las

imágenes capturadas en su iluminación, escala u orientación. La evaluación
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de la capacidad de separación de estos descriptores se ha hecho sobre una

colección compuesta de capturas sintéticas y de usuarios reales, previamente

compilada en el VPU-Lab.

Conforme al estudio hecho en este proyecto, se incluye un repaso detallado

sobre todos los procesos seguidos durante la extracción de las descripciones

para cada uno de los descriptores implementados. Acompañado por resulta-

dos cuanti�cados tras las simulaciones, este estudio recorre desde la captura

de imagénes con cámaras de profundidad TOF (Time Of Flight), hasta la

descripción de las imágenes mediante los parámetros de�nidos por cada de-

scriptor, pasando por la segmentacion y alineación afín requeridas para el

preprocesado de las imágenes. De esta manera, cada descriptor ha sido

evaluado sobre una colección de gestos manuales grabados por 11 usuarios

diferentes con 3 diccionarios distintos. El entrenamiento se ha realizado con

imágenes sintéticas. Este es un marco de evaluación muy exigente y ambi-

cioso que justi�ca en gran medida la diferencia con los resultados del estado

del arte, que rondan el 90% de acierto.

Palabras Clave

Interfaces de usuario, Reconocimiento de gestos manuales, Transformación

Afín, Tanibata, PCA, eigenhands.



Abstract

Nowadays the use of wired controls in Human-Computer interaction (HCI) is

being superseded in game consoles, personal computers or domotic devices.

Wireless controls, such as 3D cameras, are getting more and more popular

for controlling devices. Assuming this fact, the main objective of this project

has been the study of descriptors for recognizing static hand pose in depth

images. Along this project two descriptors have been considered: Tanibata

[1] and Roussos [2]. The �rst is based on the use of the characteristics of the

ellipse of inertia of the captured hand, while the second describes images with

the weigths resulting from their projection to a previously generated hands

base. After introducing some modi�cations to these descriptors they have

been implemented in order to evaluate them with a collection of images with

synthetically generated and real users hand poses, compiled by VPU-Lab.

According to the study performed along this project, a detailed description

of all the followed processes for the descriptors extraction is presented. Apart

from the numeric results obtained on the basis of the extracted descriptors,

the project also introduces the capture, segmentation and aligment stages.

Each descriptor has been evaluated with the videos captured by 11 users,

for 3 di�erent dictionaries. The training was performed with synthetically

generated images. This is a very exigent and ambitious evaluation framework

that justi�es the di�erence with the State Of Art results, that are around

90% of accuracy.

Key words

User interfaces, Object recognition, Pattern recognition.
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Chapter 1

Introduction

1.1 Motivation.

During last years, gesture interfaces have become an important technique

with many applications in our daily life. The manufacturers of the most pop-

ular gaming consoles, such as Microsoft Xbox-3601, SONY PlayStation32 or

Nintendo Wii3 are working in developing recognition gesture systems for us-

ing them in gaming, leisure and multimedia environments. The most widely

known recognizing gesture project applied in consoles comes from Microsoft,

that has replaced in the Kinect (see Figure 1.1) a game console already on

the market, which has replaced the usual controllers by the movements of

the user by means of a 3D camera based on the Time Of Flight (TOF)

technology (a camera that produces images with an intensity level inversely

proportional to the depth of the objects observed).

Capture systems of yesteryear had prices too high prices to �nd their place

in the mass market. However, the lowering of prices in current systems,

such as 3D cameras, have however boosted the development of the necessary

software for implementing new applications which can work with 3D capture ,

exploiting the depth information provided by these kinds of cameras. Several

applications have been developed during last year allowing users to interact

without the needing of a physical controller, devices such as computers,

1http://www.xbox.com/kinect
2http://playstation.com/psmove
3http://wii.com

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Kinect camera (image taken from http://kinectforwindows.org)

consoles, home automation systems and any kind of multimedia environment.

Moreover, the development of new technologies has always been focused on

reducing dimensions in electronic devices as well as on making them easier

to use. In fact the evolution of the technology began with the replacement of

wired by wireless devices and now it is still putting lots of e�orts on reducing

the most of the elements required in users-machine communication. Some

examples can be found in the HCI (Human Computer Interaction) methods

tendency in the last decade, when most of the direct communication was

made using remote controllers, such as TV remotes or console remotes. More

examples of this wireless set of sensors are gloves or markers, which allows

the mapping of hand or body in a 3D virtual space. Another research line in

HCI is the recognition of voice commands. Nevertheless, the best obtained

results by the researchers focused on the reduction of interaction devices are

associated with 3D captures of the scene. Thus 3D video processing has

become popular for hand/body tracking and later gesture recognition.

This project is focused on the study of hand modelling via volumetric surface

descriptions which allow an e�cient recognition of static hand poses. In

advance, these hand models will be used in the implementation of real time

applications which will allow users to communicate with their computers.

However the main problem when designing a hand descriptor is the achieve-

ment of a robust model against rotation, scale and shift of the hand. For
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this reason it is highly valuable the capacity to identify the wrist region with

the least possible error, since these will permit the elimination of the fore-

arm from the image and will be useful to perform rotations of the input 3D

surface.

In fact there are multiple descriptors, but not all of them, entirely satisfy pre-

vious invariance requirements. Therefore it is needed to �nd out a descriptor

which ful�ls the most of the above mentioned characteristics to model hand

gestures. In addition most of the descriptors studied during this project

make use of certain restrictions during image capture to limit the problems

of rotation, scale and shift.

Some of the advantages of working with 3D images, which will be extensively

explained later, are the following:

� Improvement of hand segmentation.

� More information of interest gathered from the pixels of each image

due to the depth information provided by the 3D capture.

� Improvements in hand features representation and recognition of 3D

data.

A still unsolved problem of this kind of technology consists on the occlusion

of most of the real volume associated to the hand, since these cameras only

capture a volumetric surface of the volume. In fact, the occluded points from

which no information is obtained during the capture cannot be modelled. A

solution to this problem could be the use of a multicamera system with could

be able to capture the whole volume rather than a volumetric surface.

After explaining some of the advantages provided by the 3D captures sys-

tems, some HCI applications based on the hand description can be pointed

out:

� Computer managing without keyboard [7].

� Drawing in the PC without a mouse or a board [4].

� Home Automation equipment managing without switches [8].

� Translation of sign languages [3].



6 CHAPTER 1. INTRODUCTION

Summarizing, we can say that this technology is useful for the development

of whatever generic sign recognition system applicable to di�erent �elds as:

Communication languages, including sing languages [9] or games or leisure

platforms, where hands can replace remote devices in the control of consoles

or/and computers.

1.2 Objectives.

The main goal of this project is the study of di�erent hand descriptors, as well

as implementing their extractors. This study will consist on the evaluation

of the descriptors in terms of separation in poses capacity. These separations

will be performed over di�erent collections of captures: synthetic and real,

with di�erent range variations in scale, positions of the hands and rotation

of the point of view (POV).

The descriptors for this study will be selected from the State Of Art, con-

sidering the di�erent approaches to hand description. Then descriptors will

be analysed for its usefulness for the characterization of hand poses, and the

chosen ones will be implemented and tested. Some implementation concerns

were taken into account during the evolution of this study, and di�erent

action lines were de�ned to achieve a robust detection system designed for

being used in real time applications:

� Application of segmentation techniques based on depth information,

to remove forearm regions from images and for subsequent alignment.

� De�nition of the thresholds required by the descriptors implementa-

tions.

� Description extraction and later selection of a subset of features invari-

ant to scale, rotation and shift.

� Training of the detection system with machine learning techniques to

later get predictions of image descriptions.

� Evaluation of pose detection for each considered description and over

dictionaries with di�erent characteristics and with di�erent con�gura-

tion parameters.
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Previous tasks will be followed by an exhaustive study of the e�ectiveness of

each implemented descriptor, which will lead to the introduction of possible

improvements.

1.3 Structure of the document.

The content of this document is organized to attend the objectives were

described in the previous Section

Therefore the �rst part of the document, Chapter 2 is focused on the de-

scription of existing solutions related to topics considered in this project: this

is bibliography related with capture technologies, hand gestures data sets,

image processing techniques and descriptors to model static hand poses.

Moreover, a whole Chapter 3 is addressed to the data set involved in the

study of the hand descriptors of this project. This will be followed by

Chapter 4, with the explanation of the segmentation and alignment used

to prepare images for the extraction of their descriptions. One of the most

important parts of the project is included in Chapter 5 where Tanibata and

Roussos descriptors are described in detail, including an overview of the pa-

pers in which they were �rstly introduced as well as a description of the

decisions made during their implementation. The last Chapter of the pro-

ject, 6, contains the results obtained in the evaluation stage, using di�erent

setups. Besides the conclusions obtained from this study, some possible im-

provements are proposed as future work lines.
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Chapter 2

Related Work

2.1 Introduction.

The task of this project has been studied in many applications, where the

data set as well as the technologies and processes involved in the implement-

ation are multiple and di�erent. Therefore, the main goal of this Chapter is

to make a brief introduction to the Hand Descriptors and all related topic

to them. In addition, next paragraphs will be focused in the description of

the existing data sets, captured technologies and segmentation techniques as

well as the detailing of some proposed descriptions to model images.

2.2 Data Sets

The set of dictionaries or kinds of Sign Language which have been used

along the related works over the recognition of hand postures is quite wide.

Furthermore, it includes existing and well known classes, such as the deaf and

dumb Sign Language [10], as well as new models of languages created to be

used within the context of machine-human interfaces, such as architectural

hand signs (AHS) [4].

Some examples of sign languages referenced to communication languages

of Deaf community are American Sign Language[11][12] [13][14][15][16][17],

Arabic Sign Language [18], Australian Sign Language [19], Signing Exact

English [20], Chinese Sign Language [21], Japanese Sign Language [1], Dutch

9
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Sign Language [22], French Sign Language[23], German Sign Language [24],

Italian Sign Notation System [25], Irish Sign Language [26] , Polish Sign

Language [27] and Korean Sign Language [28].

On the other hand, we can �nd some kinds of languages related to the

computer design applications as the above mentioned AHS orientated to the

generation of 3D architectural model[4].

2.3 Capture and Segmentation

There are two principal bullets di�erentiated between the tasks of Hand

descriptors:

� TheCapture and preparation of input images to be described

� The extraction of the descriptor related to each input image.

In this section, the related works about the �rst set of the tasks is described.

Several existing solutions will be covered,begining with the current capture

technologies which extract images to be described from the videos performed

by real users, and ending with thesegmentation and images processing of the

captured set requiredto arrange and prepareimages to be described.

2.3.1 Capture Technologies

In this �rst phase belonging to the hand recognition system of the captured

images, there are di�erent kinds of technologies which classi�cation usually

depends on the hardware of the sensor and the colour of the �lters used

during the acquisition of the images. Therefore, as a whole view of capture

systems, their classi�cation includes the following di�erentiated technologies:

� Full colour image Capture, which are known as traditional cameras:

� These cameras generally use two di�erent types of sensors: CCD

or CMOS. The CCD or Charge-Coupled Device is composed of

several joined arrays of photosensible devices with the capability

of storing charge.
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� Moreover, the kind of �lters they use, are Bayer �lters or inde-

pendent image sensors (one for each colour).

� The colour capture could be obtained using CCDs depending on

the quality wanted:

* The maximum colour quality can be obtained at a higher cost

by dividing the light into its three components, the primary

colours (RGB), and the using of a CCD for each component.

* In cases where the capture time is high, the maximum colour

quality can be kept by the use of a rotatory colour �lter.

* Colour �lter arrays is a technique easier to be used which

consist on setting a colour �lter in front of each pixel, with

the counterpart of obtaining less resolution and quality colour

than with the CCD device.

� This kind of capture process have been included in several sys-

tems: J. Van Despielberg describes in its �Analog VLSI imple-

mentation of neural systems� [29] the features, the design and the

implementation of a foveated retina-like sensor performed with

CCD technology, and also the results from the study of the per-

formance of this sensor for the 2D pattern recognition and object

tracking. Moreover, CFA or colour �lter arrays are combined with

a single sensor to give measurable features of the captured images

due to the use of interpolation CFA algorithms applied by most of

the digital cameras. Traces of digital tampering in colour images

can be detected attending to their speci�c correlations introduced

by interpolation of the colours [30]. Gijs Molenaar proposed a real

time method for estimating hand poses in video by the use of a

current RGB camera [31].

� Captures made with Time-Of-Flight (TOF) cameras. These kinds of

cameras obtain a depth image from the capture. The process used

consists on sending an infrared signal and timing how long the re�ection

takes to arrive. So this information let the camera make an estimation

of a depth map.

� Several developments for hand recognition systems have used time

of �ight cameras: Pia Breuer measured 3D surfaces points from
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the user´s hand using an infra-red time of �ight range cameras

in order to implemented a natural man-machine interface [32].

Using a standard video camera and a DLP projector, researches

from Stanford University developed a real time structured light

range scanning based on coding the boundaries between projected

stripes to determine depths [33].

Figure 2.1: ToF camera:SR4000

� In the University of Tokyo have been developed a scanner for 3D

human-machine interface which uses a laser diode combined with steer-

ing mirrors and a non-imaging detector to generate an active tracking

system [34]. This laser scanner can acquire three dimensional coordin-

ates in real time without the need of image processing at all.

� A Position Sensitive Device and/or Position Sensitive Detector (PSD)

is an optical position sensor, that measures the position of a light spot

in one or two-dimensions on a sensor surface. These devices are used in

CCD and CMOS cameras as discrete sensors. Moreover, PSD sensors

besides SOKUIKI sensors haven been combined with fuzzy algorithms

to construct an operation assists system which prevents collision with

obstacles for wheelchairs users [35]. Furthermore, PSD camera have

been used in combination of neural networks and trapezoidal motion

planning method to implement a real time visual servo tracking system

for an industrial robot [36].

� Other authors have prefered combining the two capture techniques

RGB and ToF cameras for 3D Hand Gesture recognition in a real time
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interface in [37]. The RGB module is used to determine the face region,

then the depth information gathered by the ToF camera is projected

to discriminate that region from the background and detecting �nally

the hands from remaining pixels by the use of colour restrictions.

2.3.2 Hand Segmentation

The segmentation process is applied after the capture stage, so the method

used will be di�erent depending on the followed capture technique. thus,

two types of segmentation can be distinguished from current techniques:

� Segmentation based on colour information of images which have pixels

over the same plane of the image. One of the characteristics of this

kind of segmentation is the working in a well-controlled area where the

involved currently processes include background extraction, skin-colour

region search, etc. Nevertheless, the colour and the luminance is not

a reliable measure for segmenting skin pixels due to theirs variation

depending on the light source during the capture. Some techniques

used based on colour segmentation are the next.

� One of the current method used in this kind of segmentation con-

sists on generating a skin model which allows di�erentiate and

classify face and hand regions from the image. There are multiple

chromatic colour spaces, such as LAB, HSV or normalized RGB.

Several Hand Poses or Face Detectors creates the skin colour dis-

tribution after detecting the location of the face in the image using

Haar classi�ers, like in [31] and in [38]. This method obtains the

average of pixel intensities within adjacent rectangular regions at

a speci�c location in a detection window and calculates the dif-

ference between regions enclosed in that window. This di�erence

can be used to classify subsections of the image as well as to cre-

ate a generic skin colour model. Furthermore, in Viola-Jones ob-

ject detection framework this di�erence is compared to prede�ned

threshold in order to detect skin regions for each window set over

the image. Moreover, the more number of Haar-like features are

used to describe an object, the higher accuracy the face location

will have. In the case of Hand detectors, after the face location



14 CHAPTER 2. RELATED WORK

and the generation of a skin colour distribution, pixels from hands

can be located and extracted from background region.

� Other researches have used a di�erent transformation to extract

the colour map of the image, although the method followed is

similar to the previous one. This is the case of Yining Deng, who

proposed a pixel transformation based on colour class labels after

the quanti�cation of these pixels [39]. This colour quantization

is included in the called method JSEG, which goal is to segment

images and video sequences. The second step followed to the

quantization of the pixels is the spatial segmentation which con-

sists on given high values to possible boundaries meanwhile low

values are given to texture coloured pixels from each local win-

dow of the image. For video sequences segmentation, previous

processes are combined with additional region tracking scheme.

Another publication suggested spatial temporal segmentation to

recognize gestures in video sequences in [13]. In fact, new spatial

temporal algorithm matches are used here to �nd candidates in

the hand detection process and also the combination of a classi�er-

based pruning framework and a subgesture reasonable algorithm

are de�ned in this work to allow re�ecting false candidates. In

addition, Bayes decision theory is used to the creation of a skin

model colour in [40]. Nevertheless, this method generated two

models for hand and background colour model from each ana-

lysed image based on the Gaussian mixture model combined with

the restricted expectation�maximization (EM) algorithm. There-

fore, each pixel from the image can be classi�ed as a hand or

background pixel.

� There are authors as R. Kjeldsen and J. Kender [41] who use

histogram structures to identify target colours trained in real-time

captures in order to separate hand from cluttered background.

� Segmentation based on depth or 3D information. Techniques included

in this class use distance of pixels to the camera in order to segment

undesired regions like the background. There are di�erent lines of work

used to make the segmentation depending on the capture method.

� The segmentation based on the combination of N images at the
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pixel level or with 3D information belongs to multicamera tech-

niques or stereoscopic vision. Sometimes it requires the use of

gloves or markers during the capture which represents marked

regions in white colour, making easier their extraction. Several

researches have applied these kinds of techniques. In the study

of lips and hand movements recognition for Cued Speech applica-

tions, blue marks are placed in both lips and �ngers to be captured

by cameras and to obtain distance between both references points

[3]. In the research [42, 4] mentioned in the previous Section 2.3.1

where hands were captured using markers and multiple cameras

to generate a 3D architectural model, the segmentation of initial

sketch data is made by �nding some key points where the curve

changes noticeably its path direction. Moreover, the use of in-

formation gathered by glove-based sensors allows di�erence easier

hand regions from the background, like in [5], although it requires

a long calibration as well as complicated set up and it is also dif-

�cult for users to interact with the controlled computer. NASA is

currently developing a virtual training environment called Virtual

GloveboX (VGX), which has been used by several researchers like

the authors of �Global Hand Pose estimation by multiple camera

ellipse tracking� in [43]. This article describes a new algorithm

for the hand tracking and 3D global pose estimation which uses

an elliptical marker (glove) placed in the dorsal part of the hand

besides an active camera selection to track user´s hand inside the

VGX.

Figure 2.2: Picture from the segmentation in [3]
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� The segmentation of the images captured with TOF cameras,

which could be considered a kind of 3D information capture, con-

sist on extracting the nearest points to the camera using depth

information and removing the farthest points from the image. An

example of this type of segmentation is[44].

� The same research which combined RGB technology with ToF cameras

mentioned in the previous Section 2.3.1 in [37], uses depth information

associated to pixels belonging to face region in order to remove back-

ground from the image. This combined technique not only improves

detection rates, but also allows the hand to overlap with the face or

with hands from other persons in the background.

2.4 Hand Descriptors

There are multiple kinds of hand descriptors aimed to describe hand poses

attending on the features and characteristic that di�erentiate better each

possible pose of the hand image. The chosen descriptions will depend on the

environment of the capture, such as real time images or static hand gestures;

as well as the source of the data set, if analysed images belong to a deaf-mute

language or by the contrary they belong to an architectural model. Moreover,

it has to be considered that some gestural interfaces gives the user a higher

degree of freedom during the conditions of the initial data capture, like in

orientation of hands or the distance during the capture. The more freedom

during the capture process, the more complex the descriptor is to achieve

independence of scale, rotation and distance of hand captured. Moreover,

the dependence on the kind of data means that the more variability and

di�erences of the hand poses is included in a speci�c dictionary, the easier

the distinction is.

