
 
 

 

UNIVERSIDAD AUT
 

ESCUELA POLITÉ
 

 
 

PROYECTO FIN DE CARRERA
 
 
 
 

Speech Enhancement using 
Kalman filtering

 
 

 
Ingeniería Superior de 

 
Bárbara Valenciano Martínez

 

 
 
 
 
 

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR 

               

PROYECTO FIN DE CARRERA 

Speech Enhancement using 
Kalman filtering 

Ingeniería Superior de Telecomunicación

Bárbara Valenciano Martínez 
 

Noviembre 2008 
 

 

NOMA DE MADRID 

        

 

Speech Enhancement using 

Telecomunicación 



 
 

 
 

  



 
 

 
 
 
 
 
 
 

Speech enhancement using Kalman filtering 
 
 

AUTOR: Bárbara Valenciano Martínez 
TUTOR: Tom Bäckström 

PONENTE: Doroteo Torre 
 
 
 
 

Área de Tratamiento de Voz y Señales 
Dpto. de Ingeniería Informática 

Escuela Politécnica Superior 
Universidad Autónoma de Madrid 

Noviembre 2008 
  



 
 

 



ii 
 

PROYECTO FIN DE CARRERA 
 
 

 
Título: Speech enhancement using Kalman filtering 
 

 
Autor: Bárbara Valenciano Martínez 
 
Tutor: Tom Bäckström 
 
Ponente: Doroteo Torre Toledano 
 
 
Tribunal: 
 
  Presidente: Joaquín González Rodríguez 
 
  Vocal: Miguel Ángel García García 
 
  Vocal secretario: Doroteo Torre Toledano 
 
 
Fecha de lectura: 
 
Calificación: 
  



iii 
 

 
  



iv 
 

Abstract: 
 
This project studies the enhancement of the speech on telephonic 
conversations using Kalman filtering to remove the background noise. 
For this, the database called AURORA (Aurora 4a) is used, which 
contains speech files with artificial addition of noise over a range of 
signal to noise ratios. 
 
On the first part of this project we assume white noise and on the second 
one colored noise, carrying out the same experiments for both options. 
 
The signal corrupted with noise is modeled through two coefficients 
prediction methods: 

• Linear Predictive Coding (LPC) 
• Stabilised weighted linear prediction (SWLP) 

 
Finally it is used the Kalman filtering to filter the signal. 
 
Keywords: 
Speech enhancement, speech, Kalman filter, LPC, SWLP, state – space 
notation. 
 
Resumen: 
 
Este proyecto estudia la mejora de voz en conversaciones telefónicas 
utilizando filtrado de Kalman para la eliminación del ruido de fondo. 
Para ello hacemos uso de la base de datos AURORA (Aurora 4a) donde 
disponemos de ficheros de voz a los que se les ha añadido ruido de 
manera artificial sobre un rango de diferentes relaciones de señal a 
ruido. 
 
En una primera parte del proyecto suponemos ruido blanco y en la 
segunda parte ruido coloreado, llevando a cabo los mismos 
experimentos para ambas opciones. 
 
La señal dañada con ruido es modelada a través de dos métodos de 
predicción de coeficientes: 

• Linear Predictive Coding (LPC) 
• Stabilised weighted linear prediction (SWLP) 
 

Por último realizamos un filtrado de Kalman de la señal. 
 
Palabras clave: 
Mejora del habla, habla, filtro de Kalman, LPC, SWLP, notación estado-
espacio. 
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Introduction 
 

Motivations and goals 
 
Nowadays, everybody lives connected to a phone. It is of vital 
importance to be able to always communicate with others wherever we 
are. This means that, in most of situations, the place where we are 
doesn’t satisfy the most appropriate requirements to have a 
conversation. 
 
Once that we have beaten the coverage problem, (lately it is possible to 
speak even from the subway through a mobile phone), appears another 
difficulty: the background noise. It is not useful to keep the 
communication if the noise of the subway, train, car, etc., prevents us 
from understanding.  
 
That is the goal of this master thesis: we treat to eliminate the maximum 
background noise keeping the quality of the voice we want to transmit, 
because there exists a limit where the voice stops to sound like human 
voice, it loses the nuances and starts to seem like something artificial.  
 
For this purpose we use the Kalman filter, which receives its name 
because of its researcher Rudolf Kalman, who based his studies on the 
Wiener filter. 
 
For the experimental part we use the database AURORA Project 
Database (Aurora 4a), where we find sentences recorded in English, 
which have been filtered by IRS filters to simulate the telephone handsets 
and later, it has been added the background noise. 
 
We will develop this project in two environments, with white noise and 
with colored noise; the latter is closer to the real life noise. For each 
scenario, two methods will be used to model the signals: LPC and SWLP. 
Both predict the coefficients of the signals. 
 
At the end of the document, in the results section, we will compare all 
the scenarios and methods through two kinds of graphs, spectrogram 
and SNR method.  
 

Motivaciones y objetivos 
 
Hoy en día, todo el mundo vive conectado a un teléfono. Es de vital 
importancia estar comunicado con el resto del mundo donde quiera 
que nos encontremos. Esto significa que, en la mayoría de las 
situaciones, el lugar en el que nos encontramos no satisface los 
requerimientos más apropiados para llevar a cabo una conversación. 
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Una vez superado el problema de la cobertura, (últimamente es posible 
incluso hablar desde el metro con un móvil), aparece otra dificultad: el 
ruido de fondo. No es útil mantener una conversación si el ruido del 
metro, tren, coche, etc., no nos permite entendernos. 
Ése es el objetivo de este proyecto: tratar de eliminar el máximo ruido de 
fondo para mantener la calidad de la voz que queremos transmitir, 
porque existe un límite donde la voz deja de parecer humana, pierde 
sus matices y empieza a parecerse a algo artificial. 
Para este fin utilizamos el filtro de Kalman, el cual recibe su nombre a su 
investigador Rudolf Kalman, que basó sus estudios en el filtro de Wiener. 
Para la parte experimental utilizamos la base de datos AURORA Project 
(Aurora 4a), donde se encuentran frases grabadas en inglés, las cuales 
han sido filtradas con un filtro IRS para simular las características 
telefónicas y después, se ha añadido el ruido de fondo. 
Desarrollaremos este proyecto para dos situaciones, con ruido blanco y 
con ruido coloreado; este último es más parecido al ruido de la vida 
real. Para cada escenario, utilizaremos dos métodos para modelar las 
señales: LPC y SWLP. Ambos predicen los coeficientes de las señales. 
Para finalizar el documento, en la sección de resultados, compararemos 
todos los escenarios y métodos utilizando dos tipos de gráficos: 
espectrogramas y representaciones de los niveles de SNR.  
 

Document structure 
 
This document has the following sections: 

• State of the art about speech, going through different concepts 
like speech perception, communications, environment, etc. The 
last section of this one is about speech enhancement, it is the most 
important because our project is focused on it. 

• Kalman filtering, in this section we can see everything about the 
Kalman filter, the algorithm and the mathematic background 
taking into account the advantages and the disadvantages of this 
type of filtering. 

• Design and development. This is a description of our project, the 
material used, the database and the code developed. 

• Results of the research. 
• Conclusions of the work carried out and future work. 
• References 
• Appendix 
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State of the art 
 

1. Speech 
 
Speech is the process associated with the production and perception of 
the noises used in the spoken language. A huge number of disciplines 
study the speech and the speech sounds, including acoustic, 
psychology, speech pathology, linguistic, cognitive science and 
computer science. 
 
Spoken language is used to communicate information from a speaker to 
a listener. Speech production and perception are both important 
components of the speech chain. 
 
1.1 Speech perception 
 
Speech perception refers to processes by which humans are able to 
interpret and understand the sounds used in the language. The study of 
the speech perception is closely linked to the phonetic field and 
phonology.  Speech perception researches seek to understand how the 
humans recognize the speech sounds and use this information to 
understand the spoken language. The researches about the speech 
have applications in the building of computer systems which can 
recognize the speech, as well as improve the recognition for hearing 
impaired listeners.  
 
There are a lot of biological and psychological factors which can affect 
the speech: disorders with the lungs, vocal cords, respiratory affections 
among others. 

 

1.2 Speech communications 
 
Speech is the most primary human communication. For that reason, it 
exists a big trend to increase and improve telecommunications. 
Nowadays, all the people use the communication devices almost as a 
primary good: telephones, mobiles, internet…and the customers 
demand a high coverage and quality.  
However, the background noise is an important handicap. If it is joined 
with other distortions, it can seriously damage the service quality. 
Added to this human-human interaction, it also exists a human-machine 
interaction based on a graphical user interface. However, still today the 
computers have a lack of human abilities like speaking, listening, 
understanding and learning. 
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As J.Benesty (2005) says: We live in a noisy world! In all applications 
(telecommunications, hands-free communications, recording, human-
machine interfaces, etc) that require at least one microphone, the signal 
of interest is usually contaminated by background noise and 
reverberation. As a result, the microphone signal has to be “cleaned” 
with digital signal processing tools before it is played out, transmitted, or 
stored.  
 
Speech processing is the study of speech signals and the processing 
methods of these signals. The signals are usually processed in a digital 
representation whereby speech processing can be seen as the 
intersection of digital signal processing and natural language processing. 
Speech processing can be divided in the following categories:  

� Speech recognition, which deals with analysis of the linguistic 
content of a speech signal. 

� Speaker recognition, where the aim is to recognize the identity of 
the speaker. 

� Enhancement of speech signals (this is the area of this project) 
� Speech coding, a specialized form of data compression, which is 

important in the telecommunication area. 
� Voice analysis for medical purposes, such as analysis of vocal 

loading and dysfunction of the vocal cords. 
� Speech synthesis: the artificial synthesis of speech, which usually 

means computer generated speech. 
� Speech enhancement: enhancing of the perceptual quality of 

speech signal by removing the destructive effects of noise, limited 
capacity recording equipment, impairments, etc. 

 
The speech processing has a lot of applications; one of them could be a 
tickets sales system by phone, where, without the necessity of an 
operator, a customer can buy tickets with different characteristics and 

options thanks to the words recognition systems. 
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Figure 1.1: Speech processing 
 

Figure 1.1 is a representation of the speech that ensures that the 
information content can be easily extracted by human customers or 
computers.  
 
