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Resumen:   
Este proyecto de fin de carrera trata de crear un entorno FPGA, para desarrollar sistemas 
de monitorización Ethernet. El objetivo principal es alcanzar una precisión temporal de 
decenas de nanosegundos en las marcas de tiempo generadas. Se ha desarrollado un 
algoritmo para compensar las derivas temporales del oscilador local de cuarzo, usando un 
GPS como fuente de sincronismo. Los errores en la sincronización son menores de 100 
nanosegundos. La arquitectura del sistema se basa en relojes asíncronos, permitiendo una 
resolución en las marcas temporales de 10ns con independencia de la frecuencia de la red o 
del sistema. Esta arquitectura,  basada en diferentes dominios de tiempo, permitirá mejorar 
la resolución hasta 5ns  en la FPGA Virtex II Pro seleccionada. No obstante, esta idea ha 
provocado la necesidad de desarrollar un modulo específico con el fin de evitar problemas 
potenciales como la metaestabilidad.  
El sistema es capaz de filtrar paquetes haciendo una comparación directa con las reglas, 
basadas en quíntuplas (direcciones, puertos y protocolo) definidas por el usuario. La 
estructura trata de establecer un primer paso para implementar un árbol de filtrado PAM. 
Se almacenarán, en la memoria de la FPGA, los 50 primeros bytes de cada paquete que 
supere el filtro y posteriormente estos serán mandados, junto a su marca de tiempos, a un 
PC. Este ordenador estará ejecutando un programa en JAVA para mostrar los resultados. 
El sistema de monitorización ha sido implementado en una placa de desarrollo que no esta 
basada en una conexión PCI, lo cual otorga independencia al sistema. Al final de la 
memoria, se publican los resultados de las pruebas las que se ha sometido este proyecto y 
que muestran el éxito del mismo. 
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Abstract: 
This master thesis aims at creating a framework for developing a FPGA-based Ethernet 
monitoring system. Its key objective is to achieve a time accuracy of tens of nanoseconds 
in the generated time-stamps. An algorithm for compensating the time drift of the local 
quartz oscillator has been developed, using a GPS signal as synchronization source. Errors 
in time synchronization have been measured to be less than +-100 ns. The system 
architecture is based in asynchronous clocks, thus allowing a time-stamping resolution of 
10ns independently of the system or network clock frequency. This architecture, based on 
different time domains, will even permit to improve the resolution until 5 ns on the 
selected Virtex-II Pro FPGA. However, this approach has required the development of a 
specific module for handling the communication between time domains, to avoid potential 
problems such as metastability. 
The system is able to filter packets making a direct comparison with the rules, based on 
quintuples (addresses, ports and protocol) defined by the user. This structure tries to 
establish the first step for developing a PAM filtering tree. The 50 first bytes of the packets 
that pass the filter are stored on the FPGA memory and then sent by an Ethernet 
connection to a PC. This computer is running a JAVA application for showing the results.  
The monitoring system has been implemented on a FPGA development board which does 
not require a PC hosting for working. Finally, a complete test platform has been 
implemented in order to validate this project. 
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1 Introducción 

1.1 Motivación 
Hoy en día hay muchas actividades comerciales y de investigación () que requieren 
conocer, con buena precisión, el estado de la red en diferentes puntos y en tiempo real. En 
concreto estos análisis requieren medidas de gran precisión sobre los tiempos de latencia. 
 
El gran incremento en el número de nodos, la evolución de los requisitos de los servicios 
sobre la red, loas altos volúmenes de datos y la heterogeneidad de las diferentes 
tecnologías han creado una necesidad de comprender en gran detalle las interacciones del 
tráfico.  

 
Figura 1-1: Evolución de los requisitos de los servicios de red sobre el tiempo [14]. 

Como se explica en [14], hay un gran espacio, “GAP”. Este es definido como “el espacio 
que existe entre lo que medimos/entendemos y lo que verdaderamente esta ocurriendo”. 
“Ya es grande y es muy probable que siga creciendo”. Debajo se puede apreciar este 
fenómeno. 

 
Figure 1-2: “The Gap” [14]. 
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Este proyecto de fin de carrera trata de resolver estos problemas en las redes de Ethernet. 
Una primera aproximación podría ser una solución basada exclusivamente en software que 
pudiera estar equipado con un sistema operativo en tiempo real. Hay varias razones en 
contra de esta sencilla solución. Aquí se puede apreciar un breve listado de los 
inconvenientes que esta solución puede generar [1][2]. 

• La gestión de interrupciones generadas por la tarjeta Ethernet. Incluso estando bajo 
un sistema en tiempo real, la incertidumbre introducida por la propia tarjeta 
dificulta bastante la consecución de una precisión por debajo de los microsegundos, 
que por otra parte son requeridos por la mayor parte de los sistemas de 
monitorización.  

• Reloj del PC. En su gran mayoría están basados en cristales de cuarzo económicos, 
los cuales ofrecen un error de 100ppmo lo que es lo mismo un par de segundos al 
día. 

• El sincronismo entre distintos puntos de la red. Incluso si se emplean osciladores de 
alta precisión, pequeñas derivas temporales pueden echar por tierra la precisión 
requerida. Por lo tanto, se hace necesario el empleo de un  reloj común para todos 
los puntos de medida.  

Estos problemas hacen necesario el desarrollo de una solución Hardware. Esta 
implementada en una FPGA, debido a que estos dispositivos ofrecen la mejor solución 
teniendo en cuenta la versatilidad y rendimiento en volúmenes medios y pequeños de 
producción [3]. Hay dos opciones para la implementación. La primera opción sería crear 
una tarjeta PC-PCI , DAG Endace Cards son un buen ejemplo. La segunda sería usar un 
placa de desarrollo conectada a un dispositivo de mayor inteligencia, empleando un enlace 
Ethernet, Esta solución ha sido la elegida para este proyecto, ya que permite el ahorro de 
costes al no requerir de un PC en el punto de medida. 
Los siguientes puntos detallan la solución propuesta. 
 

1.1 Objetivos 
 
La principal meta de este proyecto es desarrollar una plataforma de monitorización 
Ethernet no intrusiva. Deberá proveer un motor para la captura de paquetes y sus 
correspondientes marcas de tiempos, así como la generación de histogramas. Como ha sido 
mencionado en el punto anterior, todas estas operaciones serán implementadas en 
hardware. Debido a esto, este proyecto será desarrollado principalmente en VHDL. 
  
El resultado final del proyecto servirá de referencia como una plataforma de 
monitorización basada en un sistema embebido en una FPGA. En lo referente al hardware 
el sistema contara con una FPGA y dos interfaces Ethernet, un banco de memoria y dos 
puertos de comunicación serie. El sistema interceptará una conexión. Los dos extremos de 
la conexión estarán conectados a los puertos Ethernet del sistema. En el interior de la 
FPGA, el tráfico entrante será dirigido hacia la otra interfaz de red, minimizando su 
retardo. A la vez, este tráfico será reenviado a los dispositivos de captura de paquetes y de 
marcas de tiempos 
 
La información recopilada será almacenada en memoria y enviada. Desarrollos futuros 
sustituirán este Puerto serie por una tercera interfaz de Ethernet. 
  
El sincronismo será conseguido mediante el uso de la tecnología GPS, que proveerá al 
proyecto de una referencia UTC próxima a la obtenida con un reloj atómico. Para ello, se 

 2



 

ha pensado en una solución mixta hardware y software. Los GPS comerciales proveen dos 
señales complementarias NMEA, fácilmente tratado por un procesador, y PPS que requiere 
un uso hardware para lograr la máxima eficiencia 
 
Hay que destacar, finalmente, que el desarrollo de un sistema de monitorización es un 
enorme proyecto que no pede ser tratado en un solo proyecto de fin de carrera. Es por tanto 
el fin de este proyecto, el establecimiento de un punto de partida sobre el que añadir nuevos 
componentes y características al sistema que permitirán el refinamiento de esta. 
 

1.2 Retos 
 
Por todo lo expuesto anteriormente este proyecto presenta multitud de problemas que han 
de ser resueltos. A continuación, se presenta una breve descripción de los mismos, con el 
fin de mejorar la comprensión sobre las decisiones y diseños del proyecto. 
 

• Frontera temporal: Se define dominio temporal como aquellos elementos que 
reciben la misma señal de reloj. Hay varios motivos por los cuales la comunicación 
entre distintos dominios de reloj presentan varios problemas [34]. 

o Los fallos no siempre se repiten. 
o Los problemas varían entre tecnologías e incluso entre dispositivos de la 

misma familia.  
o Las herramientas EDA no suelen detector este problema. 
  

El típico error producido en el intercambio de información entre diferentes 
dominios es la metaestabilidad [34]. 
 
Hay algunas soluciones que pueden tratar de solventar este problema. 
 

o Control de fase: un PLL interno o incluso un DLL puede ser utilizado para 
permitir una comunicación libre de riesgos. No obstante, no siempre se 
puede utilizar ya que requiere que un reloj sea múltiplo del otro. 

  
o Double flopping: Consiste en dos Flip-Flops alimentados por el mismo reloj. 

La información llega de un tercer Flip-flop, pero que esta sincronizado con 
el otro reloj. 

 
o FIFO structure: Una fifo asíncrona puede resolver el problema. En la 

entrada los datos serán almacenados empleando un reloj. Por contra serán 
leídos bajo el otro dominio de reloj.  

Para una explicación más detallada de estos problemas y sus soluciones se  
aconseja fehacientemente la lectura de la siguiente referencia [34]. 
 

• Precisión de las marcas de tiempos:  
Muchos proyectos relacionados con la monitorización de redes han sido desarrollados 
recientemente. No obstante, la precisión temporal aún le queda campo para mejorar [2][35]. 
El error de estas marcas decrementa el comportamiento de los sistemas. Por lo que la 
mejora de las marcas temporales es una obligación para este proyecto. El propósito inicial 
es lograr  un error  +/- 100 ns comparado con la señal PPS, proveniente de la fuente 
temporal. Esto significa un error de +/-150 ns sobre el tiempo UTC. 
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Dos ideas surgen a la hora de intentar esa mejora. 
 

o Capa física: Si el proceso de marcado se realiza tan cercano como sea 
posible a la capa física, la precisión aumentará. Desarrollar este proyecto 
usando una FPGA permitirá aplicar esta solución. 

  
o Deriva temporal: ningún reloj de cuarzo se ve exento de padecer la tan 

temida deriva temporal. [2]. Al usar el reloj de cuarzo para calcular las 
marcas temporales es fundamental tratar de lograr la máxima sincronización 
entre este reloj local y su referente global. Con ese fín, se propone el empleo 
de un algoritmo de corrección de la deriva temporal. 

 
• Escalabilidad:  

El diseño de un sistema de monitorización para Ethernet con una velocidad de 10/100 se 
antoja  una tarea bastante complicada. No obstante, resultaría un esfuerzo fútil si el diseño 
no fuese escalable. En este proyecto, la arquitectura se ha pensando de tal manera que 
permita soportar velocidades de hasta 1 Gbps. Incluso, lo ideal sería que la velocidad 
pudiera ser configurada a las necesidades puntuales del usuario.  
Pero en cualquier caso, en esta etapa inicial, los resultados serán publicados para una 
velocidad de 10/100 
 

• Eficiencia de costes: Sin perder de vista la escalabilidad es igualmente importante 
que el proyecta cumpla con un cierto limite en sus costes. Debido a ello y a pesar de 
que será implementado bajo una FPGA de la familia Virtex II Pro, los requisitos de 
diseño para serán tenidos en cuenta implementarla en una familia de más bajo  
como Spartan 3. 

 

1.4 Organización de la memoria 
 
Esta memoria ha sido organizada en varios capítulos. 

• Introduction: esta sección debería de responder a la pregunta. ¿Por qué hacer este 
proyecto? 

 
• State of Art: Pretende dar un conocimiento general sobre ciertos de los aspectos 

tecnológicos que atañen a este proyecto. 
  
• Design: Presenta un estudio de las diferentes soluciones para resolver los distintos 

retos y objetivos del proyecto.  
 
• Implementation: Ofrece un explicación de las soluciones elegidas y de su 

funcionamiento. 
 
• Tests and results: Muestra los experimentos y análisis llevados a cabo para 

estudiar el rendimiento y las características del proyecto. 
  
• Conclusiones y trabajo futuro: Un resumen de los resultados del proyecto y de su 

deposable desarrollo futuro.  
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1 Introduction 

1.1  Motivation 
Nowadays there are many different commercial and research activities (i.e. Q.O.S. 
measurement, SLA verification and traffic engineering [1][2]) that require to establish, with 
really good accuracy, the real-time status of the network in different points. 
The huge increases in the number of nodes, the evolution of network services requirements, 
the higher data rates and the mix between the different kinds of technologies have also 
created a clear need for the comprehension, in great detail, of the traffic interactions. In 
particular, these analysis demand high precision measurements of the network latency. 
 

 
Figure 1-1: Evolution of Network Services Requirements over Time [9]. 

As [14] says, there is a big gap defined as “what we measure/understand, and what is really 
going on out there”. “It is already large and is probably getting larger”. 
Below it can be seen the increase of the unaccounted-for traffic (the gap) through 2 years. 

 
Figure 1-2: The Gap [14]
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The following paragraph explains quite well the motivation for researching in monitoring 
systems. It has been taken from the objectives webpage [12] project. 
 