Although descriptors studied in this project are focused in static gesture

models, related works of dynamic gestures modules are also included in this

Chapter. In addition to the lack and existence of movement in gestures,

there are lots of kinds of descriptions depending on the parameters used to

model hand poses:

� Shape descriptor: the stored information to describe hands are associ-
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ated the geometry of the hand over the image. Features as the distance

of the points of the image to the centroid of the image, the angle of

the image with the horizontal axis as well as the approaching of the

image to a speci�c geometric shape, can be used as the parameters of

the hand description. One of the descriptors studied in this project

answers to this kind of model [1], using parameters as the �atness, the

direction of the hand or the number of protrusions as features of the

description.

Another kind of model to pattern recognition is the decision-theory

approach based on distance classi�ers such as kinematic features used

to recognize and to represent movements from human hand gestures

extracted from a monocular temporal sequence of images in [11]; a real-

time hand gesture recognition system to simplify the interaction with

in-car devices in [45]; and a detector of static and dynamic gestures

using depth information from �ngers to apply the distance classi�er

and static models in[46].

� 3D descriptors: The recognition of sign gestures from isolated 3-D hand

trajectories can also be based on the combination of classi�ers for hand

shape, hand movement and hand location, like in the Fisher's linear

discriminant model. This model has been used to classify SEE hand

shapes acquired by the CyberGlove and magnetic trackers in [20].This

kind of descriptor based on acquired data using gloves or multiple cam-

eras for hand position and �nger con�guration is combined with hid-

den Markov models to mitigate the time and gestural variations among

di�erent articulations of the signs [10]. Furthermore, 3D architectural

models based on hand motion and gesture are developed by a motion

capture system based on markers set on the left hand. In addition, two

skeleton templates are generated from this 3D design information and

after applying hand gesture detection, 3D motion sketches associated

with a Marker-Pen on the right hand are used to generate 3D models

of buildings[4].

� Template matching: Other descriptors use appearance-based features

as well as tangential distance measures to recognize gestures within
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Figure 2.3: Gesture Recognition [4]

the framework of template matching classi�ers like in[24]. The hand

shape, movement, and location of the hand, can also be used as 3D

features to describe di�erent signs motion of images [47]. Furthermore,

these three hand features are used in [14] to recognizing hand signs.

In this method the recognition of the motion is tightly coupled with

the spatial recognition (i.s the hand shape). The proposed system uses

multiclass and multidimensional discriminant analysis to automatically

select the most discriminating linear features for gesture classi�cation.

� The Dynamic Time Warping Model (DTW): This algorithm measures

the similarity between sequences which are delayed in time or speed.

Moreoverit �nds an optimal match between these sequences regarding

to speci�ed restrictions. Therefore this sequences alignment method,

which is often used in the context of hidden Markov models, can be

used for speech recognition modelling by merging segmenting subunits

within the sign language [26]. In the recognition of human movement

patterns within the framework of classi�cation problem, a variation of

the dynamic time wrapping model has been used to match movements

patterns using 3D jointly angles as features [48].Besides Markov mod-

els, Bayesian Networks allows construct a multilevel architecture based

on the semantic context to analyse the correctness of a sentence given

in a sequence of recognized signs like in [25].

� Time-delayed neural networks (TDNN): This algorithm allows to ex-

tract and to classify two-dimensional motion in an image sequence

based on motion trajectories [12]. Basically, it �nds pixels which match

along di�erent frames of a sequence and concatenates them to ob-

tain pixel-level motion trajectories. Finally, di�erent trajectories are

learned by these time-delayed neural networks.

� Hybrid models that combines previous ones: The use of K Nearest
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Neighbour combined with Bayesian classi�er in[49] allows to recog-

nize isolated sign language gestures. The proposed method extracts

temporal features through predictions, then the motion is represented

into one image using threshold prediction errors and therefore, spatial-

domain features are extracted from it to represent the whole video by

a few coe�cients. The linear separability of the extracted features is

assessed and complemented by these simply classi�cation techniques

K nearest neighbour (KNN) and Bayesian.

Another set of mixture algorithm is the combination of Least-Squares

Estimator with Adaptive Neuro Fuzzy Inference System network (AN-

FIS) which has a learning capability to approximate non linear func-

tions [18]. This descriptor uses extracted features such as rotation,

scale, and translation invariant of hand images to describe gestures.

Furthermore, the subtractive clustering algorithm and the least-squares

estimator are used to identify the fuzzy inference system, using the hy-

brid learning algorithm for the training stage, allowing to recognize the

30 Arabic manual alphabets with an accuracy of 93.55%.

In addition, Independent Component Analysis is combined with Markov

chains in a 2 stage classi�cation in the research [50], meanwhile in [22]

hybrid statical classi�er (DFFM) is combined with the Dynamic Time

Warping Model (DTW) to demonstrate that time warping and classi-

�cation should be separated to achieve better results in modelling 3D

hand motion features.

The combination of the self-organizing feature maps (SOFM) which

extracts di�erent signers' feature and transform input signs into low-

dimensional representation, with continuous hidden Markov models

(HMM), which models the transformed image by the emission probab-

ilities is used in [21].

Fourier Descriptors: This method obtains the Fourier coe�cients from

a chain-encoded contour. Elliptic properties of the Fourier coe�cients

are used to normalize the Fourier contour representation in[51].

� Moreover, multi-scale colour image features are used to describe hand

postures at di�erent scales, positions and orientations. By the use of

a particular kind of �ltering hands are tracked after the detection of

multi-scale colour features for each image, based on the hierarchical
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layered sampling. This algorithm for hand posture recognition has

been developed in [52].

� Support Vector Machine (SVM) is also used in systems to recognize

multiple-angle hand gestures by their training using images of hand

gestures which present di�erent angles.[53].

� Principal Component Analysis: This method is used in several sign

recognition systems which works with time of �ight cameras, like in

[32], where a hand is wanted to be reconstructed from data stemming

using a model based on �ne-matching. PCA is used in this method to

obtain a crude estimation on the location and orientation of the hand

associated to the �rst 7 Degrees of Freedom of the reconstructed hand.

In the other hand, PCA is also used in Roussos method [2]to extract

the minimum number of vectors required to describe hand gesture im-

ages. In addition, this descriptor is the second implemented model of

the project, so it will be explained in detail in Chapter 5. The main

idea is to describe images with the eigenvalues required to project im-

ages in a new hand base which principal elements are chosen from the

application of PCA analysis.

� Euclidean space: Binary edge images are transformed into a high di-

mensional Euclidean space by the calculation of their chamfer distance

from the cluttered image. Then, the problem of hand pose estimation

is turned into an image database indexing problem, where the input

image is compared to a large database of synthetic hand images to �nd

the closest matches between them. This descriptor uses a probabilistic

line method which identi�es those line segment correspondences as the

least likely to have occurred by chance[54].



Chapter 3

Data Set

In [55], an experiment with real users was conducted to de�ne a gestural

dictionary that allows users to interact with a system in a natural way. The

main goal of that work is to perform a study of the the most suitable gestures

attending to their usability in users gesture performance.

In that experiment, users are �rstly trained by the system using real gestures

captures and graphic models or references called metaphors. These models

allow the system to recreate in the natural interaction space those gestures

wanted to be executed by the user during the capture stage. Moreover, the

use of this real/virtual and horizontal/vertical references avoid the capture

of users´ gestures without any correspondence associated. Examples of com-

mon interactions movements in computer systems with real metaphors are

rotation, grabbing or catching as well as examples of non-real metaphors

are `cancel' or �undo� actions. Finally, recorded data combined with the

use of di�erent types of metaphors and rotations of the interaction screen is

analysed.

The amount of interaction possibilities with the metaphors is very high, but

the experiment identi�es the most frequent ones and its associated hand

gesture. Those gestures and interactions that can improve the user experi-

ence without fatiguing him are selected for the recognition stage. Therefore,

among the complete set of gestures obtained from the experiment a sub-

set was selected to de�ne the dictionary used in [56] based on a trade-o�

between usability and recognition. Apart from this dictionary, some other

Static Hand Poses (SHPs) collection were compiled in the dataset proposed

21
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in our project by the VPU-Lab 1. These collections are shown in Figure 3.7.

Apart from the real users data compilation (see Section 3.1) these data-

set also includes a synthetic depth images generation method (see Section

3.2), which allows to create useful information without the need of users

participation. In addition, synthetic images were used to train the machine

learning software responsible of assessing studied descriptors. Thus, imple-

mented hand models ensure the independence of the hand descriptors on

users capture.

The work presented in this Section is in a review process and its previous

to the work proposed in this document. Its use is limited to training and

evaluation purposed, being its design previous to the elaboration of this

project.

3.1 Real Users Collection

The collection of images used for the evaluation stage of descriptor imple-

mentations have been extracted from the set of videos generated in [56]

paper. Two di�erent classes of hand poses recording were extracted: Static

Hand Poses (SHPs) and Dynamic Hand Gestures (DHGs). The last collec-

tion of postures are combined with motion in order to obtain a semantically

richer dictionary of gestures, but they are not involved in the study of this

project.

For recording the videos a TOF camera (SR4000 developed by Mesa Imaging
2) was placed 1.5 meters above the �oor, with an horizontal orientation

orthogonal to the user. This camera captures depth images with QCIF

resolution (176x144 pixels) and a depth precision of ±1cm. It was con�gured

to capture 30 fps, and to operate in a 3 m depth range (0.3m-3.3m) in order

to remove background objects. For this purpose, 11 users with di�erent

heights were asked to perform the recording sessions, making the collection

certainly representative to show the potential system performance in dealing

with di�erent users. Moreover, the recorded users were not asked to keep

a certain distance to the camera neither to perform the gestures with any

speed restriction.

1www-vpu.eps.uam.es
2http://www.mesa-imaging.ch/
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The principal features of the two kinds of hand poses recorders, SHP and

DHG are the next ones:

� SHP: Static Hand Poses.

� One static pose video captured from each user.

� Each video contains 252 frames from the same hand pose.

� Each user performs gestures of 6 di�erent dictionaries de�ned in

the section 3.3.

� DHG: Dynamic Hand Gestures

� Five execution videos performed by each user.

� Each gesture can be composed of a single or multiple static poses

sequence.

Nevertheless, only SHP were used to evaluate hand descriptors after the

extraction and segmentation of each video frame included in each dictionary.

3.2 Synthetic Collection

Following the structure of the data set gathered from real images, the same

collection of Static Hand Poses were generated synthetically to be used dur-

ing the training stage of each implemented model.

These images were compiled by the VPU-Lab 3 using the kinematic model

and the de�nition of 27 Degrees of Freedom (DOF) implemented in [5]. The

kinematic hand model cannot extract the correlation between joints in the

hand but, in contrast, it can represent the motion of the hand skeleton.

Moreover, this model de�nes the bones of the skeleton as rigid bodies joined

each other by joints represented by one or more degrees of freedom in deal-

ing with rotation con�gurations. Hence, the only drawback founded in this

model is the need of a initial setting of the hand parameters in accordance

with the user´s features. In the Figure 3.1 the skeleton hand structure and

the kinematic model can be shown.

3www-vpu.eps.uam.es
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Figure 3.1: Kinematic Model [5]

Therefore, the �ngers are modelled as planar kinematic chains attached in

serial distribution to the palm at 2 DOF joints, meanwhile metacarpal bones

of the palm are connected to the wrist �xedly as a rigid body. In addition

to the speci�cations de�ned to model hand poses as a collection of rigid

and �exible bodies joined together, some restrictions about the inheritance

motion and shape of hand have to be considered before generating these

synthetic hands:

� Hand pose or motion constrains related to motion models. Based on

biomechanics hand motion properties, two kinds of restrictions were

speci�ed in hand motion models. The �rst one includes the static

constrains where the range of each parameter is de�ned. The second

one involves dynamic constraints about joint angle dependencies. Re-

strictions covered here allow to generate hand appearances in arbitrary

con�gurations with independence of the user.

� Calibration procedure related to shape models and based on user de-

pendence of measurement parameters. Despite the huge con�guration

freedom given by this model, limits related to the computational e�-

ciency do not allow to use complex shape models for pose estimation.

Since the multiple projections of the model into input images are re-

quired to extract hand features and the multiple occlusion problems

arisen in the model, the use of geometric primitives was increased in

the generation of synthetic hands. Therefore, cylinders, spheres and

ellipsoids are usually de�ned to generate the skeleton of the hand.

Once the model parameters have been de�ned and the shape and motion

constrictions have been applied following this Kinematic model [5], images

of our data set were generated by a volumetric hand via dilation process using
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Figure 3.2: Generated Synthetic image based on 27 DOF kinematic model

a 3D morphological library 4, capturing later the range data image similar

to the ones captured by Time Of Flight (TOF) technology. An example of a

synthetic hand image resulting from the 27 DOF kinematic model is shown

in the Figure 3.2.

Therefore, the �nal synthetic collection of images generated has similar char-

acteristics to the set of real images previously explained. In addition, several

sets of images were created for the same dictionaries de�ned later (see sec-

tion 3.3) attending to di�erent con�gurations of speci�c parameters. These

parameters are the number of random samples taken for each gesture from

the whole generated collection (from now on called number of points of view)

and the increment between the rotation angles of that whole set of images

(θx;θy;θz). After the generation of multiple sets of images based on di�erent

con�gurations of these parameters, each hand descriptor will use the col-

lection which performs better in the training stage of the descriptor. The

con�gurations used for the generation of the synthetic set of images are the

next ones:

� Number of Points of view:

� Synthetic images generated with 1 Point Of View. Each hand

posture included in the dictionary has been chosen randomly from

the whole collection of synthetic images. In Roussos descriptor

this set of images is used to generate the base of the hand images

required to model hand gestures (see section 5.3.3)..

� Synthetic images generated with 9 POV. This collection includes

9 random samples of each hand pose from the whole set generated

4http://www.mmorph.com/
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Figure 3.3: Enum2 gesture from the collection of Synthetic Hand Pose with
1 POV

with di�erent rotations of the hand made over the three axis of

the 3D space, x, y and z. This set of images is only used in

Roussos descriptor to the generation of hand images belonged to

the base of the description (see section 5.3.3).

� Synthetic images generated with 200 POV. Images included in

this set present 200 di�erent con�gurations for each pose, attend-

ing to the rotations of the hand in each coordinate of the Cartesian

system x, y and z. This con�guration was combined with the fol-

lowing sets of images during the training stage of the description

process of the two models.

� Noise π/4:

� Synthetic images generated with 200 POV and intervals of π/4.

This set of images is used to train models of both Tanibata and

Roussos descriptors during the evaluation process, making them

the most independent of the user that it is possible. Moreover, this

collection of synthetic images is included within an angle range

separated by intervals of π/4 covering di�erent rotations made in

each dimension of the virtual space. In the Figure 3.5, 15 random

images of the enum 2 posture are shown from the collection of

200 hand poses stored for the data set of this project.

� Noise π/8:

� Synthetic images generated with 200 POV and π/8. The goal of

using this set of images is the same than the previous one, this is
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θx1 = 0, θy1 =
−π/4, θz1 = 0

θx1 = 0, θy1 = 0, θz1 = 0 θx1 = 0, θy1 = π/4, θz1 =

0

θx1 = π/8, θy1 =
−π/4, θz1 = 0

θx1 = π/8, θy1 = 0, θz1 =

0

θx1 = π/8, θy1 =
π/4, θz1 = 0

θx1 = π/4, θy1 =
−π/4, θz1 = 0

θx1 = π/4, θy1 = 0, θz1 =

0

θx1 = π/4, θy1 =
π/4, θz1 = 0

Figure 3.4: Enum2 gestures from the collection of Synthetic Hand Pose with
9 POV.

Figure 3.5: Gesture Enum2 from the collection of Synthetic Hand Pose with
200 POV with θx1 ∈ [0, π/4], θy1 ∈ [−π/4, π/4], θz1 ∈ [−π/4, π/4]
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Figure 3.6: Gesture Enum2 from the collection of Synthetic Hand Pose with
200 POV with θx1 ∈ [0, π/8], θy1 ∈ [−π/8, π/8], θz1 ∈ [−π/8, π/8]

training descriptors during the evaluation process. This collection

of images also includes 200 random images from the previous hand

pose collection generated in separated intervals of π/8 given by

each rotation applied in all the possible directions. In the Figure

3.6 it can be shown 15 images from the collection of 200 poses

from the enum 2 hand gesture.

3.3 Dictionaries

The Dictionaries generated from the poses included in our data set are the

next ones:

� Kollorz: The collection of images included in this �rst dictionary shown

in Figure 3.7a belongs to a subset of 8 images extracted from the set

of 12 static hand gestures created in the article [57]. This selection

of hand gestures was used by authors of this article due to the good

quality of depth features present in captured images, which allowed

them to be classi�ed rapidly by a simple nearest neighbour classi�er.

� Molina: This set of images contains gestures representative enough for

a dictionary addressed to the human-computer interaction. In fact,
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this collection includes �ve numeric hand gestures as well as three se-

mantic poses which combination provides a high amount of interaction

possibilities. This dictionary is shown in the Figure 3.7b.

� Soutschek: The collection of �ve hand poses chosen for the execution

of the experiment in the document [6] was aimed to medical intra-

operative applications and it has been also included in the study of

this project. The hand poses which compound this dictionary are

represented in Figure 3.7c.

� Miscellanius:A set of four hand gestures generated in di�erent orient-

ations was included in this collection of hand images shown in Figure

3.7d.

� Spanish Sign Language: This dictionary contains 24 gestures from the

set of 27 gestures de�ned in the deaf-mute Spanish sign language, which

can be observed in Figure 3.7e.

In Figure 3.7 we can �nd captures for the hand pose-based gestures com-

piled in the data set. The �rst rows contain real images, while the second

synthetically generated captures.
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A B C D E F G H I J K L

(a) [57]

Enum1 Enum2 Enum3 Enum4 Enum5 Stop Fist OkLeft OkRigth

(b) [56]

a b c d e

(c) [6]

m1 m2 m3 m4

(d) Miscellaneous pose-based
gestures.

a b c d e f g h i

j k l m n ñ o p q

r s t u v w x y z

(e) Spanish sign language alphabet.

Figure 3.7: Captures from compiled dictionaries. First row of real images
from static pose videos. Second row of synthetic images.



Chapter 4

Preprocessing: Hand

Segmentation and Alignment

Every image processing technique requires of a segmentation and prepro-

cessing phase before start working with acquired images. The preparation of

the image for the later extraction of its description is the main goal of this

stage. The segmentation of hand images depends on the capture process as

well as the kind of images to be treated.

Regarding to the capture technology, the Time-Of-Flight (TOF) camera

SR4000, developed by Mesa Imaging1, was used to acquire the depth im-

ages of our real users data set (used in the evaluation stage in this project).

Furthermore, the capture of these kind of images was performed by Video

Processing and Understanding Laboratory (VPU-Lab), which also provided

with the synthetic images collection of dictionaries shown in Figure 3.7 used

as training images in this project. This dataset is explained in more detail in

Chapter 3. Two di�erent kind of videos were recorded: Static Hand Postures

(SHP) and Dynamic Hand Gestures (DHG). Nevertheless, in this project we

only use SHPs recording for evaluation purposes, since no temporal coher-

ence is taken into account in this work.