1.3 The acoustical environment 
 
The acoustical environment is defined as a set of transformation that 
affect the speech signal since the moment it leaves the speaker’s mouth 
until it is in digital form.  There are, among others, two main sources of 
distortion: additive noise and channel distortion: 

 
• Additive noise is like a fan running in the background, a door slam, 

a conversation among others; it is in our common daily life. It can 
be stationary or non stationary.  
Stationary noise is the one made by a computer fan or air 
conditioning; it has a spectral power density that does not change 
over time.  
Non stationary noise, caused by door slam, radio, TV, voices, has 
statistical properties that change over time. A signal captured with 
the speaker close to the microphone has a little noise and 
reverberation. However, if the microphone is far from the speaker’s 
mouth it can pick up a lot of noise and/or reverberation. 

• Channel distortion can be caused by reverberation, the frequency 
response of a microphone, the presence of an electrical filter in an 
A/D circuit, the response of the local loop of a telephone line, a 
speech codec, etc. Reverberation, caused by the reflection of 
acoustic waves on the walls and other objects, can also 
dramatically alter the speech signal.    
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If both the microphone and the speaker are in an anechoic 
chamber or in free space, the microphone picks up only the direct 
acoustic path. In the practice, in addition to the direct acoustic 
path, there are reverberations from the walls and other objects in 
the room. The signal level at the microphone is inversely 
proportional to the distance from the speaker, for the direct path. 
For the reflected sound waves, the sound has to travel a larger 
distance, and its signal level is proportionally lower. Moreover, we 
have to take into account the energy absorption which takes 
place each time the sound wave hits a surface.  

 
1.4 Speech enhancement 
 
What is speech enhancement? Enhancement means the improvement 
in the value or quality of something. When applied to speech, this simply 
means the improvement in intelligibility and/or quality of a degraded 
speech signal by using signal processing tools. By speech enhancement, 
it refers not only to noise reduction but also to dereverberation and 
separation of independent signals. Since this field is fundamental for 
research in the applications of digital signal processing, it is also of great 
interest to the industry which is always looking for new solutions that are 
both effective and practical. 
This is a very difficult problem for two reasons. First, the nature and 
characteristics of the noise signals can change dramatically in time and 
between applications. It is also difficult to find algorithms that really work 
in different practical environments. Second, the performance measure 
can also be defined differently for each application. Two criteria are 
often used to measure the performance: quality and intelligibility. It is 
very hard to satisfy both at the same time. 

 
Speech enhancement is an area of speech processing where the goal is 
to improve the intelligibility and/or pleasantness of a speech signal. The 
most common approach in speech enhancement is noise removal, 
where we, by estimation of noise characteristics, can cancel noise 
components and retain only the clean speech signal. The basic problem 
with this approach is that if we remove those parts of the signal that 
resemble noise, we are also bounded to remove those parts of the 
speech signal that resemble noise. In other words, speech enhancement 
procedures, often inadvertently, also corrupt the speech signal when 
attempting to remove noise. Algorithms must therefore compromise 
between effectiveness of noise removal and level of distortion in the 
speech signal.  
Current speech processing algorithms can roughly be divided into three 
domains, spectral subtraction, sub-space analysis and filtering 
algorithms: 

 



State of the art 

12 
 

• Spectral subtraction algorithms operate in the spectral domain by 
removing, from each spectral band, that amount of energy which 
corresponds to the noise contribution. While spectral subtraction is 
effective in estimating the spectral magnitude of the speech 
signal, the phase of the original signal is not retained, which 
produces a clearly audible distortion known as “ringing”.  

• Sub-space analysis operates in the autocorrelation domain, where 
the speech and noise components can be assumed to be 
orthogonal, whereby their contributions can be readily separated. 
Unfortunately, finding the orthogonal components is 
computationally expensive. Moreover, the orthogonality 
assumption is difficult to motivate.  

• Finally, filtering algorithms are time-domain methods that attempt 
to either remove the noise component (Wiener filtering) or 
estimate the noise and speech components by a filtering 
approach (Kalman filtering). 

 
There is an important algorithm for speech enhancement which belongs 
to the group of parametric methods where the speech signal is modeled 
as an autoregressive process embedded in Gaussian noise. Speech 
enhancement algorithms belonging to this category consist of two steps: 

• Estimation of the AR coefficients and noise variances. 
• Application of the Kalman filtering using the estimated parameters 

to estimate the clean speech from a sample of the noisy signal. 
After this, instead of using linear prediction like Gannot did, we will use 
Stabilized Weighted Linear Prediction (SWLP). 
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2. Speech modeling 
 
The modeling of speech studies how humans produce the voice. 
Nowadays we have a lot of devices which “speak” to us and this voice 
should be as similar as possible to a real human voice. For that reason, a 
lot of researches are aimed to find a good model of speech production 
(Figure 2.1).  
 

 

Figure 2.1: Production model voice 
 
First of all, with this model we decide if the noise that we want to 
produce is voiced or unvoiced.  
For the voiced sounds we have to model a glottal pulse train similar to 
the produced in our vocal cords. For the unvoiced sounds the signal 
produced is like noise, similar to the signal that we can see in the fricative 
sounds. 
 
After that we have to go through the vocal tract with our generated 
signal. In this section we filter the signal with a filter that tries to imitate the 
effect of the shape formed with the pharyngeal cavity (throat), vocal 
and nasal cavity. 
 
Finally the radiation model reproduces the effect of the radiation 
impedance that the air put up to the exit of the speech from the mouth. 
 
2.1 Speech production mechanism 
 
The main components of the speech system (Figure 2.2) are the lungs, 
trachea, larynx (organ of the speech production), pharyngeal cavity 
(throat), vocal or oral cavity (mouth) and nasal cavity (nose). In 
techniques discussions, the oral cavity and pharyngeal are grouped in 
one unit which is referenced as vocal tract, and the nasal cavity is 
sometimes called nasal tract. The vocal tract starts at the end of the 
larynx (vocal cords or glottis) and ends at the beginning of the lips. The 
nasal tract starts with the velum and finishes with the nostrils.  When the 
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velum goes down, the nasal tract is acoustically coupled to the vocal 
tract to produce the speech nasal sounds.  
 
When we breathe the air comes from the lungs and then it is expelled 
from them through the trachea making the vocal cords to vibrate. 
The air is divided in quasi periodic pulses which are modulated in 
frequency when they cross the throat, the oral cavity or maybe the nasal 
one. Depending on the position of the tongue, jaw, teeth, lips, etc. we 
produce different sounds. 
 
 

 

Figure 2.2: Speech production organs 
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Figure 2.3: Simplified model for speech production 
 
Humans use the language almost unconsciously, without paying 
attention in how the information is processed by the brain, the amount of 
organs involved in this process or the different phases in this 
communication. 
Speech begins with a thought and an intention to communicate in the 
brain, which activates the muscular movements to produce speech 
sounds. A listener receives a sound in the auditory system, processing it 
for a conversion to neurological signals the brain can understand. The 
speaker continuously monitors and controls the vocal organs by 
receiving his or her own speech as feedback. 
 

 
 

Figure 2.4: Speech generation and speech understanding 
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Figure 2.5: Stages in the spoken communication 
 
All this activity starts in the speaker’s mind with a message to be 
transmitted to the listener via speech. This is the linguistic stage.  
After a message is created, the next step is to convert the message into 
a sequence of words. Each word consists of a sequence of phonemes 
that correspond to the pronunciation of the words.  
The spoken signal appears when the air crosses the trachea from the 
lungs. This air crosses the vocal cords, situated in the larynx, which have 
two functions:   

• With the voiced sounds the vocal cords are in tension and they 
vibrate when the air goes across them. 

• With the unvoiced sounds the vocal cords are relaxed and the air 
can cross them freely. 

In the next step, the brain sends the information to the vocal tract, where 
the air takes the characteristics of each formant. This is the physiological 
stage. 
After that, when the speaker starts to speak we are in the physic-
acoustic stage. The sounds are materialized but, at the same time, there 
is a feedback because the ear of the speaker can hear what is he 
saying and the brain analyzes the meaning. And the process in the 
speaker’s brain that starts is the same that when it is the listener who 
speaks and the speaker who listens.  
The sounds travel by the air in the transmission stage from the mouth of 
the speaker to the ear of the listener. In this stage, when the sounds cross 
the channel, the noise and other distortions are added. 
 
Finally, we have the same stages but in the listener side in reverse order. 
First the message is passed to the cochlea in the inner ear, which 
performs frequency analysis as a filter bank. A neural transduction 
converts the spectral signal into activity signal on the auditory nerve.  
Currently, it is unclear how the neural activity is converted into the 
language system and how the brain can achieve the comprehension of 
the message. 
 
Speech signals are composed by analog units, which are the symbolic 
representation of the spoken language: phonemes, syllables and words. 
But for this project it is not necessary to go into this level of depth.  
 
 
 
 



State of the art 

17 
 

2.2 Tube model 
  
The sounds are vibrations transmitted by the air. Due to the fact that they 
are waves, all the physics laws describe their behavior. The solution of the 
equations which describe these waves is very difficult to find, unless we 
assume some simplifications for the vocal tract, and the energy losses. As 
Rabiner and Schafer (1978) say: the most simple configuration of the 
vocal tract is to model it as a non-uniform tube, time-varying, cross-
section assuming that there are not losses due to the viscosity, bulk of the 
fluid or walls of the tube.  
If, otherwise, we want a detailed study we have to consider: 

1. Time variation of the vocal tract shape 
2. Losses due to heat conduction and viscous friction at the vocal 

tract walls 
3. Softness of the vocal tract walls 
4. Radiation of sound at the lips 
5. Nasal coupling 
6. Excitation of sound in the vocal tract 

 
To find a solution and to model these sound waves we have to consider 
some conditions to study them: 

• The limit conditions in each tube end: 
o Lip: consider the effects of the sound radiation 
o Glottis: know the source of the excitation 

• The area function of the vocal tract A(x,t) 
 
When we emit a constant sound, the vocal tract area does not change. 
However, when we speak this area changes constantly making more 
difficult its study. There are a lot of methods to observe and study this 
area changes but even with them, the solution of the sound waves is still 
very complicated. Fortunately, we can achieve a possible solution with 
some approximations.  
 