“To make an analogy from the physical sciences, network traffic monitoring systems are to 
the networking scientists as necessary as telescopes are to astronomers. Indeed, in the 
same way that a telescope monitors the outer space and records all interesting astronomic 
events, a traffic monitoring sensor monitors the cyberspace and records all interesting 
networking events. It is difficult to imagine where astronomy would be today if Galileo 
hadn't turned his telescope up towards the distant skies. On the contrary, it is easy to 
realize how this single monitoring instrument, i.e. the telescope, enhanced our 
understanding of the outer space, and eventually improved our life on earth. It is our belief 
that advanced network traffic monitoring sensors can have a similar impact to our 
understanding of the cyberspace, and can result in a significant improvement of the quality 
of our everyday lives”. 
 
This master thesis aims at solving this engineering problem over Ethernet networks. A first 
approach to this project could be an all-software solution running over a standard PC, 
maybe equipped with a real-time operative system. However, there are many reasons that 
prevent us from taking this simple approach. Here is a brief summary of the drawbacks that 
this solution might have [1][2]: 

• Delay when processing the interrupts generated by the Ethernet card. Even if a real-
time operating system is being used, the uncertainties introduced by the card FIFO 
would make very difficult to achieve the microsecond precision required by most 
analysis. 

• Clock of the PC. It is commonly based on an inexpensive quartz crystal, which has 
an error of about 100 ppm (that is, a few seconds per day). 

• Clock synchronization between different points of the network. Even if highly 
stable clock oscillators are used, minimal drifts could jeopardize the microsecond 
accuracy required for latency measurements. It is thus necessary to have a common 
clock in all measurement points. 

 
These problems make necessary to develop a hardware solution. It will be implemented on 
a FPGA, because programmable logic devices provide the best tradeoff between versatility, 
cost and performance for small to medium volumes of production [3]. There are two 
options for implementing an FPGA based solution. The first option would be to create a 
PC-PCI card, DAG Endace Cards[1] are a pretty good example. The second solution is to 
use a development board connected to an upper intelligent device by an Ethernet 
connection. This option is the chosen one for this project, because it permits saving money 
due to avoiding the requirements of a PC in the measurement point. 
The following points detail the proposed solution. 
 
 

1.2  Objectives 
 
The main goal of this thesis is to develop a framework for non-intrusively monitoring 
Ethernet networks. It will provide a basic engine for packet capturing and times-tamping, 
as well as histogram generation. As it was mentioned in the previous point, all these 
operations need to be implemented in HW, so this project will mainly use VHDL. 
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The final outcome of the thesis will be a reference implementation of the monitoring 
framework on a simple FPGA-based embedded system. At the HW level, this system will 
be composed by an FPGA with two Ethernet interfaces, some external memory and two 
serial communication ports. Basically, the system will be placed in-between an existing 
Ethernet connection that will be cut in half. The two endpoints of the cut-through 
connection will be connected to the two Ethernet ports of the system. Inside the FPGA, the 
data coming from one interface will be redirected to the other one with the minimal delay 
and, at the same time, it will be forwarded to the packet capturing and time-stamping 
engine.  
The information gathered by the engine (captured and time stamped packets, as well as 
traffic histograms) will be stored in a memory and sent via a serial port to a host computer. 
Future developments will substitute this serial port for a third Ethernet interface. 
 
Time synchronization will be achieved using GPS that will provide a common UTC clock 
reference with near-atomic accuracy. In order to do so, a mixed HW/SW solution is 
required. Commercial GPS receivers provide two complementary signals: NMEA, which is 
more easily managed with a conventional processor, and PPS, that should be handled in 
HW to achieve the highest precision. 
 
Finally, it should be remarked that a complete Ethernet monitoring system is a huge project 
that could not be accomplished in just one master thesis. The main purpose of this project is 
just to provide the starting point for other thesis, which will add more components to the 
system and will also refine the monitoring framework developed here. 
 

1.3  Challenges 
 
In this project there are many problems that must be solved. A brief descriptive list is given 
in order to try to improve the general understanding about both designs and decisions of the 
project. 
 

• Time Border: [34] A clock domain is where all the elements in a design receive the 
same clock signal. There are several reasons that makes clock domain 
communication a major problem: 

o Failures are not always repeatable. 
o Problems vary from technology to technology and even between devices.  
o Such problems are difficult to detect in current Electronic Design Tools. 

 
The typical error committed as a time border cross is the metastability. This term 
refers to a “timing violation, when the data input to a Flip-Flop transitions within a 
window around the active clock edge as defined by the setup and hold times”[34].  
 
There are some solutions that can be employed in order to solve this issue: 
 

o Phase control: An internal PLL(Phase locked loop) or a DLL(Delay locked 
loop) are employed in order to permit the data transition without any risk. 
However, this is not always possible due to adjusting the phase of a clock 
may not be possible. In other words, one clock must be multiple of the other.  
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o Double flopping: It consists on two Flip-Flops that are feed by a clock. The 
information comes from a third Flip-Flop, this time synchronized by a 
different one.  

 
o FIFO structure: An asynchronous FIFO can be implemented or included in 

the design. In the input side of the FIFO, the data will be stored using one 
clock domain and at the output one, the data will be read synchronize with 
the other clock domain. Of course, with this solution it should be employed 
a handshake protocol and it would also be advisable to prior know the 
transmission rate, with the intention of define the maximum queue size. 

 
For a further explanation about this problem and its solutions, it is strongly 
recommended to read the reference provided [34]. 

  
• Time-Stamp accuracy:  

 
Many projects concerning a monitorization device have been developed these days. 
However, the time accuracy is still not enough accurate or at least it could improve [2][35]. 
Hence, the weight of the timing error is still quite big, so it decreases the general 
performance of the monitoring system.  
 
Improving the time-stamp accuracy is a must in this project. The initial aim is to achieve a 
+/- 100 ns error from the Pulse per Second signal, provided by the time source device, what 
it means about +/-150 ns from the UTC time. 
 
Two different approaches are combined in this project for targeting the fulfillments of the 
initial constraints.  
 

o Physical layer: If the time-stamp procedure takes place as close as the 
physical layer as possible, the accuracy improves. Developing the project on 
a FPGA development board will help in this duty. 

 
o Temporal drift: Any quartz clock device suffers from time drift [2]. It is a 

must to try to have the time-stamp clock source as synchronized as possible 
to an external, global time source. The application of a drift correction 
algorithm is the proposed method. 

 
• Scalability:  

Designing a 10/100 accurate monitorization device could seem rather complicated. 
However, it would almost be a completely waste of time if it is not easy scalable. In this 
project the general architecture must support 1 Gbps, with a few changes. Furthermore, 
ideally, the network interface speed should be customizable by the user.  
Nevertheless, the first results will be published under a 10/100 structure, relaying the rest 
of the improvements as future work. 
 
 

• Cost efficiency: 
 At the same time that is important to keep an eye on scalability, it can not be forgiven the 
needs of the product for meeting some cost limits. Therefore, the project even though is 
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going to be developed in a Virtex II pro FPGA, the constraints are fulfilled for working on 
a cheaper Spartan 3. 
 

1.4  Thesis Organization 
 
This thesis has been organized in several chapters: 
 

• Introduction: This section should give the answer to the following question. Why 
this project? 

 
• State of Art: It aims to provide a general knowledge about different project aspects, 

other related projects and technologies that are likely to be employed in the project. 
 
• Design: It presents a study of the different solutions for solving the challenges, 

problems and objectives of the project. 
 
• Implementation: It gives an explanation of the chosen solution and how it works. 
 
• Tests and results: It shows experiments and studies of the implemented device and 

its characteristics. 
 
• Conclusions and future work: It illustrates an analysis of the outcomes of the 

project and new challenges & ideas for continuing it. 
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2 State of Art 

2.1 Network Monitoring Systems 

2.1.1 Definition and characteristics 
 
The term network monitoring describes the use of a system that monitors a computer 
network targeting several objectives that can be used in the network management. These 
aims can be from knowing the traffic source to attacks detection. 
 
The network monitoring systems can be classified in two: 
 

• Active measurement:[9] It means injecting traffic into the network and 
observing its response. It requires cooperation between the sender and the 
receiver participating in the measurement. Usually, these methods send testing 
flows from one source to multiple receivers. The results are then processed in 
order to know some characteristics of intermediate links like delay, or loss rate. 

 
• Passive measurement: [2] It consists on observing packets on a data link or 

network media without generating any additional traffic which may disturb the 
existing network performance. Its operation can be explained as a process where 
the following steps are given. The measuring host applies a time-stamp to each 
incoming packet. The entire packet, or a part of it such as headers or quintuple, 
is then optionally passed through a filter that selects packets by already defined 
criteria, attending to the packet information stored. 
The chosen packets are then available for further analysis or storage as a packet 
trace file for later use. These traces can be used for a wide number of 
applications, from network diagnostic to usage patterns.  

 

2.1.2 Related work 
 
There is a clear need for attempting to reduce the gap described in 2.1.1. Besides, network 
monitoring systems must improve also for detecting attacks as fast as possible, in order to 
increase the broadband security. Many projects have already attempted to increase both 
speed and reliability in monitoring, and nowadays there are some others trying to do it too.  
 
Some of the past and present projects can be checked in the following list where a brief 
resume of each one is given.  
 

• SCAMPI: it was a two-and-a-half-year European project to develop a scalable 
monitoring platform for the Internet[11]. It aimed to promote the use of monitoring 
tools for improving services and technology, developing a network adapter, initially 
at 10 Gbps speed.. Other goal was to investigate the technical challenges of 
developing systems for 100 Gbps speeds and beyond. 
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Figure 2-1: The COMBO6 motherboard [14]

The COMBO6 motherboard is one of the deliverables from SCAMPI project. It is based on 
a XILINX Virtex II and in a PCI port. 
 
The project started on April 2002 and ended on September 2004. 
 
URL: http://www.ist-scampi.org
 
 

• LOBSTER: it was a pilot European infrastructure for accurate Internet traffic 
monitoring, based on passive monitoring at speeds starting from 2.5 Gbps, and 
possibly up to 10 Gbps.[12] 

The devices that have been employed are the ones developed in SCAMPI project which 
allow monitoring at 10 Gbps, combining new hardware and software components. 
 
Instead of collecting flow-level traffic summaries or actively probing the network, passive 
network monitoring records all IP packets (both headers and payloads) that flow through 
the monitored link more accurately than methods based on flow-level statistics or active 
monitoring. 
 
The passive monitoring applications running on the systems have been developed based on 
MAPI (Monitoring Application Programming Interface), which has been developed in both 
SCAMPI and LOBSTER projects. MAPI allows the implementation of the monitoring 
needs. Therefore, selecting the relevant information, and balancing the monitoring 
overhead with the amount of the received information.  
 
LOBSTER project has developed and also improved the performance of security 
monitoring applications which for example helps in the detection of the spread of zero-day 
worms. It has also executed the appropriate data anonymization tools for prohibiting 
unauthorised access to the original traffic data, it has created and European Internet 
measurement system and among other objectives an accurate traffic characterization for 
programs using dynamic ports. 
 
The LOBSTER project concluded on 30 June 2007, but the sensor network remains 
operational, and the sensor software continues to be maintained. 
 
URL:  http://www.ist-lobster.org
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• MOMENT: Monitoring and Measurement in the Next Generation Technologies[9] 
 
In previous projects like LOBSTER, large efforts have been taken to successfully develop 
and deploy measurement infrastructures to gain insight into the operational network, 
without being intrusive from the perspective of commercial ISPs. Repositories like MOME 
were dedicated to keep an overview on available measurement data, tools, infrastructures 
and projects. 

The Project MOMENT continue this process by research and development towards the 
following objectives  

o To create added value from single monitoring and measurement 
infrastructures by the integration of the results 

o To define a mediator architecture providing a unified interface using a 
Service-oriented Architecture for Future Internet applications 

 
Moment partners have developed several measurement infrastructures within the European 
Sixth Framework Programme. The developments of Moment will facilitate network 
applications access to measurement data collected from different infrastructures, offering 
integrated results. For achieving these results a mediation engine will be implemented as 
the unified interface to handle application requirements and delivering appropriate results.  
This mediator architecture should be an open and flexible platform which permits not only 
easy integration of partners developed architectures but also new ones. 
 
The communication between mediator, applications and measurement tools is wrapped in 
XML format. 
 

 
Figure 2-2: Integration (mediation layers) [9]. 

URL: http://www.fp7-moment.eu/
 
 
 

 13

http://www.fp7-moment.eu/


 

• EVERGROW: it is a project that aims to generate a “virtual laboratory” with the 
purpose of providing a test environment where new services can be developed and 
evaluated. “The key objective is the integration, in a single project, of the advances 
in knowledge of data networks and the content they carry” [24]. This virtual 
laboratory will have “equipment” like archived measurements, and tools for 
simulate future conditions. 

 
The laboratory will be based on grid computing, that according to Sun Microsystems [22] it 
is a computing infrastructure that provides dependable, consistent, pervasive and 
inexpensive access to computational capabilities. By pooling federated assets into a virtual 
system, a grid provides a single point of access to powerful distributed resources. It 
delivers on the potential in the growth and abundance of network connected systems and 
bandwidth: computation, collaboration and communication over the Advanced Web. 
 