The main objective of the segmentation is to remove noise and non-desired

regions from the hand depth images to prepare them for the signal processes

involved during the description extraction stage which will be properly ex-

plained in Chapter 5.

1http://www.mesa-imaging.ch

31



32CHAPTER 4. PREPROCESSING: HAND SEGMENTATION ANDALIGNMENT

The preprocessing of images was performed just before the extraction of the

descriptions in order to make descriptors independent from distance to the

camera and orientation of the hands. Taking this into account, two kinds

of preprocessing methods have been implemented in the project, one which

requires the calculation of the wrist point in the image, and a second one

which requires three control points of the processed image and the reference

one. Nevertheless, both processes are based on the same method for the

extraction of characteristic points.

Two descriptors are introduced in Chapter 5, they are the ones proposed in [1]

and in [2], that from now will be called Tanibata and Roussos respectively.

For both of them the segmentation and alignment techniques will be the

same.

4.1 Hand Segmentation

Due to the fact that the captures performed with the TOF camera were

made from real users, with their particular ways of executing the gestures,

their forearms appeared in almost all the images. Therefore, in this �rst

stage of the project the hand and forearm regions had to be separated.

4.1.1 Simple Depth-based Approach

The method used consists on applying a noise �lter to the image, followed

by a depth segmentation where the pixels from the image too far from the

camera will be removed (see [56]). The value speci�ed as the depth limit of

the hand was chosen in order to keep in the segmented image only the hand

and wrist regions.

The value of the pixels of the grey images captured by TOF cameras repres-

ent the distance to the camera of each point. In this project we work with

possible values from 0 (black), which represents the farthest distance, to 255

(white), which belongs to the points of the image closest to the TOF camera.

Therefore, the depth segmentation applied to images is based on the dis-

tance to the camera presented by its pixels. Taking in consideration that

the descriptors described in this project only focus in the hand region, the
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Input image Filtered image Segmented image

Figure 4.1: Segmentation of depth images:

remainder pixels, which belong to the user body or to the background, need

to be rejected in the resulting image. This results di�cult when the hand

and the forearm are contained in the same plane, and it is parallel to the

plane of the camera.

Therefore, when there is a straight angle between the hand and the wrist,

the segmentation is easier due to the di�erence established in distance to the

camera between each region. In fact, the threshold de�ned as the limit of

the points which are considered within the hand region was obtained with

the minimum distance reached by a point of the hand plane plus a �xed

distance. Due to the convention followed by depth images, the pixel closest

to the camera is the pixel with the highest value in the image. The threshold

chosen to be added to this value was 20 , and it was de�ned considering

a reasonable length of the hand, 20 cm. This threshold presented good

performance separating hand pixels from background (see [56]).

In the Figure 4.1 the �rst picture shows the captured frame of a �st, the

second one is the result of �ltering that image and the last picture shows the

hand pose resulting from the segmentation.Nevertheless, when the forearm

is in the same plane as the hand, points of each region have similar values

of distance. In this case, the worst one, points of the forearm would remain

with the points of the hand in the segmented image.

The described segmentation technique is common to the descriptors con-

sidered in this project, explained in Chapter 5.

Tanibata descriptor is a protuberance based descriptor, (see Section 5.1.1) in

which the number of protrusions is estimated besides other features extracted

from the image. Thus the existence of the forearm region in the segmented

image considerably a�ects to the estimation of this parameter. As well, in

Roussos descriptor the appearance of the forearm results in problems in the
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extraction, since the Principal Component Analysis (PCA) in which it is

based is very sensitive to translations.

4.1.2 Other approaches

During this project another approach for hand segmentation was tested, ob-

taining unsuccessful results. The idea was to, instead of using the direction

of vector ẑ, perform the segmentation estimating the wrist point in the dir-

ection of the principal plane computed over the cloud of points associated to

the hand.

For this purpose, the volumetric surface was transformed to a voxels set. On

the basis of this volumetric representation, two approaches for the estimation

of the palm plane were tested:

� The �rst one consisted on the computation of the principal vectors.

, They were estimated by the calculation of the eigenvectors of the

covariance matrix of the volume.Nevertheless, the resulting directions

did not provide a proper plane.

� The second approach consisted on the estimation of the palm plane via

Mean Squared Error (MSE) optimization.

Unfortunately none of the previous approaches presented enough perform-

ance, specially when the palm were occluded by the �ngers of the point of

view was too much sided.

Once the palm plane were estimated, the cloud of points was projected to it,

for later estimating the wrist point as it was proposed in [58]. Finally, the

segmentation was made on the basis of the depth information associated to

the estimated wrist pixel.

The development of this approach required of a lot of e�orts and permitted to

conclude that it is not possible to estimate the palm plane with plane-based

optimizations.

4.2 Hand Alignment

This second stage, previous to the extraction of descriptions is common to

the descriptors presented in next Chapter, and it is mainly based on the
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alignment of these images to obtain independence to scale, rotation and shift.

An a�ne alignment is proposed and the sets of images commonly aligned

depend on the concrete descriptor, as it is explained in next Chapter.

4.2.1 A�ne Alignment

The main goal of this alignment consists on mapping the points of images

into the a�ne space de�ned by a reference set of points. This is done in

a 2 dimensions spaces, considering the input images as grey images rather

than as volumetric surfaces. Moreover, in geometry, an a�ne transform

between two vector spaces is de�ned as a linear transformation followed by

a translation. A linear transform can be composed of a scaling, a rotation

and a translation due to the two properties of the a�ne transform in an

euclidean space:

� The collinearity relation between points. This means that points from

a line of the input space continue to be collinear in the space after the

transformation

� The ratio of distances along a line. In the ellipse of inertia calculated

over the input image, the ratio between its axis is preserved in the

transformed space.

Therefore, the objective of this alignment process is to �nd the parameters

required to the transformation of the image.

The followed method is based on the computation of three characteristics

points from both, the hand image to be aligned and a reference hand image.

On the basis of the correspondence between these two sets of points, the

parameters of the a�ne transform are calculated. The reference image, Aref ,

and the set of images used to perform the alignment depend on the extracted

descriptors, as will be explained in next chapter.

On the other hand, the selected three points required from the images are:

the centre of the image (xc, yc), the estimated wrist point (xw, yw) and the 3rd

point, (x3p, y3p), which is orthogonal to the line formed by the two previous

points. The detailed description of how these three points are extracted can

be found in Section 4.2.1.1.
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The �rst point (xc, yc), was used to de�ne the centre of the aligned image.

This point allowed to estimate the shift parameter for the a�ne transform.

The second and third points, (xw, yw) and (x3p, y3p) respectively, in combin-

ation with the �rst one, de�ne the scale and orientation of the image relative

to the reference image. The angle between the line crossing (xw, yw) and

(xc, yc) and the horizontal axis de�ne the rotation to be applied in these

input images in order to achieve the same orientation than Aref image.

On the basis of these three pairs of control points the correspondent a�ne

transformation matrix is de�ned. In fact, in a �nite-dimensional space, the

a�ne transform can be de�ned as a matrix multiplication T , which represents

the linear transformation, and a vector addition ~s, which represents the

translation. Next lines de�ne this transformation for any point −→p of the

initial image into the new one −→p ′ using a single matrix multiplication:

−→p ′ = T · −→p +−→s (4.1)

 x′

y′

1

 =

 rx · cos θ − sin θ sx

sin θ ry cos θ sy

0 0 1

 ·
 x

y

1

 (4.2)

The previous equations de�ne the operations required to calculate each point

of the transformed image. In addition, at least a set of three points from both

transformed image and Aref is required to obtain the parameters involved

in the de�nition of the transformation matrix:

� Scaling, rx and ry: These parameters de�ne the relation between the

size of the image to be aligned and the size of Aref .

� Rotation θ: The di�erence between the angle formed by the line de�ned

by the wrist point and the centre point and the horizontal axis from

both images.



4.2. HAND ALIGNMENT 37

� Translation sx and sy: These parameters de�ne the translation for each

direction to be applied to the image in order to achieve the same origin

as the reference image.

In the implementation of the alignment stage, the transformation matrix

and the resulting aligned images were computed by the use of the following

Matlab functions:

� A function to calculate the six parameters of a 2D spatial a�ne trans-

formation 2 on the basis of pairs of control points: three principal

points from the image to be transformed and from the image reference

of the transformed space.

� A function which generates the image resulting from the a�ne trans-

formation 3 of the input image using the transformation matrix previ-

ously calculated.

Once the foundations of an a�ne transformation are explained, the process

used for the estimation of the three control points required for the alignment

of images is described now.

4.2.1.1 Calculation of alignment triangle

As it was mentioned before, three points of the hand are used for performing

an a�ne alignment. Several methods were followed to achieve an algorithm

which yields to a proper estimation of the wrist point and the other three

points. Unfortunately, the unavoidable persistence of forearm regions in

some of the segmented images makes necessary the introduction of some

restrictions to the algorithm, such as the assumption of the area in which

the location of the wrist can be, concretely, at the bottom of the image.

These three points, as already mentioned, are the centre of the image, rc,

the estimated wrist point rw and the 3rd point, r3p, which forms a line with

rc orthogonal to the line formed by the two previous points, with a 90o

clockwise rotation.
2

� T=cp2tform(input_points,base_points,'a�ne')

3transfromed_image = imtransform(image,TFORM,'XData',[1 w], 'YData',[1 h]);
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The estimation of the wrist point is the most di�cult task of the aligning

image process.

The �rst point: centroid of the image In geometry, the centroid is

also called geometric centre or barycentre of a plane �gure (or in any two

dimensional shape), and it is de�ned as the intersection of all straight lines

which divide the �gure into two sections of equal moment about the same

line. The simpli�ed concept is the average of all points belonged to the plane

of the �gure. Moreover, the de�nition could be extended to any object in

n-dimensional space as the intersection of all hyperplanes that divide the

object into two parts of equal moments.

In physics, the centroid is also called geometric centre of an object´s shape,

but its barycentre de�nition is addressed to the physic centre of mass or

centre of gravity, depending on the context. The centre of the mass is de�ned

as the average of all points, weighted by the local density or speci�c weight.

In the special case when the object has uniform density its centre of mass is

the same as the centroid of its shape.

This de�nition were extracted from http://en.wikipedia.org/wiki/Centroid.

So, we can say that the centroid of a subset X of a n-dimensional space R
can be calculated by the following equation:

C =

∫
x.g(x).dx∫
x.dx

(4.3)

where the function g(x) is the characteristic function of the subset, which can

take only two di�erent values: 1 in the case of the analysed point within the

space R also belongs to the set X and 0 when it does not. The denominator

is the area of the shape or simplifying, the number of points of the set X

inside the space R.

Moreover, other procedure to this estimation is the assumption of the density

function of pixels belonged to a binary image as an uniform function (0 if

they pixel is black, 1 if it is white) and hence, previous integrals can be

approached with the raw moments in order to obtain the centroid of the

image.



4.2. HAND ALIGNMENT 39

Since the moment of a continuous 2D function to scalar (grey scale) image

can be adapted with pixel intensities I(x, y), the raw moment of the image

can be de�ned as the Equation 4.4:

Mij =
∑∑

xiyjI(x, y) (4.4)

Furthermore, the theorem written by Papoulis4 states that if f(x, y) is piece-

wise continuous and has non-zero values only in a �nite part of xy plane,

moments of all orders exists, and the moment sequence Mpq is uniquely de-

termined by f(x, y). So, in practice, the centroid of an image can be obtained

as:

C = {x, y} = {M10/M00;M01/M00} (4.5)

The second and third point (wrist point and orthogonal point).

Di�erent processes were followed to calculate the wrist point of images, al-

though they are di�erent, they share the ellipse of inertia of images as the

basis of their calculations, which is described in detail in the Chapter 5. So,

in concern to the topic aimed here, it is enough knowing the global idea of

its concept: an ellipse centred on the same point than the centroid of the

hand image and with the same direction and scale than this image. This is a

simpli�ed vision of the second central moment which determines the length

in pixels and orientation of the ellipse region to be the same than in the hand

image.

The �rst idea for the estimation of the point of the wrist was de�ning it as

the point of the hand farthest to the centroid of the image, considering both

halves of the image, the top and the bottom, depending on the orientation

of the hand. Nevertheless, if the hand was positioned horizontally, the wrist

point would be detected erroneously in the palm of the hand.

The combined use of the ellipse besides the image allowed to �nd the orient-

ation of the hand for the most of the cases (all hand poses excepting �st pose

4http://en.wikipedia.org/wiki/Athanasios_Papoulis
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y >>

x >>

α >180º,

α <0º

y <<

x <<

α >270º,
α <90º

Figure 4.2: Possible orientations of the images to estimate the point of the
wrist.

images). Therefore, if the orientation of the hand was known, the wrist was

de�ned as the intersection with the highest/lowest value of x/y (depending

on the orientation of the hand) between outline points of the hand and the

line crossing the centroid and the extremes of the ellipse. However, knowing

the orientation of the hand to generate the line crossing the ellipse implied

having the angle of the image, understanding it as the angle of the ellipse.

Moreover, the knowledge of this angle also requires knowing the wrist point,

or failing that, one �nger point, which was the initial objective of this matter.

So the angle of the ellipse is required to this method.

Due to the simulation and implementation of this algorithm were carried

out in Matlab, one of its functions was used to obtain the angle of the

ellipse based on the central moments of the image and its ellipse of inertia.

Nevertheless, the function does not understand about �ngers or wrists, thus

sometimes the angle yielded was obtained from the �nger and some other

times from the wrist region, depending on which region had the greatest

weight. This would not had happened if the segmentation perfectly removed

the forearm region from images, because in such case the palm of the hand

would be always the heaviest region.

However, if the obtained angle was always right, the estimation of the wrist

point could be obtained from the combination of the orientation of the image

besides the points extracted from the line crossing centre and the extremes

of the ellipse.

The Figure 4.2 shows possible orientations of the image (represented with
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ellipse regions) and how the wrist point can be chosen from the outline points

of the hand which match with the line crossing centre and extremes of the

ellipse. Using the �ngers as the reference for the de�nition of the angle of

the image as the angle formed with �ngers and horizontal axis. Moreover,

depending on the location of the �ngers the wrist was de�ned in a di�erent

region of the image accomplishing the following conditions:

� When hand is vertical (ellipse in green colour) and the resulting angle

has values between 0º and 180º, the wrist point is de�ned in the ex-

treme of the ellipse with the higher values of y, which belongs to the

bottom half of the image (yellow region). In the other side, when the

angle is included between 180º and 360º , the wanted point is de�ned

in the extreme of the image with the lower values of y, this is the top

half of the image (purple region).

� Nevertheless, in the case of the hand in horizontal position (ellipse in

blue colour) and the angle between 90º and 270º, the wrist point is

de�ned within the extreme of the ellipse with higher values of x (the

right half of the image), meanwhile for the rest of angles, the wrist was

chosen between the points of the extremes with lower values of x (the

left half of the image).

But as it was explained before, this method did not work as well as de-

sired because of the lack of accuracy of the hand angle given by the Matlab

function, due to the problems appeared in the segmentation stage and the

existence of forearm regions in some real processed images.

A new method, similar to the previous one was implemented to calculate

the point of the wrist, but improving the estimation of the orientation of

the hand.Firstly, a line which crosses the geodesic centre and the extremes

of ellipse is calculated like in the previous method. Then, the points of the

outline (i.e. the contour) of the hand region is obtained. In most of the

images the wrist region is enclosed inside the area of the ellipse meanwhile

�ngers regions usually cross the line of the ellipse contour. Therefore, there

might be only one point within the edge of the hand which matched with the

ellipse and the straight line. This point is de�ned as a �nger point. At the

same time, the intersection of the same line with the outline points of the

hand was calculated too. As a result, there might be at least two separated
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Figure 4.3: Wrist Point de�ned as intersection of line and boundary line of
the hand

points, located in opposite sides of the hand. Finally, the point of the wrist

is de�ned as the point from the set of points previously calculated which is

farthest from the �nger point obtained in the �rst intersection.

Furthermore, in both matching processes, when no point is found from the

intersection, the line crossing the hand is dilated until one matching point is

found or until number of dilations iterations is exceeded.

In Figure 4.3 the calculated line crossing the centroid and extremes of the

ellipse, and the wrist point result from the implementation of this method

are shown:

However, this method was not the de�nitive one due to the following prob-

lems:

� When the dictionary used includes a �st image, there is no �nger point

found during the intersection of the straight line with the boundary line

of the ellipse and the outline points of the image. Moreover, if the whole

forearm region was not previously segmented, it could match with the

boundary line of the ellipse, obtaining a point from the forearm region

instead of the corresponding �nger point. In the opposite case, when

the forearm region is entirely segmented, not only no point was found

as �nger point, but also ellipse extremes of the major axis can take the

same orientation than the thumb of the hand. This means that the

outcomes of the matching process only give points from the palm of

the hand (or a point from the thumb) instead from �ngers or wrist.
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� The second problem is related to the previous segmentation process

and a�ects to the rest of hand poses. Like in the other cases, when

the forearm region is not completely segmented, the forearm can be

erroneously considered a �nger, resulting in more than one matches of

potential �nger points.

To conclude, the �nal implemented method de�nes some restrictions to input

images:

Firstly, the points of the ellipse are de�ned by the next equations:

x(t) = xc + a cos(t) cos(α)− b sin(t) sin(α)

y(t) = yc + a cos(t) sin(α)− b sin(t) cos(α)

These equations belongs to the parametric representation of the points of

an ellipse, centred in the point rc = (xc, yc) and with major and minor semi

axis with a length, in pixels, of a and b respectively. The parameter t varies

from 0 to 2π and α is the angle between the X-axis and the major axis of

the ellipse.

Besides the computation of the points composing the ellipse, there are four

principal points which were separately stored: the points that matched with

the axis of the ellipse:

r1 = x(0), y(0) (4.6)

r2 = x(π), y(π) (4.7)

r3 = x(π/2), y(π/2) (4.8)

r4 = x(−π/2), y(−π/2) (4.9)

The next step consisted on de�ning the possible combinations of points to

be extracted from the image (both wrist and 3rd points are estimated at the
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same time). The initial collection is formed by the previous principal points

of the ellipse (r1,r2, r3, r4) and their possible combinations, the ones which

satisfy the orthogonality between points. Then, the points belonging to the

extremes of the ellipse are replace by points of the hand. Each of these points

is obtained as the intersection of the binary hand image with the boundary

line of the ellipse and the straight line de�ned from the centroid of the hand

to each possible point of the extremes of the ellipse. From among matching

points, the farthest to the centroid of the hand is a candidate to be the wrist

point. Therefore all previous points (r1,r2, r3, r4) had one possible candidate

to be wrist point associated

r1 =⇒ rh1 (4.10)

r2 =⇒ rh2 (4.11)

r3 =⇒ rh3 (4.12)

r4 =⇒ rh4 (4.13)

Finally, applying the same matching process to each possible point (r1,r2, r3, r4)

the third possible point is de�ned with the suitable combination of points. In

the next lines, the possible combinations of principal points (this is centroid,

wrist point and third orthogonal point) are enumerated:

X1 ≡ {rc; rh1; rh4} (4.14)

X2 ≡ {rc; rh2; rh3} (4.15)
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Figure 4.4: Limits of the Angle between Real Wrist and Ideal Wrist

X3 ≡ {rc; rh3; rh1} (4.16)

X4 ≡ {rc; rh4; rh2} (4.17)

The next step consists on the selection of the best point combination from

all the possible ones (X1;X2;X3;X4). As it was mentioned before, each set

of points form orthogonal lines.