The simplest way is to study the vocal tract simplifying it as a uniform 
lossless tube. If we want to make this model more realistic we can 
concatenate more than one uniform lossless tube, each one with 
appropriate characteristics, and considering each one as ideal 
transmission lines. 
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Figure 2.6: Simulation of vocal tract by concatenation of uni
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signal yn can be predicted from linear combinations of past and present 
outputs and inputs.  
This equation can be also written in the frequency domain, taking the z 
transform on both sides. If H(z) is the transfer function of the system, then 
we have: 
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The roots of the numerator and denominator polynomials of H(z) are the 
zeros and poles of the model, respectively. There are two special cases 
of the model: 

• All-zero model: ak = 0, 1 ≤ k ≤ p   known as moving average 
(MA) model 

• All-pole model: bl = 0,  1 ≤ l ≤ q    known as autoregressive (AR) 
model 

 
The estimation of model parameters can be derived in the time domain 
and in the frequency domain. 

 
In general, we don’t know the input signal xn, we have to predict it, nx̂ , 

as a linear weight combination of the past samples, 
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where ak are the predictor coefficients, p is the model order and the 
minus sign is for convenience. If we want to know the error with this 
method, 
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where yn is the original signal, a0=1 and en is called residual.  

 
The idea is to get an error as small, close to zero, as possible; this 
measures the quality of the predictor. If we denote the total squared 
error by E, where 
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This method is called method of least squares and the parameters ak are 
calculated as a result of the minimization of the mean or total squared 
error with respect to each of the parameters (it is called autocorrelation 
criterion too). 
 
For all the definitions of yn, we can find a set of p equations with p 
unknowns and solve them for the predictor coefficients which minimize E, 
with the autocorrelation method, 

),()(
1

iRkiRa
p

k
k −=−⋅∑

=

  pi ≤≤1  

∑
=

⋅+=
p

k
kp kRaRE

1

)()0(  

where, 

∑
∞

−∞=
+⋅=

n
nn yyiR 1)(  

 
is the autocorrelation function of yn. Then, we can observe that: 
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Like the coefficients R(i-k) form an autocorrelation matrix, this method is 
called, as we said above, autocorrelation method. An autocorrelation 
matrix is a symmetric Toeplitz matrix (where all the elements of each 
diagonal are equal). The development of the equation would be: 
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2.3.1 Linear Predictive Coding (LPC) 
 
Linear predictive coding (LPC) is a tool used, mainly, in the audio signal 
and speech processing to represent the spectral envelop of a speech 
digital signal in a compressed way (using the information of linear 
prediction model). This technique is one of the most powerful to analyze 
the speech, and one of the most useful methods for encoding with good 
quality at low rate. 
 
LPC starts with the assumption that the speech signal is produced by a 
buzz at the end of a tube, adding, sometimes, hissing and popping 
sounds. This model is a good approximation to the reality. 
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The glottis produces the buzz, which is characterized by his intensity 
(loudness) and frequency (pitch). The vocal tract generates a tube 
which is characterized by his resonances, called formants. The lips, 
tongue and throat generate the hisses and pops sounds.  
LPC analyzes the speech signal using the formants, removing their effect 
from the speech signal and estimating the intensity and frequency of the 
remaining speech signal buzz. The removing formants process is called 
inverse filtering and the remaining signal after the subtraction is called 
residue. 
The numbers which describe the frequency and intensity of the buzz, the 
formants and the residue signal can be stored or transmitted. 
 
LPC synthesizes the speech signal with the inverse process: it uses the 
buzz and residue parameters to create a source signal and after that it 
uses the formants to create a filter (which represents the tube) and then 
runs the source signal through the filter we get the speech. 
Due to the fact that speech signals change over the time, this process is 
realized with small chunks of speech signal, called frames. Usually with a 
number between 30 and 50 frames per second we get a speech signal 
intelligible and a good compression. 
 
The basic problem of the LPC system is to determine the formants from 
the original signal. The solution is to express each sample as a linear 
combination of previous samples. This equation is called linear predictor. 
The coefficients of the equation (the prediction coefficients) 
characterize the formants, so we use the LPC system to estimate these 
coefficients. 

 
2.4 Spectral models 

 
2.4.1 Improved spectral models: LP, WLP, MVDR 
 
LP is the most common method to speech modeling, but it has some 
disadvantages: 

• Such as the biasing of the formant estimates by their neighbouring 
harmonics. 

• The effectiveness is lower in presence of noise. 
For that reason, some methods of linear prediction have been 
developed with a better robustness against the noise. Most of these 
improvements are based on the iterative update of the predicted 
parameters. 
 
The first of them is weighted linear prediction (WLP) which tries to 
confront the problem caused by the glottal closure excitation by 
introducing an energy weight in the time domain of the error prediction. 
As it stresses those segments which have a high SNR, WLP improves the 
spectral envelopes in noisy conversations (if we compare it with LP). 
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Furthermore, the filters of WLP can be calculated without iterative 
updates.  
 
The second one is the minimum variance distortionless response method 
(MVDR) and it is popular in arrays processing, but lately it is becoming 
useful to make extractions in speech recognition. 
Among other refinements studied in some researches, the scaling of 
spectral envelope improves the robustness of the MVDR spectral model 
against additive noise in the frequency domain. 
 
2.4.2 Stabilised weighted linear prediction (SWLP) 
 
All the information above takes us to compare the all-poles models: LP, 
WLP, and MVDR. Like the first version of WLP didn’t guaranteed us the 
stability of the all-poles model, the idea was to improve it developing 
weighted functions which make the model stable. Here is where the 
SWLP method appears. Choosing correctly the parameters, we have 
similar envelopes to those obtained with MVDR method, but with an 
improved robustness against the background noise. 
 
In our case, the idea is to find an optimization of the filter parameters in 
stabilized weighted linear prediction. For that we have to find the 
coefficient vector a = (a0 a1 … ap)T, of a FIR predictor with order p, which 
minimizes the prediction error energy. The corresponding all-pole filter is 
obtained as H(z) = 1 / A(z), where A(z) is the z-transform of a. 
 
To achieve this, it exists a formula to modify the weight function of WLP 
and, in this way, to reach the stability of the all-poles filter. All of this can 
be carried out by changing the elements of the secondary diagonal of 
the B matrix: 
 

1/ +ii ww , if wi ≤ wi+1 

=+1,iiB  

1,              if wi > wi+1 
 
From now on, the WLP method calculated using the B matrix, is called 
stabilized weighted linear prediction (SWLP), where the stability of the all-
poles filter is guaranteed.  
 
The main concept in WLP, is the time domain weight function. Choosing 
an appropriate waveform, one can temporally emphasize or attenuate 
the weight of the residual energy prior to the optimization of the filter 
parameters. The weight function was chosen basing on the short-time 
energy (STE), 
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where M is the length of the window. The idea of the weight, is that 
computing linear predictive models of speech are more robust against 
the noise than the traditional LP. This is based on the fact that the STE 
function emphasizes those sections of the speech waveform which have 
samples of large amplitude. These segments of speech are less 
vulnerable to noise in comparison to those values with smaller amplitude. 
 
Using the results of the article “Stabilised Weighted Linear Prediction- A 
Robust All-Pole Method for Speech Processing” (Magi et.al. 2007) we can 
observe the behavior of SWLP in spectral modeling of speech:  

 

Figure 2.7: Time domain waveforms of clean speech and STE weight 
function (window M=8) 

 

 

Figure 2.8: All-poles spectra of order p=10 computed by LP, MVDR and 
SWLP (from Figure 2.7) 

 

 

Figure 2.9: Time domain waveforms of clean speech and STE weight 
function (window M=24) 
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Figure 2.10: All-poles spectra of order p=10 computed by LP, MVDR and 
SWLP (from Figure 2.9) 

 
 In the Figures 2.7 and 2.9 we can see the analyzed speech sound with 
the STE weight function. Below each one of them, we can see the 
spectra of parametric all-poles models with order p=10 with the three 
techniques: LP, MVDR, SWLP. 
 
To demonstrate the importance or the effect of the window’s length, the 
SWLP model with M=8 (Figure 2.7) and M=24 (Figure 2.9) is analyzed. 
 
At the time-domain panels we can see how the weight function 
calculated with STE emphasizes the segments which have higher 
amplitudes, while the segments with lower amplitudes are less 
emphasized.  
 
At the spectra panels, we can appreciate how the SWLP spectrum 
changes its shape with the window’s length. With M=8, the variations of 
the spectrum are very smooth, while with M=24 the spectrum is sharper.  
 
In short-term, we can say that the filter with SWLP model with large values 
for M is more similar to the behavior with the LP model, and with small 
values for M we put nearer MVDR model. 
 
Taking into account the experiment made in the article mentioned 
above, if we study how SWLP method works for speech corrupted by 
additive noise and after that we compare the performance to that of LP 
and MVDR, we can see that SWLP presents the best robustness against 
noise. With a small value for M, SWLP is able to face the effect of additive 
noise in a more effective way than the other methods. 
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3. Kalman filtering 
 
The filter has its origin in a Kalman’s document (1960) where it is 
described as a recursive solution for the linear filtering problem for 
discrete data.  The research was in a wide context of state – space 
models, where the point is the estimation through the recursive least 
squares. Since that moment, due to the development of digital 
calculation, Kalman filter has been researched and applied, particularly 
in self and assisted navigation, missiles search and economy. 
  
The study of Kalman filter is based on Wiener filter. 
 
3.1 Wiener filter 
 
This filter is the precursor of Kalman filter. The goal of Wiener filter is to 
remove the noise from a corrupted signal.  
 
In general there are two processes which affect the signal that we want 
to measure: 

• First of all, it is a fact that every device introduces an error in the 
output when a signal is measured. If our original signal is xk and the 
response of the device is hk our signal in the output is: 

 
yk = xk * hk ↔ Yj = Xj · Hj 

 

• Secondly, the signal outside has noise added due to the process. 

kŷ = yk + nk 

 
To solve this equation, if we don’t have noise and we know the response, 
then the solution is easy to find: 

j

j
j H

Y
X =  

But if we have noise, we have to filter the output signal with a Wiener 
filter. 

j

jj
j H

WY
X

⋅
=  

For that, we should find the optimal Wiener filter. This kind of filter was 
proposed by Norbert Wiener during the 1940s. To reduce the amount of 
noise in the corrupted signal this filter is based on a statistical approach. 
  