URL: http://www.evergrow.org/news.php
 

o DIMES  is a subproject of the EVERGROW. It is a distributed scientific 
research project, aimed to study the structure and topology of the Internet, 
with the help of a volunteer community [23]. 

 
URL: http://www.netDimes.org

 
o ETOMIC is a subproject of the EVERGROW. The European Traffic 

Observatory Measurement InfrastruCture[15]. 
 
It was created in 2004-05. It aims to grant a public testbed (platform for experimentation 
for large development projects) for active measurement methods in Europe. The nodes are 
re-configurable, GPS synchronized and therefore quite accurate (ns).  

 
Figure 2-3: ETOMIC Network [15]. 
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The ETOMIC infrastructure was awarded by the Best Testbed Award on the TridentCom 
2005 Conference, and it was opened and introduced to the community on the INFOCOM 
2006 Conference. 
 
URL : http://www.etomic.org/
 

• RIPE Test traffic Monitoring (RIPE TTM) [25][26] 
 

RIPE NCC offers Test Traffic Measurements as a service, to its users. It measures key 
parameters of the connectivity between client site and other points on the Internet. TTM 
allows to comprehensively and continuously monitor the connectivity of your network to 
other parts of the Internet, recording one-way delay and packet-loss measurements as well 
as router-level paths ("traceroutes") between a large set of probe machines ("test boxes").  
Every test box includes a precise time source - typically a GPS receiver. The TTM project 
has provided extremely high-quality and stable delay and loss measurements for a large set 
of network paths (IPv4 and IPv6) throughout Europe covering at the same time an 
interesting mix of research and commercial networks.  
Currently offers daily plots with the following information: 
 

o Delay measurements  
o Packet loss rates  
o Delay variations (jitter).  
o Bandwidth  

 

 
Figure 2-4: RIPE NCC Test-Box [26]  

 
URL : http://www.ripe.net/ttm/
 

2.1.3 Available services 
 
An excellent repository of monitoring services is included in this deliverable from the 
MOMENT project [9]. 
 
http://www.fp7-moment.eu/images/FP7-MOMENT-WP2-D2.1.pdf  
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2.2 Alternatives for the implementation of embedded systems 
 
An embedded system is a special-purpose digital system designed for the fulfilment of one 
or several functions. 
 
Engineers can usually find a solution for implementing a function on several technologies. 
Any of them may resolve mostly of the problems, and it is an engineer work to decide 
which one could be more suitable for his purpose. This decision will be influenced by the 
conscripts of the project (e.g. budget, timing, development cost). 
 
Some advantages and disadvantages, according to this master thesis, will be included in the 
brief description of these devices. The different solutions are: 

2.2.1 Microcontrollers 
 
Microcontrollers are usually the cheapest & simplest solution for solving none demanding 
high speed or versatility problems. Basically, they consist on a CPU with some peripherals 
as timers, counters, PWM, external memory, RS-232 and so on. The usually offer a huge 
integration, and a low power consumption.  
As [31] says… “Microcontrollers, the little 35-cent parts in ancient technology that runs 
toasters?” 
However, in the same blog entry it is later explained that the trend for microcontrollers is 
changing. CAP MCU new devices, they are basically an ARM-based system-on-chip with 
a fixed selection of peripherals and a Metal Programmable (MP) block, are aiming to the 
DSP-FPGA market. They offer customizable logic at minimum power consumption [31] 
[32][33]. The general impact of these new devices, in the embedded system market, is still 
unknown.  
 

 
Figure 2-5:  Comparing the architectures of CAP7 and the Xylo-L board. The MPLIB in 

CAP7 takes the place of an FPGA[33]. 
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The development time is the fastest of all the embedded technologies but unfortunately 
they can not be the solution for this project. Mainly because it is required to work close to 
the physical level in order to fulfil the accuracy requirements.  
 

2.2.2 ASIC 
It is an integrated circuit customized for a particular use, rather than intended for general-
purpose use. Most designers use ASIC only for non field programmable devices. 
Application Specific Integrated Circuits (ASICs) allow full customizability and utilize low-
power standard cells, achieving much better performance than possible with a similarly 
configured FPGA. However, ASIC design and production can be prohibitively expensive 
for smaller companies or those producing only a limited quantity of product [33]. 
 
The main disadvantage for using it in this project is the high cost that carries both 
developing and supporting. 

2.2.3 FPGA 
 
The “Field Programmable Gate Array” technology born in 1985. Its parent is the CPLD, 
complex programmable logic. Its main objective was to introduce two key points in 
implementation; these were flexibility and user-programmable.  
 
The FPGA’s have been improved through these years adding new features which have 
boost up its capabilities. Some of these are the partial re-configuration, the embedded 
microprocessor and the easy add on of peripherals. 
 
In many aspects, like development cost, speed, are the middle solution between 
microcontrollers and ASIC. However, they are power hungry and can quickly overwhelm 
the power budget of an embedded system [33]. 
 
For this project is quite clear that a FPGA is the perfect solution. Several reasons support 
this decision. An FPGA allows customizing a physical level and to fulfill the bandwidth 
requirements. This is so important in order to achieve better timing results. Besides, re-
configuration adds a superb capability for modifying the filtering options in real time. And 
even more, EDK tools permit to rocket the developing time building a System On Chip in a 
simpler way than designing and ASIC. 
 

2.2.3.1 FPGA-based Embedded Microprocessors 

 
Nowadays, there are several embedded microprocessors solutions. They can be classified in 
several groups according to [20]. These are hard, firm and soft cores.  
 

• Hard cores are optimized for a specific silicon technology and can not be 
modified by the system designer. These cores have a pre-defined layout and 
floorplan that is included in the architecture of the design. They have the 
advantage of fixed timing and can be treated as library elements during the 
design cycle. The disadvantage of hard cores is that it lacks customization 
capability which can generate problems for meeting some requirements. 
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• Firm cores are delivered as a mix of source code and technology- dependent 
netlist. In these cores, the source code is visible to the designer and specific 
parts of the core can be customized by the designer. However, a netlist is 
technology-specific and the user can not easily switch chip vendors or use a 
different technology with the same vendor. 

 
• HDL-based soft cores offer full technology independence and flexibility. The 

design can be readily modified or resynthesized to multiple technologies in 
order to switch vendors or target a new process. The disadvantage with soft 
cores is that critical timing is not guaranteed and the core must be synthesized, 
floorplanned, and placed-and-routed for each use. 

 
 
 Hard Cores Firm cores Soft Cores 

Hardness Pre-defined layout Mix of source code and 
technology-dependent netlist 

Delivered as behavioral  
source code 

Modeling Modeled as a library element

Mix of fixed and synthetizable 
blocks 

Can share resources  with other 
cores 

Synthesized with other 
logic 

Flexibility 

Can not be modified by 
designer 

Several hard cores on one 
chip can result in inefficient 

system implementation 

Techonology dependant 
Specific functions 

customizable 

Design can be modified 
Technology 

indenpendent 

Predictability Timing guaranteed Critical path timing fixed 

Timing not guaranteed 
Can not be fully verified 

before released to the 
user 

Table 2-1 Embedded cores [20]
 
 
 
Now it is time to look to the market for seeing the different options provided by the 
vendors.  
 

Category Nios II MicroBlaze LEON 3 

Maximum MHz 200 MHz 200 MHz 125 MHz 

Reported DMIPS 150 DMIPs 166 DMIPs 85 DMIPs 

ISA 32 bit RISC 32 bit RISC 32 or 64 bit RISC 

Cache Memory Up to 64kB Up to 64kB Up to 256kB 

Floating Point Unit IEEE 754 IEEE 754 IEEE 754 

Pipeline 6 stages 3 stages 7 stages 
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Custom 
instructions 

Up to 256 
Instructions None None 

Register File Size 32 32 2 to 32 

Implementation FPGA FPGA FPGA 

Area 700-1800 Les 1269 LUTs N/A 

Table 2-2 FPGA based embedded cores [21]
 

2.3 Synchronization methods and Time Sources 
 
In order to be synchronized, an event occurring simultaneously at all measurement points 
should receive the same time-stamp from all of the measurement systems. Therefore, 
synchronized clocks are “compulsory” when measuring a network at a single point, in 
order to maintain packet arrival order information.  
 
The clock signal used for generating time-stamps can come from a variety of sources like 
for example, a host computer, an interface bus clock, a locally hardware, or an external 
clock. 
 
If the clock is host generated or local, it is most likely based on a crystal oscillator. A 
crystal oscillator is typically a quartz crystal that has been cut for oscillating at a desired 
frequency. Unfortunately, the frequency of a crystal oscillator will vary with age, supply 
voltage, and temperature [46]. Table 2-3 shows the typical frequency error of different 
types of crystal oscillators in parts per million [I].  
 
Drift rates are often expressed in units of parts per million (ppm), which is the number of 
microseconds a clock drifts from UTC every second. 
A 100MHz crystal oscillator with an error of 100ppm could reach, after 24 hours, an 
accumulated error of 8.64 seconds, due to its frequency 10 kHz frequency error. 
 
 
 Type Error(ppm)
 Normal 

Precision 
Temperature Compensated 

Oven Controlled 

15-100 
5 

0.3-5 
0.2 

 
 
 
 

Table 2-3 Typical Error in Crystal Oscillator Frequency [2]. 
 
 
Inexpensive crystals with frequency errors in the range 50–100ppm are commonly used to 
provide CPU and bus clocks in PCs, as the exact frequency in these systems is unimportant, 
as a result they are a poor choice for time-stamp clocks. Oven controlled crystal oscillators 
have the best stability. They work by thermally insulating the crystal, and heating it to a 
constant temperature above the maximum ambient temperature under thermostatic control. 
This makes them large and expensive, and requires a warm-up period before the oscillator 
is within its specifications. The heating elements may also consume a lot of power, 
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especially during the warm-up period. Even with the best available crystal oscillators, drift 
is significant, and errors of the magnitude of a minimum sized packet time will accumulate 
quickly [2]. 
 
There are many sources for an accurate global time-source. Relatively inexpensive 
receivers for the US Global Positioning System (GPS) can provide a pulse every second, 
with the rising edge accurate to within plus or minus 100ns to UTC. However, GPS 
receivers require a relative clear view to the orbiting GPS satellites, in order to receive 
enough signal, usually requiring mounting on the roof of the building. This solution will be 
explained in more detail in the section 2.3.3. 
 
 
Digital cellular telephone systems such as CDMA maintain a global network time to 
coordinate multiplexing. These signals are often strong enough to penetrate buildings, and 
CDMA receivers emit time pulses as GPS receivers. Nevertheless, attention must be paid to 
the distance from the cellular base station because the propagation time is unknown, which 
can lead to an unknown offset from UTC. For solving this issue, it may be necessary to 
survey each site where CDMA is employed with more accurate timing equipment in order 
to determinate this offset. 
 
 
 
After choosing a right time source it is time to find a synchronization solution. In the 
following tables there is a comparison between different technologies [6]. 
 
 

 1588 NTP GPS SERCOS 

Spatial 
extent A few subnets Wide area Wide area Local bus 

Communi- 
cations Network Internet Satellite Bus 

Target 
Accuracy 

Sub- 
microsecond 

Sub- 
microsecond 

Sub- 
microsecond 

Sub- 
Microsecond 

Style Master/slave Peer ensemble Client/server Master/slave 

Resources 
Small network 
message and 
computation 

Moderation 
network and 
computation 

Computation Moderate 

Latency  
correction Yes Yes Yes No 

Protocol 
specifies 
security 

No Yes No No 
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Administratio
n 

Self 
organizing configured N/A Configured 

Hardware? For highest 
accuracy No RF receiver Yes 

Update 
interval ~2 seconds 

Varies, 
nominally 
seconds 

~1 second Every TDMA 
cycle, ~ms 

Table 2-4 Comparison between different synchronization solutions [6]
 
 
With the proper time source and synchronization solution, the measurement system can 
time-stamp each signal as it would a packet arrival. These synchronization time-stamps can 
then be stored and used in post processing to correct the packet time-stamps, or they can be 
used in real-time just associating them to each incoming packet. 
 
Synchronization is key for the proper function of the nowadays networks and service 
providers want a reliable way to extend and distribute synchronization in next generation 
networks. 
 

2.3.1 Precision Time Protocol (PTP) 
 
The Precision Time Protocol (PTP) is defined in the IEEE1588 – 2002 standard. It enables 
precise synchronization of clocks in multicast capable networks like Ethernet [6].  
 
[7] "IEEE 1588 is designed to fill a niche not well served by either of the two dominant 
protocols, NTP and GPS. IEEE 1588 is designed for local systems requiring very high 
accuracies beyond those attainable using NTP. It is also designed for applications that 
cannot bear the cost of a GPS receiver at each node, or for which GPS signals are 
inaccessible." 
 
PTP is aimed for relatively localized systems typical of industrial automation, test and 
measurement. It tries to achieve sub-microsecond synchronization and it can be used on 
any Local Area Network technology that supports multicast communication, therefore is 
not limited to Ethernet. 
Besides, it has also other objectives like to support heterogeneous clock systems which can 
have different precision, resolution and stability. At the same time, it should consume 
minimal resources on networks and hosts. 
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Figure 2-6: IEEE-1588 and Synchronous Ethernet implementation [8]

The key for understanding this protocol is to see the need of a set of slave devices for 
discovering the offset between time measurements on their clocks and time measurements 
on a master device [6]. Let the variable t represent physical time. For a given slave device, 
the offset o(t) at time t is defined by: 
 

 
 

Where s(t) represents the time measured on the slave device's clock at physical time t, and 
m(t) represents the time measured on the master device's clock at physical time t. 
The synchronization is realized in the following order: 
 
Step 1: 

• Sync message sent from master to slaves. 
• All Sync message detectors (SMD) note the time on the local clock this message 

appears at the SMD. 