The restrictions applied to the triangles in order to estimate the right com-

bination of points are the next:

� Restriction to the location of the writs point. Taking as reference

the estimated centre of the hand (xc, yc), the cathetus of the wrist is

assumed to be located in the lower half of the image, more concretely,

considering the vertical as 0 rad in the range α ∈ (−3π/8, 3π/8) (see

Figure 4.4). Therefore, analysing the wrist component rh (represented

by the blue line in the Figure) of the �rst subset of points resulting

from this restriction, its angle α is included inside the limits de�ned

by the αmin and αmax (represented by the yellow lines of the Figure).

� The second restriction is related with the depth of the �nal selected

wrist point. This point is de�ned as the deepest among all the candid-

ates, survival from the �rst restriction application.

Thus, the �rst set of points chosen as principal points of the hand will

be named from now on:
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{(xc, yc) ; (xw, yw) ; (x3d, y3d)} (4.18)

� The third restriction is related with the length of the triangle we formed

by �nal selected candidates. This triangle, sometimes, presents very

di�erent lengths in its sides. This produces a very distorted a�ne

transformation. This is why this last restriction was introduced. It

consist on �nding an isosceles right-angled triangle with equal area to

the original one, reaming the right-angled corner (i.e. (xc, yc)) in the

same location.

Firstly, the area of the initial triangle has to be obtained , for later

extracting the length of each cathetus of the isosceles triangle from

that value:

Area =
b · h

2
(4.19)

Area =
b2t.isos

2
(4.20)

bt.isos =
√

2 ·Areainiti (4.21)

These new points can be di�erent from the old ones, but they also

belong to the hand. From now on they will be called:

{(xc, yc) ; (xw−re, yw−re) ; (x3d−re, y3d−re)}

At the end of this stage, the three principal orthogonal points are provided

to be used in the alignment process. Moreover, when the point of the wrist

is found, the yielded reference points of each image are enough separated to

generate an acceptable and no distorted transformed image after the align-

ment.



Chapter 5

Hand Descriptors

5.1 Related Work

We can �nd several hand descriptors in the literature, some of them have

been selected for their implementation and testing in the evaluation frame

work that will be described in Section 6.1. The descriptors under study are

two:

� A protuberances based descriptor, [1] (from now we will refer to this

work as Tanibata).

� Principal Component Analysis (PCA) based descriptor: an approach

based on the generation of an eigenvectors base that from now on

we will name eigenhands [2] (from now we will refer to this work as

Roussos).

5.1.1 Tanibata, a protuberance based descriptor

Authors of this paper propose a method to recognize words of the Japanese

Sign Language (JSL) performed by a user. For this purpose they extract

features from each frame of the capture.

In the �rst half of the paper they explain an approach for �nding the position

of the wrist. First of all, they propose an algorithm for separating person

region from the background, then they use templates in order to �nd the

face and the hands on the basis of the colour these areas present.

47
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Figure 5.1: Image taken from [1].

The second half of the paper results more interesting for our work, since the

hand features we want to use are described.

Once the hand region is detected, the following features are calculated:

1. The �atness of hand region, r.

2. The gravity centre position of the hand region relative to that of face

region, (xhand; yhand).

3. The area of the hand region, A.

4. The direction of hand motion in the image coordinate,θmotion .

5. The direction of hand region in the image coordinate,θhand.

6. .The number of protrusions , Np.

7. The ellipse of inertia.(~xellipse, ~yellipse).

The �rst three features of the hand, �atness r, the gravity centre position

(xhand; yhand) and the area of the hand A can be easily obtained from hand

regions.

The ellipse of the hand, shown in Figure 5.1, is de�ned as the ellipse of inertia

of the hand region. In the paper, feature r is the ratio of the major axis to

the minor axis and describes the ellipse, and feature θhand is de�ned as the
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angle between the major axis of the ellipse with the horizontal coordinate

axis.

Next feature θmotion represents the trajectory of the hand, this is, the angle

between two consecutive centre points and the horizontal coordinate axis.

The di�erence between this angle and the previous one is the intervention

of the time in the estimation of the motion direction θmotion . For example,

during the the computation of this angle, θmotion in instant t = 1, both

points (xhand; yhand) for t = 0 and for t = 1 are needed in order to obtain

the required direction vector, in contrast to θhand, where the required value

of the major axis would not depend on di�erent instants of time. This feature

is specially signi�cant to di�erentiate words sequences, where each word can

be followed only by a limited collection of words.

The last feature Np is de�ned as the number of local maxima of the distance

between the wrist and outline points of the hand region, as it is shown in

Figure 5.1. In the method proposed in this paper, the wrist position is de�ned

as the hand region point nearest to the elbow position,.Finally, in this paper

a Hidden Markov Model in order to recognize the word of the dictionary with

the highest probability is proposed, considering that they calculate the kind

of gesture operating computing a sequence of poses. Moreover, this document

ends presenting the �gures for the experiments carried out to evaluate the

performance in recognizing 65 JSL words.

5.1.2 Roussos, a PCA based descriptor.

This paper proposes a new model to describe and represent hand con�gura-

tions via a PCA based descriptor to represent the shapes an the appearance

of the hand. As it was mentioned in Chapter 2, some descriptors based on

the recreation of hand shapes use landmarks during the capture with 3D

cameras, nevertheless, the descriptor proposed in this paper does not. In

addition, this model allows the reconstruction of hand poses by the lineal

combination of images that are previously aligned and calculated to con-

form an orthogonal base. These hand images from the base, from now on

eigenhands, are yielded from an iterative alignment of a training set of hand

poses followed by a PCA analysis. Finally, the weights of the eigenhands

derived from the model �tting will be used as hand shape features (i.e. as

the descriptions of the hand poses).
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The whole process followed to achieve a successful outcome is explained in

the following lines:

� The �rst step proposed in the work consist on segmenting and track-

ing frames from the videos, where the whole body of the user is cap-

tured by the camera. Once the hand region is identi�ed, the segment-

ation of hand poses is made using Geodesic Active Regions (GAR)

method, which separates skin-colored regions from the background,

minimizing an energy function. Nevertheless a little modi�cation of

this GAR method is applied for making the �nal segmentation of in-

put images. This process is based on �tting an enveloping curve to

the edge of the image which separates skin from background using the

ratio between the probabilities of a pixel belongs to a skin region and

background region. Moreover, linear forward-backward prediction and

template matching are techniques used to avoid occlusion e�ects of the

skin colour regions. Finally, the hand region is cropped using a skin

colour detector before getting the �nal colour segmented image of the

hand.

� The next step consist on modelling hand Shape Appearance im-

ages from cropped images. These kind of images are grey-scale images

extracted from the coloured cropped images. Therefore each pixel be-

longing to the hand region is transformed to the Y CrCb colour space,

in which only the texture and shadowing of images is represented. The

rest of the pixels are considered as the background of the �nal image.

Due to the fact that the main goal of this project is the description

of the images, these preprocessing techniques are not included in the

scope of this project.

� Once the images to be described are prepared, they can be modelled by

means of a linear combination of a base formed by the mean image, A0,

and a set of computated images, Ai, after applying an a�ne transform-

ation. These base images are generated from a subset of the training

set, combining an iterative a�ne alignment with PCA optimization.

Finally, the image will be approach with equation 5.1.2, where Wp(x)

is the a�ne transformation of the Shape Appearance images and λi

are the weights of the computed base images Ai for each regenerated

image.
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f(Wp(x)) ≈ A0(x) +
∑

λi·Ai(x)

Authors of the paper use 200 randomly selected frames from a video

to generate the initial training set. Then, these images are recursively

aligned to compute the mean image A0. Followed steps of the proposed

iterative method are the following:

1. Selection of the �rst image from the training set as A0 image.

2. Alignment of images from the training set with current A0, estim-

ating the parameters of the transformation P = (p1, p2, p3, p4, p5, p6).

3. Computation of the new mean image, A´

0, over the aligned images.

4. Comparison of the new A´

0 with the previous A0.

5. Repetition of the second step changing A0 by A
´

0 until there is no

di�erence between both of them.

When the average image A0 is calculated, it is used as the reference

image for the alignment of the training set.

The covariance matrix of these aligned images has to be estimated in

order to get the new hands base. In fact, Nc eigenvectors from the

largest eigenvalues of this covariance matrix are the base, from now

on so-called Eigenhands or Eigenimages. Moreover, the number of

eigenvectors will depend on the outcome of the PCA analysis, which

allow to reduce the principal components used to model images. Hence,

the higher Nc the lower di�erence between modelled images and the

original ones, meanwhile the run time and complexity of the alignment

will increase too.

Once the eigenhands have been computed, the weights for each image

of the training set , λi, are calculated, minimizing the energy of the

reconstruction error, this is:

∑
x

{
A0(x) +

Nc∑
i=1

λiAi(x)− f(Wp(x))

}2
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� The implementation proposed for extracting the weights is made by

the Simultaneous Inverse Compositional algorithm which is based on

the Gaussian-Newton gradient descendant optimization.

� Once the eigenhands and the reference mean image A0 are calculated,

handshapes from images are extracted, �nding the weights and align-

ment parameters which �t the model.

� Finally, data used in the paper for the evaluation experiments belong

to the continuous American Sign Language Corpus BU400. The classi-

�cation is made using mixture Gaussian mixture models (GMMs), and

maximum likelihood to the selection of the best matching model. At

the end of the paper the A�ne Shape Appearance Model are compared

to other hand shape models and the conclusions from the experiments

are described.

To sum up, this model tries to describe hand images by the combination of

grey-scale images which represents hands shapes of images. There are two

possible points of view to interpret this transformation and, thus, to de�ne

the characteristic description, λi, of Roussos descriptor:

� From Algebra viewpoint: This transformation is assumed as a new

representation space which coordinate axis are de�ned by base images.

In addition, their base elements can be de�ned by the covariance mat-

rix, eigenvalues and eigenvectors from an aleatory set of images. The

parameters of the description λi de�ne the coordinates of images in

the new space, i.e. the projections of images into the new base.

� From Image viewpoint: This transformation is assumed as a new rep-

resentation of images by the lineal combination of rede�ned hand im-

ages, eigenhands, to represent any image with the minimum number

of elements. Input images has to be aligned with images of the base

using A0 as a reference to increase their resemblances and obtain them

with the minimum reconstruction error that is possible. The weights

of the hand images used for the reconstruction are the parameters of

the description λi.
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5.2 Tanibata Implementation Concerns

5.2.1 Introduction

The Tanibata descriptor was implemented in Matlab following the steps

enumerated in [1], but making some changes during the process.

Previous to feature extraction for describing images, they were segmented.

As it was explained in detail in Section 4, the segmentation of the forearm

consists on removing the points of the image which are behind the estimated

wrist point. This means that by �xing the maximum distance to the camera

of hand points (desirably points of the hand), the remaining points belonging

to the arm are removed.

The main di�erence between the original paper and the implementation in

this project has relation with the features selected to describe image hands.

In fact, only a subset of them were selected, as long as we are focused in

static images rather than in image sequences that could contain dynamic

gestures. This selection was done in order to be robust to variations in

position, distance and rotation of the hand:

� r, �atness of the ellipse.

� (xhand; yhand), instead of the centre of the hand region as in the original

paper, the estimated wrist point is used.

� Np, number of protrusions.

In the implementation of the descriptor the �atness of the ellipse is the ratio

between the minor and maximum axis of the ellipse, like in the de�nition

of the paper. Nevertheless, the second feature, the gravity centre of the

hand region is only used to calculate the last of the features, the number of

protrusions. In fact, it would have been more suitable de�ning the point of

the wrist as an important feature of hand image instead the centre of the

hand region. Moreover, this last point was used to estimate the position of

the wrist point, but applying a di�erent reference system than in the paper,

where the centre of the hand was relative to the head region. Due to images

used in the implementation only contained the hand region, the reference

system used in images had the origin of points in (0,0), at the left-up corner.
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From now on, when this point is mentioned it will be referenced as the point

of the wrist, instead of the centre of the hand region.

Some features, originally used in [1], but not in this project are: orientation

of the hand, θhand, because we want to be independent to rotations; the

trajectory of the hand, θmotion, because we are not working with dynamic

gestures; and the area of the ellipse, A, because we want to be independent

to scale.

The process followed during the extraction of descriptions can be separated

into two di�erent stages:

� Computation of characteristic points of the hand image: �atness of the

ellipse, r, and the ellipse of inertia. See Section 5.2.2.

� Calculation of the number of protrusions of the hand, Np,on the basis

of the information previously extracted. See Section 5.2.4.

5.2.2 Estimation of ellipse of inertia and wrist point

In this stage the main features of the hand and ellipse are extracted: the

point of the wrist, the �atness of the ellipse and the points of the ellipse

aligned with the hand.

The only parameters we use to describe images are the �atness of the ellipse

and the number of protrusions. The point of the wrist and the points of the

ellipse are only needed to calculate the last parameter Np.

Therefore, the �rst parameter of the descriptor, the �atness of the ellipse

r, is the outcome of this �rst stage of the computation. The ellipse used here

is the ellipse of inertia (see Figure 5.2), referenced at the beginning of this

section 5.1.1, a function of Matlab1, �regionprops�, was used to perform this

task.

This function operates with binary images, and measures several features

of the represented region. In this case, the Major and Minor axis lengths

of the ellipse, as well as the orientation of these axis (is the same as the

hand orientation θhand), were calculated with this function by the use of the

second normalized central moments of hand region. This function works with

1http://www.mathworks.es/index.html
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2-D input label matrices, obtained from binary images, giving to each pixel a

label to di�erentiate connected regions. A problem came up when there were

isolated pixels in binary images, generating more than one connected region.

This was solved changing the value of the labels from pixels belonging to

small regions by the label of the widest connected region of the image. This

makes that each pixel from the matrix has the same value than the rest and

thus, all existing regions can be considered as connected regions.

Once this problem was solved, the lengths of ellipse axis were used to de�ne

the �rst parameter of the description r as the ratio between the Major and

Minor semi axis lengths :

r =
MajorAxisLength

MinorAxisLength

The second parameter extracted by this descriptor is the Number of pro-

trusions Np. As it will be explain in next Section 5.2.4, the point of the

wrist and the outline points of the hand are involved in the computation of

this parameter. Nevertheless, the estimation of the wrist point is made

following the same process that the one described in Section 4.2.1.1 to ex-

tract the principal hand points. These points are: the centre of the hand, the

wrist point and a third point which forms a line orthogonal to the one formed

by the �rst two points. Moreover, operations made during the extraction of

these hand points required the points of the ellipse, hence the second step

followed, after extracting the �atness of the ellipse, is the estimation of the

points of its line.

Using the orientation of the ellipse, the points of ellipse are estimated

using the parametric equations of the ellipse:

x(t) = xc + a · cos t · cosϕ− b · sin t · sinϕ

Y (t) = yc + a · cos t · sinϕ+ b · sin t · cosϕ

where ϕ was de�ned as the angle of the hand, θhand, in radians using images

axis reference (ϕ = −θhand ) where angles are covered contrary to clockwise;

t is de�ned from 0 to 2π; a and b are the length of the semiaxis of the ellipse.
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Points of the Hand

Figure 5.2: Ellipse of Inertia and wrist point estimation in pink.

The coordinates of ellipse points need to be integers, since the results are

represented in a pixels image. So, resulting coordinates from equations 5.2.2

and 5.2.2 are rounded. The ellipse aligned with the hand, resulting from this

process, is shown in Figure 5.2.

. On the basis of this ellipse, a line crossing the centre of the hand region,

in the direction of the major axis, is used for estimating the wrist point as

explained in Section 4.2.1.1. The wrist is de�ned as the furthest point of the

hand which belongs to the straight line which crosses both extremes (in the

Major axis) of the ellipse and the centre of the hand.

5.2.3 Preprocessing Alignment

Two di�erent alignments are performed, both on the basis of the a�ne align-

ment explained in Section 4.2:

� Implicit alignment with the wrist point. As it was mentioned before, all

the features used as description in Tanibata are independent from the

orientation or spatial situation of the hand in the image. In fact, the

number of protrusions of the hand, which depends on the distances of

the outline hand points to the wrist point, is a relative measure which

allows comparing shape appearance between images, no matter where

the wrist is placed.

� Explicit image Alignment : In Section 4.1 it was mentioned that the
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alignment of real images with a reference image required to standard-

ize them before extracting their descriptions. It was commented that

this alignment consisted on applying the a�ne transform to the three

reference points of the real images in order to make them matching

with the other three points of a reference image. In this descriptor, the

image used as the reference one is the �st image due to the comparison

made over their distance function to estimate the number of protru-

sions in the image. The outcome of this process particularly a�ects

the later extraction of image´s description. This is because, in con-

trast with other features such as the ratio between the axis of ellipse,

the estimation of the number of protrusions of the hand needs the in-

put image and the �st image in the same scale. As it will be explained

in Section 5.2.4the establishment of the number of peaks in images

requires the computation of the distance between the outline points

of the hand and the point of the wrist. This is the before mentioned

distance function of the image. So, in order to di�erence the peak of

the distance function of a hand with one extended �nger (or a knuckle)

from one of a �st image, a �xed threshold is used. The value of the

threshold is de�ned as the maximum value of the distance function for

the �st image. Thus, the found maxima with a lower value than that

threshold is rejected. If the image to be described does not have the

same scale than the �st image, the distance of its knuckles cannot be

used as the reference value.

5.2.4 Calculation of number of protrusions of the hand

In this second stage of the descriptor extraction the �atness of the ellipse

was already calculated, r, as well as the three principal points of the hand

required to the extraction of the number of protrusions of the hand, Np,

which is the main goal described in this Section. This parameter is basically

de�ned by the distances between the outline points of the hand and the point

of the wrist.
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5.2.4.1 Computation of distance function

To begin, a family of straight lines from the wrist to the limits of the image

is generated. This set of lines are parametrized with the inclination of the

lines, α, as a parameter, covering angles from −π/2 radians to 3π/2, taking

the major axis as reference. The step of the angle depends on the number

of samples of the hand contour we want to use. Here it is important to

know that a low number of samples could imply the loosing of �ngers of

the hand, whereas a number of samples too high could give more number of

local maxima or minimums on the graphic of the distances. So, a balanced

number of samples has to be found in order to generate the best �nal distance

function to calculate the number of extended �ngers. Principal vector of the

line in the image was de�ned as the cosine (as coordinate x) and the minus

sine (as coordinate y) of these angles. De�ning the independent term as the

point of the wrist, each obtained straight was a line from wrist to limits of

the image:

NumSamples = 360

α =∈
[
−π

2 ; 2π
NumSample ;

3π
2

]
t =∈ [0, 100]

vx = cos(α)

vy = −sin(α)

r = t.v + b

For each line, obtained for a value of α, an image of its points is generated

as shown in Figure 5.3.

The next step consists on making a logical AND operation between the

binarized image of the hand and the image of the line for each value of

α to obtain the points of overlapping. In Figure 5.4 the described AND

operation is illustrated. From the resulting set of points the furthest from

the wrist point is the one selected, assuming it belongs to the contour of the
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Figure 5.3: Subset of images of the points of the lines which covers the
contour of the hand. In this examples α =∈ [π/4, 3π/2].

hand. When this point (xPointH , yPointH) is found, the distance to the wrist

(distWmax) for the considered value of α is stored. This way we obtain an

estimation of the distance from the wrist point to the contour of the hand

for each of the values of α under consideration (see Figure 5.5).

The next step is the calculation of the number of maxima present in the

stored distance function. This is explained in Section 5.2.4.2.