Normally, the filters are designed for a specific frequency, but in 
Wiener filters, first of all, we have to have knowledge about the spectral 
properties of the original signal and noise, and after that, we have to find 
a LTI filter whose output would be as close as possible to the original 
signal.  
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The Wiener filters are characterized by the following concepts: 

• Assumption: signal and (additive) noise are stationary linear 
stochastic processes with known spectral characteristics or known 
autocorrelation and cross-correlation. 

• Requirement: the filter must be physically realizable, i.e. causal (this 
requirement can be dropped, resulting in a non-causal solution). 

• Performance criteria: minimum mean-square error. 
 
3.2 Kalman filter 
 
The filter is a mathematical procedure which operates through a 
prediction and correction mechanism. In essence, this algorithm predicts 
a new state from its previous estimation by adding a correction term 
proportional to the predicted error. In this way, this error is statistically 
minimized.  This filter is the main algorithm to estimate dynamic systems 
specified in state-space form. 

 
A Kalman filter is simply an optimal recursive data processing algorithm. 
 
If we focus on the word optimal, its definition depends on the criteria 
chosen to evaluate. A feature is called optimum if the Kalman filter 
incorporates all the information provided. It processes all the 
measurements available, regardless the precision, to estimate the 
current value of the interest variables, using: 

• Knowledge of the system and the measurement devices. 
• Statistic description of the system noises, measurements of errors 

and the uncertainty of the dynamics models. 
• Any information available about the initials conditions of the 

variables under study. 
 
A Kalman filter would be built to combine all these data and with the 
knowledge of some dynamic systems to generate the best estimation of 
the interest variable.  
 
If, on the contrary, we focus on the word recursive, this means that the 
Kalman filter doesn’t require storing all the previous samples and it 
neither needs to reprocess them on each new measurement taken. This 
feature is very important to the filter practicality.  
 
We say that this is a data processing algorithm because it is just a 
computer program in a processing central.  

  
The complete estimation procedure is as follows:   
The model is formulated on state-space and for an initial set of 
parameters given, the model prediction errors are generated by the 
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filter. These are used recursively to evaluate the probability function until 
its maximization. 
 
As a summary, we can say that the Kalman filter combines all the 
available data measured, plus the knowledge of the system and the 
measurement devices, to produce an estimation of the desired variables 
in such a manner that the error is statistically minimized. 
 
3.2.1 The discrete algorithm of Kalman filter 
 
The Kalman filter consists in a set of mathematic equations which give an 
optimum recursive solution through the least square method. The goal of 
this solution is to calculate an unbiased minimum variance linear 
estimator of the state in t, based on the information available in t-1, and 
update these estimations, with the additional information available in t, 
(Clar eh al. 1998). The filter is developed assuming the system can be 
described through a stochastic linear model, where the associated error 
to both, the system and the additional information which is incorporated 
on it, have a normal distribution with zero mean and a determinate 
variance. 
 
The solution is optimum when the filter combines all the observed 
information and the previous knowledge about the system behavior to 
produce a state estimation so the error is statistically minimized. The 
recursive term means the filter recalculates the solution each time a new 
observation or measure is added to the system. 
 
The Kalman filter is the main algorithm to estimate dynamics systems 
represented as state-space. In this representation the system is described 
by a set of variables denominated of state. The state contains all the 
information to do with a certain point in time. This information must 
permit the deduction of the past system behavior, with the goal of 
predicting its future behavior. 
 
What makes the filter so interesting is its skill to predict the system’s state 
in the past, present and future, although the nature of the system is 
unknown. In practice, the individual state variables of a dynamic system 
can’t be determined exactly by a direct measure. Due to the foregoing, 
its measure is done with stochastic processes which have some 
uncertainty in the measure. 
 
3.2.2 The process to be estimated 
 
The Kalman filter has the goal of solving the general problem of estimate 
the state X ^ Rm of a process controlled in discrete time, which is 
dominated by a linear equation in stochastic difference in the following 
way: 
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Xn = A · Xn-1 + wn-1 

 
With a measure Y ^ Rn, that is: 

Yn = C · Xn + vn 
 
The random variables wn and vn represent the process and the measure 
error, respectively. It is assumed they are independent of each other, 
and are white noise variables with normal probability distribution: 

p(w) ≈ N(0,Rw) 
p(v) ≈ N(0,Rv) 

 
In practice, the covariance matrix of the process’s perturbation, Rw, and 
the measure’s perturbation, Rv, could change in time, but for simplicity, it 
is assumed they are constants. 

 
The matrix A is assumed to be of mxm dimension and it relates the state in 
the period n-1 with the state in the n moment. The matrix C has a 
dimension nxm and it relates the state with the measure Yn. These 
matrixes may change over time, but generally they are assumed as 
constant. 
 
3.2.3 The algorithm 
 
The Kalman filter estimates the previous process using a feedback 
control, that is, it estimates the process to a moment over the time and 
then it gets the feedback through the observed data. 
  
From the equation point of view that is used to derivate the Kalman filter, 
it is possible to separate them into two groups: 

• Those which update the time or prediction equations 
• Those which update the observed data or update equations 

 
The first group of equations has to throw the state to the n moment 
taking as reference the state on n-1 moment and the intermediate 
update of the covariance matrix of the state. The second group of 
equations has to take care of the feedback; they add new information 
inside the previous estimation to achieve an improved estimation of the 
state. 
 
The equations which update the time can be seen as prediction 
equations, while the equations which add new information can be seen 
as correction equations. Exactly, the final estimation algorithm can be 
defined as a prediction-correction algorithm to solve many problems. In 
this way, the Kalman filter works through a projection and correction 
mechanism to predict the new state and its uncertainty and correct the 
projection with the new measure. This cycle is showed in the following 
figure. 
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Figure 3.1: The Kalman filter cycle 
 
The first step is to generate a state prognostic forward over the time 
taking into account all the information available at that moment, and 
the second step is to generate an improved state prognostic, so the error 
is statistically minimized. 
 
The specified equations for the state prediction are detailed as follows: 
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Notice how the equations predict the state and covariance estimations 
forward from moment n-1 to n. 
These two formulas give us an estimate value for xn and its covariance, 
when we don’t have the real sample yet available. 
 
The first Kalman equation estimates the next sample from the previous 
state. The second Kalman equation is the covariance matrix used to 
predict the estimation error. The A matrix relates the state in the previous 
moment n-1 with the actual moment n, this matrix could change for the 
different moments over the time. Rw represents the covariance of the 
process random perturbation which tries to estimate the state. 
 
The specified equations for the state correction are detailed as follows: 
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These are used when we have the real sample yn. For that reason, they 
are called updating equations too. 
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The first task during the state projection correction is the calculation of 
the Kalman gain, Re,n. This gain factor is chosen in such a way it minimizes 
the covariance error of the new state estimation. 
The next step is to measure the process to get yn and generate a new 
state estimation which incorporates the new observation. 
The final step is to find a new estimation of the error covariance through 
the last equation. 
 
After each couple of updates, time and measure, the process is 
repeated taking as starting point the new state estimations and the error 
covariance. This recursive nature is one of the most famous 
characteristics of Kalman filter.  
 
The next figure offers us the complete operation of the filter, combining 
the previous figure and the five Kalman equations. 
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Figure 3.2: Complete vision of Kalman filter. All these five equations make 
the Kalman filtering process 
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3.2.4 The Kalman filter and the state-space notation 
 
The Kalman filter is the main algorithm to estimate dynamic systems 
specified with the state-space model. Actually, the state-space models 
and the Kalman filter models are often used as synonymous.  The 
estimation and control of the problems of this methodology are based 
on stochastic models, assuming errors in the measures.  
 
The performance of the state-space model for a linear system captures 
a yn vector with nx1 order associated to an unknown xn vector with mx1 
order, known as state vector.  
 
In speech processing, we assume the case with a signal received by a 
single microphone and additive noise. Let the signal measured by the 
microphone be given by: 

nnn vxy +=  
 
Where yn is the observed signal, xn is the desired input and vn is the 
additive background noise (zero-mean noise). Furthermore, like xn is 
modeled as autoregressive, we assume the standard LPC modeling for 
the speech signal over an analysis frame: 

nnn

m

k
nknkn wxawxax +−=+⋅−= −

=
−∑ 1

1

*  

On the other hand, the last equation can be reformulated in a state-
space presentation with the state transition matrix or companion matrix: 
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Then, we can write the state-space form: 
 

1,11 +++ ⋅+⋅= nnnnn wuxAx  

nnn vxCy +⋅=  
 
Where C is a matrix of the system, wn+1 is the noise indoor and vn is the 
noise outdoor. 
The first of these equations is known as process equation and the second 
one as measurement equation.  
The first equation shows the relation among previous states and futures 
states, while the second one gives us the correspondence between the 
internal state of the system and how it can be observed.    
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These equations are useful for most of the linear estimation methods, like 
the Kalman filter described above. 
 
The state-space representation requires two additional assumptions: the 
initial state vector has a known mean and variance and, besides, the 
perturbations wn+1 and vn aren’t correlated among them or with the 
initial state. 
 
The system formed by the equations is linear, and for each moment, n 
and yn can be expressed as a linear combination of the present and 
past values of wn+1 and vn and the initial state vector. 
 
 The state-space representation using Kalman filter is calculated 
through a recursive procedure. The optimum estimator of the state 
vector for each moment n is based on the information available until this 
moment. This estimator is optimum because it minimizes the mean square 
error. 

 

Figure 3.3: The signal flow of the Kalman filter. The function z-1 refers to a 
unit-delay operator. (Tom Bäckström, Speech Mathematics, 2007) 

 
Among the advantages of the state-space model: 

• Complete control over the dynamic of the model 
• No loss of generality because the variables can be defined with 

past or future samples. 
• It separates the sources of error and this allows that the stochastic 

part of the model has different effects. 
The interpretation of wn and vn is important. The last one is a measure 
error, while wn is described as the signal and defines the stochastic 
behavior of the model part that changes over the time. 
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3.2.5 The Kalman filter: advantages and disadvantages 
 
3.2.5.1 Advantages 
 
It avoids the influence of possible structural changes on the result. The 
recursive estimation starts from an initial sample and updates the 
estimations by adding a new observation until the end of the data. This 
implies that the most recent coefficients estimation is affected by the 
distant history; in presence of structural changes the data series can be 
cut.  This cut can be corrected through the sequential estimations but 
with a biggest standard error. Like this, the Kalman filter, like other 
recursive methods, uses all the series history but with one advantage: it 
tries to estimate a stochastic path of the coefficients instead of a 
deterministic one. In this way it solves the possible estimation cut when 
structural changes happen.  
 