 
Figure 2-7:IEEE 1588 synchronization Step 1 [6]
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The master time stamps the time T1 measured on its clock when it sends the sync message. 
A slave receiving this message takes note of the time T2 measured on its clock when it 
receives this message. If d is the transit time of this message, and is the constant offset 
during this transaction, then:  

 
 

 
 
Step 2: 

• Follow-Up message containing precise sending time sent from master to slaves • 
All slaves compute offset and correct their clock  

 

 
Figure 2-8 IEEE 1588 synchronization Step 2 

 
The master next sends a follow up TIME T1 message to notify the slaves of which time it 
measured when it send the SYNC message. Each slave now knows T1 and T2.  
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Step 3 

 

Figure 2-9 IEEE 1588 synchronization Step 3 

Each slave now sends a Delay-Req message back to the master.. The slave measures the 
time T3 that it sends this message, and the master measures the time T4 that it receives this 
message.  

Step 4: 

 

Figure 2-10 IEEE 1588 synchronization Step 4 
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The master then sends a directed multicast TIME T4 message back to the slave to notify 
the slave what time it received the RESPONSE message. Note that 
 

 
 
 
The slave now knows times T1, T2, T3, and T4. Combining the above two equations, we 
get that 
 

 
 
The slave now knows the offset during this transaction. While this offset will drift with 
time, it will be corrected the next time this exchange of transactions is launched. 

2.3.2 Network Time Protocol 
 
The Network Time Protocol (NTP) is widely employed to synchronize a computer to 
Internet time servers or other sources. It provides accuracies typically less than a 
millisecond on LANs and up to a few milliseconds on WANs[27]. 
 
Typical NTP configurations utilize multiple redundant servers and diverse network paths in 
order to achieve high accuracy and reliability. 
 
The NTP works with a hierarchy of levels, where each level is assigned a number called the 
stratum. 
 
Stratum 0 
These are devices such as atomic (cesium, rubidium) clocks, GPS clocks or other radio 
clocks. Stratum-0 devices are not attached to the network; instead they are locally 
connected to computers (e.g. via an RS-232 connection using a Pulse per second signal). 
 
Stratum 1 (primary) 
Servers at the lowest level are directly synchronized to national time services.  
 
Stratum 2 (secondary)  
Servers at the next higher level are synchronize to stratum 1 servers and so on. These are 
computers that send NTP requests to Stratum 1 servers. Normally a Stratum 2 computer 
will reference a number of Stratum 1 servers and use the NTP algorithm to gather the best 
data sample 
 
Stratum 3 
These computers employ exactly the same NTP functions of peering and data sampling as 
Stratum 2, and can themselves act as servers for lower strata, potentially up to 16 levels. 
NTP (depending on what version of NTP protocol in use) supports up to 256 strata. 
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Figure 2-11 NTP synchronization 

Green arrows indicate a direct connection; red arrows indicate a network connection. 
NTP uses a hierarchical system of "clock strata". The stratum levels define the distance 
from the reference clock and exist to prevent cycles in the hierarchy.  
 
The 64-bit time-stamps used by NTP consist of a 32-bit seconds part and a 32-bit fractional 
second part, giving NTP a time scale of 232 seconds (136 years) and a theoretical 
resolution of 2−32 seconds (0.233 nanoseconds). 

2.3.3 Global Positioning System 

2.3.3.1 Function as a time source 

 
GPS satellites transmit signals to equipment on the ground. GPS receivers need a clear 
view of the sky, so current technology is used mainly outside and does not work well in 
mountainous areas or near forests or tall buildings [28]. 
Each GPS satellite transmits data that indicate its location and the current time. All GPS 
satellites synchronize operations so these repeating signals are transmitted at the same 
instant. Ground stations precisely track each satellite's orbit. 
GPS satellites transmit signals on two main carrier frequencies L1 and L2. The signals 
arrive at a GPS receiver at different times because some satellites are further than others. 
 
The GPS constellation consists of at least 24 orbiting satellites, which are not 
geostationary, so satellites in view are constantly changing. Each GPS satellite contains 
four atomic clocks, which are continuously monitored and corrected by the GPS control 
segment. Consequently, the GPS constellation can be considered a device of 24 orbiting 
“clocks” with worldwide coverage. 
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Figure 2-12 GPS constellation satellites & visible ones 

In addition to serving as highly-accurate time sources GPS timing receivers are used to 
synchronize distant clocks in communication or data networks. This is possible because all 
GPS satellites are corrected to a common master clock. Therefore, the relative clock error 
is the same, regardless of which satellites are used. 

2.3.3.2 NMEA 0183 
 
The NMEA 0183 Interface Standard defines electrical signal requirements, data 
transmission protocol and time, and specific sentence formats for a 4800-baud serial data 
bus. Each bus may have only one talker but many listeners [29][5].  
It is a simple, yet comprehensive ASCII protocol which defines both the communication 
interface and the data format. It was originally established to allow marine navigation 
equipment to share information. Since it is a well established industry standard, NMEA 
0183 has also gained popularity for use in applications other than marine electronics.  
For those applications requiring output only from the GPS receiver, NMEA 0183 is a 
popular choice since, in many cases, a software application code already exists.  
 
The table below lists the standard characteristics of the NMEA 0183 data transmissions. 

 
Signal NMEA Standard 

Baud Rate 4800 
Data Bits 8 

Parity None 
Stop Bits 1 

Table 2-5 NMEA 0183 RS232 characteristics [5]
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Table 2-6 NMEA Messages [5]
 

In this system, ZDA message is the only one that is really needed, for that reason a briefly 
introduction about the format of this message has been included below. 
 
ZDA Time & Date 
 
The ZDA message contains UTC time, the day, the month, the year and the local time 
zone. 
$GPZDA,hhmmss.ss,xx,xx,xxxx,,*hh<CR><LF> 
 

Field # Description 
1 UTC 

2 Day (01 to 31) 

3 Month (01 to 12) 

4 Year 

5 Unused 

6 Unused 
hh Checksum 

 
 
 
 
 
 
 
 
 
 

Table 2-7 ZDA Message 
 
More information about NMEA messages can be found in http://www.nmea.org/pub/0183/
 

2.3.3.3 Other global positioning solutions 

 
Countries including Russia, the European Union, Japan and China are developing their own 
international satellite navigation systems [30][28]. 
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• GLONASS (for Global Navigation Satellite System), is a Russian radio satellite 
navigation system whose satellites began entering service in 1983. The system, 
operated for the Russian government by the Russian Space Forces, was 
completed in 1995. 
Like GPS, the GLONASS constellation consists of 24 satellites. Because of 
economic condition in Russia, only about 14 satellites are now operating, 
according to media reports. 
The Russians developed an advanced GLONASS satellite with an operational 
life of seven years and launched it, on December 26, 2004. An even more 
improved GLONASS satellite, with reduced weight and an operational life of 10 
to 12 years, is due to enter service in 2008. 
In a 2005, the Indian government agreed to share development costs of the 
improved GLONASS satellites and launch two of them from India. With this 
support, GLONASS will be operational again by 2008 with 18 satellites, and by 
2010 with 24 satellites. 

 
• Galileo is the European Union alternative to GPS and GLONASS. The proposed 

Galileo positioning system will be composed by 30 satellites and it should be 
operational by 2010. 
Galileo is intended to give users access to greater precision than is now 
available. Only one of Galileo’s planned four navigation services will be 
available at no charge to users. 
Since 2003, several countries have joined the project, China, Israel, Ukraine, 
India, Morocco, Saudi Arabia and South Korea. 

 
• Quasi-Zenith Satellite System (QZSS) is a Japanese three-satellite positioning 

system, which will supplement and be interoperable with GPS. The first satellite 
launch is scheduled for 2008, the second and third in 2009.QZSS could improve 
regional service for positioning, timing and navigation users in Japan and 
surrounding areas, where mountainous terrain and population density sometimes 
make GPS unavailable. 

 
• China is also developing an independent navigation satellite system. The 

Twinstar Rapid Positioning System, or Beidou Navigation System, consists of 
two satellites in geosynchronous orbits.  
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3 Design 
 

3.1 Development tools 

3.1.1 Development Board 
The hardware is going to be design in a XUP Virtex II Pro development board. 
Nevertheless, it is going to be implemented in a way that could be resource compatible 
with the Xilinx low-cost family SPARTAN 3.  
 

 
Figure 3-1: XUP Virtex-II Pro Development System Board [36]. 

This board brings several advantages for this project. As it can be seen in the bottom part of 
the figure there is a “High-Speed expansion”, which must be employed for the Ethernet 
interface board for avoiding additional delay.  
It also have an integrated 10/100 Ethernet physical/MAC, in the left side. This is a must in 
this project due to the need for sending the filtered data to a host. 
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The XUP Virtex II is associated to a university program reducing the acquisition cost. 
Moreover it has achieved a great distribution generating lot of information, papers, 
technical notes and forums supporting this board. With all these characteristics it would not 
be difficult to find a better development board for this thesis. 
Apart from the development board there will be two more boards: 
 

• Ethernet interface: this board, a physical/Mac one holding two Ethernet connectors, 
has been already implemented at the start of this project. Basically, it includes the 
elements that allow a physical/MAC layer. The main chip on this board is the 
“DP83849CVS” that offers a 10/100 Mbps Ethernet Physical Layer Transceiver. 

 

 
Figure 3-2: Ethernet interface board. 

• GPS interface: this board consists on two parts. One is the Resolution T receiver 
3.4.1.1, the other one is a simple framework for allowing an easy and safe 
connection to the low speed expansion connects of the XUP board. 

 

 
Figure 3-3: GPS interface board. 
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And finally a photo of the whole system: 
 

 
Figure 3-4: The system 

 

3.1.2 EDA tools 
 

• Xilinx ISE Foundation:  
It is a software that integrates everything needed in a complete logic design 
environment for all Xilinx FPGA. 

 
• Xilinx Embedded Development Kit:  

This tool is composed by several applications which aim to generate an easier 
embedded implementation. Apart from the configuration of the system processor/s, 
it permits adding peripheral IP cores and it also supports part of the debugging 
procedure. However, it is not a fully independent tool due to still need the help of 
the ISE Xilinx for realizing the place and rout routines.[43]

 
• Xilinx Chipscope:  

It inserts logic analyzer, bus analyzer, and virtual I/O low-profile software cores 
directly in the design, allowing to view any internal signal or node, including 
embedded hard or soft processors. Signals are captured at or near operating system 
speed and brought out through the programming interface. Captured signals can 
then be analyzed through the included ChipScope Pro Logic Analyzer [37]. 
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3.2 Design considerations for the embedded platform 

3.2.1 MicroProcessors 
 
Two embedded microprocessor are supported by the XUP development board 3.1.1: 
 

3.2.1.1 PowerPC 
 
The PowerPC 405 processor is a 32-bit implementation of the PowerPC embedded 
environment architecture that is derived from the PowerPC architecture. 
It is a “Hard core” which means that it can not be customize by the design requirements, 
2.2.3.1. Nevertheless, its hard-core condition also brings the normal advantages of these 
devices; that is the higher speed, it executes instructions at sustained speeds approaching 
one cycle per instruction, which improve the general performance of the microprocessor. It 
also saves FPGA resources [38]. 
 
Furthermore, the PowerPC architecture provides a software model that ensures 
compatibility between implementations of the PowerPC family of microprocessors.  
 

3.2.1.2 MicroBlaze 

 
The MicroBlaze embedded soft core is a reduced instruction set computer (RISC) 
optimized for implementation in Xilinx FPGAs. It has been developed to support a high 
degree of user configurability [39]. 
This allows customization of the processor to meet specific cost/performance requirements. 
Some of the optional parts can be appreciated in the following picture.  

 
Figure 3-5: MicroBlaze architecture [39]

Despite of the high customization, it keeps a strict low-area consume allowing the 
possibility for using it in smaller and cheaper FPGA, like the Spartan 3. 
 
The major arguments for choosing this core in the implementation of the system have been 
the combination of both customization and support for Spartan 3. 
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3.2.2 Peripherals 
 
EDK(3.1.2) permits the simple addition of several peripherals to the system. Of course it 
also depends of the development board.  
Some possibilities can be complained in the next picture. 
 
 

 
Figure 3-6: MicroBlaze and its EDK add on Peripherals [40]. 

 
Some of these peripherals have been chosen for designing the system. A list of them and 
the reasons supporting their election is given.  
 

• UartLite: two IP cores are needed for this project. One of them will handle the 
communication with the GPS receiver. The other one will be connected to a 
computer for serving as a console.  

 
• Ethernet: A Ethernet 10/100 Mbps device is included in the development board. 

This device will work for putting the collected filtered data into the network.  
 