5.2.4.2 Calculation of number of local maxima in distance func-

tion

Beginning from the distance values shown in Figure 5.5, it seems easy to

determine the number of maxima at �rst sight. Nevertheless, it was not

such an easy task at all, indeed multiple methods for the extraction have

been tried.

Basic Local Calculation The �rst approach was based on the use of

a Matlab function, �ndpeaks2, to �nd local peaks in an input data vector.

This works in a local way, comparing each element of data to the values of its

neighbours. The used function allows the de�nition of di�erent conditions to

detect peaks, however in this project a local peak was de�ned as an element

2http://www.mathworks.es/help/toolbox/signal/ref/�ndpeaks.html
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Figure 5.4: Line image, binarized image and result image for the AND op-
eration.
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Figure 5.5: Distance from wrist to contour points.
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of the function larger than their neighbours. The input parameters available

to set up the function work are:

1. Basic con�guration: Find all peaks presented in the input function.

2. Min-peak-height con�guration: A real scalar threshold which needs to

be exceeded by local maximums in order to be considered peaks of the

function. This threshold determines the minimum acceptable height

for a peak.

3. Min-peak-distance con�guration: A positive integer which de�nes the

minimum distance between indices of the maximum under considera-

tion and the peaks already detected. This speci�cation avoids detecting

non-valid peaks in the case of having a maximum with an undesired

transition or a �glitch�.

4. Threshold con�guration: A non negative real scalar value that needs to

be exceeded by the di�erence of height of a maximum with the heights

of the neighbour points..

5. N-Peaks con�guration:The maximum number of peaks to be found in

the input data.

The basic con�guration of the function was �rstly used to �nd peaks without

any restriction. Then, each of the other con�gurations was applied to result

in some peaks rejected from the �rst selection. The restrictions applied in the

con�gurations number 2 and 4 obtained better results than the speci�cation

applied in the number 3. In both situations the selection of the the threshold

was tested as a possible way to reduce false positives in the detection of peaks

using di�erent estimations.

The basic local calculation (con�guration number 1 ) �nds some peaks that

are false positives, because it considers every little increment in the function

as a peak. This is why the �rst restriction (con�guration number 2.)was

applied, remaining those peaks which values are higher than the de�ned

threshold. Several values were de�ned for the threshold:

� The �rst value used was the average value of initial peaks. In

some cases, when the detected peaks do not match with real ones (false
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Enum1 Enum2 Enum3 Enum4 Enum5

Figure 5.6: Con�guration number 1 to detect peaks with threshold de�ned
with the average of initial peaks.

positives detection), this restriction works, as in the case of the three

�rst gestures in Figure 5.6. In this Figure the green points represent the

�nal peaks of the function resulting from the con�guration number 2.

meanwhile the peaks in blue are the original ones generated by the basic

con�guration number 1. On the other hand, when there are false peaks

closed to real ones, the applied restriction could erroneously discard

valid maximums (false negatives detection), like in the case of the image

with four �ngers. In the right image, the presence of multiple false

positives closed to a peak with a high value of the function from the

�rst basic con�guration, makes the threshold too high to be exceeded

by the last peak, loosing them in the �nal result (resulting again in the

detection of false negatives).

� The next value used to de�ne the threshold was the 3% of the me-

dian value of initial distance function. This percentage was chosen

testing several values to select the minimum number of false positives

peaks. The reason to use all initial values from the distance function

instead values from preselected peaks to calculate this new threshold

is reducing the limit of the height speci�ed by this restriction and

then, avoid rejecting real peaks (reduce the number of false negatives).

Therefore, the smallest peaks will not be rejected due to the consider-

ation of multiple points in the estimation of the average. Nevertheless,

the results obtained here did not introduced any kind of improvement

of the results given by the previous threshold uses. So, images yielded

from this restriction are not showed here .
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Enum1 Enum2 Enum3 Enum4 Enum5

Figure 5.7: Min-peak-distance con�guration to detect peaks with threshold
de�ned with the mean of di�erences between neighbours

The next simulation made was the implementation of the con�guration num-

ber 4. i, using di�erences between neighbours instead of absolute heights.

The threshold is de�ned here was the mean of di�erences between

neighbours from distance function. Finally, initial chosen peaks are re-

jected as �nal peaks when the di�erence of height with their neighbours is

lower than this threshold, as is shown in Figure 5.7. The points in green

colour represents the �nal remained peaks (from con�guration number 4.)

meanwhile the blue points belong to the original peaks extracted from con-

�guration number 1. Due to the lower values obtained from this threshold,

several peaks were detected erroneously (false positives detections), as it can

be observed in the Figure.

This speci�cation was also tried with a little modi�cation:

� The initial vector of peaks selected with con�guration number 1. was

analysed in windows of 5 elements to calculate the di�erence of each

peak with the four nearest neighbours instead of their di�erence with all

their previous neighbours. Therefore, the presence of a high maximum

next to a peak,would not interfere in the selection of that peak using

the average of the high di�erences between neighbours as the threshold.

However, the obtained results were not as they were expected to be.

� The combination of con�gurations number 2 and 4 was tried to im-

prove maxima detection. This means that a set of peaks were selected

using the average of distance function as the threshold. Another set of

peaks were selected from distance function using con�guration number

4. based on di�erences between neighbours. Finally, common peaks
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Figure 5.8: Combination of second and third restrictions con�guration.
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Figure 5.9: Detection of peaks increasing steps between detections

presented in both sets were de�ned as �nal peaks of the function. An

example of the results obtained from this con�guration is shown in

Figure 5.8.

The last try made toe improve the detection of peaks consist on increasing of

the step in α, reducing the parameter NumSamples to 250. The objective

is to reduce the number of false detection of local maxima by using a high

sampling frequency. The results obtained from this con�guration were better

than in the previous implementations. We can conclude that using values

from function in more abrupt intervals reduce the problem of detect several

maximums from the same local peak (see Figure 5.9).

Finally, the conclusion obtained from the implementation of this existing

function is that there is no reference non �xed value which can be used as

threshold in the detection of peaks in distance function. This is because the

correct selection of the peaks depends, in the �rst estimation, on all possible

peaks of the function. When there is not false positives peaks from initial

maximums (outputs of con�guration number 1), a threshold based on the

mean or average of these peaks would reject valid maximums in the �nal
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result, because a mean is always higher than the minimum value of pre-

selected peaks. In the other hand, when there are false positives in the �rst

calculation of possible peaks, the most of undesired maxima have low values

of the function, and the threshold used to reject them must be higher than

these maximums. Therefore, is impossible to accomplish both objectives at

the same time.

Calculation based on a Gaussian �tting Due to the lack of e�ect-

iveness in previous tests using Basic Local Calculation 5.2.4.2, �nally, the

estimation of maxima was made using an analytical Gaussian function res-

ult of a �tting process. The chosen �tting function consisted of the sum

5 gaussians and provides better results than a polynomial or exponential

function.

The main advantage or performing a function �tting to the input data is that

analytical operations can be performed over the resulting �tted function.

This way, the candidates to be �nal peaks can be detected checking basic

restrictions in the �rst and second analytic derivative of the �tted function.

After maxima calculation, the candidates to �nal peaks are analysed to dis-

card false positives. Several restrictions were analysed for �nally applying

a restriction based on calculation of areas under the curves of the function.

Some tested restrictions are:

� Restriction in the second derivative slope: A restriction was applied to

the second derivative of the function in the preliminary selection of the

peaks. Besides the search of points of the function f(x) where its �rst

derivative function f(x)
′
changes the sign, called critical points, the

slope of this function f(x)
′′
was also considered during the selection

of maxima. Due to the second derivative of the function represents

the speed of the changes in the function at the critical points, when

they are an abrupt minimum or maximum f(x)
′′
reaches high levels

(independent of its sign, using the absolute value of f(x)
′′
). So this

restriction will reject peaks when their length or duration is too short

(rapid changes) . Therefore, maxima of the function with short dur-

ation and quick variation would be rejected with this restriction. In

contrary, when a maximum belongs to a �nger of the hand, its dura-

tion will be long enough to make the values from f(x)
′′
too small to
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Figure 5.10: Reference heights of the peaks of the function in Tanibata

be rejected. In addition, same steps were followed in order to de�ne

minima of function but using a di�erent threshold in the restriction.

Furthermore, the �rst threshold used to de�ne the limit of the func-

tion f(x)
′′
depended on the maximum value of f(x)

′′
. In particular

the 80% of the maximum value of f(x)
′′
were de�ned as the limit for

the maxima detection, and the 20% of the same maximum value for

the minima detection. However, in the �nal tried, a global threshold

was used instead these local thresholds due to its few meaningful when

the number of maxima were small. In order to determine the value of

these thresholds, several graphics of f(x)
′′
from multiple images were

analysed.

Therefore, the best results obtained before using the �nal restriction

to calculate protrusions of the hand were the next:

umaximos = 3 · 104

uminimos = 1, 8 · 104

� Restriction in areas under the peaks:The last restriction used to estim-

ate maxima in the function is focused in computing bulk areas as the

area of a triangle. In this approach, the height of each maximum rel-

ative to the height of the minima next to it was used. Each maximum

usually has two possible relative heights associated to each of its neigh-

bours, the minimum with the smallest height will be used to de�ned

the height of the maximum. Moreover,the point belonging to this last

minimum will be used to de�ne the base of the triangle enclosed under

the maximum.
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� In Figure 5.10 the neighbours of the analysed maximum (the second

maximum of the function) are the minima in blue, xmin1, and red

xmin2 colour. The area under the maximum resulting from the use of

the each minimum is the triangle in green colour, if we use the height of

xmin1, and the triangle in orange colour, if we use the height of xmin2.

In the Figure are also de�ned the heights from each minimum, ymin1

and ymin2 as well as the relative heights of the maximum hmax1 and

hmax2 associated to each minimum. So the area �nally obtained with

this restriction would be the green triangle generated by the use of the

parameters with the blue minimum.

The area enclosed in the green triangle of the �gure 5.10 is estimated

with the next equations:

amax = bmax.hmax
2

bmax = 2.(xmax − xmin1)

hmax = hmax1 = ymax − ymin1Once the parameters of the area, hmaxi and

bmaxihave been de�ned for each maximum of the function, the �nal peaks

of the function would be chosen attending to the size of their areas,

rejecting the smallest ones.

� Final Con�guration. Restriction in derivatives and triangle areas: In

this paragraph is described the �nal process followed to obtain the

number of protrusions based on the �tting with a Gaussian function

and applying restrictions over the derivatives and the areas of the func-

tion.

As it was already mentioned, the input data is �tted with a �ve gaussi-

ans function in order to apply analytic mathematics (see equation REF

5.2.4.2). The number of Gaussian addends in the �tting function was

chosen because the maximum number of valid local maxima (�ngers) is

�ve. Parameters of the function were obtained with a Matlab function

which minimizes the Least Square Mean Error for a �tting to the in-

put data. This �tting results in a function smoother than input data,

eliminating candidates to being wrongly detected as peaks. Taking ad-

vantage of the implicit restrictions of the input data, some parameters
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Figure 5.11: Fitted function to contour to wrist point distances.

were limited, such as upper and lower values of the amplitude, variance

and mean of the �ve Gaussian.

f(x) =
∑
ai.e

− (x−b)
2

2c2
i ; i ∈ [1, 5], where the limit values are:

amin = 0, amax =∞, , bmin = 0, bmax = 2π,cmin = 0andcmax = 2π

An example of the �tted function to an input data can be found in

Figure 5.11. The �tted function is the red continue line over the blue

samples of distance to the wrist. The result function is a sum of Gaus-

sian functions, nevertheless this method does not adjust properly in

critical points of the function, as we can see in Figure 5.11 where the

�t function has two maxima around the second maximum of the ori-

ginal function.

Once the �tted function was obtained, the values of their �rst and

second derivatives were calculated in order to �nd candidates to local

maxima and minima. The method used in this con�guration is based

on the own de�nition of maxim and minimum, paying attention to the

derivatives of the function during the searching of these critical points.

In addition, a variation of restrictions previously de�ned5.2.4.2 and

5.2.4.2 is used to detect the �nal peaks which represent the �ngers of

the hand pose in the image. De�nitions used to the establishment of

the local maxima and minima are:
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� The �rst speci�cation is focused in �nding every local extrema

in the distance function as stationary points in accordance with

Fermat's theorem: If f(x) is a real and continuous function, the

point x0 belongs to the same domain than the function, and f(x)

is di�erentiable at that point f´(x0) = 0, then x0 is a local ex-

tremum of f(x) and if the second derivative f´´(x0) exists, it can

classify the point as a maximum, minimum, or in�ection point.

� The �rst derivative test checks the value of the �rst derivative to

classify whether these stationary points belong to a local max-

imum, a local minimum, or neither of them (a turning point).

� The second derivative test is a criterion for determining whether a

function in a certain point already labelled as particular presents

a a local maximum , a local minimum or a possible in�ection

point. The test determines that the function f(x) has a local

maximum at x0 if f(x) is twice di�erentiable at that stationary

point x0 besides having f
′
(x0) = 0 , and f

′′
(x0) < 0. In the

same way, the function f(x) has a local minimum at x0 if f(x)

is twice di�erentiable at that stationary point x0 besides having

f
′
(x0) = 0 , and f

′′
(x0) > 0.

Due to the fact that the �tting distance function of our implementation

is a real and di�erentiable function in its interval of de�nition, the

previous de�nitions could be used to �nd the maxima and minima of

the function. Therefore, values of the �tting function were covered to

�nd out the values of x in which the �rst derivative of the function

changed its sign instead of �nding the values where the function took

exactly null value. This is because we were working with discrete

samples and consequently, a point with f
′
(x) = 0 is di�cult to be

found within a �nite sampling of the function. Furthermore, in order

to avoid detecting the same critical point twice, those points where

f
′
(x) = 0 are not considered in the selection.

In Figure 5.12 an example of the �tting function , its 1stand 2nd de-

rivatives is shown.

In �gures of distance functions, green points represent the values of

the �tting function, points in pink are the values of the �rst derivative

meanwhile the values of the second derivative are drown in black colour.
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Figure 5.12: Depth image; �tted function, 1stand 2nd derivatives; detail of
the �tted function, 1stand 2nd derivatives.

The second image belongs to the whole distance function, where the

2nd derivative take high values, and the third image shows with more

resolution the values of the �tted function and its �rst derivative.

To continue with the processed followed, after the search of �rst can-

didates to be local maxima and minimums of the function applying the

approach to the �rst derivative test, the second derivative test was com-

bined with some restrictions to choose the �rst set of peaks.Therefore,

when a critical point xi is found in the �rst derivative function, the

values of the �rst derivative are analysed between the two consecut-

ive samples xi and xi+1 increasing the accuracy of the range, this is

subsampling the function in the interval Xsampl = [xi : xi+1−xi
1000 : xi+1].

Then, if the local extremum is a possible minimum (f ′(xi) < f ′(xi+1)),

the second derivative subsampled function is analysed in the point of

Xsampl where the positives values of f ′′(x) is the minimum. On the

basis of the the second derivative test, if f ′′(x) is positive in that found

point, then it is de�ned as a local Minimum of the function. Follow-

ing the same argument, if the local extremum is a possible maximum

(f ′(xi) > f ′(xi+1)), the second derivative subsampled function is ana-

lysed in the point of Xsampl where the negative values of f
′′(x) is the

closest to 0. So, if f ′′(x) is negative in that found point, then it is

de�ned as a local Maximum of the function.
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Once the initial set of local Maxima and Minima have been estimated,

some restrictions are applied to discard false positives Maxima. To

begin the discarding, the slope of the Maxima (the second derived of the

function) is analysed to reject those which amplitude is very high for

a short range of x values. An example of this case is similar to a glitch

in the function, an undesired maximum because reach large values

very quickly. Therefore, initial local Maxima which second derivative

function is higher than a speci�c threshold will be rejected. The chosen

reference level of the second derivative is 6 · 104.

Every time a local extremum is removed its associated local extremum

(if it was a maximum, the associated minimum ) must change. So, in

this case, after removing a local Maximum, the local Minima next to

it must change. This means if the rejected maximum had a minimum

in both sides, these two minima would be replaced by a single one

de�ned as the average of both old points. Nevertheless, if the rejected

maximum had only a single minimum closer, this one would remain

meanwhile the maximum would be removed from candidates list.

The next discarding method applied to the survival candidates consists

on calculating areas using the area of a triangle enclosed under the

curves of the minimums, at �rst, and the curves under the maximums,

at last . This is the restriction de�ned above about the triangle areas

under the maxima 5.2.4.2

Orthogonal-triangular decomposition is the method used to obtain

these areas using 3 points of the curve for each region. Required points

for the computation of areas under the local Minima are:

� p1:coordinates of the maximum with lowest value of x.

� p2: coordinates of the minimum.

� p3: coordinates of the maximum with higher value of x.

In the same way, required points for the computation of areas under

the local Maxima are:

� p1: coordinates of the minimum with lowest value of x.

� p2: coordinates of the maximum.

� p3: coordinates of the minimum with higher value of x.
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Figure 5.13: Points to calculate triangle area in distance function of the hand

In Figure 5.13 areas enclosed under both, maximum and minimums

curves, as well their three points required to de�ne the triangle´s area

are showed. Moreover, the area of the �rst maximum is �lled in red

and the area of the second minimum is �lled in green.

Nevertheless, in this example both curves are closed to other maximum

and minimum. When these required points belonging to the extremes

of the function (P1 and P3) are not available, the information of the

other two points has to be used to estimate the third one. For example,

if in the previous Figure, if the point P1 of the �rst maximum did not

exist, it would have to be de�ned as:

xP1 = xP2 − (xP3 − xP2) = 2xP2 − xP3

yP1 = yP3

Following the same method, if the point P3 of the second minimum

did not exist, it would have been de�ned as:

xP3 = xP2 + (xP2 − xP1) = 2xP2 + xP1

yP1 = yP1

In linear algebra, a QR decomposition3 (also called a QR factorization)

of a matrix is a decomposition of a matrix A into a product A = QR

of an orthogonal matrix Q and an upper triangular matrix R. This

3http://en.wikipedia.org/wiki/QR_decomposition
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Figure 5.14: Area under the curves to calculate peaks in distance function
of the hand

method is often used to solve the linear least squares problem, and is

the basis for a particular eigenvalue algorithm, the QR algorithm.

If A has linear independent columns (say n columns), then the �rst n

columns of Q form an orthonormal basis for the column space of A.

More speci�cally, the �rst k columns of Q form an orthonormal basis

for the span of the �rst k columns of A for any 1≤k≤n . The fact

that any column k of A only depends on the �rst k columns of Q is

responsible for the triangular form of R.

The implementation of the method is developed by Dirk-Jan Kroon

who used an existing Matlab function� triangle_area4, which calculates

the area and angles of any triangle described with 3 points of an space

with any dimension. Furthermore, the function allow to calculate areas

using Heron´s formula besides Orthogonal-triangular decomposition.