The Kalman filter uses the least square method to recursively generate a 
state estimator on k moment, which is unbiased minimum and variance 
linear. This filter is in equal terms with Gauss-Markov theorem and this 
gives to Kalman filter its enormous power to solve a wide range of 
problems on statistic inference.  
 
The filter is distinguished by its skill to predict the state of a model in the 
past, present and future, although the exact nature of the modeled 
system is unknown.  
The dynamic modeling of a system is one of the key features which 
distinguish the Kalman method. 
 
3.2.5.2 Disadvantages 
 
Among the filter disadvantages we can find that it is necessary to know 
the initial conditions of the mean and variance state vector to start the 
recursive algorithm. There is no general consent over the way of 
determinate the initial conditions.  
 
The Kalman filter development, as it is found on the original document, is 
supposed a wide knowledge about probability theory, specifically with 
the Gaussian condition for the random variables, which can be a limit for 
its research and application.  
 
When it is developed for autoregressive models, the results are 
conditioned to the past information of the variable under study. In this 
sense the prognostic of the series over the time represents the inertia that 
the system actually has and they are efficient just for short time term. 
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Design and development 
 

4. The project 
 

The main idea in this project is to recover the clean speech signal from a 
sample corrupted with background noise through a telephone 
conversation. To achieve our goal we are going to estimate the speech 
spectrum using LP method (as Gannot proposed) and using SWLP, an 
improved algorithm developed at Helsinki University of Technology. As 
we mentioned above, with this method, choosing correctly the 
parameters we can obtain an improved robustness against the 
background noise. After this, the idea is to use the Kalman filtering as a 
tool to estimate the future clean samples from the first one in an iterative 
way. Finally we are going to compare both: the Gannot’s way and our 
way. 
 
4.1 The material 
 
The only materials we need to develop this research are the recordings 
corrupted with noise. We are going to use a noisy speech corpus 
(NOIZEUS), which was developed to facilitate the researches over 
speech enhancement algorithms. The noisy database contains 30 IEEE 
sentences, produced by three male and three female speakers, and 
corrupted by eight different real environment noises at different SNRs. 
The noise was taken from the AURORA database and includes suburban 
train noise, babble, car, exhibition hall, restaurant, street, airport and 
train station noise.  
The results showed in the next chapter are obtained with suburban train 
noise. 
 
The IEEE database contains phonetically-balanced sentences with 
relatively low word-context predictability. The sentences selected from 
this database for NOIZEUS include all phonemes in the American English 
language. 
The sentences were originally sampled at 25 kHz and downsampled to 8 
kHz. 
  
To simulate the frequency characteristics of telephone handsets, the 
speech and noise signals were filtered by the modified Intermediate 
Reference System filters used in ITU-T P.862. 
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Figure 4.1: Frequency response of IRS filter 

 
Noise is artificially added to the clean speech signal. The IRS filter is 
applied to the clean and noise signals independently. The speech level 
of the filtered clean signal is determinate. Afterwards, a noise segment is 
randomly cut with the same length of the speech signal from the noise 
recordings, and then it is scaled to reach the SNR level and finally added 
to the filtered clean speech signal. 
In this database we can find signals at SNRs of 0 dB, 5 dB, 10 dB and 15 
dB. 
 
4.2 The program’s code: step by step 
 
All the code has been developed with Matlab, which is a high-
performance language for technical computing. It integrates 
computation, visualization, and programming in an easy-to-use 
environment where problems and solutions are expressed in familiar 
mathematical notation. 
 
4.2.1 First option: assuming white noise 
  
Once we have loaded with the files the original clean signal and the 
signal corrupted with noise, we look for the amount of noise added. As 
we know from the recording’s database, the noise is after added; then, 
we can extract it easily by calculating the difference between the clean 
speech signal and the noisy signal. 
 
In the first option, as it will be described in the next chapter, we consider 
white noise; the coefficients of the noise added signal are calculated 
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through LPC method and we use this estimation for all the process, 
assuming they don’t change. 
 
We are working with voice signals which are not stationary long-term, so 
they change quickly. To study them is better to take frames with lower 
time duration, in our case 30 ms. In this way we achieve smooth 
transitions between sounds and a quasi-stationary signal’s behavior. 
In our program, we get smaller signal from the original windowing it with 
an algorithm. 
 
This algorithm uses the Hanning window, 
 

0.5-0.5·cos(2·π·n/M) ,0 ≤ n ≤ M 
                         w[n]= 

0                         ,  the rest 
 
where M is the length of our window, in this case, 240 samples. 
 

 

Figure 4.2: The Hanning Window 
 
On time domain, we can observe the window takes lower values toward 
the edges, until zero. The samples in this area are much diminished and 
we lose information. For that reason, in our algorithm we are going to 
overlap the contiguous windows. In this way the quality of the results will 
be better. 
 
We window therefore the original signal with added noise as the signal 
which just contains the noise, and we save them in two matrix where 
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each row contains the values of each window. Our window length is 240 
samples. 
Using a loop to cover all the windows of the signal, we calculate for 
each one, the coefficients of the original noisy signal with the LPC or 
SWLP method. It depends on which kind of results we want to get or 
compare. 
 
At this very moment is when we use our Kalman filter, programmed as 
explained in the previous chapter. 
Afterwards, all the necessary updates are done because, as we have 
studied, the past samples have an influence on the future ones.  
 
Finally , the SNR ratio of the final signal is calculated after filtering. This will 
be the graph we will use to compare the different methods and options. 
 
All this process is done some times, in our project eight times, because of 
the recursive characteristic method. The samples obtained are closer to 
the original ones through the time, because the past samples influence 
on future samples. 
We did some tries increasing the number of the iterations, but the profit 
was not enough compared with the computational weight. 
 
4.2.2 Second option: assuming colored noise 
 
As we observed the results weren’t those which we expected, we 
decided to get closer to the real life noise by assuming colored noise. 
The only difference is that in this case, we model noise characteristics by 
an AR-model in a similar way as we did with the speech before. 
 
The only difference in the code with this change is that the coefficients 
of the noise added signal change with the time. For that reason, inside 
the loop, each time we calculate the coefficients of the original signal 
with noise, we have to calculate the coefficients of the noise signal too; 
but in this case we will use just the LPC method for all the tries. 
 
Due to this change, we have to calculate the noise added to the signal, 
each time we repeat the process (in our project eight times). 
 
4.3 The evaluation of the algorithms 
 
To evaluate the results of the research, we are going to use three types 
of graphs: 

• The representation of the voice signals amplitude as a function of 
time. This method is good to observe the voice signal shape, if it 
has so much noise from the original one or not and if it is much 
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distorted; but with this kind of representations it is impossible to 
appreciate which method is better than the other. 

• The spectrograms of the signals using the wavesurfer 1.8.5 tool. 
These are the representation of the energy signal as a function of 
time and frequency. On these figures it is possible to observe how 
Kalman works, how it is better on the speech frames than on the 
silent frames. Here again it is quite difficult to observe the 
difference between the two methods we want to compare, for 
that we are going to use the third kind of graph. 

• The representation of the SNR method. On these figures we can 
see the SNR level (dB) of the signal as a function of values 
proportional to the time. As we can separate the speech signal 
estimated from the noise signal estimated, it is possible to 
calculate the signal noise ratio of each window through the 
calculation of the energies of each one and after translate it into 
dB’s. This graph is the best to observe in an objective way, the 
differences between both methods. 
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Results and tests 
 

5. Results 
The signal that we use for this project is corrupted with the noise of a 
train, and the sentence said on it is: 

“The birch canoe slid on the smooth planks” 
 
With these kinds of sentences that we use to study the speech, the 
meaning of them is not as important as its balancing, phonetically 
speaking. In concrete, this sentence is pronounced by a man and 
sampled at 25 khZ. 
 
For all the next experiments we are going to use the parameter h, the 
length to calculate the coefficient of the noise signal, with a value of 10.  
 
In this figure we have the originals signals: the first one is the signal 
without noise, just the man’s voice, and the rest are signals with different 
levels of background noise, SNR= 15dB, 10dB, 0dB. We are going to study 
along this project how our research works through all of them. 

 
Figure 5.1: Original signal and signals with different levels of noise: SNR= 

15, 10, 0dB before filtering 
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To appreciate better the different levels of noise we are going to include 
the spectrogram of these signals. 
 

 
Figure 5.2: Original signal spectrogram  

 

 
Figure 5.3: Spectrogram of the signal with SNR= 15dB before filtering 

   

 
Figure 5.4: Spectrogram of the signal with SNR= 10dB before filtering    

 

 
Figure 5.5: Spectrogram of the signal with SNR= 0dB before filtering   
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With these signals we can appreciate perfectly the different levels of 
noise. In the first one we can see the difference between the area with 
speech (dark color) and the area with silent (white color). In the rest of 
them we can observe how we have more noise in each one; the areas 
where we should have silence are becoming darker and darker as we 
add more noise.  
As the SNR level is decreasing, it is harder to see where the voice is. With 
SNR = 10dB we can understand something but with SNR = 0dB, it is almost 
impossible to distinguish the speech from the silent frames because the 
noise level is very high. 
 
5.1 First approximation: White noise 

 
In our first research, we are going to assume white noise. This means we 
have the same noise power for all frequencies. We are going to 
calculate the coefficients of the noise added to the original signal, at the 
beginning of our algorithm and then use them for all the development; 
that is, the LPC coefficients of the noise are not going to change as the 
differences between the noise signal and the final signal change. 
 
5.1.1 Prediction of the signal coefficients with LPC 
 
Our first step is to use Gannot’s method; this is, linear predicting coding 
(LPC) to predict the coefficients of the speech with noise signal. The 
results after Kalman filtering are the following.  