• DDR RAM: The use of a Operational System as Xilkernel and the great number of 
libraries that must be employed exceeds the limits of the faster BRAM memory, 
which is maximum MicroBlaze customization value is 64 Kbytes. This makes 
compulsory to include a bigger, but slower, memory in the design.  
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The available memory block capacity is a 256 MBytes. 
EDK peripheral is an IP that simplifies the writing and reading operations from the 
Memory. So the communication protocol becomes transparent to the designer.  

 
• Timer: A timer IP is just needed due to the requirements of XilKernel OS and also 

for the LwIP library. 
 

3.2.3 Software 
 

3.2.3.1 XilKernel OS 

Xilkernel is a small, robust, and modular kernel. It is highly integrated with the Platform 
Studio framework and is a free software library that you get with the Xilinx Embedded 
Development Kit (EDK). It allows a very high degree of customization, letting users tailor 
the kernel to an optimal level both in terms of size and functionality. It supports the core 
features required in a lightweight embedded kernel like the execution of threads [41]. 
  

3.2.3.2 LwIP 
 
LwIP is an open source implementation of the TCP/IP protocol suite.  
The LibXil, is a modified library based on LwIP, that provides block access to files and 
devices through the LibXil File module. This module provides standard routines such as 
open, close, read, and write to access file systems and devices. 
 
It supports two interfaces: 
 

• Raw: It is the lowest level interface of the stack for achieving a better performance. 
 

• Berkeley Socket: It is the “de facto” standard API for communication which allows 
an easier implementation. Because in this project the performance of the Ethernet 
interface is not critical and also due to a better compatibility BSD(Berkeley 
Sockets) are going to be implemented. 

 
The following protocols are supported IP, ICMP, TCP and UDP.  
It is important to note that LibXil requires a timer, for calculating round trips, 
retransmissions and other TCP facilities [42]. It only works under the XilKernel OS 
system. 
 

3.2.3.3 GPS communication 
 
The GPS communication it has to be through a RS232 interface. The configuration of this 
port will change depending on which GPS device is selected.The Resolution T receiver is 
the chosen GPS receiver (3.4.1.1) and operates using one of two interface protocols: 
Trimble Standard Interface Protocol (TSIP) or NMEA 0183.  
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• TSIP (Trimble Standard Interface Protocol): It is a powerful binary packet protocol 
that allows control over the GPS receiver for optimum performance in timing 
applications. TSIP supports multiple commands and their associated response 
packets for use in configuring the Resolution T receiver to meet user requirements. 

 
• NMEA 0183 (National Marine Electronics Association): It is an industry standard 

protocol common to marine applications. NMEA provides direct compatibility with 
other NMEA-capable devices such as chart plotters, radar, etc. The Resolution T 
receiver supports the ZDA NMEA message for GPS timing. Other NMEA 
messages and output rates can be user selected as required.  

 
The factory default setting for the I/O port is TSIP bi-directional. 
 

3.3 System Architecture  
 
The objectives section (1.2) gives an idea about how the device should be or at least which 
parts are the key ones. 
 
After considering many kinds of architectures the final outline looked like this one below. 
 

 
Figure 3-7: General design 
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About the picture just to notice that the “OPB” and the “time domain” concepts will be 
explained further in this section. Its reference numbers are in corresponding order 3.3.1 and 
3.3.2. 
 
Some of the critical points in the project architecture can be pointed as:  

• Overcoming the asynchronous problem without delaying to much the 
bandwidth. 

• Achieve a minimum delay in time stamping incoming packets. 
• Resolve the filtering of data and its sending without missing information. 

 
The different time domains are produced due to the employ of different time sources. 
A scheme shows the clock structure in the following picture. 
 
 

 
Figure 3-8: Clock design 

The “backbone” of the system, that is the processor and the OPB bus, will works at 50 
MHz, in order to implement the design in a Spartan 3 device.  
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The incoming data from the Ethernet it arrives which its own clock signal that should be 
close to25 MHz in order to meet the 100 Mbps constraint. Therefore, it will have two clock 
sources from both Ethernet directions and also an exact 25MHz input from the DCM that 
will be employed by the “DP83849 CVS” that implements the Ethernet physical layer. 
 
The time stamp generation process will work with an independent clock that in this project 
is expected to achieve 100 MHz. The idea of this autonomous clock is clearly to be able to 
increase this frequency in order to accomplish a better time resolution. 

 

3.3.1 On-chip Peripheral Bus (OPB) 
 
OPB it synchronous bus employed for connecting random access peripherals. An OPB 
system is composed of masters, slaves, a bus interconnect and an arbiter, as shown in the 
next picture [44]. 
 
 

 
Figure 3-9: OPB Structure [44]

 
OPB IPIF: It is an IP core that provides a bidirectional interface between a user IP core 
and the OPB 32-bit bus standard. The Xilinx OPB IPIF is available for use with various 
FPGA device families that support embedded hard or soft processors. 
 
This part is vital for understanding some modules like the ‘time-domain border’ (4.1) or 
even the ‘TAP core’ (4.3). For this reason it is hardly recommend reading this reference 
[45]
 
OPB represents the slowest but simplest way for adding additional peripherals to the 
system. Taking in consideration the bus has few data transfer this solution becomes the 
more suitable for the project. Other solutions could have been FSL or PLB. 
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3.3.2 Time domain border 
As it has been explained in this section, the system uses several time domains, and 
unfortunately there is a need of communication between them. 
 
Communication through different time domains brings different kind of problems: 
The main one occurs when in one side it is prepared for reading and in the other one it is 
not prepared to be read, that means it is still changing the value of some bits.  
 
This project will evaluate these two solutions:  
 

• Handshake protocol: When the logic wants to read the time-stamp, it sets one 
control signal high in order to freeze the time-stamp counter. This is acknowledged 
by a transition on another control signal. The advantage of this straightforward 
protocol is that the clock boundary concerns are limited to the two control signals, 
because the counter is stopped when it is being read.  
 

• Gray counter: When transferring big numbers through a clock boundary, it might 
happen that some bits are updated while others remain with the old value. Using 
Gray code for the time-stamp counter will prevent this kind of errors, because in 
this code two successive values differ in only one digit.  

 
Now, it is time to analyze how this problem can be solved. 
A Gray counter takes a lot of area of a FPGA, and requires lot of work to be implemented. 
Moreover, it has another disadvantage. It can not be used with other information different 
than a counter. As it has been showed, different information than time-stamp value has to 
be transferred, and certainly there is no way for transferring a random 8-bit word through 
the time boundary.  
 
The Handshake design proposes a more versatile solution that will allow the 
communication of any information. Due to all this advantages, this project has been 
implemented using the following handshake protocol.  
 

3.4 Time-stamping framework 
 
Accurate time-stamping is quite important in any measurement system, in order to be sure 
that each measured event has its own time-stamp, and that this one is unique for that input 
in the whole system. 
 
Nowadays, there are many options for trying to do a time-stamp process and it is really 
easy to figurate out that as precise is the clock of the time-stamping generator as precise 
will the process will be done. For achieving enough precise time-stamps, it is necessary to 
have a nice resolution and also a good synchronization between the other time-stamping 
devices.  
 
It is time to analyze then the different solutions. A brief description was introduced in the 
2.3, so now, only an explanation of the advantages or disadvantages that the different 
technologies generate for this project.  
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• Network Time Protocol offers a good solution for LAN synchronization but it lacks 
the capability for reaching it in the long distances.  

 
• Precision Time Protocol it lacks accuracy, so it is also dismissed.  

 
• GPS: lacks resolution but offers a global accuracy clock. 

 
Hence, it can be seen than any of these technologies can perform as the clock for 
generating the time-stamps. As a consequence, a different clock source must be used. This 
source is going to be the quartz clock from the FPGA. The main problem from using a 
FPGA’s clock is the time drift of the quartz oscillation. GPS it is not as accuracy as it is 
required but it offers an excellent way for synchronize all the devices no matters where 
they are. 
 
As a corollary of this analysis, the time source is going to be a quartz clock but the time 
drift and the lack of synchronization that suffers is going to be corrected with the Pulse per 
Second signal arriving from the GPS receiver.  
NMEA ZDA (time packet) could be employed for the initialization of the quartz counter, 
which is going to work as a time source. 
 
Below it can be seen, the outline of Time Stamp Generator. 
 

 
Figure 3-10: Time Stamp generator design 

 

3.4.1.1 Trimble Resolution T 
The Trimble Resolution T embedded timing board is a GPS receiver. The receiver is 
designed to operate on the L1 (1575.42 MHz) frequency, providing standard position 
service (SPS). It features a low cost software programmable general purpose Digital Signal 
Processor (DSP) instead of a custom GPS ASIC. 
 
Timing applications are assumed to be static. The software configures the unit into an 
automatic self survey mode at start up. The receiver will average position fixes for a 
specified time (one per second) and at the end of this period will save this reference 
location. At this time the receiver will go into an Over-determined Clock mode and no 
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longer solve for position but only for clock error and clock bias using all of the available 
satellites. This provides an accuracy of less than 15ns (1 Sigma) for the 1PPS output. 
User settings such as port parameters and NMEA settings can be stored in the receiver’s 
non-volatile (Flash) memory. These settings are retained without main power or battery 
back-up power applied. The Resolution T receiver has a single configurable serial I/O 
communication port. 

3.4.1.1.1 Pulse Per Second (PPS)  
The Resolution T GPS timing receiver provides a one millisecond wide, CMOS compatible 
Pulse-Per-Second (PPS). The PPS is a positive pulse available on pin 6 of the power and 
I/O connector. The rising edge of the PPS pulse is synchronized with UTC. The timing 
accuracy is within 15 nanoseconds to UTC when it works in Over-determined Mode. The 
rising edge of the pulse is typically less than 20 nanoseconds. The distributed impedance of 
the attached signal line and input circuit can affect the pulse shape and rise time.  
 
PPS signal suffers from an error a quantization error that it is explained in the datasheet. 
However, a quick look of this kind of error can be appreciated in the figure below these 
lines. 

 
Figure 3-11: Resolution-T Raw PPS Output[5]

For more information about this device consult the datasheet reference [5].  
 

3.4.1.2 Time drift correction 
 
Nowadays, most computers and networking equipment use inexpensive piezo-electric 
quartz oscillators. An as it has been explained in 2.3, they suffer from time drift.  
 
It is time now for analyzing the several algorithm and methods for trying to correct it. 
 
Each correction algorithm must have its own methods to determine the values of the initial 
offset between the clocks (the master and the slave) and the relative drift rate between 
them. 
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A lot of time has been employed reading and understanding some algorithms and therefore, 
there are many methods that can be implemented for trying to fix this problem. 
Nevertheless, as the analyzed algorithms are very complex for being explained in this 
master thesis, the following references, [46][47][48][49], should cover the lack of 
explanations about them. 
 
For selecting or generating a good algorithm, first it is compulsory to know the nature of 
the errors that affects our time source.  
 

• There is an error from our GPS transceiver. Obviously, if this is our reference clock 
this is going to influence when it is tried to correct the quartz drift error. 
Furthermore, this quantification error can not be removed and therefore, introduces 
+/- 20 ns random error.  

 
• Apart from this error, there is the already explained “drift-error” that changes from 

one clock to another. This error behaves as a constant. 
 
All these errors are accumulative in the poor counter. It means that if an error occurs, like a 
+30 ns per second, it will be there for the next second. So, if in the next second the counter 
will drift +15ns the real error will be +45ns. 
 
The complexity of these algorithms, and the nature of these errors, has forced the creation 
of a simpler algorithm that will be explained in detail in the implementation part 4.4.1. 
 
Basically this algorithm must attend to compensate both errors using an average error, and 
a small tuning correction for the small jumps of the PPS output. This tuning will also 
compensate the accumulative error.  
 
The solution must be implemented by software. Using software for drift correction could 
sound inaccurate. However, it has some advantages. For example, it is easy to point out that 
the algorithm for controlling the time drift can be easily improved and changed. 
 
The main disadvantage of SW is that is less accurate, but taking in consideration that the 
system uses the Pulse Per Second signal for synchronizing, it is not a bad idea that when 
the signal is employed an interruption is generated. Interrupting the microprocessor once 
per second should not be such a problem in the global system performance.  
 
A Hardware implementation of the solution will be high-time consuming. If any change 
has to be done it will be harder and quite more complicated in hardware. On the other hand, 
it will offer even more accuracy, so perhaps after evaluating an algorithm in software could 
be the right time for its implementation in hardware.  
 

3.5 Capture and filtering framework 
 
The objective of the system is to be transparent to the traffic which means that the copy has 
to be done as fast as possible. In order to accomplish this task, the logiest procedure would 
be to make a copy of all the data that comes from the outside, and to link that signals 
directly with the outputs. And that is exactly what the system does. 
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As soon as the data is copied, it is also time-stamped, after these procedures two strategies 
can be employed. Filtering information before store it or vice versa.  
The first option allows to safe memory resources due to the fact that the valid flow is 
stored. However, it will increase the area because it requires processing the information as 
soon as it arrives. 
On the other hand, firstly storing and secondly filtering will suffer the opposite effects. 
 
Choosing between both should be determinate by the board capability or design constraints 
such as memory capacity, area or real-time analysis. 
According to the nature of this framework project, it is more logic to filter first and then to 
store the selected information. Another option will have sense if the device is attacked by 
very heavy traffic, collapsing the filtering system and as a result, creating the need for a 
buffering input.  
 