In geometry, Heron's formula, named after Heron of Alexandria, states

that the area A of a triangle whose sides have lengths a, b, and c is

A =
√
s(s− a)(s− b)(s− c)

where s is the semiperimeter of the triangle:

s = a+b+c
2

In the Figure 5.14, an example of the calculated areas from Maxima

(green triangles) and Minima (red triangles)a is shown:

Once the process used to calculate areas of maxima and minima is

explained, the area restrictions applied to remaining local Maxima and

Minima are described.
4http://www.mathworks.com/matlabcentral/�leexchange/16448-triangle-area-and-

angles-v1-3
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Figure 5.15: Example of a false minimum tooth mark case

As in the previously applied restriction to areas under the peak,the

main goal here is rejecting local Maxima with small areas to avoid

false positives in the estimation of the number of peaks , hence it has

to be identi�ed the possible cases where a maximum is considered a

false positive or a negative:

� Tooth mark case. False positive maximum: The �rst case can be

de�ne as the situation when we want to remove a false maximum

which has a small minimum which splits the maximum in two

sections, like a tooth mark. In this case, if the area of each min-

imum is calculated, the smallest ones can be removed, obtained

a bigger single maximum instead. The process followed to reject

these kinds of minima are the next:

First, the areas of each local minima are calculated. Then, these

areas are compared with a threshold (Area= 2), and they are

discarded if their areas are smaller than this value. Once again, if

there are two maximum close to a removed minimum, they have

to be replaced by the combination of them into a single one, giv-

ing to both x and y values the average of the older maxima. In

contrary, if they have only one or none maximum close, only re-

jected minima would be removed. In Figure 5.15 an example of

this case can be shown. The graphic represents both initial max-

ima, the green and orange regions. The �nal maximum resulting

from reject the minimum within the orange region is represented

in blue colour.

� Small minimum next to the initial maximum case. False negative

maximum: The reason to discard minima with small areas be-

fore removing the maxima of the function is because if there is

a small minimum close to the �rst or the last maxima, it would
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Figure 5.16: Reduced area of the �rst maximum of the function due to a
small minimum

make the calculated area of this maximum smaller than it is in

real and hence this maximum would be rejected for being a false

negative. In the example of Figure 5.16the �rst maximum has

a wide area (red triangle), nevertheless, the minimum next to it

would provide it with an smaller area (blue triangle) than the

real one. Therefore, both maxima with the blue area would be

rejected. The solution is applying the same restriction explained

before this last con�guration,t his is the Restriction in the second

derivative slope. Therefore, the abrupt local Maxima are rejected

from the function.

� Small maximum next to a large maximum. False positive min-

imum: This case happens when a minimum which had to be

discarded, have the same area as their next and valid minimum.

In addition in this case there is a small maximum between both

minima like it is represented in Figure 5.17, where the non-valid

minimum is in green and the valid one is in pink. Furthermore,

the problem introduced by this small maximum located between

both minima, is the same as the one described in the previous case

. Due to the e�ect of the second an third maxima, the last min-

imum (pink) has a similar area to the previous one (green) which

is wanted to be removed. it could not been rejected by area re-

strictions. The solution found to this problem is to reject abrupt

local maximum before computing the areas of the remained max-

ima and minima of the function, and then apply the restriction

of areas to remained local Minima.

Once di�cult cases found during the implementation of the last con-

�guration have been described, their associated solutions already ex-
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Figure 5.17: Area of a valid minimum versus the area of valid minimum

plained are summarized:

1. Searching of the local extremes by means of the changes in f´(x).

2. Classi�cation of �rst critical points found by sub-sampling f´´(x).

3. Restriction of the maximum values in f´´(xmax) in points asso-

ciated to initial candidates of local maxima.

4. Restriction of the minimum area A(xmin) in points associated to

initial candidates of local minima

Nevertheless, the are more restrictions and processes in this last con-

�guration to be described.

The next step after removing small minima was the recalculation of

the areas from surviving maxima in order to discard maxima with too

small areas, like it was made with the minima. At this point of the

process we found a critical situation: when all possible minima have

been removed but one maxima still remains as candidate. Therefore,

when the area of this maximum has to be estimated, two of the three

required points do not exist. The solution for this situation is to de�ne

this missing points as the lowest and highest points of x where the

function is de�ned (f(x) 6= 0). Like in the previous similar restrictions,

the area of the remainder maxima is computed and rejected in the case

of being too small. Finally, the minima next to the removed maximum

have to be uni�ed under its average value.

The last restriction made consists on rejecting the maxima which have

a height lower than an speci�c threshold. This value was determined

by the distance from the wrist to the limit of the palm of the hand.

This condition allows to remove maxima from distance function of �st

images where no protrusion should be identi�ed. Therefore, the max-

imum distance reached by an outline point in �st images was de�ned
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as the minimum distance which a �nger of the hand has to exceed.

The de�ned threshold was found out from di�erent observations.

Finally, the number of protrusions was obtained from the number of

surviving candidates to local maxima of the distance function. Thus,

the above mentioned list of applied restrictions can be completed now:

1. Restriction of the minimum area A(xmax) in points associated to

remainder candidates of local maxima.

2. Restriction of the amplitude of the local maxima f(xmax) > dfist

3. Number of protrusions: Np = #(xmax)

As it was explained in the beginning of this section, only the �atness of the

ellipse r5.2.2 and the number of protrusions of the image Np are de�ned as

parameters of the description. Results obtained from this implementation

will be describe in the next Chapter 6 besides yielded conclusions of this

method.

5.3 Roussos Implementation Concerns

5.3.1 Introduction

In this Section a detailed explanation of the implemented modules, described

in [2], will be given.

In the implementation made of Roussos descriptor, 3 di�erent stages can be

enumerated:

� Preprocesing: 2D alignment of hand images.

� Base Generation: a set of synthetic images is used to generate the hand

base.

� Extraction of the descriptions: the descriptions for the input images

are obtained by their projection to the generated base.

Each stage above was implemented to extract descriptions from two sets of

images: �rstly from TRAINING set and later from TEST images described
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in Chapter 3. Previously to these stages, images from TEST set were seg-

mented on the basis of the depth information (see Section 4.1), meanwhile

in the paper [2] the segmentation of the hand is done using an skin colour

detector and templates. Besides the segmentation of images, a normalization

process was required to prepare this subset of images for the base generation.

This consisted in subtracting the mean image and dividing by the standard

deviation image.

The process followed consists on generating the vectors of the base from a

subset of the TRAINING set images after their alignment. Then, images

from both sets are extracted aligning them �rstly with an average image A0

and projecting them to the base. Finally, the veri�cation of the descriptor

performance is made with the reconstruction of images on the basis of their

projections.

Now , each of the implemented stages is explained in detail.

5.3.2 Preprocessing Alignment

Before explaining the followed process for the recursively alignment, which

is quite similar to the method implemented in the paper [2], it is important

to point out why it is mandatory: Principal Component Analysis (PCA) is

very sensitive to translations, scale and rotations in the images. This makes

very important the alignments previous to the base calculation. For the

generation of the base are recursive alignment process (based on the a�ne

alignment describes in Section 4.2.1). It can be summarized in the following

points:

1. Selection of the �rst image from the training set as A0 image: Assuming

that the input images for the base generation have to be aligned, A0

was initialized as the average of these base images. The size of this

image, and of the rest of the images involved in the base generation

is incremented adding black rows and columns of pixels. This way we

avoid loosing information of the images being aligned when the applied

transformations put pixels out of the original dimensions of the image.

� Alignment of images with current A0 using the a�ne transform. Im-

ages have to be aligned to avoid rotations, scales and translations. The
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details about the whole process involved in the a�ne transform can be

found in Section 4.2.1. The three principal points (see Section 4.2.1.1)

of each image are required to be aligned with the principal points of

A0, which de�ne the reference of the transformation.

� Estimation of the new reference imageA´

0: After the �rst iteration of

alignment of images, the resulting image A0 needs to be reestimated in

the new A´

0 by the average of aligned images. Obviously, this A´

0 has

the same size as the biggest aligned image.

� Comparison of the new A´

0 with the previously calculated A0: The mean

A0 is updated iteratively until the mean squared of the di�erence with

the previous mean image is under a certain threshold: the unit. There-

fore, steps from the second to this last one, are repeated changing A0

by A´

0 until there is no signi�cant di�erence between both reference

images.

5.3.3 Base Generation

The implementation of the hands base generation is based on a code origin-

ally proposed by Alex P. Pentland and Matthew A. Turk from MIT in 1991

for the description of faces using a Eigenfaces based approach5. Authors of

this method obtain the mean image of a prede�ned set of face images. Then,

the recognition of face images is applied weighting the di�erence between

face images projections to a set of eigenvectors. If the di�erence does not

exceeds a speci�c threshold, projected image is assumed as an known face,

which will be de�ned by the eigenface with the lowest di�erence among the

previously calculated. Due to the similarity with the goal of this project, the

mentioned method was used for the implementation of Roussos descriptor

extractor. In next lines the process carried out is described.

In general lines, the process consists on computing the covariance matrix of

previously aligned training images resulting from the preprocessing of images

(see Section 5.3.2); extracting eigenvalues and eigenvectors from this matrix

and applying PCA to select the principal components of the new computed

hand base.

5http://www.pages.drexel.edu/~sis26/Face%20recognition.htm
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Before continuing with the explanation of the implemented techniques, the

PCA foundations will be pointed out. The next explanation is based in [59]

and documentation from Wikipedia6.

Principal component analysis (PCA) is a mathematical procedure which gen-

erates a new reduced set of uncorrelated variables, the principal components,

from a wide range of interrelated variables of a data set using an orthogonal

transformation. Besides the reduction of the data dimension, another goal

of this procedure is to retain as much as possible the variability in the data

ordering the principal components by their variance, higher in the �rst com-

ponent than in subsequence ones. This can be understood as a reduction

in the number of components in a way in which we keep the most relevant

information of the input data. Afterwards, the resulting component can be

sort by the quantity of information they are able to express.

PCA analysis is usually used as a tool in exploratory data analysis as well

as in generation of predictive models. One of the possible methods to ap-

ply PCA which we have used in this study is the estimation of a covariance

matrix and its decomposition in eigenvalues. Results from this method are

classi�ed in terms of component scores and loadings. The �rst concept cor-

responds to the values from data transformations, this is a particular obser-

vation of the experiment. In contrary, loadings are the weights required to

obtain a speci�c value in the transformation domain by their multiplication

with the standard original variable. In terms of the hand descriptor, scores

of each variable or image would be the description of the variable or input

image.

Moreover, if this procedure is used in a multivariate dataset, each variable

can be represented as a new axis in a high-dimensional space where data is

represented by the coordinates of their projections into this new space.

Now, it is going to be described the implementation of the principal com-

ponents extraction using the covariance method, which provides input base

images with an orthogonal linear transformation to project input images into

the new coordinate system.

The �rst step consists on arranging the data set chosen for the generation of

the base in order to reduce the number of elements of the base after being

6http://en.wikipedia.org/wiki/Principal_component_analysis
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aligned with the image A0. Because each image has to be considered as a

a di�erent repetition or observation of the same experiment, pixels of each

image are placed in the same row along di�erent columns (one column for

each image). Therefore, if we had M images with N pixels, the initial data

set matrix obtained is a NxM matrix.

XNM =


x11 x12 · · · x1M

x21 x22 · · · x2M
...

...
...

...

xN1 xN2 · · · xNM

 (5.1)

PCA proposes an orthogonal decomposition of symmetric positive semide�n-

ite (PSD) matrix, in particular of the Covariance matrix, to provide images

with an orthogonal basis of eigenvectors.

If we attend to the de�nition of the Covariance matrix of M random vari-

ables with a Gaussian distribution, we can explain the next steps of the

implementation by the equations of that Covariance matrix:

Cx1,x2...xM =


C11 C12 ... C1M

C21 C22 . . . C2M

...
...

...
...

CM1 CM2 . . . CMM

 (5.2)

Ci,j = E [(xi − x̄i)(xj − x̄j)] =
N∑
k=1

N∑
l=1

(xik − x̄i)(xjl − x̄j); i 6= j (5.3)

Ci,i = σ2i = E[(xi − x̄i)2] =
N∑
k=1

(xik − x̄i)2; i = j (5.4)

Because each element of the covariance matrix is the covariance of each image

with the rest of images, except the elements from the diagonal which are their



5.3. ROUSSOS IMPLEMENTATION CONCERNS 83

own variance, the next step of the process is the calculation of the average

from each observation into an empirical mean vector with M elements.

ui =

N
1

N

∑
i=1

xi; i ∈ [1,M ] (5.5)

MMxN =


u1 u1 · · · u1

u2 u2 · · · u2
...

...
...

...

uM uM · · · uM

 (5.6)

After calculating the empirical mean of each image, they have to be sub-

tracted from each of its pixel, making that resulting principal components

minimize the mean square error of approximating data. This is because the

global mean and variance from the resulting data distribution function were

the same with independence of hand distances during the capture, etc. This

also allows the covariance matrix resulting from these normalized set to be

centred on 0 with unit variance. Therefore, if the input data matrix is trans-

posed and centred on the empirical mean matrix later, the resulting matrix

will be a MxN matrix.

HMxN = X ′ −M

Finally, using the proprieties of the outer product and the conjugate trans-

pose the covariance matrix is generated as the sum of outer products of the

previous matrix H.

CMxM =


C11 C12 ... C1M

C21 C22 . . . C2M

...
...

...
...

CM1 CM2 . . . CMM

 = E [H ⊗H] = E [H ·H?] =

N
1

N

∑
i=1

H·H?

(5.7)

The next step consists on extracting eigenvalues and eigenvectors of this

covariance matrix which satisfy the next equation.
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C.v = λv

As it was mentioned before, extracted eigenvector and eigenhands by this

process will be the base elements of a new orthogonal basis of images. The

method used allows to extract directly eigenvalues from the diagonal matrix .

Moreover, this diagonal matrix results from multiplying our covariance mat-

rix with the matrix which contains eigenvectors and which can diagonalize

this covariance matrix. However, there are some preconditions to be ful�lled

by matrix involved in these calculations. These conditions are those which

ensure that the covariance matrix is a real symmetric and square matrix,

allowing extract simply the values of its eigenvectors and eigenvalues:

1. If C is the square complex Covariance matrix, C is normal if and only

if:

(a) C ∗ .C = C.C∗

Among complex matrices, all unitary, Hermitian, and skew-Hermitian

matrices are normal. Likewise, among real matrices, all orthogonal,

symmetric, and skew-symmetric matrices are normal.

2. If the Covariance matrix is real besides normal, then:

(a) C∗ = CT

(b) CT .C = C.CT

3. U is an unitary matrix if and only if:

(a) U ∗ U = UU∗ = I;⇒

(b) U−1 = U∗

The spectral theorem says that every normal matrix is unitary similar to

a diagonal matrix, this is if A is a normal matrix (AA∗ = A ∗ A ) then

there exists a unitary matrix U such that U ∗ AU is diagonal. It can be

demonstrated by the Schur decomposition , where the normal matrix can

be written as A = UTU∗, de�ning U as an unitary matrix and T as an

upper-triangular matrix. Since A is normal, TT∗ = T ∗T . Therefore T must

be diagonal. Finally, A can be said is a normal matrix if and only if there
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exists a unitary matrix U such that A = UTU∗, where the entries of the

diagonal matrix T are the eigenvalues of A and where the column vectors of

U are the orthonormal eigenvectors.

Therefore, if previous 1,2 and 3 conditions are ful�lled by the Covariance

matrix, this means that it is a real square and normal matrix, there exists a

unitary matrix V which generates the diagonal matrix D , an MxM matrix

containing the eigenvalues of the matrix C. In addition, we can extract the

characteristic equation from the spectral theorem, the Schur decompos-

ition and above-mentioned properties:

1. Spectral theorem and Schur decomposition:

(a) V ∗ .C.V = D

(b) C = V.D.V ∗

(c) C = V.DV −1

2. Diagonal matrix containing eigenvectors:

(a) D =


λ1 0 0 0

0 λ2 0 0
...

...
. . .

...

0 01 0 λM


3. Unitary matrix containing orthonormal eigenvectors

(a) V −1 = V ∗

(b) V ∗ .V = V.V ∗ = I;

4. Multiplying matrix V in both right sides of 1.c

(a) C.V = V.D.V −1.V

(b) C.V = V.D.I

(c) C.V = V.D

5. Finally, the characteristic equation from the square Covariance matrix

is achieved.The solutions to this equation are the desired eigenvalues

λi of the matrix D which diagonalize the covariance matrix C
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(a) C.vk = λ.vk

(b) (C − λkI)vk = 0

6. If we want to obtain non-zeros vectors (if λ is wanted to be a eigenvalue

of C) the matrix C−λkI has to be a singular or non-invertible matrix.

This goal can be achieved making det(C − λkI) = 0 . Consequently,

resulting roots of λi will be eigenvalues of Covariance matrix, and their

corresponding eigenvectors will be used to create the V diagonalizable

matrix. Finally, we can obtain the M di�erent eigenvalues from each

eigenvector of the M ones (each eigenvector has M elements):

(a) λk = [λ1, λ2, ..., λM ]

(b)


C11 C12 ... C1M

C21 C22 . . . C2M

...
...

...
...

CM1 CM2 . . . CMM




v11

v12
...

v1M

 = λ1


v11

v12
...

v1M

 V −→v1 =

[v11, v12, ..., v1M ]

(c)


C11 C12 ... C1M

C21 C22 . . . C2M

...
...

...
...

CM1 CM2 . . . CMM




vM1

vM2

...

vMM

 = λM


v11

v12
...

v1M

 V −→vM =

[vM1, vM2, ..., vMM ]

Nevertheless, for the implementation of this algorithm, an existing Matlab

function, eig 7 ,was used to extract the set of eigenvalues and eigenvectors of

the matrix resulting from multiplying our centred set of images H , without

the need of computing these tedious calculations. The Eigenvectors are the

principal components of the covariance matrix, and their eigenvalues, are

extracted from the covariance matrix.. Then, non zero eigenvalues which

are in a diagonal matrix are stored besides theirs associated eigenvectors.

Moreover, each eigenvector have M elements related to each eigenvalue.

The next step consist on rearrange both eigenvectors and eigenvalues to sort

decreasing the eigenvalues, having the largest ones at the top of the matrix.

This means that largest eigenvalues correspond to upper positions of the

matrix, as well as the matrix with eigenvalues has to be rearranged in the

7http://www.mathworks.es/help/techdoc/ref/eig.html
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same manner. Furthermore, the principal-components that are associated

with most of the covariability will be yielded from the �rst columns of the

matrix.

Once eigenvectors and their corresponding eigenvalues have been rearranged,

they have to be also normalized in order to avoid problems when input images

are measures with di�erent sources.

vk =
−→vk√√√√∑
i

(vki)2

At this time, eigenhands de�ned as the orthonormal image basis can be

calculated. So the eigenvectors set has to be normalized with respect to its

variance, this is the root of its eigenvalues. Finally, the loading or the �nal

values of the eigenhands are resulting from the product of the aligned centred

images with unit eigenvectors of the basis.

−→ek = (X−X).−→vk√
dk2

= H.−→vk√
dk2

Finally, the M unit eigenhands are consequently extracted from the nor-

malization of the previous vectors with the same size than input images:

ek =
−→ek√√√√∑
i

(eki)2

In order to apply PCA, the projections of the images from the base set have

to be obtained to calculate the cumulative energy among the eigenhands.

Therefore, the weights or projections associated to the kth image can be

calculated as the dot product of the kth image with M eigenvectors of the

base. Each image will have one weight associated to each eigenhand:

wk = [< e1, hk >;< e2, hk >; ... < eM , hk >]

The �nal selected eigenhands are chosen from the cumulative energy of these

projections. Therefore, depending on the desired resolution of the regener-

ated hand images, we can chose the percentage of energy to be accumulated
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by the projections of base images from the chosen set of eigenhands. In

fact, di�erent resolutions can be appreciated in the implementation of the

descriptor, where three di�erent amounts of energy haven been stored: 95%,

99% and 100%.

g =
Nc∑
i=1
w2
i

g
M∑
i=1

w2
i

≤ 95%; 99%; 100%

The more energy is stored with eigenhands, the higher precision the recon-

structed images will present, although the reduction applied to the principal

components will be smaller. This issue is the responsible of de�ning the

number of the elements which compounds the hand base. In [2] this number

is named Nc. There are two contrasting trends considered in the paper. The

�rst one attends to the fact that the smaller is the order of the descriptor,

the easier the test images descriptions are classi�ed in the correct cluster:

this implies high recognition rates. In addition, the discrimination among

di�erent points in the eigenhands feature space is low. However, the greater

the order of the descriptor, the more accuracy in the discrimination of the

di�erent gestures.