 
Figure 5.6: Final signals, using LPC as prediction method, from original 

signal with different noise levels (SNR = 15, 10, 0 dB) and noise assumed 
as white 
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If we compare the results of the figure 5.6 with the figure 5.1, could 
resemble that the improvement doesn’t exist, but this is because the 
representation of the signal is not a good method to see the 
improvement. 
The only visible difference is the amplitude in the figure 5.6 is lower than 
in the figure 5.1. This is because Kalman filtering has two sigma 
parameters, one of them is to calculate the part of LPC and the other 
one is for the noise part. These parameters represent the energy that we 
assume that the original signal with noise and the noise signal have. If we 
increase the parameter corresponding to the noise signal, then Kalman 
filtering will try to put more amount of noise into the noise signal. This 
means that more noise will be removed, which is the goal of our system. 
However, on the other hand, Kalman filtering will remove some parts of 
the speech which resemble noise, corrupting the final speech signal. 
In this way, changing the values of sigma, we can control how much 
noise is removed and how much speech is corrupted.  
 
As we mentioned above, sigma parameters represent the amount of 
energy that each part of the signal has. If we assume that the original 
signal with noise has low energy, after the Kalman filter the final signal will 
have low energy too. This is the reason of the low amplitudes of the 
figure 5.6. In our physical system this is translated into a low volume of the 
signal and can be solved multiplying the final signal by a constant (1000 
for example) increasing in this way the volume. 

 
We can observe the changes easily between the figures 5.1 and 5.6 with 
the spectrograms. 
 

 
 

Figure 5.7: Spectrogram of the signal with SNR= 15dB after Kalman 
filtering and using the LPC method to predict the coefficients (white noise 

assumed) 
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Figure 5.8: Spectrogram of the signal with SNR= 10dB after Kalman 
filtering and using the LPC method to predict the coefficients (white noise 

assumed) 
 

 
 

Figure 5.9: Spectrogram of the signal with SNR= 0dB after Kalman 
filtering and using the LPC method to predict the coefficients (white noise 

assumed) 
 
In these figures the signals have been multiplied by 1000 as we said 
before. 
 
Comparing these figures with the figures 5.2-5.5, we get less noise in the 
frames where we have speech. This is because we estimate the LPC 
model for each frame, and the model captures speech and noise. 
Besides, we assume that we have the model of the noise. Kalman then, 
tries to separate two different signals, the speech with noise signal and 
the signal with just noise. Like we have separated one part of noise, then 
the speech signal with noise has less noise, which is our goal. 
  
If we do the same process for the part where we have only noise, there is 
not any difference between our noise model and the model of this 
frame. In this case, Kalman filter will be unable to remove the noise.  
For that reason, in the parts where we have only noise, we will have the 
same amount of it after Kalman filtering. 
 
As we can see through these results, after Kalman filtering we have less 
background noise and we will understand better the conversation. 
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5.1.2 Prediction of the signal coefficients with SWLP 
 
Now, we are going to go one step further, and instead of using the LPC 
method to predict the signal’s coefficients, we will introduce the SWLP 
algorithm in our system.  
We still consider only white noise. 
 
We continue working with the same signals as input (the original one, 
and the signals corrupted with noise with the same levels of SNR). For this 
reason, it is not necessary to draw them again (they are from Figure 5.1 
to Figure 5.5). 
 
The final signals after use the Kalman filter are these:  
 

Figure 5.10: Final signals, using SWLP as prediction method, from original 
signal with different noise levels (SNR = 15, 10, 0 dB) and noise assumed 

as white 
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At a glance, we can’t judge the results of this method; we are going to 
use the spectrograms as before to see them clearly. 
 

 
 

Figure 5.11: Spectrogram of the signal with SNR= 15dB after Kalman 
filtering and using the SWLP method to predict the coefficients (white 

noise assumed) 
  

 
 

Figure 5.12: Spectrogram of the signal with SNR= 10dB after Kalman 
filtering and using the SWLP method to predict the coefficients (white 

noise assumed) 
 

 
 

Figure 5.13: Spectrogram of the signal with SNR= 0dB after Kalman 
filtering and using the SWLP method to predict the coefficients (white 

noise assumed) 

As before, we can observe that the final signal has less noise than the 
original one in the frames where we have human voice, but we can’t 
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measure how much better the filter is, and if this method is better or 
worse than LPC method to predict the coefficients of the original signal.  

 
In this second option, using SWLP to estimate the coefficients, we can 
see the improvement as we saw using LPC method. The final signal has 
less noise, and the conversation would be better. 

 
Now we are going to see the differences of both methods: LPC and 
SWLP. 
 
5.1.3 Comparison between both methods of coefficients 
prediction: LPC and SWLP 
  
Here we arrive to the important stage of our research; we are going to 
compare the results of LPC as prediction method, as Gannot proposed, 
with the results of using SWLP as prediction method, as we propose in this 
project. 
 
Watching the previous graphs, we can’t notice so much the difference 
of both ways, so we are going to use the SNR (signal to noise ratio) 
method.  
This method is very used to compare which speech signal is better.  The 
ratio is the margin between the power of the transmitted signal, and the 
power of the noise. This measure is in dB. For this specific signals and 
results that we are getting, the SNR method is the best one to observe 
the difference. 

Figure 5.14: Comparison of the SNR’s output signal using LPC or SWLP as 
prediction method when the input signal has SNR=15 dB (white noise 

assumed) 
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Figure 5.15: Comparison of the SNR’s output signal using LPC or SWLP as 
prediction method when the input signal has SNR=10 dB (white noise 

assumed) 
 

 
Figure 5.16: Comparison of the SNR’s output signal using LPC or SWLP as 

prediction method when the input signal has SNR=0 dB (white noise 
assumed) 

 
On these graphs we can observe how the SNR is higher when SWLP is as 
the method to predict the coefficients. 
There are certain moments where the SNR when we use the SWLP 
method is a little lower than when the LPC method is used. However, this 
happens on the silent moments of the sentence, where there is not 
speech. As we showed before, it is on silent frames where the Kalman 

0 20 40 60 80 100 120 140 160 180 200
12

13

14

15

16

17

18

19

20

dB

SNR of the output signal using LPC as prediction method

SNR of the output signal using SWLP as prediction method

0 20 40 60 80 100 120 140 160 180 200
12

12.5

13

13.5

14

14.5

15

15.5

dB

SNR of the output signal using LPC as prediction method

SNR of the output signal using SWLP as prediction method



Results and tests 

49 
 

filtering is not optimum. Due to this, the combination of Kalman filter with 
the prediction of coefficients through SWLP method gives us the best 
results. 
 
Anyway, we conclude that with this situation the results are very close; 
we can’t say we have an improvement but neither a worsening 
because the differences are too small; they are not perceptible to the 
hearing. 
 
After these experiments we decided to see what happened when the 
noise wasn’t white, because in the real life noise hasn’t the same power 
for all frequencies and the approximation that we did before was so 
coarse.  
 
5.2 Second approximation: colored noise 

 
In this section the noise is considered as not white and we have modeled 
noise characteristics by an AR-model in the same way that we did with 
the speech signal. Instead of calculating the LPC coefficients of the 
noise signal at the beginning, we will calculate the coefficients each 
time we update the output signal, this is because the noise is not always 
the same. We use the LPC method for noise coefficients because the 
SWLP method is optimized for speech. 
 
The signals that we used as input are the same than in the previous 
section (Figures 5.1-5.5); the experiments are done with SNR = 15, 10, 0dB 
at the input. 

 
As before, first we are going to calculate the coefficients of the speech 
with noise signal with LPC method, after with SWLP method and for 
ending we will compare both methods. 

 
5.2.1 Prediction of the signal coefficients with LPC 
  
The results after applying Kalman filtering are drawn in the figure 5.17. 
Here we can observe the output signals for the different values of SNR at 
the input. 
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Figure 5.17: Final signals, using LPC as prediction method, from original 
signal with different noise levels (SNR = 15, 10, 0 dB) and noise assumed 

as colored 
 
In this figure we can notice, like in the figure 5.6, that the amplitude of 
the output signals is much lower than in the input. This is because of, as 
we explained more detailed before, the effect of the sigma parameters. 
As we suppose low energy for the input signal, where we have speech 
and noise, then the output signal will have low energy too because of 
Kalman filtering, and this is translated into lower amplitude. 
If we continue comparing the figures 5.6 and 5.17, it is very evident that 
in the second one we have less noise, and the final signal, after Kalman 
filtering, is less distorted. This is because the noise model now is not white, 
then, we don’t have noise in all the frequencies, and those speech parts 
which are on frequencies without noise are not corrupted. 
 

 
 

Figure 5.18: Spectrogram of the signal with SNR= 15dB after Kalman 
filtering and using the LPC method to predict the coefficients (colored 

noise assumed) 
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Figure 5.19: Spectrogram of the signal with SNR= 10dB after Kalman 
filtering and using the LPC method to predict the coefficients (colored 

noise assumed) 
 

 
 

Figure 5.20: Spectrogram of the signal with SNR= 0dB after Kalman 
filtering and using the LPC method to predict the coefficients (colored 

noise assumed) 
 

From figure 5.18 to 5.20 we can observe the spectrograms of the final 
signals which coefficients have been predicted with LPC model and 
after filtered by Kalman method.  
 
If we compare these figures with figures 5.7-5.9, it is noticeable how the 
first ones have the speech part clearer, but the figures 5.18-5.20 have, on 
the speech parts more difference between the speech level and the 
noise level. This means that, although we can listen some noise on 
speech parts, we will understand the speech better. Besides, the noise 
level is constant through all the signal which is better for the human 
system to understand the speech. 
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5.2.2 Prediction of the signal coefficients with SWLP 
 
The results after applying Kalman filtering are drawn in the figure 5.21. 
Here we can observe the output signals for the different values of SNR at 
the input. 
 

 
Figure 5.21: Final signals, using SWLP as prediction method, from original 
signal with different noise levels (SNR = 15, 10, 0 dB) and noise assumed 

as colored 
 

Here, as it happened using the LPC method as prediction, the final 
signals are less corrupted by noise, and they are closer to the original 
ones, this is because we don’t have noise in all frequencies. 
 

 
 

Figure 5.22: Spectrogram of the signal with SNR= 15dB after Kalman 
filtering and using the SWLP method to predict the coefficients (colored 

noise assumed) 
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Figure 5.23: Spectrogram of the signal with SNR= 10dB after Kalman 
filtering and using the SWLP method to predict the coefficients (colored 

noise assumed) 
 

 
 

Figure 5.24: Spectrogram of the signal with SNR= 0dB after Kalman 
filtering and using the SWLP method to predict the coefficients (colored 

noise assumed) 
 
Comparing the spectrograms we have the same result, figures from 5.11 
to 5.13 have less noise in the speech parts and more noise in the silent 
parts than figures from 5.22 to 5.24. However, these later figures have the 
same level of noise in the speech parts and in the silent parts, which is 
better for the human ear to understand the speech, as it happens too for 
LPC method.  
Here, the difference between the speech level and noise level is higher 
than with white noise, and the results will be better. 
 