One of the key parts in this project is the design of a good filter that allows generating a 
flow without errors.  
About filtering strategies and its architectures, it is easy to discover, when trying to identify 
flows, that they can share some of its values. As an example, there could be a 
communication where all transmitted packets have the same parameters but ports number, 
therefore they match all the filters except the port parameter, which allows sharing 
hardware resources. 
As a result of this idea, the flow identification can be classified in different deep orders, 
depending on how many characteristics they share in the filtering. 
This brings the idea of developing a tree. One good example is explained in [17] where a 
detailed PAM-tree algorithm can be found and even other solutions like CSPF, BPF or 
MPF. 
Certainly, if the order of this tree is zero, it would mean that a group of dedicated filters are 
used for identifying independent flows, which not share any characteristic between them. 
Developing a straightforward ‘zero-tree’ method will let decreasing the implementation 
time. As a disadvantage the huge amount of area required for recognizing many flows. 
However, it is the previous step for developing filters based in deeper trees and therefore is 
going to be implemented in this system. 
This will target to the optimums solution that it would be a pipelined PAM-tree filtering, 
which combines the speed of the pipeline and the low-use area of the PAM tree solution. 
 

 
Figure 3-12: PAM tree architecture example [17]
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For further information about this field is strongly recommended to read [17]. 
 

3.5.1 CRC checker 
 
The Cyclic Redundancy Check (CRC) is an error detection technique that is widely utilized 
in digital data communication and others such as data storage, data compression… There 
are many CRC algorithms. They have each own predetermined generator polynomial G(x) 
that is utilized to generate the CRC code. For example, in TCP/IP protocol, the most 
frequently utilized CRC algorithm is the CRC-32 algorithm employed by Ethernet [50]. 
 
CRC checking must be performed in our system and it is designed for being implementer in 
the capture and filtering core. 
 
There are different ways for a Hardware implementation of CRC-32. They can be classified 
in two, serial or parallel [51]. 

3.5.1.1 Serial Hardware Implementation of CRC-32 
 

The single-bit data input (serial) calculation of CRC-32 is implemented with a linear 
feedback shift register (LFSR). The CRC-32 LFSR is illustrated in Figure3-12 (register bits 
"3" through "25" are left out of the figure to simplify the drawing). 

Presetting the flip-flops to 0xFFFFFFFF is equivalent to complementing the first 32-
bits of the data stream. For the first 32 cycles, the right-most XOR gate in the figure is an 
inverter. The XOR of any data with a binary "1" results in the complement of the original 
data. The serial implementation is not optimal as most IEEE 802.3 transceivers 
communicate the data stream to the Media Access Controller (MAC) over a 4-bit bus; 
therefore, a parallel implementation is necessary. 

 

 
Figure 3-13: CRC-32 Serial implementation [51]

3.5.1.2 Parallel Data Input Hardware Implementation of CRC-32 
 
A parallel implementation operates on multiple bits of the data stream per clock 

cycle. An algorithm for generating the next-state equations for parallel implementation of 
CRC-32 is discussed in "A Symbol Based Algorithm for Hardware Implementation of 
Cyclic Redundancy Check (CRC)"[52]. The algorithm involves looping to simulate the 
shifting, and concatenating strings to build the equations after "n" shifts. Other 
implementation technique based on the same arguments can be observed in [50]. 
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Here it can be seen the scheme of the Xilinx parallel implementation solution that is going 
to be implemented in this system. 

 
Figure 3-14: CRC-32 Parallel implementation [51]
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4 Implementation 

4.1 Time-domain border 
 
In previous Sections 1.2, 3.3.2, problems like transmitting data between different time 
domains has been exposed. Also, it was decided to implement a handshake protocol device. 
 
Now is time to show the implementation. 
Remember that this device is going to be in the time domain border, acting as a transparent 
mediator in the communication procedure. 
 
First of all, the time border scheme. 
 

 
Figure 4-1: Time domain border scheme 

Notice the double flopping for protecting the information from the metastability problems 
[34]. Also observe the rising edge flank detector which allows only activating the Data FF 
one cycle per each request. The same occurs with the ACK signal. 
 
This device can work in both communication directions and now it is time for explaining 
how. 
 

• Reading from User-Logic(target):  
 

In this process uBlaze raises the ‘Req’ signal, which goes through the two Flip-Flops. At 
this moment, the CE of the ‘Data’ flip-flop will be activated allowing the data bus to be 
refreshed. This bus will keep the value until the next CE activation. As soon as the uBlaze 
receive the ‘1’ value of the ACK signal will read the data bus and cleared the REQ signal...  
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Figure 4-2: Reading from user logic 

• Writing in User-Logic(target):  
In this situation, uBlaze modifies at the same cycle the ‘Req’ and data signals. And the data 
will keep the value until ‘Ack’ = ‘1’; 

 
Figure 4-3: Writing in user logic 

 
So as it can be seen in the figures above, the microprocessor or upper intelligent, uBlaze, is 
the chosen one for controlling the protocol. 
 
 

4.2 Time-stamp generator core  
 
After choosing a quartz clock as a time source for the time-stamp in 3.4, it is the right 
moment for explaining how to generate time-stamp labels with it. 
The time-stamp can be created just counting, with a 32bits counter device, the rising edges 
of the FPGA’s clock, and then correcting it in real time. So, in this way the time drift can 
be compensated just jumping or increasing the counter count, instead of correcting the 
time-stamp labels, as many algorithms says. 
The only problem is how to figurate out how often should it jumps or increases and how to 
compare it with another source, in order to know the error committed. 
 
It is at this point when Resolution T brings the solution. Its called Pulse Per Second, which 
certainly means that each time a second starts it will rise a signal to one during 1 ms.  
This pulse has a huge accuracy, in the order of ns. The PPS will help us synchronizing the 
clock and correcting the time drift. 
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Next points tell about how the core and its parts work. Later it will be explained how this 
framework works but first, please take a look on the scheme. 
 

 
Figure 4-4: Time Stamp Generator 

4.2.1 Counter 
This module indeed contains two 32 bits counters. One it is used for nanoseconds and the 
other one for seconds. Therefore, the produced time-stamp gives a 32 bit resolution for 
both seconds and nanoseconds. This decision is just for making easier the upgrading work. 
If for example, the resolution of the counter is increased, then the 32 bit field still will 
cover the increase in accuracy.  
 

32 bit for Seconds 32 bits for –Nanoseconds 
 
The nanoseconds field is indeed a 10 ns field. This is just due to the 100MHz clock that it 
has a period of 10ns. 
 
For the better understanding of the “Counter” a list with the important inputs and outputs is 
given: 
 
Inputs: 

• Mode: when its value is ‘1’, starts the counter or keeps it running. When ‘0’ it 
switches off the counter.  

 
• Drift Correction: Certainly this signal it is the one that helps in the drift 

correction. Normally, the nanosecond counter will increase its count by one per 
cycle, however if the drift correction signal value has a different value than “11” 
then the following actions could be taken. 

 
“00”: New ns value <= Old ns value 
“01” New ns value <= Old ns value +2 
“10” New ns value <= Old ns value +3 
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• Update second: It carries the current second signal from the GPS.  
 

• PPS_input: Each time that a new seconds happens this signal will be activated 
just one cycle. This occurs because the raw signal from the GPS is processed in 
a rising edge flank detector. 

 
Outputs: 
 

• Time-Stamp: The time-stamp that corresponds for each operation cycle. This 
signal goes to the error module in this generator core and also outside. 

 
• PPS_output: A PPS created by the own counter.  

 
Operation:  
 
The count starts when both mode and the PPS_input signal value is ‘1’. 
 
Then, the nanoseconds counter increases the value by one all the cycles but some of them. 
This is determined by the drift correction signal. When the counter reaches the value of a 
second, the PPS output goes to one for 1 ms and the seconds counter increase one its value.  
 
When the PPS_input comes, the counter sends an error signal with the current nanoseconds 
value, which of course represents the error committed calculating the last second. 
 

4.2.2 Tuning 
It has a counter inside that also counts nanoseconds. When this counter reaches an absolute 
value, established previously by the processor, will send “00”, “01”, “10” depending on 
what is needed for correcting the main counter.  
The counter will be reset when the PPS_input signal reach ‘1’. 

4.2.3 Error 
Each time a “PPS_input” signal arrives the Error device makes a direct comparison 
between the nanoseconds value arrived form the counter and the constant value that it 
should have. The result of the subtraction goes directly to the processor, which will 
determinate by software the value for the “tuning” device; the software procedure is 
explained in 4.4.1.  
 
The Time-Stamp generator core works in the following way.  
 
First is initialized, that is Mode = ‘1’ and PPS_input = ‘1’. 
The next step is to calculate the average error for the drift correction algorithm 4.4.1.  
After, it is requested to the Resolution T, GPS receiver, the seconds of the week field. This 
procedure is explained in 4.4.2. 
 
Then it is the time for switching of the clock. Because, due to the time drift correction 
calculation a lot of error is accumulated. Therefore, Mode = ‘0’ and the counter is stopped. 
 
Again it is started, but now the clock-counter already has the basic information, UTC 
seconds and average drift, for running in a smooth way.  
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Then, always that the PPS signal arrives, MicroBlaze asks for the Error. It processes it, 
using the already famous drift algorithm 4.4.1, and returns the tuning value that will help 
for correcting the counter-clock during the next second. 
 

4.3 TAP core 
 
The idea behind this project is to create a transparent TAP and its final implementation is 
one of the key parts of this project. For that reason, it is going to be explained in more 
detail than any other.  
 
Its architecture is showed in the figure below. 
 

 
Figure 4-5: TAP architecture: Data acquisition & filtering 

 
Some explanations about its function must be given. 
 
Firstly, the data is processed in the CRC modules, one for each communication direction. 
The CRC (Cyclic Redundancy Check 4.3.1) module implements more functions than it was 
supposed to be commissioned. So, each CRC gives ‘CRC_OK’, ‘CRC_NOK’ information, 
plus ‘End_frame’, ‘New_frame’. Furthermore, it creates 8-bit big-endian words. This is a 
compulsory requirement for the proper function of both the CRC analyzer and the system. 
 
Secondly, as it can be seen in the figure, the information arrives to the Quintuple Capture 
module or modules where the filtering and storing takes place. It does not wait until the 
CRC is checked, because this would have delayed all the process. Moreover, perhaps 
someone is interested in knowing how many CRC_NOK are produced during a 
communication. As a consequence, when the data in the CRC module reaches one byte 
then it is carried to the Quintuple module. 
 
The last step in the process consists on storing all the packets that have fulfilled the filter 
conditions. They are introduced in a FIFO, waiting for the reading request of the 
microprocessor. 
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For transferring the information to the microprocessor, there are several clock boundaries 
that must be saved, once more, using the time domain border module 4.1. However, some 
of the communication in the Quintuple capture module across the Ethernet clock domain 
and the MicroBlaze one are handled by some FIFOs included in the Quintuple module. 
This process will be described in detail in the Section 4.3.2.  
 
 

4.3.1 CRC checker 
 
This solution is based on [51] Xilinx note. This note shows a CRC parallel checker based 
on 8-bit parallel execution. The device is already done in Verilog. This characteristic plus 
others like the need for additional processing of the raw data, pointed out to create an upper 
instance with the aim to prepare all the signals in order to set-up the signals for the filtering 
process. 
 
This upper CRC device identifies the beginning of an IP packet, then prepares and sends 
the bytes to the Xilinx unit, and finally checks that the CRC solution is right at the end, 
which will raise CRC_Ok or on the other hand will reach CRC_Nok.  
Other signals are also generated. Some of them will be also used in other parts of the 
system, like for example in the filtering core 4.3.2 . They will be explained at the end of 
this section. 
 
Here there is a figure of the upper CRC, called CRC checker. 
 

 
Figure 4-6: CRC checker 

 
It is interesting to see the behaviour of the Xilinx CRC analyzer before explaining the rest 
of the functions of CRC checker. As a resul,t some waveforms are included. 
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Figure 4-7: CRC waveform of the end of a packet 

 
-

 
Figure 4-8: CRC waveform of the begin of a packet 

Notice that when the packet ends “crc_reg” it is compared with the offset 0x4704DD7B. If 
it is true, then CRC_OK = ‘1’, if not CRC_NOK = ‘1’. 
 
The CRC checker also performs quite important roles for the right function of the whole 
system. These are some of the most relevant signals: 
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• New frame: there are two fields called ‘Preamble’ and ’Start-of-Frame-
Delimiter’ as a part of an Ethernet frame arrival. These are the first ones to 
arrive and of course activate the procedure for storing the frame data. 

• End frame: it is calculated based on a direct not function over the ‘calc’ signal 
of the above figures. It is employed in the data acquisition & filtering. It points 
out the right moment for starting the filtering of the just arrived frame. 

• Word creation: the frame arrives in 4-bit  word burst, besides its format is  
little-endian. The Xilinx’s CRC requires 8-bit big-endian words. Also the 
MicroBlaze processor works under big-endian and therefore a conversion is 
needed. This process is realized in the CRC checker module.   

 

4.3.2 Filtering core (Quintuple capture) 
 
In Section 3.5, an explanation about the importance of both data acquisition and filtering 
was given. Also some details were given about its different strategies. 
 
The optimum solution explained in that section will be postponed and presented as a future 
work in 6.2. However, the implemented architecture is a previous step for reaching it. 
 