Finally, when de�nitive eigenhands are calculated with the cumulative en-

ergy, they are stored to be used as vector images of the base.

The relationship between PCA and the implemented descriptor is that each

input image used in the generation of our base can be considered as a par-

ticular observation of the experiment, where there are interrelated variables.

Therefore, the extraction of principal components of this set of images ob-

tains a new set of uncorrelated variables (or images) which can be similar

or smaller than the original set, but t enough to regenerate an image which

bears a strong resemblance to the original one.

The right reconstruction of images from their description depends on the set

of images used in the generation of the base. This set has to be represent-

ative enough to provide a hand base with the minimum number of elements

required to describe the input image.

Figure 5.18 represents eigenhands of a particular set of synthetic images.

However the vectors of the base are similar to images from the base hand
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v1 v2

v3 v4

v5

Figure 5.18: Eigenhands of the [6] dictionary generated from a set of syn-
thetic images with range of θx1 , θ

y
1 , θ

z
1 = π/8, 1 POV and 95% of the energy

set, but they are not the same and even less when the number of its elements

is lower than in the original set of base images (before applying PCA). But

in the implementation of the descriptor, their mean and average had been

modi�ed in order to allow eigenhands to be shown as images. In this Figure

we can notice the resemblances of eigenhand with the images used for the

generation of the base (see Figure 3.7c).

5.3.4 Description Extraction

After the generation of the eigenhands of the base, input images from both

set of images, TRAINING and TEST, can be described with their projections

into this new base.

The description proposed in [2]is the same than we used in its implement-

ation: the weights/values of the projection from each image into the hand

base. These values result from the dot product of input aligned images with

the eigenhands of the base. However, like images used for the generation of

the base, images to be described have to be prepared before extracting their

projections. This preparation consists on:
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� A standard normalization of images, consisting on subtracting them

its average and dividing them by its standard deviation.

� An a�ne alignment of images with A0, performed as explained in Sec-

tion 4.2.1 .

As it was commented at the beginning of this paragraph, the projection was

obtained from the dot product of these aligned and centred images with the

eigenhands of the base. These projection of images are the weights of the

image with each image of the base, how much can contribute each element

of the base for the generation of the input image:

λk =< ek, (xk − xk) > (5.8)

λ = [λ1, λ2, ..., λNc] (5.9)

The reconstruction of the images from the description and the eigenhands

was implemented too. The method used for the reconstruction is the same

as proposed in [2]: by the linear combination of the hand base images and

the mean reference image A0 as well as the projection of the images:

f(x) = A0 +

Nc∑
i=1

λi·Ei (5.10)

In Figure 5.19 synthetic reconstructed images are extracted.

To conclude it is important to emphasized the quality of the reconstructed

images depends on the variability of the images for the base generation.

This means that the more di�erent the images for the base are, the better

the reconstruction of the new images to be described will be. After applying

PCA to the elements of the base, with a particular amount of energy stored
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201 202

203 204

205

Figure 5.19: Reconstructed synthetic images

by eigenvectors, only the images with the highest weights in their projections

will remain.

For example, the palm of the hands is a common feature of all images, there-

fore it will be present in the �rst component which includes the highest

quantity of information of the data set. In contrast, �ngers involve a smal-

ler contribution of the images depending on the kind of gesture. But, the

fore�nger is the most common of all the �ngers in numeric dictionaries.

This implies that it will be probablyincluded in the �nal set of principal

components, remained after the selection of the 95% of cumulative energy.

Nevertheless, the thumb will be probably not included within this set, due

to his lower contribution in base images , unless more images of hands with

outstretched thumb were used in the base set.

The results obtained in the implementation of this descriptor will be de-

scribed in the next chapter 6, besides the demonstrations and conclusions

extracted from the descriptor discussed above.
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Chapter 6

Results and Conclusions

6.1 Evaluation Scheme

6.1.1 Framework:Weka

Weka1 open source software is included in GNU General Public License and

it was selected in this study to the evaluation of implemented descriptors.

It provides with a collection of machine learning algorithms , as well as

with useful tools for data pre-processing, classi�cation, regression, clustering,

association rules, and visualization. Therefore, there are two speci�c test

�elds yielded from Weka analysis which are the centre of attention for the

evaluation stage of this project: to estimate the separability of the categories

de�ned..

This way we will be able to estimate the performance of each model to

describe the hand poses captured in the test images. Moreover, the more

separated the components of the description are, the easier it will be to

classify data in di�erent categories.

Given a set of training examples, with their correspondent descriptions and

annotations (i.e. its belonging to one of the possible categories, in our case

the gestures of a dictionary), a unsupervised learning technique is applied to

build a model that later assigns a predicted label to new images belonging to

the test set. This model tries to map that examples into separate categories

as wide as possible.

1http://www.cs.waikato.ac.nz/ml/weka/

93
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As an illustrative way of visualizing the set of descriptions is to represent each

coordinate of each local description in an histogram, assigning a di�erent

colour depending on to which class the description belongs to. In Figure 6.1

we �nd an example of these histograms for the synthetic training set Roussos

descriptions. Only the �rst 4 coordinates of the descriptions were taken

under consideration, this is, the 95% of the energy of the original images is

achieved. Thus, the description of each image, this is each instance, has four

components or attributes. Analysing descriptions and annotations attached

to each instance, each component of the description can be separated in

di�erent categories attending to its values in each hand pose of the training

images. Therefore, Weka generates the histogram of each component of the

description from instances of the training set, and identi�es for each income

the di�erent class of hand poses which belongs to it.

In Figure 6.1 we can �nd the histograms for each coordinate of the pattern

for a classi�cation problem with four features plus the annotation label. For

example, the �rst component of the description belongs to v1 and reaches

high values in all the hand poses, although the highest ones are taken by the

poses that belong to blue and grey classes.

A possible approach for the classi�cation of these descriptions in hand poses

classes would be the de�nition of rules. For example, basing on the histo-

grams of we could deduce that the hand posture associated to pale blue class

will probable be the descriptions which have the highest values of compon-

ents v4 and v2. In contrast, gestures represented by grey samples can be

easily detected if the component v3 of the descriptor are higher than 50 be-

cause only this class of hand postures reaches these values with this attribute.

Anyway, this approach gets too complex with the increment of the number

of coordinates or simply when the instances are not easily separable. This

is why the followed approach for this evaluation stage consists on the use of

unsupervised learning techniques, more concretely, the use of a Multi-Layer

Perceptron (MLP).

Another important concept necessary for understanding outcome from Weka

analysis is the confusion matrix. It is generated from the predictions made

over the test set of images. Based on the annotations of that test set, the
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Histogram of component v1 Histogram of component v2

Histogram of component v3 Histogram of component v4

Histogram from annotations of each hand pose

Figure 6.1: Pattern classi�cation from Roussos descriptor using a base of the
95% from the input set energy .
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Figure 6.2: Confusion Matrix from Roussos descriptions using a base of the
95% of image energy

predictions given by the neuronal network can be evaluated to asses the

quality of the descriptor. Thus the matrix shows which hand poses have

been classi�ed correctly and which of them have been confused with other

ones. In addition, Weka shows the percentage of these hand poses correctly

described. An example of confusion matrix is shown in Figure 7.2,

In the matrix shown in this Figure 7.2 it can be appreciated that the pose

204 is confused with the pose 201 in some cases. It can also be noticed that

pose 205 is the best classi�ed hand gesture, a low number of images were

assigned to other hand poses. In contrast, the images belonging to pose 204

class show the worst detection results of all images because in several cases

it was confused with pose 205.

6.1.2 Modular Scheme

Following the process described in the Figure 6.3, the evaluation of both im-

plemented descriptors Tanibata and Roussos is described in this paragraph.

Moreover, due to the independence of the evaluation machine with the im-

plemented methods to extract description data, the followed scheme was the

same for the two studied models of the project.
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Synthetic

Images

200 POV

TRAINING Descriptions

TRAINING SET TEST SET

Real

Images

11 Users

TEST Descriptions

Description 
Extractor

TRAIN

 Annotation

Confusion Matrix

TEST

 Annotation

Figure 6.3: Followed processes for the evaluation of the descriptors.
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As it can be shown in the Figure 6.3, the evaluation scheme �rstly requires

the descriptions and annotations from synthetic and real images. The ex-

ample shown in the Figure includes hand gesture images from Soutschek

dictionary. Regarding to the collection of images we used to evaluate our

descriptors, two kinds of images were selected attending to the training and

test stages. The training images set is compound of 200 di�erent synthetic

images for each hand pose of the dictionary. This collection was used to

train the MLP algorithm. The test set of images are captures of hand poses

extracted from 11 di�erent users.

Once the description data is extracted, the annotation related to each hand

pose is added to instances of test and train sets. Then, the machine learning

software establishes the relationships between descriptions and associated

hand poses in order to generate the predictions from the descriptions of

the test data. Weka framework provides several classifying functions to ex-

tract and assess predictions from data descriptions, however the multilayer

perceptron is the algorithm we used to this issue. Thus, back-propagation

technique applied in the train stage of the project tries to �nd the statements

which allow to classify better each hand pose attending to their descriptions.

Finally, after generating predictions of the test set of images, annotations

included are used to assess those predictions. Therefore, knowing the hand

poses corresponding to each instance of the test, the confusion matrix is

yielded from the outcomes of the evaluation program. Moreover, besides

the confusion matrix, Weka provides the percentage of gestures correctly

classi�ed during this modular scheme of the test stage.

However, results obtained from this evaluation process, were generated from

normalized training instances and the multilayer perceptron classi�er al-

gorithm. Due to the the results obtained from the normalized data are

better than using data without being pre-processed, the next con�gurations

were applied to instances of the training set:

� Normalization of instance Unsupervised: This normalization only af-

fects to numeric attributes, ignoring class index. Con�guration para-

meters of this function:

� Norm: The norm of the instance after normalization.

* Norm =1.0:
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� Lnorm: The Lnorm to use

* Lnorm=L2.0

However, the results obtained from this evaluation process are generated

on the basis of normalized training instances. The applied normalization

method is widely used and it normalizes its instance independently from

the othersAs it was above mentioned, among the provided by Weka frame-

work classi�ers, the multilayer perceptron, a fed-forward arti�cial neuronal

network was chosen to make the predictions during the evaluation process.

These kind of networks are made up with multiple fully connected layers

of nodes in a direct graph. Each processing element of the network is a

node which has a non-linear activation function. Based on the supervised

learning back-propagation technique to the automatic pattern recognition,

some parameters of the algorithm were con�gured as it is de�ned below to

performance the descriptions trials.

� Multilayer Perceptron Classi�er: Back-propagation technique is used

here to classify instances. The nodes created in this network are all

sigmoid (except for when the class is numeric in which case the the

output nodes become unthresholded linear units). Set-up parameters

were the default ones, with the �normalize Attributes� �ag disactivated:

� Learning rate: The amount the weights are updated, L=0.3.

� Momentum: Momentum applied to the weights during updating,

M=0.2.

� Training time: The number of epochs to train through. If the

validation set is non-zero then it can terminate the network early,

N=500.

� Seed: This parameter is used to initialise the random number gen-

erator. Random numbers are used for setting the initial weights of

the connections between nodes, and also for shu�ing the training

data, V=0.

� Validations set size: The percentage size of the validation set.

(The training will continue until it is observed that the error on

the validation set has been consistently getting worse, or if the

training time is reached). If This is set to zero no validation set
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Dict [6] 61.2843 % 60.873 %

Table 6.1: Tanibata descriptor performance for di�erent dictionaries and
with di�erent set-ups.

will be used and instead the network will train for the speci�ed

number of epochs.S=0.

� Validation threshold: Used to terminate validation testing. The

value here dictates how many times in a row the validation set

error can get worse before training is terminated, E=20.

To conclude, the results obtained for Roussos and Tanibata descriptors are

presented in next Section.

6.2 Results

The experiments carried out take into account di�erent set-ups. Common to

Roussos and Tanibata descriptors we vary the variation ranges of the three

global rotation angles of the synthetically generated images. For Roussos

there are two more parameters to vary: relative PCA energy of the selected

eigenvalues relative to the all of them, and the number of Points Of View

(POV) of each pose in the collection for the generation of the base.

Here we present some results for dictionary [6].
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(a) 1 POV for each pose in the collection for base generation.
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(b) 9 POV for each pose in the collection for base generation.

Table 6.2: Roussos descriptor performance for di�erent dictionaries and with
di�erent set-ups.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.1.1 Tanibata Descriptor

The main di�erences of the results obtained from the simulations of Tanibata

descriptor are not directly related to the kind of con�guration involved in the

trials, but it is related with the kind of gestures included in each dictionary.

In fact, due to the fact that only two parameters, the ratio of the ellipse

and the number of protrusions of the hand, are used to describe images, the

quality of each element of the description depends on the kind of the hand

gesture to be described. Attending to each parameter of the description,

some conclusion can be extracted from the experiments:

� Ratio of ellipse, r. This feature of the hand is especially useful to

di�erentiate hand poses with extended �ngers from �st images, where

only the knuckles of the hand match with the contour of the ellipse.

This ratio also allows to distinguish hand poses without a thumb from

gestures containing the thumb extended, because the di�erence of the

aspect ratio between both images.

The correct estimation of the wrist point in images is one of the tasks

of the descriptor which a�ects to the computation of the ratio of the

ellipse. As it has already commented in Chapter 5, the ellipse extracted

from hand images are not always orientated in the same direction as
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Dict1 Dict3

Figure 7.1: Confusion Matrix of Tanibata Dictionaries

the palm. So in some case, like in �st images, the Minor axis of the

ellipse is the axis generated over the �ngers region instead of the Major

one.

Now, analysing the generated confusion matrix from the two di�erent

dictionaries(see Figure 7.1), Dict1 and Dict3 (see Section 6.2), the

previous comments can be checked.

Also, the a�ne alignment have a big in�uence in the results obtained from

the classi�cation of hand poses and it is necessary to the correct extraction

of the number of protrusions for particular images, like it is explained in the

next paragraph.

� Number of protrusions Np. This parameter is the most intuitive to clas-

sify di�erent hand poses. In fact, if it would be always correctly extrac-

ted, gestures from the [1:5] Dictionary will only need this parameter

to be described. Nevertheless, the number of peaks or protrusions is

not enough when not all the elements of a dictionary are numeric ges-

tures. For example, in the case of [6] Dictionary, poses �Ok_left� and

�Ok_rigth� have both one peak in their distance function. In the same

way, in [6], the pose �e� also has one number of protrusion. Moreover,

because in the computing of the distance function almost all outpoints

of the hand are covered, the �st image also presents a peak in their

function. Although this peak is not so abrupt like in the case of �nger

detection, it is also a maximum of the function. Because of this, the

relative height of the peaks were analysed in order to reject maximums
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lower than the peak of a �st image. Therefore, in this kind of image

the number of protrusions should be zero.

As well the estimation of the point of the wrist is very important for

the later calculation of Np. As in the case of the ratio of the ellipse,

it is necessary the correctly location of this point of the hand. Since

almost all the contour of the hand is covered during the estimation of

the distance function, this problem especially a�ects when the analysed

pose is a �st. Hence, if the wrist is erroneously located in the thumb,

for example, the relative height of the distance function will be higher

than if it were in the right place. So, the number of protrusions here

would be one instead of zero.

7.1.2 Roussos Conclusions

In this descriptor the con�gurations of the base and the synthetic TRAIN-

ING set used in the simulation are very important. Therefore, some param-

eters used in this descriptor are a�ected by the number of images de�ned

for the generation of the base (by means of the number of POVs per pose

and the relative energy of the eigenhands), as well as the range chosen for

synthetic images of the Training set. The number of eigenvectors depends

on the outcome of the PCA analysis, which allows to reduce the number of

principal components used to describe images. Hence, the higher number of

element of the base, Nc,the lower is the di�erence between the reconstructed

image and the original one, meanwhile the run time and complexity of the

alignment increase.

� The results obtained for the experiments made with Dict1, generated

with base images of 9 and 1 points of view, both of them with the 99%

of the energy are very illustrative. Therefore, the 70.501 % obtained

for 9 POV in contrast to the 58.766 % for 1 POV, which can be shown

in Table 6.2b and 6.2a respectively, demonstrates the argue discussed

above: Within a medium number of elements of the base of the same

dictionary, the more images used in the base generation, the better

results will be obtained in the classi�cation. Therefore, using a higher

number of points of view of each pose, 9 POV, generated results are

better, almost 71%. These results can be shown in Figure 7.2.
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Confusion Matrix with 9 POV Confusion Matrix with 1 POV

Figure 7.2: Confusion Matrix from Dict1 using a base with the 99% of the
energy

� The elements of the base. As it is explained in Chapter 5, the extrac-

tion of principal components of the initial set of base images generates

a new set of uncorrelated images smaller than the original set, but

enough to regenerate with �delity an image. Furthermore, the average

image A0contains the higher variability of all images from the base set

meanwhile the rest of eigenimages have a progressive lower contribu-

tion. This characteristic allows images to be described by the main

component A0 besides a reduced number of secondary components.

Therefore, the correctly reconstruction of images from their descrip-

tions depends on the set of images used in the generation of the base.

This set has to be representative enough to provide a hand base with

the minimum number of elements required to describe the input image.

So, the more di�erent the images used are , the wider the base will be

and consequently, the expressive capacity. As well, the success of the

alignment is also very important because it allows describing the same

kind of gesture with independence of the scale, orientation and shift

without the need of adding more elements into the base.

For example, the in�uence of the little �nger is lower than the in�uence

of the index �nger in [56] Dictionary, where the most of hand poses

included have this last �nger extended. So it is easy to deduce, that

the eigenimage containing this region of the �nger will have a weight

higher in the most of images projected into the base than the eigenhand

related to the little �nger region.
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95% of the energy 99% of the energy 100% of the energy

Figure 7.3: Confusion Matrix from Dict3 using a base with the 1 POV

Moreover, this kind of problem is shown with the confusion matrix of

Figure 7.2. There, it can be noticed that in the case of the base with 9

POV the pose 205 is usually confused with the 204 (see Figure 3.7c),

due to the problem mentioned in the next bullet about the elements

which form the base images. In the same way, results from base with

1 POV shown that the pose 201 is usually confused with the 202 (see

Figure 3.7c) due to the resemblance between both images.

� The amount of energy stored by the eigenhands de�ned by PCA. This

energy parameter is related to the de�nition of the number of elements

which form the base. Hence, the more energy we want to store with

eigenhands, the higher precision in the reconstructed images. This im-

plies that with more energy the expected recognition rates are higher..

Now, analysing the confusion matrix of the three di�erent sets of stored

energies, 95%, 99% and 100%, of the same Dictionary, Dict 3, gener-

ated with 1 POV the previous observation can be noticed in Figure7.3.

The results obtained are better, 47% for a base with a higher number

of elements, this is the ones generated with the 100% of the energy,

meanwhile the results obtained from the base with the minimum en-

ergy, 95% generated the lowest results, 42.2% of the energy.