5.2.3 Comparison between both methods of coefficients 
prediction: LPC and SWLP 
 
Again we are going to compare both coefficient prediction methods, 
LPC and SWLP, but with the noise modeled as colored.  
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Figure 5.25: Comparison of the SNR’s output signal using LPC or SWLP as 
prediction method when the input signal has SNR=15 dB (colored noise 

assumed) 

 
Figure 5.26: Comparison of the SNR’s output signal using LPC or SWLP as 
prediction method when the input signal has SNR=10 dB (colored noise 

assumed)  
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Figure 5.27: Comparison of the SNR’s output signal using LPC or SWLP as 
prediction method when the input signal has SNR=0 dB (colored noise 

assumed) 

 
In general, for both prediction methods, LPC and SWLP, we have more 
SNR in the entire signal.  
The noise level along the signal is more constant but this could be good 
for the human hearing system, because the changes between the 
speech and the noise are smoother, and for that reason we can 
understand better the conversation. 
We can see too how the SWLP prediction method has higher SNR than 
LPC. This is especially interesting on speech frames, although this 
difference is still very low for the human ear. 
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Conclusions and future work 
 
In this project we have studied the effect of the Kalman filtering over 
telephonic conversations using two methods of coefficient prediction: 

• The method proposed by Gannot: LPC 
• The method developed and proposed by Helsinki University of 

Technology: SWLP 
 

Our first step was to mount a system assuming a white noise model; 
considering the spectrograms and the figures with the SNR 
representation, we can observe how Kalman works better for the speech 
frames. It is easier to see with the SNR levels how this level increases for 

the speech and how it decreases for the noise frames.  

The problem for this case is exactly that the SNR level changes abruptly 
from the speech to the noise frames, and for the human ear, which has 
kind of a memory it is very difficult to make this change fast enough to 

understand perfectly the conversation. 

Taking into account the SNR representation for the noise modeled as 
white, we observed how the combination of Kalman filtering with SWLP 
has better results that with LPC method. This improvement is more 
noticeable on speech frames, where Kalman and SWLP method are 

both optimum.  

On the second part, where we model the noise as colored, we could 
notice how the final signals, after Kalman filtering, where less corrupted 
by noise. This is because for Kalman is easier to eliminate noise, even in 

the frames without speech, when the noise model is better.  

As a conclusion with the prediction methods, the SWLP is a bit better 
than LPC, but the difference, if we listen the recordings, is negligible for 

the human ear.    

We have seen that on silent parts, the noise is still very high; for that it 
would be very useful for a real application to include a system to detect 
the speech and the silent frames. To do this we have voice activity 
detection (VAD) algorithms which detect the presence or absence of 
human speech. In this way we could make frames without speech in 
silent. The problems with these algorithms are the delay, sensitivity, 

accuracy and computational cost. 
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Conclusiones y trabajo futuro 

En este proyecto hemos estudiado el efecto del filtrado de Kalman 
sobre conversaciones telefónicas utilizando dos métodos de predicción 
de coeficientes: 

• El método propuesto por Gannot: LPC 
• El método desarrollado y propuesto por Helsinki University of 

Technology: SWLP 
 
Nuestro primer paso fue montar un sistema asumiendo un modelo de 
ruido blanco; considerando el espectrograma y las figuras en donde se 
representa el nivel de SNR, podemos observar cómo Kalman trabaja 
mejor para los marcos donde tenemos speech. Es más fácil ver con la 
representación del SNR cómo estos niveles aumentan para el speech y 
cómo disminuyen para los marcos con ruido. 
 
El problema en este caso es que el nivel de SNR cambia abruptamente 
cuando pasamos de los marcos con speech a los marcos con ruido, y 
para el oído humano, que tiene memoria auditiva, le es muy difícil 
realizar este cambio de forma tan rápida como para que la 
conversación sea perfectamente entendible. 
 
Teniendo en cuenta las representaciones de SNR para el modelado de 
ruido como blanco, observamos cómo la combinación del filtrado de 
Kalman con el método SWLP da mejores resultados que con el método 
LPC. Esta mejora se puede apreciar más en los marcos de speech, 
donde tanto Kalman como el método SWLP son óptimos. 
 
En la segunda parte del documento, donde hemos modelado el ruido 
como coloreado, se puede apreciar cómo las señales finales, tras haber 
aplicado el filtrado de Kalman, están menos corrompidas por el ruido. 
Esto es debido a que para Kalman es más fácil en este caso eliminar el 
ruido, incluso en los marcos sin speech, donde el modelo de ruido es 
mejor. 
 
Como conclusión de los métodos de predicción, el SWLP es un poco 
mejor que el LPC, pero la diferencia, si se escuchan las grabaciones, es 
imperceptible para el oído humano. 
 
A través de todas las investigaciones y pruebas realizadas, hemos visto 
que en las partes donde no existe speech, tan sólo silencio, el ruido es 
todavía muy alto; por lo que sería muy útil para aplicaciones reales 
incluir un sistema para detectar los marcos de speech y de silencio. Para 
realizar esto se pueden utilizar algoritmos VAD, los cuales detectan la 
presencia o ausencia de habla humana. El problema con estos 
algoritmos es el retardo, la sensibilidad, la agudeza y el coste 
computacional. 
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A. Kalman’s Biography and achievements 
 

Rudolf Kalman was born in Budapest (Hungary) on May 19, 1930, the son 
of an electrical engineer. Early wanted to follow his father’s model and 
started a career on mathematics field. He emigrated to United States on 
1943 and studied electrical engineering at Massachusetts Institute of 
Technology (MIT) in Cambridge, receiving his master’s degree in 1954. 
Later he got his doctorate in 1957 at Columbia’s University, in New York 
City. There, he had the fortune to study with the professor John R. 
Ragazzini, head of electronic laboratory and a important man for his 
research about ultra-high frequency (UHF) techniques, analog 
computers and control systems. 
 
During his years in MIT and Columbia, Kalman explored his interest in 
control theory to study how to get, using mathematics, a device 
controlled to change the data stream output in a desired output. 
Later, he worked at the Research Institute for Advanced Studies in 
Baltimore (RIAS) as mathematical researcher and as associate director of 
research. 
 
Through lectures and published papers, he helped to extend the 
knowledge about the modern control theory, which includes 
programming robotics and machines to answer the constant change of 
the conditions and keep self-control: an application of this theory could 
be an automatic pilot system in a flight without crew to avoid a crash. 
 
All Kalman’s research had an important impact in these fields: 

• Research about fundamental systems concepts: controllability and 
observability. 

• Development of theories in structural aspects of system engineer 
• Unify the theory and the design on linear systems with respect to 

quadratic criteria. 
 
Besides, he was one of the first in using digital computer like an important 
part of the design process as well as of the control system’s 
implementations. 

 
However, the most important work for Kalman was the development of 
Kalman filters. At the beginning of his research he found solutions to 
problems with discrete-time filters. Kalman based his study on filters 
carried out by Norbert Wiener, Kolmogorov, Bode, Shannon and 
Pugachev among others. On the basis of state-space techniques and 
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some recursive algorithms, the Kalman filter revolutionized the estimation 
field. 
 
One of the forces which financed Kalman’s work was the U.S. Air Force. 
By the late 1950s and early 1960s, the aircrafts had been developed to 
the point that they needed advanced control mechanisms for the flights. 
The AFORS sponsored a lot of researches in this area, even those which 
Kalman and Bucy did in RIAS. As we had said, his work revolutionized the 
estimation field and had an important impact in the design and 
development of navigation systems.  The Kalman filter was the biggest 
discovery in orientation technology. 
The Kalman algorithm was used by NASA. Firstly, they used the filter to 
solve some problems about satellites orbits, and later, it was included for 
Ranger, Mariner and Apolo missions; and when the Apolo 11 module was 
landed to the Moon in July of 1969, was guided by the Kalman filter. 
 
Due to all this, the Kalman filter is the most utilized product in the modern 
control theory, and is used in almost every control system with 
commercials and militaries purposes: 

• Navigational and guidance systems. 
• Radar tracking algorithms for anti-ballistic missile applications. 
• Sonar ranging. 
• Satellite orbit determination. 

 
B. Noise 

Noise is an unwanted signal that interferes with the communication, the 
measure or the information processing which transports a signal. 
Technically, noise is the result of the combination of more than one 
sound with just one frequency and has a spectrogram with continuous 

frequency, with irregular amplitude and wave length.  

The success in the noise processing method depends on the skill to 
characterize and model the noisy process, and use its characteristics to 

separate it from the signal to restore.  

There exist a lot of noise types, but in this projects the main are the white 

noise and the colored noise.  

White noise is a random signal with a flat power spectral density. It 
contains equal power at any frequency within a bandwidth. By having 
power at all frequencies, the total power of the signal is infinite, which is 
impossible, for that, it is said that white noise is a theoretical construction. 

However it is possible over a defined frequency band. 
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Figure B.1: White noise spectrum (Wikipedia.org) 
 
Colored noise is a broadband noise with a spectrum different from the 
white noise spectrum. It continue being a random signal but with 
statistical characteristics and properties. Depending of the shape of its 
power spectral density, we have different colors for the noise.  
The background noise has a spectrum which is not as the white one, with 
a predominance of low frequencies.  

 

Figure B.2: Pink noise spectrum (Wikipedia.org) 
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PLIEGO DE CONDICIONES 
 

Este documento contiene las condiciones legales que guiarán la 
realización, en este proyecto llamado “Speech enhancement using 
Kalman filtering”. En lo que sigue, se supondrá que el proyecto ha sido 
encargado por una empresa cliente a una empresa consultora con la 
finalidad de realizar dicho sistema. Dicha empresa ha debido desarrollar 
una línea de investigación con objeto de elaborar el proyecto. Esta 
línea de investigación, junto con el posterior desarrollo de los programas 
está amparada por las condiciones particulares del siguiente pliego. 