The entire Quintuple Capture module can be seen in the next figure. 

 

 
Figure 4-9: Quintuple Capture & Filtering Detail 

Even though this figure gives a really good detail about how this module works a few 
considerations must be done before explaining the general behaviour of the module.  
 
The main one is to clarify the data structure that arrives to the FIFO and later to the 
microprocessor.  
 
 1bit       31 bit  32bits         50 first packet bytes  
CRC Seconds Nanoseconds Data 
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As it can be notice, one bit from the second’s field has been substituted by the CRC one. 
The 232  field gives more 100 years count. Therefore nothing happens if the field is reduced 
by one. 
 
Another quite good detail is the two Flip-Flops that delay the End Frame signal. For 
understanding why are there, it is compulsory to keep in mind that the CRC checker shows 
the valid CRC result one cycle after the arrival of the last word of the packet. So, delaying 
the decision, for introducing the data to the Flip-Flop next to the FIFO by one cycle, allows 
the synchronization with the rest of the information. 
This waiting time is far for being a problem because is key to remember that there is a 
minimum inter-arrival time between packets, and at 100 Mbps it is bigger than 20 ns (two 
100 MHz clock cycles). 
 
The function of the device starts when a new packet arrives. A signal called ‘New Frame,’ 
which is not included in the figure, performs all the necessary actions for processing it in 
the Quintuple Capture module. In somehow it works like a reset. 
 
Each new byte is stored in the 50 bytes Flip Flop. At the same time the “filter conditions” 
module select the quintuple characteristics from its packet. These are the source IP address, 
destination IP address, source port, destination port, and protocol.  
 
Finally, when the End_Frame signal rises to ‘1’ and if the filter conditions are fulfilled the 
EN signal goes to ‘1’ allowing to pass the information from the 50 bytes FF, time-stamp 
and CRC to FIFO FlipFlop. This Flip Flop will send the information to the FIFO in 32 bits 
words. 
The time-stamp has been requested to the time-stamp generator core as soon as the Carrier 
Sense signal has been activated. This signal is activated before the packet arrives, so it 
covers the delays that the packet may suffer until been time-stamped. 
 
The FIFO handles the communication with the MicroBlaze using a handshake protocol.  
MicroBlaze can ask the status of the FIFO, which means how many 32 bits words can be 
read. And of course, It can also request a 32 bit word. 
 
Last but not least, a Quintuple Capture module is required for each filtering conditions and 
for each ETH interface. For example, if it is required an analysis of the traffic that attacks 
port 80, in both Ethernet senses, and then two Quintuple modules are needed. Otherwise, in 
just one sense, it would be only one. Even though this seems redundant, indeed it adds 
versatility to the design allowing to separate the analysis in different senses of traffic and 
therefore reducing the FPGA area needs in that situation.  
 

4.4 System Integration 
 
The system employs several interrupts which are described, in order from lower to higher 
priority, as follows: 
 

• MAC: It is compulsory for the using of the LwIP library. 
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• PPS: It comes from processing the PPS signal from the GPS using a rising flack 
detector. This interrupt it is quite important for correcting the time-stamp source 
drift errors.   

• Timer: The most important one. It is a must for XilKernel OS and LwIP.  
 
The flow of the main program is the following one. 
 

• Initialization of the time-module 4.2. 
• Initialization of the XilKernel. Main thread launched. 
• PPS interrupt handling configuration. 
• Re-starting counter 4.2. 
• Initialization of the LwIP. 
• Launching of socket thread 4.4.3. Endless loop at this point. 

 
In order to facilitate the software support and further develop, the program uses the 
following data structure. 
 
typedef struct 
{ 
  Xuint32 BaseAddress  ;        /* Base address of registers */     
   
  Xuint32* Mode_Status ; /*Pointers for reading& writing in time module*/ 
  Xuint32* Error       ; 
  Xuint32* Tuning      ; 
  Xuint32* nSec        ; 
  Xuint32* Sec         ;  
  Xuint32* UpdSec      ;   
   
  Xint32 nSec_error[window_size]; // For the windows drift correction system 
  Xint32* p_error; 
     
  Xint32 Register_nSec ;//Characteristics of a time_module 
  Xint32 Register_Mode ; 
  Xint32 Register_Error; 
  Xint32 RegisterSec   ; 
  Xint32 Tuning_average; 
  Xint32 Tuning_step ; 
  Xuint32 update_second; 
} Time_module; 
 

4.4.1 Time Drift Correction 
 
The final implemented version of the algorithm works in the following way.  
 
Firstly the counter-clock runs 30 seconds without correcting the time drift. At the end of 
these 30 seconds, it is calculated the average error and then fixes a constant value that will 
correct the counter each second. 
 
After this process, the counter is reset and re-started. 

 56



 

 
As it has been explained in many sections, the error committed per second is requested 
from the 4.2.3, by the Microblaze once per second (PPS).  
This error value must be processed in order to get a right tuning value. 
This tuning value is defined as the number of times that the counter-clock must be delayed 
or accelerated in order to correct the error from the last second. 
 
Two actions take place for achieving a nice result: 
 

• Mean error: after a first estimation of the mean or average error the clock runs 
periodically thirty seconds for attempting to correct it. This means that a change in 
the mean error value is produced if the mean error in 30 seconds.  
Specifically, each second the error is added to the result of the sum of the 29 past 
errors. Once per thirty seconds the total accumulative value is dived by 30. If the 
quotient is more than 1 or less than -1 then the mean error is increased or decreased 
respectively. 

 
• Drift error: It is defined by Step = Step/2 + Error where Error is the raw input from 

the time-stamp generator core and Step is a variable which accumulates the error. 
This recursive function aims to mitigate the effects of the peaks of the PPS 
quantification error. 

 
 
Now, it is time to justify why this method works and rules. 
All this method has been tested and developed under Matlab simulations before been 
implemented in the system. This simulation is based on a simple model of a time source. 
As it has been explained in some references in Section 3.4.1.2, the error between two time 
sources can be characterize as: E(t) = A + B(t), where A is the average error and B 
represents the drift-value. 
Thus, the simulation uses a normal distribution, where its mean is the mean error value 
observed with the oscilloscope and the variance is defined also in an empiric method. 
 
In the first figure, there is a clear view of the raw error accumulation, without any 
correction, during 10000 seconds through simulation. As it was described in the Design 
Section 3.4.1.2, it follows an almost linear function. 
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Figure 4-10: Accumulative Error in HW generated clock vs. GPS 

It is impossible to know before hand the drift error, because this depends on  many random 
factors as for example temperature. This means that there is no way to calculate a valid 
offset that offers warranty of reliability in the long term (few hours). 
 
This is showed in the next figure, where only a 30 seconds evaluation of the mean error 
takes place. 
GPS time is represented in red and the accumulative error of the FPGA clock in blue. 
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Figure 4-11: Accumulative Error 30 seconds average correction vs. GPS 

The result has an easy explanation. No matters how well the mean of the error is calculated, 
because this mean can change over the time. Furthermore, as much error is committed 
trying to find this mean value as much error the system will have. 
 
A clever idea would be to correct the mean average through all the time, which due to 
memory limitations means to modify the average each 30 seconds by adding 1 or -1 to the 
original value. This +1 or -1 corrective value is calculated from the last 30 seconds errors. 
If the accumulative error divided by 30 exceeds a positive threshold then average is 
correspondingly modified and vice versa.  
So, in this way a bad luck 30 seconds estimation would not ruined our results.  
 
The result of applying a 30 window average can be seen in the next figure. 
 

 59



 

 
Figure 4-12: Accumulative Error 30 seconds window average correction vs. GPS 

What had happened?  
 
Of course, it is better than the previous model, but in the long term explodes. The problem 
is that no matter how well calculated is the average, because there is always going to be a 
bad luck 30 seconds window that it is going to influence in a bad way our first estimation. 
 
This bad influence generates a non-stoppable accumulate error that generate worse average 
error calculation as the time increases. 
 
Therefore, it has been showed the need of B(t), drift-value function, that will allow to 
correct the mean value in real time, as it can be seen in the next figure the result of the 
simulation of this formula. Again blue colour shows the error committed by the FPGA 
clock versus GPS clock in red.  
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Figure 4-13: Accumulative Error:  well corrected clock vs. GPS 

The system is able to be stable between +/- 50 n, no matters how well the average was 
calculated, in other words, it is able to adapt to any change or bad luck error. 
 
Just in case someone is thinking something like, Hey! What will happen if we just employ 
the B(t) drift correction? 
In the next figure this question is answered. 
 

 
Figure 4-14: Accumulative Error: just time drift clock correction vs. GPS 

Yes, the drift error is stuck at a constant point. 
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The last explanation is dedicated to clarify that the system works with 10 ns as our lowest 
unit. Moreover, it only admits integers as a reason of binary arithmetic. This is important 
because the smoothest tuning is a 10 ns change as well as our minimum error that of course 
it is also 10ns. 
 

4.4.2 GPS communication 
 
In the Section 3.2.3.3 an protocols introduction for working with the Trimble Resolution T 
receiver was done. Deciding to work under the NMEA 0183 or TSIP is not an easy 
decision to make. There are many positives aspects in both of them and also some 
disadvantages. 
 
They key point is that TSIP offers quite more characteristics than its competitor. On the 
other hand, NMEA 0183 is a well known standard. This allows changing the vendor of 
GPS receiver almost without any problems. After analyzing the characteristics that TSIP 
offers, there are two that must be highlighted. 
 

• PPS error: a brief summary about this error and its consequences was given in 
Section 3.4.1.1. TSIP presents a packet for minimizing this problem. The amount of 
quantization error present on each PPS output pulse is reported in packet 0x8F-AC. 
Here there are some figures which show the importance of this advantage. They can 
be compared against 3.4.1.1.1 . 

 
 

 
Figure 4-15: Resolution-T PPS Quantization Error [5]
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Figure 4-16: Resolution-T PPS Output with Quantization Error Removed [5]

Therefore, as has been explained with this packet a better clock accuracy can be achieved. 
 

 
• Seconds of the week: NMEA 0183 ZDA time-packet shows the year, month, day, 

minutes and so on from and ancient date. This information must be translated to 
seconds, in order to have a compressive and optimum way of store this information 
in each captured packet, so each packet has a different time-stamp, in the same 
physical point of the analyze. However, TSIP brings again a nice solution. There is 
a packet 0x8F-AB that sends the number of seconds since Sunday at 00:00:00 GPS 
time for the current GPS week. 
It is easy, simple and warranties a perfect function of all the system. It does not 

need conversions either saving non-useful information. 
 
TSIP has been chosen, as a consequence of these special characteristics of the protocol and 
of course, mainly because of this PPS error correction. 
 
 
After this brief explanation about the protocol election, now is explained how 
communication works and which kind of information is transferred from the GPS receiver. 
All the information needed for the normal behaviour of the system is the seconds of week 
data. This is information is vital during the initialization of the time-stamp generator 
counter 4.2. 
 
For getting this data and before starting the counter, the data is requested using a Uartlite 
device. The data received form the GPS receiver must pass several masks, in other to read 
the right data. If a number of attempts for reading the information are failed, then a critical 
error message which alert the user about the wrong initialization of the counter, and the 
lack of accuracy in its time-stamps. 
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Once that this procedure is finished, there is no real need of communication between the 
MicroBlaze and the Resolution-T, because the correction of the quantification error in the 
PPS signal has been postponed for future work.  
 

4.4.3 Server Communications 
 
In this section the socket thread is going to be explained.  
 
The objectives for this thread are to set up the MAC, to open the target socket and last but 
not least to handle the reading of information from the Quintuple FIFO 4.3.2. and sending 
it to the aimed socket.  
 
This thread is based on LwIP library and it follows a Berkeley socket model.  
At the first point, the thread initializes the MAC of the system. Then it opens an UDP 
socket to the destination of the filtered information. . 
And finally starts a polling loop. If the FIFO has any data for been read then it will be read 
and sent as an UDP packet. 
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5 Tests and results 
 

5.1 CRC 
 
CRC checker 4.3.1 has been tested in an exhaustive way. Specifically, it has passed four 
tests for showing a great reliability. The tests have executed in a Modelsim environment, 
so they aim to discard any logic problem in the CRC detection. 
 
The first two tests have been extracted from the IEEE 802.3 manual, [53].  
 
It is important to notice that these are not intended for checking the CRC performance. In 
fact in the manual it can be read “The continuous random test pattern is a random test 
pattern intended to provide broad spectral content and minimal peaking that can be used 
for the measurement of jitter at either a component or system level” [53]. 
 
Nevertheless, these tests offer a packet with its right CRC associated, which is more than 
enough for knowing how the CRC checker is performing. 
 
The first packet and test: 
“Each packet in the long continuous random test pattern consists of 8 octets of 
PREAMBLE/SFD, followed by 1512 data octets (126 repetitions of the 12-octet modified 
RPAT sequence), plus 4 CRC octets” [53]. 
 
PREAMBLE/SFD: 

55 55 55 55 55 55 55 D5 
 
MODIFIED RPAT SEQUENCE (LOOP 126 TIMES) 

BE D7 23 47 6B 8F B3 14 5E FB 35 59 
 
CRC 

94 D2 54 AC 
 
The second: 
“Each packet in the short continuous random test pattern consists of 8 octets of 
PREAMBLE/SFD, followed by 348 data octets (29 repetitions of the 12-octet modified 
RPAT sequence), plus 4 CRC octets”[53]. 
 