Moreover, it can be observed in these matrixes that the most misclassi�ed

hand poses are those that do not belong to numeric poses, like the pose

205 which has the worst results from all the classi�ed gestures in all the

con�gurations (see Figure 7.3).
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The initial alignment of images (see Section 4.2) contributes in the reduction

of the number eigenhands because they are extracted from the covariance

matrix, which depends on the variability and resemblance of the images used

to the base generation. Furthermore, PCA selects the regions of the hand

with the high representation of images used to the generation of the base.

Therefore, the same hand gestures with di�erent scale, direction or center

would produce multiple and di�erent elements during the base generation,

meanwhile aligned images of the same gesture would generate fewer elements

to describe hand images.

7.2 Future Work

Some future work lines can be enumerated:

� The testing of more descriptors with di�erent evaluation schemes.

� The inference of the position of each joint of the hand for a given input

image.

� The processing of a temporal image sequence, making use of temporal

coherence over pose detection or over the original depth information.
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1) Ejecución Material: 1650 ¿

Desglose por Conceptos:

� Compra de ordenador personal (Software incluido)....... 1.500 ¿

� Material de o�cina....... 150 ¿

2) Gastos generales

� 16% sobre Ejecución Material 264 ¿

3) Bene�cio Industrial

� 6% sobre Ejecución Material 99 ¿

4) Honorarios Proyecto

� 1500 horas a 18 ¿ / hora 27000 ¿

5) Material fungible: 280 ¿

Desglose por Conceptos:

� Gastos de impresión 80 ¿

� Encuadernación 200 ¿

6) Presupuesto antes de Impuestos

� Subtotal Presupuesto 29293 ¿

7) I.V.A. aplicable

� 18% Subtotal Presupuesto 5273 ¿

8) Total presupuesto � Total Presupuesto 34566 ¿

Madrid, Diciembre de 2011

El Ingeniero Jefe de Proyecto

Fdo.: Laura de las Heras Muñoz
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Este documento contiene las condiciones legales que guiarán la realización,

en este proyecto, de un sistema de reconocimiento de gestos manuales. En lo

que sigue, se supondrá que el proyecto ha sido encargado por una empresa

cliente a una empresa consultora con la �nalidad de realizar dicho sistema.

Dicha empresa ha debido desarrollar una línea de investigación con objeto

de elaborar el proyecto. Esta línea de investigación, junto con el posterior

desarrollo de los programas está amparada por las condiciones particulares

del siguiente pliego. Supuesto que la utilización industrial de los métodos

recogidos en el presente proyecto ha sido decidida por parte de la empresa

cliente o de otras, la obra a realizar se regulará por las siguientes:

Condiciones generales

1. La modalidad de contratación será el concurso. La adjudicación se hará,

por tanto, a la proposición más favorable sin atender exclusivamente al valor

económico, dependiendo de las mayores garantías ofrecidas. La empresa que

somete el proyecto a concurso se reserva el derecho a declararlo desierto.

2. El montaje y mecanización completa de los equipos que intervengan será

realizado totalmente por la empresa licitadora.

3. En la oferta, se hará constar el precio total por el que se compromete a

realizar la obra y el tanto por ciento de baja que suponvo en los casos de

rescisión.

8. Tanto en las certi�caciones de obras como en la liquidación �nal, se abo-

narán los trabajos realizados por el contratista a los precios de ejecución

material que �guran en el presupuesto para cada unidad de la obra.

9. Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase

a las condiciones de la contrata pero que sin embargo es admisible a juicio del

Ingeniero Director de obras, se dará conocimiento a la Dirección, proponiendo

a la vez la rebaja de precios que el Ingeniero estime justa y si la Dirección

resolviera aceptar la obra, quedará el contratista obligado a conformarse con

la rebaja acordada.

10. Cuando se juzgue necesario emplear materiales o ejecutar obras que no

�guren en el presupuesto de la contrata, se evaluará su importe a los precios

asignados a otras obras o materiales análogos si los hubiere y cuando no,
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se discutirán entre el Ingeniero Director y el contratista, sometiéndolos a la

aprobación de la Dirección. Los nuevos precios convenidos por uno u otro

procedimiento, se sujetarán siempre al establecido en el punto anterior.

11. Cuando el contratista, con autorización del Ingeniero Director de obras,

emplee materiales de calidad más elevada o de mayores dimensiones de lo

estipulado en el proyecto, o sustituya una clase de fabricación por otra que

tenga asignado mayor precio o ejecute con mayores dimensiones cualquier

otra parte de las obras, o en general, introduzca en ellas cualquier modi�ca-

ción que sea bene�ciosa a juicio del Ingeniero Director de obras, no tendrá

derecho sin embargo, sino a lo que le correspondería si hubiera realizado la

obra con estricta sujeción a lo proyectado y contratado.

12. Las cantidades calculadas para obras accesorias, aunque �guren por par-

tida alzada en el presupuesto �nal (general), no serán abonadas sino a los

precios de la contrata, según las condiciones de la misma y los proyectos

particulares que para ellas se formen, o en su defecto, por lo que resulte de

su medición �nal.

13. El contratista queda obligado a abonar al Ingeniero autor del proyecto y

director de obras así como a los Ingenieros Técnicos, el importe de sus respec-

tivos honorarios facultativos por formación del proyecto, dirección técnica y

administración en su caso, con arreglo a las tarifas y honorarios vigentes.

14. Concluida la ejecución de la obra, será reconocida por el Ingeniero Di-

rector que a tal efecto designe la empresa.

15. La garantía de�nitiva será del 4% del presupuesto y la provisional del

2%.

16. La forma de pago será por certi�caciones mensuales de la obra ejecutada,

de acuerdo con los precios del presupuesto, deducida la baja si la hubiera.

17. La fecha de comienzo de las obras será a partir de los 15 días naturales del

replanteo o�cial de las mismas y la de�nitiva, al año de haber ejecutado la

provisional, procediéndose si no existe reclamación alguna, a la reclamación

de la �anza.

18. Si el contratista al efectuar el replanteo, observase algún error en el

proyecto, deberá comunicarlo en el plazo de quince días al Ingeniero Director

de obras, pues transcurrido ese plazo será responsable de la exactitud del

proyecto.
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19. El contratista está obligado a designar una persona responsable que se

entenderá con el Ingeniero Director de obras, o con el delegado que éste

designe, para todo relacionado con ella. Al ser el Ingeniero Director de obras

el que interpreta el proyecto, el contratista deberá consultarle cualquier duda

que surja en su realización.

20. Durante la realización de la obra, se girarán visitas de inspección por

personal facultativo de la empresa cliente, para hacer las comprobaciones

que se crean oportunas. Es obligación del contratista, la conservación de la

obra ya ejecutada hasta la recepción de la misma, por lo que el deterioro

parcial o total de ella, aunque sea por agentes atmosféricos u otras causas,

deberá ser reparado o reconstruido por su cuenta.

21. El contratista, deberá realizar la obra en el plazo mencionado a partir

de la fecha del contrato, incurriendo en multa, por retraso de la ejecución

siempre que éste no sea debido a causas de fuerza mayor. A la terminación de

la obra, se hará una recepción provisional previo reconocimiento y examen

por la dirección técnica, el depositario de efectos, el interventor y el jefe de

servicio o un representante, estampando su conformidad el contratista.

22. Hecha la recepción provisional, se certi�cará al contratista el resto de la

obra, reservándose la administración el importe de los gastos de conservación

de la misma hasta su recepción de�nitiva y la �anza durante el tiempo seña-

lado como plazo de garantía. La recepción de�nitiva se hará en las mismas

condiciones que la provisional, extendiéndose el acta correspondiente. El Di-

rector Técnico propondrá a la Junta Económica la devolución de la �anza al

contratista de acuerdo con las condiciones económicas legales establecidas.

23. Las tarifas para la determinación de honorarios, reguladas por orden de

la Presidencia del Gobierno el 19 de Octubre de 1961, se aplicarán sobre

el denominado en la actualidad �Presupuesto de Ejecución de Contrata� y

anteriormente llamado �Presupuesto de Ejecución Material� que hoy designa

otro concepto.

Condiciones particulares

La empresa consultora, que ha desarrollado el presente proyecto, lo entregará

a la empresa cliente bajo las condiciones generales ya formuladas, debiendo

añadirse las siguientes condiciones particulares:
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1. La propiedad intelectual de los procesos descritos y analizados en el pre-

sente trabajo, pertenece por entero a la empresa consultora representada por

el Ingeniero Director del Proyecto.

2. La empresa consultora se reserva el derecho a la utilización total o parcial

de los resultados de la investigación realizada para desarrollar el siguiente

proyecto, bien para su publicación o bien para su uso en trabajos o proyectos

posteriores, para la misma empresa cliente o para otra.

3. Cualquier tipo de reproducción aparte de las reseñadas en las condiciones

generales, bien sea para uso particular de la empresa cliente, o para cualquier

otra aplicación, contará con autorización expresa y por escrito del Ingeniero

Director del Proyecto, que actuará en representación de la empresa consul-

tora.

4. En la autorización se ha de hacer constar la aplicación a que se destinan

sus reproducciones así como su cantidad.

5. En todas las reproducciones se indicará su procedencia, explicitando el

nombre del proyecto, nombre del Ingeniero Director y de la empresa consul-

tora.

6. Si el proyecto pasa la etapa de desarrollo, cualquier modi�cación que se

realice sobre él, deberá ser noti�cada al Ingeniero Director del Proyecto y a

criterio de éste, la empresa consultora decidirá aceptar o no la modi�cación

propuesta.

7. Si la modi�cación se acepta, la empresa consultora se hará responsable al

mismo nivel que el proyecto inicial del que resulta el añadirla.

8. Si la modi�cación no es aceptada, por el contrario, la empresa consultora

declinará toda responsabilidad que se derive de la aplicación o in�uencia de

la misma.

9. Si la empresa cliente decide desarrollar industrialmente uno o varios pro-

ductos en los que resulte parcial o totalmente aplicable el estudio de este

proyecto, deberá comunicarlo a la empresa consultora.

10. La empresa consultora no se responsabiliza de los efectos laterales que se

puedan producir en el momento en que se utilice la herramienta objeto del

presente proyecto para la realización de otras aplicaciones.

11. La empresa consultora tendrá prioridad respecto a otras en la elabora-

ción de los proyectos auxiliares que fuese necesario desarrollar para dicha
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aplicación industrial, siempre que no haga explícita renuncia a este hecho.

En este caso, deberá autorizar expresamente los proyectos presentados por

otros.

12. El Ingeniero Director del presente proyecto, será el responsable de la

dirección de la aplicación industrial siempre que la empresa consultora lo

estime oportuno. En caso contrario, la persona designada deberá contar con

la autorización del mismo, quien delegará en él las responsabilidades que

ostente.

e este precio en relación con un importe límite si este se hubiera �jado.

4. La obra se realizará bajo la dirección técnica de un Ingeniero Superior de

Telecomunicación, auxiliado por el número de Ingenieros Técnicos y Progra-

madores que se estime preciso para el desarrollo de la misma.

5. Aparte del Ingeniero Director, el contratista tendrá derecho a contratar

al resto del personal, pudiendo ceder esta prerrogativa a favor del Ingeniero

Director, quien no estará obligado a aceptarla.

6. El contratista tiene derecho a sacar copias a su costa de los planos, pliego

de condiciones y presupuestos. El Ingeniero autor del proyecto autorizará con

su �rma las copias solicitadas por el contratista después de confrontarlas.

7. Se abonará al contratista la obra que realmente ejecute con sujeción al

proyecto que sirvió de base para la contratación, a las modi�caciones auto-

rizadas por la superioridad o a las órdenes que con arreglo a sus facultades

le hayan comunicado por escrito al Ingeniero Director de obras siempre que

dicha obra se haya ajustado a los preceptos de los pliegos de condiciones,

con arreglo a los cuales, se harán las modi�caciones y la valoración de las

diversas unidades sin que el importe total pueda exceder de los presupuestos

aprobados. Por consiguiente, el número de unidades que se consignan en el

proyecto o en el presupuesto, no podrá servirle de fundamento para entablar

reclamaciones de ninguna clase, salvo en los casos de rescisión.

8. Tanto en las certi�caciones de obras como en la liquidación �nal, se abo-

narán los trabajos realizados por el contratista a los precios de ejecución

material que �guran en el presupuesto para cada unidad de la obra.

9. Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase

a las condiciones de la contrata pero que sin embargo es admisible a juicio del

Ingeniero Director de obras, se dará conocimiento a la Dirección, proponiendo
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a la vez la rebaja de precios que el Ingeniero estime justa y si la Dirección

resolviera aceptar la obra, quedará el contratista obligado a conformarse con

la rebaja acordada.

10. Cuando se juzgue necesario emplear materiales o ejecutar obras que no

�guren en el presupuesto de la contrata, se evaluará su importe a los precios

asignados a otras obras o materiales análogos si los hubiere y cuando no,

se discutirán entre el Ingeniero Director y el contratista, sometiéndolos a la

aprobación de la Dirección. Los nuevos precios convenidos por uno u otro

procedimiento, se sujetarán siempre al establecido en el punto anterior.

11. Cuando el contratista, con autorización del Ingeniero Director de obras,

emplee materiales de calidad más elevada o de mayores dimensiones de lo

estipulado en el proyecto, o sustituya una clase de fabricación por otra que

tenga asignado mayor precio o ejecute con mayores dimensiones cualquier

otra parte de las obras, o en general, introduzca en ellas cualquier modi�ca-

ción que sea bene�ciosa a juicio del Ingeniero Director de obras, no tendrá

derecho sin embargo, sino a lo que le correspondería si hubiera realizado la

obra con estricta sujeción a lo proyectado y contratado.

12. Las cantidades calculadas para obras accesorias, aunque �guren por par-

tida alzada en el presupuesto �nal (general), no serán abonadas sino a los

precios de la contrata, según las condiciones de la misma y los proyectos

particulares que para ellas se formen, o en su defecto, por lo que resulte de

su medición �nal.

13. El contratista queda obligado a abonar al Ingeniero autor del proyecto y

director de obras así como a los Ingenieros Técnicos, el importe de sus respec-

tivos honorarios facultativos por formación del proyecto, dirección técnica y

administración en su caso, con arreglo a las tarifas y honorarios vigentes.

14. Concluida la ejecución de la obra, será reconocida por el Ingeniero Di-

rector que a tal efecto designe la empresa.

15. La garantía de�nitiva será del 4% del presupuesto y la provisional del

2%.

16. La forma de pago será por certi�caciones mensuales de la obra ejecutada,

de acuerdo con los precios del presupuesto, deducida la baja si la hubiera.

17. La fecha de comienzo de las obras será a partir de los 15 días naturales del

replanteo o�cial de las mismas y la de�nitiva, al año de haber ejecutado la
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provisional, procediéndose si no existe reclamación alguna, a la reclamación

de la �anza.

18. Si el contratista al efectuar el replanteo, observase algún error en el

proyecto, deberá comunicarlo en el plazo de quince días al Ingeniero Director

de obras, pues transcurrido ese plazo será responsable de la exactitud del

proyecto.

19. El contratista está obligado a designar una persona responsable que se

entenderá con el Ingeniero Director de obras, o con el delegado que éste

designe, para todo relacionado con ella. Al ser el Ingeniero Director de obras

el que interpreta el proyecto, el contratista deberá consultarle cualquier duda

que surja en su realización.

20. Durante la realización de la obra, se girarán visitas de inspección por

personal facultativo de la empresa cliente, para hacer las comprobaciones

que se crean oportunas. Es obligación del contratista, la conservación de la

obra ya ejecutada hasta la recepción de la misma, por lo que el deterioro

parcial o total de ella, aunque sea por agentes atmosféricos u otras causas,

deberá ser reparado o reconstruido por su cuenta.

21. El contratista, deberá realizar la obra en el plazo mencionado a partir

de la fecha del contrato, incurriendo en multa, por retraso de la ejecución

siempre que éste no sea debido a causas de fuerza mayor. A la terminación de

la obra, se hará una recepción provisional previo reconocimiento y examen

por la dirección técnica, el depositario de efectos, el interventor y el jefe de

servicio o un representante, estampando su conformidad el contratista.

22. Hecha la recepción provisional, se certi�cará al contratista el resto de la

obra, reservándose la administración el importe de los gastos de conservación

de la misma hasta su recepción de�nitiva y la �anza durante el tiempo seña-

lado como plazo de garantía. La recepción de�nitiva se hará en las mismas

condiciones que la provisional, extendiéndose el acta correspondiente. El Di-

rector Técnico propondrá a la Junta Económica la devolución de la �anza al

contratista de acuerdo con las condiciones económicas legales establecidas.

23. Las tarifas para la determinación de honorarios, reguladas por orden de

la Presidencia del Gobierno el 19 de Octubre de 1961, se aplicarán sobre

el denominado en la actualidad �Presupuesto de Ejecución de Contrata� y

anteriormente llamado �Presupuesto de Ejecución Material� que hoy designa
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otro concepto.

Condiciones particulares

La empresa consultora, que ha desarrollado el presente proyecto, lo entregará

a la empresa cliente bajo las condiciones generales ya formuladas, debiendo

añadirse las siguientes condiciones particulares:

1. La propiedad intelectual de los procesos descritos y analizados en el pre-

sente trabajo, pertenece por entero a la empresa consultora representada por

el Ingeniero Director del Proyecto.

2. La empresa consultora se reserva el derecho a la utilización total o parcial

de los resultados de la investigación realizada para desarrollar el siguiente

proyecto, bien para su publicación o bien para su uso en trabajos o proyectos

posteriores, para la misma empresa cliente o para otra.

3. Cualquier tipo de reproducción aparte de las reseñadas en las condiciones

generales, bien sea para uso particular de la empresa cliente, o para cualquier

otra aplicación, contará con autorización expresa y por escrito del Ingeniero

Director del Proyecto, que actuará en representación de la empresa consul-

tora.

4. En la autorización se ha de hacer constar la aplicación a que se destinan

sus reproducciones así como su cantidad.

5. En todas las reproducciones se indicará su procedencia, explicitando el

nombre del proyecto, nombre del Ingeniero Director y de la empresa consul-

tora.

6. Si el proyecto pasa la etapa de desarrollo, cualquier modi�cación que se

realice sobre él, deberá ser noti�cada al Ingeniero Director del Proyecto y a

criterio de éste, la empresa consultora decidirá aceptar o no la modi�cación

propuesta.

7. Si la modi�cación se acepta, la empresa consultora se hará responsable al

mismo nivel que el proyecto inicial del que resulta el añadirla.

8. Si la modi�cación no es aceptada, por el contrario, la empresa consultora

declinará toda responsabilidad que se derive de la aplicación o in�uencia de

la misma.
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9. Si la empresa cliente decide desarrollar industrialmente uno o varios pro-

ductos en los que resulte parcial o totalmente aplicable el estudio de este

proyecto, deberá comunicarlo a la empresa consultora.

10. La empresa consultora no se responsabiliza de los efectos laterales que se

puedan producir en el momento en que se utilice la herramienta objeto del

presente proyecto para la realización de otras aplicaciones.

11. La empresa consultora tendrá prioridad respecto a otras en la elabora-

ción de los proyectos auxiliares que fuese necesario desarrollar para dicha

aplicación industrial, siempre que no haga explícita renuncia a este hecho.

En este caso, deberá autorizar expresamente los proyectos presentados por

otros.

12. El Ingeniero Director del presente proyecto, será el responsable de la

dirección de la aplicación industrial siempre que la empresa consultora lo

estime oportuno. En caso contrario, la persona designada deberá contar con

la autorización del mismo, quien delegará en él las responsabilidades que

ostente.