Supuesto que la utilización industrial de los métodos recogidos en 
el presente proyecto ha sido decidida por parte de la empresa cliente o 
de otras, la obra a realizar se regulará  por las siguientes: 

  
Condiciones generales 

 
 1. La modalidad de contratación será el concurso. La 
adjudicación se hará, por tanto, a la proposición más favorable sin 
atender exclusivamente al valor económico, dependiendo de las 
mayores garantías ofrecidas. La empresa que somete el proyecto a 
concurso se reserva el derecho a declararlo desierto. 
 
 2. El montaje y mecanización completa de los equipos que 
intervengan será realizado totalmente por la empresa licitadora. 
 
 3. En la oferta, se hará constar el precio total por el que se 
compromete a realizar la obra y el tanto por ciento de baja que supone 
este precio en relación con un importe límite si este se hubiera fijado. 
 
 4. La obra se realizará  bajo la dirección técnica de un Ingeniero 
Superior de Telecomunicación, auxiliado por el número de Ingenieros 
Técnicos y Programadores que se estime preciso para el desarrollo de la 
misma. 
 
 5. Aparte del Ingeniero Director, el contratista tendrá derecho a 
contratar al resto del personal, pudiendo ceder esta prerrogativa a 
favor del Ingeniero Director, quien no estará obligado a aceptarla. 
 
 6. El contratista tiene derecho a sacar copias a su costa de los 
planos, pliego de condiciones y presupuestos. El Ingeniero autor del 
proyecto autorizará con su firma las copias solicitadas por el contratista 
después de confrontarlas. 
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 7. Se abonará al contratista la obra que realmente ejecute con 
sujeción al proyecto que sirvió de base para la contratación, a las 
modificaciones autorizadas por la superioridad o a las órdenes que con 
arreglo a sus facultades le hayan comunicado por escrito al Ingeniero 
Director de obras siempre que dicha obra se haya ajustado a los 
preceptos de los pliegos de condiciones, con arreglo a los cuales, se 
harán las modificaciones y la valoración de las diversas unidades sin que 
el importe total pueda exceder de los presupuestos aprobados. Por 
consiguiente, el número de unidades que se consignan en el proyecto o 
en el presupuesto, no podrá servirle de fundamento para entablar 
reclamaciones de ninguna clase, salvo en los casos de rescisión. 
 
 8. Tanto en las certificaciones de obras como en la liquidación 
final, se abonarán los trabajos realizados por el contratista a los precios 
de ejecución material que figuran en el presupuesto para cada unidad 
de la obra. 
 
 9.  Si excepcionalmente se hubiera ejecutado algún trabajo que 
no se ajustase a las condiciones de la contrata pero que sin embargo es 
admisible a juicio del Ingeniero Director de obras, se dará conocimiento 
a la Dirección, proponiendo a la vez la rebaja de precios que el 
Ingeniero estime justa y si la Dirección resolviera aceptar la obra, 
quedará el contratista obligado a conformarse con la rebaja acordada. 
 
 10. Cuando se juzgue necesario emplear materiales o ejecutar 
obras que no figuren en el presupuesto de la contrata, se evaluará  su 
importe a los precios asignados a otras obras o materiales análogos si los 
hubiere y cuando no, se discutirán entre el Ingeniero Director y el 
contratista, sometiéndolos a la aprobación de la Dirección. Los nuevos 
precios convenidos por uno u otro procedimiento, se sujetarán siempre 
al establecido en el punto anterior. 
 
 11. Cuando el contratista, con autorización del Ingeniero Director 
de obras, emplee materiales de calidad más elevada o de mayores 
dimensiones de lo estipulado en el proyecto, o sustituya una clase de 
fabricación por otra que tenga asignado mayor precio o ejecute con 
mayores dimensiones cualquier otra parte de las obras, o en general, 
introduzca en ellas cualquier modificación que sea beneficiosa a juicio 
del Ingeniero Director de obras, no tendrá derecho sin embargo, sino a 
lo que le correspondería si hubiera realizado la obra con estricta 
sujeción a lo proyectado y contratado. 
 
 12. Las cantidades calculadas para obras accesorias, aunque 
figuren por partida alzada en el presupuesto final (general), no serán 
abonadas sino a los precios de la contrata, según las condiciones de la 
misma y los proyectos particulares que para ellas se formen, o en su 
defecto, por lo que resulte de su medición final. 
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 13. El contratista queda obligado a abonar al Ingeniero autor del 
proyecto y director de obras así como a los Ingenieros Técnicos, el 
importe de sus respectivos honorarios facultativos por formación del 
proyecto, dirección técnica y administración en su caso, con arreglo a 
las tarifas y honorarios vigentes. 
 
 14. Concluida la ejecución de la obra, será reconocida por el 
Ingeniero Director que a tal efecto designe la empresa. 
 
 15.  La garantía definitiva será del 4% del presupuesto y la 
provisional del 2%. 
 
 16. La forma de pago será por certificaciones mensuales de la 
obra ejecutada, de acuerdo con los precios del presupuesto, deducida 
la baja si la hubiera. 
 
 17. La fecha de comienzo de las obras será a partir de los 15 días 
naturales del replanteo oficial de las mismas y la definitiva, al año de 
haber ejecutado la provisional, procediéndose si no existe reclamación 
alguna, a la reclamación de la fianza. 
 
 18. Si el contratista al efectuar el replanteo, observase algún error 
en el proyecto, deberá  comunicarlo en el plazo de quince días al 
Ingeniero Director de obras, pues transcurrido ese plazo será  
responsable de la exactitud del proyecto. 
 
 19. El contratista está obligado a designar una persona 
responsable que se entenderá con el Ingeniero Director de obras, o con 
el delegado que éste designe, para todo relacionado con ella. Al ser el 
Ingeniero Director de obras el que interpreta el proyecto, el contratista 
deberá  consultarle cualquier duda que surja en su realización. 
 
 20. Durante la realización de la obra, se girarán visitas de 
inspección por personal facultativo de la empresa cliente, para hacer 
las comprobaciones que se crean oportunas. Es obligación del 
contratista, la conservación de la obra ya ejecutada hasta la recepción 
de la misma, por lo que el deterioro parcial o total de ella, aunque sea 
por agentes atmosféricos u otras causas, deberá ser reparado o 
reconstruido por su cuenta. 

 
 21. El contratista, deberá realizar la obra en el plazo mencionado 
a partir de la fecha del contrato, incurriendo en multa, por retraso de la 
ejecución siempre que éste no sea debido a causas de fuerza mayor. A 
la terminación de la obra, se hará una recepción provisional previo 
reconocimiento y examen por la dirección técnica, el depositario de 
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efectos, el interventor y el jefe de servicio o un representante, 
estampando su conformidad el contratista. 
 
 22. Hecha la recepción provisional, se certificará al contratista el 
resto de la obra, reservándose la administración el importe de los gastos 
de conservación de la misma hasta su recepción definitiva y la fianza 
durante el tiempo señalado como plazo de garantía. La recepción 
definitiva se hará en las mismas condiciones que la provisional, 
extendiéndose el acta correspondiente. El Director Técnico propondrá a 
la Junta Económica la devolución de la fianza al contratista de acuerdo 
con las condiciones económicas legales establecidas. 
 
 23. Las tarifas para la determinación de honorarios, reguladas por 
orden de la Presidencia del Gobierno el 19 de Octubre de 1961, se 
aplicarán sobre el denominado en la actualidad “Presupuesto de 
Ejecución de Contrata” y anteriormente llamado ”Presupuesto de 
Ejecución Material” que hoy designa otro concepto. 
 

 
Condiciones particulares 

 
 La empresa consultora, que ha desarrollado el presente proyecto, 
lo entregará a la empresa cliente bajo las condiciones generales ya 
formuladas, debiendo añadirse las siguientes condiciones particulares: 

 
 1.  La propiedad intelectual de los procesos descritos y analizados 
en el presente trabajo, pertenece por entero a la empresa consultora 
representada por el Ingeniero Director del Proyecto. 
 
 2. La empresa consultora se reserva el derecho a la utilización 
total o parcial de los resultados de la investigación realizada para 
desarrollar el siguiente proyecto, bien para su publicación o bien para 
su uso en trabajos o proyectos posteriores, para la misma empresa 
cliente o para otra. 
 
 3.  Cualquier tipo de reproducción aparte de las reseñadas en las 
condiciones generales, bien sea para uso particular de la empresa 
cliente, o para cualquier otra aplicación, contará con autorización 
expresa y por escrito del Ingeniero Director del Proyecto, que actuará  
en representación de la empresa consultora. 
 
 4. En la autorización se ha de hacer constar la aplicación a que se 
destinan sus reproducciones así como su cantidad. 
 
 5.  En todas las reproducciones se indicará su procedencia, 
explicitando el nombre del proyecto, nombre del Ingeniero Director y de 
la empresa consultora. 
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 6. Si el proyecto pasa la etapa de desarrollo, cualquier 
modificación que se realice sobre él, deberá  ser notificada al Ingeniero 
Director del Proyecto y a criterio de éste, la empresa consultora decidirá  
aceptar o no la modificación propuesta. 
 
 7. Si la modificación se acepta, la empresa consultora se hará 
responsable al mismo nivel que el proyecto inicial del que resulta el 
añadirla. 
 
 8. Si la modificación no es aceptada, por el contrario, la empresa 
consultora declinará  toda responsabilidad que se derive de la 
aplicación o influencia de la misma. 
 
 9. Si la empresa cliente decide desarrollar industrialmente uno o 
varios productos en los que resulte parcial o totalmente aplicable el 
estudio de este proyecto, deberá comunicarlo a la empresa consultora. 
 
 10.  La empresa consultora no se responsabiliza de los efectos 
laterales que se puedan producir en el momento en que se utilice la 
herramienta objeto del presente proyecto para la realización de otras 
aplicaciones. 
 
 11. La empresa consultora tendrá prioridad respecto a otras en la 
elaboración de los proyectos auxiliares que fuese necesario desarrollar 
para dicha aplicación industrial, siempre que no haga explícita renuncia 
a este hecho. En este caso, deberá  autorizar expresamente los 
proyectos presentados por otros. 
 
 12. El Ingeniero Director del presente proyecto, será el responsable 
de la dirección de la aplicación industrial siempre que la empresa 
consultora lo estime oportuno. En caso contrario, la persona designada 
deberá  contar con la autorización del mismo, quien delegará en él las 
responsabilidades que ostente. 