PREAMBLE/SFD: 

55 55 55 55 55 55 55 D5 
 
MODIFIED RPAT SEQUENCE (LOOP 29 TIMES) 

BE D7 23 47 6B 8F B3 14 5E FB 35 59 
CRC 

2F E0 AA EF 
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After these two tests, it was the time to test a raw capture packet. This packet was 
captured using Chipscope [37] utility. Once more, the result was satisfactory confirming 
that the packet was without errors form the CRC point of view. 
 
However, there are still some aspects that require a more complex test.  
 
The ultimate test aims to show that the CRC checker is able to handle a stream of packets. 
This stream contains also a wrong packet in order to check that detecting bad CRC packets 
also works. 
The stream is formed with the first packet tested, the second packet, intentionally modified 
for having a wrong CRC, and some raw capture packets. 
 
The end of this test can be seen in the following figure. 
 

 
Figure 5-1: Ultimate test: CRC end of packet Modelsim simulation  

Please, notice that as was explained in Section 4.3.1, if the CRC code is correct, a 
0xC704DD7B offset must appear as result in the following cycle, after the end of the 
frame. 
 

5.2 Time-stamp accuracy 
 
Achieving a good time-stamping accuracy is required for this project. This time accuracy 
can be measured in two contexts.  
 

• Digital measurement:  
This analysis evaluates the time drift correction algorithm 3.4.1.2, 4.4.1.  
 
It consists on logging all the error and tuning average information during seven hours.  
So, when the MicroBlaze asks to the Time-stamp generator core 4.2 about the error 
committed in the last second, not only handles this information but send it trough a RS-
232 to a PC.  
This PC logs all the RS-232 communication. After, this information is processed using 
Matlab. It is important to observe that the maximum resolution is 10 ns, due to the 
100MHz clock. Moreover, only integers are allowed.  
 

Here it can be seen one of the figures  
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Figure 5-2: Error committed by the FPGA-generated PPS 

It shows the registered error committed in 7 hours of log (~25000 samples).  
For a better understanding of the waveform this figure is a zoom in. It represents the 
samples from 600 to 1000.  

 
Figure 5-3: Detail of the Error committed by the FPGA-generated PPS 
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It is interesting to make a comparison with the figure 3-11. It can be seen that they share a 
similar waveform. 
 
Another interesting figure is the importance of the thirty seconds window tuning average 
(mean error) calculation, which is explained in 4.4.1.  

 
Figure 5-4: Mean error (30 seconds window) or tuning average values 

It can be seen that this value changes during all the simulation and it shows the importance 
of this window algorithm for achieving a nice accuracy. 
 
From the sample analysis some calculations has been done offering the following relevant 
information: 
 
During the seven hours the clock was delayed 47690 ns, which means 1.91 ns per second.  
However, if it is just taken in consideration the last three hours and a half the clock is only 
delayed by 11860 or 0.95 ns per second, showing the importance of a well defined tuning 
average value. 
 
Nevertheless, each time-stamp has an absolute average error of 6’5 ns, which is less than 
10 ns or what is the same less than our unity.  
 

• Analog measurement: 
 
However, this digital analysis shows what the MicroBlaze eye can see. As it occurs with 
human eye, it can not see some relevant information.  
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As it was described in 4.2.1, a PPS output signal is generated when the system counter 
reach one second. This signal is measured with an oscilloscope and it is compared against 
the GPS one. 
Therefore, this shows the REAL accuracy of the system time-stamps, which are based on 
following the GPS PPS signal. The better the system follows the PPS; better time-stamp 
accuracy is achieved.  
 
In the following image a two hours test is displayed. The samples results are accumulated 
in green referring to the system generated PPS and in yellow for the GPS one.  
 

 
Figure 5-5: Oscilloscope capture showing GPS PPS vs. FPGA PPS 

The image shows about 100 ns between the peaks errors. This is an about +/- 50 ns error 
which fulfils all the initial expectations.  
 
Nevertheless, this error is not the committed vs. the UTC one. It has to be added a 2ns 
from the antenna wire, plus around 15 ns of the Resolution T module [5]. 
 

5.3 General performance 
 
Finally a general test was realized for evaluating the general performance of the whole 
system. 
 
This picture has been included for a better understanding. 
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Figure 5-6: General performance test. 

So, basically a computer is connected to another one trough the system Ethernet card 
interface.  
The XUP development board is also connected using its own RJ45 interface with another 
computer. A network is established between them. 
 
 
All the computers are running the “Wireshark” application in other to capture all the data 
running across its nets. However, 192.168.1.2 is also running a JAVA program. This 
program is based on BSD(Berkeley Sockets) and essentially runs an UDP socket on port 
3000. It also prints the information that arrives to this socket, but only when receives a 
“0xABAB” sequence. As soon as is this sequence is detected, the next 4 bytes received are 
printed.  
 
The test starts with a ping sent by 150.211.56.13 to 150.211.52.11. When this ping passes 
through the XUP then is filtered. Then, it is sent to the 192.168.1.2 divided in 8 Bytes 
words where both Wireshark and the java program register the incoming packet. 
 
It must be said that some traffic is added between 150.211.56.13 and 150.211.52.11 just for 
showing that the filter is working fine. 
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5.4  FPGA characteristics and resources. 
 
This section offers a summary about the utilization stats of the whole system. These have 
been taken from .mrp .par and .twr files. It also includes the ones concerning the IP cores 
designed for this project, ‘TAP core’ and ‘Time-Stamp Generator core’. 

5.4.1 The whole system 
 

Device Utilization Summary (estimated values) 
Logic Utilization Used Available Utilization 
Number of Slices 7761 13696 56%
Number of Slice Flip Flops 8102 27392 26%
Number of 4 input LUTs 9009 27392 32%
Number of bonded IOBs 172 556 30%
Number of BRAMs 43 136 31%
Number of GCLKs 8 16 50%
Number of PPC405s 0 2 0%
Number of MULT18X18s 3 136 2%
Number of DCMs 2 8 25%
Number of BSCANs 1 1 100%
Number of GTs 0 8 0%
Number of GT10s 0 0 0%
Number of BUFGMUXs 8 16 50%

Table 5-1 System utilization Summary 
 
Timing characteristics: 
Minimum period:  10.505ns (Maximum frequency:  95.193MHz) 
Maximum path delay from/to any node:   3.009ns 
Maximum net skew:   1.323ns 
 

5.4.2 TAP core 
 

Device Utilization Summary (estimated values) 
Logic Utilization Used Available Utilization 
Number of Slices 1258 13696 9%
Number of Slice Flip Flops 1590 27392 5%
Number of 4 input LUTs 1395 27392 5%
Number of bonded IOBs 166 416 39%
Number of BRAMs 2 136 1%
Number of GCLKs 6 16 37%

Table 5-2 TAP utilization summary. 
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Timing characteristics: 
 
Minimum period: 6.472ns (Maximum Frequency: 154.507MHz) 
Minimum input arrival time before clock: 5.048ns 
Maximum output required time after clock: 4.530ns 
Maximum combinational path delay: 5.075ns 
 

5.4.3 Time-Stamp Generator core 
 

Device Utilization Summary (estimated values) 
Logic Utilization Used Available Utilization 
Number of Slices 107 13696 0%
Number of Slice Flip Flops 59 27392 0%
Number of 4 input LUTs 133 27392 0%
Number of bonded IOBs 170 416 40%
Number of GCLKs 1 16 6%

Table 5-3 Time-stamp generator utilization summary. 
 
Timing characteristics: 
 
Minimum period: 5.720ns (Maximum Frequency: 174.840MHz) 
Minimum input arrival time before clock: 4.527ns 
Maximum output required time after clock: 4.538ns 
Maximum combinational path delay: 5.075ns 
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6 Conclusions and future work 

6.1 Conclusions 
 
A framework for the development of FPGA-based Ethernet monitoring system has been 
developed in this project. 
 
An analysis of the state of art has also delivered. From this part it can be concluded that 
there is a extensive job to be done about improving the network monitoring systems. 
 
Now it is time to highlight the advantages and disadvantages of the results. 
 

• The system has reached a great time resolution 10ns. It is almost as great as the best 
DAG card [1] model which offers 7.5 ns.  

 
• The time accuracy has also been quite precise. A +/- 50 ns error from the GPS PPS 

shows the evidence of the good results of both the time drift algorithm 4.4.1 and the 
clocking strategy. DAG 4.5G2 card offers +/- 100ns [1].  

 
• A simple algorithm has been developed in order to handle the drift correction 

problem which saves developing time and FPGA resources. 
 

• The time-stamp is selected when the Ethernet carrier sense signal rises to ‘1’. The 
Carrier sense signal rises to one sooner than the detection of the Preamble. 
Therefore, it does not matter how much time the packet takes for reaching the filter 
section. 

 
• The system works for a 10/100Mbps velocity which is expected to increase in 

further versions. However, the architecture has been designed for supporting a 1 
Gbps. 

 
• The system works as an autonomous one. It has not been implemented in a PCI card 

which of course needs a computer. This helps to save money, to reduce the power 
consumption and it allows smaller dimensions, which adds versatility to the 
solution. 

 
• Using a GPS source means that the antenna must have clear view of the sky with 

the aim of achieve a good performance. 
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6.2 Future work 
 
A lot of future work has to be done because of the results in this project. These are some of 
the ideas and duties: 
 

• Upgrading the system for allowing a 1 Gbps performance is a must. Scalability is 
one of the key points in surviving leather monitoring system design. 

 
• Improving time accuracy removing the quantification error. The Trimble Resolution 

T has the key for reducing our overall error about +/- 10 ns. This fact, it is 
something that simply can not be forgotten in the incoming versions. 

 
• The different time domains architecture allows a 175 Mhz (5.4.3) clock for time 

stamping generation. It the time-stamp generator core works at that speed it could 
offer a 5,7 ns resolution. The time-domain border should handle this problem, so it 
should not require a lot of work. 

 
•  A big hit would be to permit to change the filter rules, but without using 

reconfiguration or even download a new bit stream. This could be done sending 
from a client an UDP/TCP order to the monitoring system. In this order, a filter has 
to be selected and it also has to include the new rules. However, adding new filters 
or changing the structure of them, forces the need of downloading a new bit stream. 

 
• Including a uLinux OS in the system could permit to process more the filtered data, 

instead of sending them almost in a raw condition. 
 

• The implementation of a re-configurable PAM tree filtering could boost the 
versatility and capacity of the system. The PAM tree filter could be developed using 
several filtering cores 4.3.2 that will work as nodes of the tree.  
However, this structure brings new challenges that must be resolved. For example, 
could it be possible to share nodes of different trees? Which is the best hardware 
structure for the nodes?   
At least, there is an answer for the first question. Yes, perhaps it could be resolved 
employing FIFO’s and the input of the node, and at the same time marking, in 
somehow, the nodes that the packet passes.  
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6 Conclusiones y trabajo futuro 

6.1 Conclusiones 
 
En este proyecto se va a generar una plataforma para el desarrollo de un sistema de 
monitorización Ethernet. 
 
Como complemento se ha entregado también un análisis del estado del arte. Del cual se 
puede ver la importancia en la mejora de estos sistemas.  
Now it is time for highlighting the advantages and disadvantages of the results. 
 

• El sistema ha alcanzado una buena resolución, concretamente de 10ns. Casi 
equiparable a la mejor de las tarjetas DAG [1] que ofrecen unos 7.5 ns.  

 
• La precisión temporal a sido también bastante precisa. El algoritmo de corrección 

de la deriva temporal 4.4.1.ha cumplido con sus objetivos, ya que el error tan solo 
es una ventana de +/- 50 ns. Las tarjetas DAG 4.5G2 ofrecen  +/- 100n [1] .  

 
• Un algoritmo de corrección temporal ha sido propuesto. Este sencillo algoritmo  

permite ahorrar tiempo de desarrollo y recursos lógicos de la FPGA. 
 

• El proceso de marcar temporalmente al paquete se produce cuando la señal “Carrier 
Sense”, encontrada en Ethernet, se active a ‘1’. Este “Carrier Sense” llega incluso 
antes que el preambulo. Lo cual permite que aunque el paquete se retrase en su 
procesado durante el filtrado, la marca temporal refleja la máxima fidelidad 
respecto al momento de llegada del paquete.  

 
• El sistema permite capturar tráfico a  una velocidad de 10/100Mbps. Pero la 

arquitectura ha sido pensada para alcanzar 1 Gbps 
 

• El sistema trabaja de forma autónoma. Al no haber sido desarrollado mediante una 
tarjeta PCI, la cual requiere de un ordenador que la acoja. Esto permite que el 
dispositivo creado ahorre costes, tenga un consumo mas reducido y disponga de 
dimensiones más reducidas, generando versatilidad a la solución.  

 
• El uso de una fuente temporal basada en GPS significa que existe la necesidad de 

ubicar su antena en algún lugar donde pueda ver el cielo abierto, ya que si no, 
trabajará por debajo de sus prestaciones.  
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6.2 Trabajo futuro 
 
En esta parte se muestras algunas de las ideas para mejorar este proyecto en un futuro. 
 

• Mejorar el sistema para llegar a trabajar con velocidades de 1 Gbps es una 
obligación para cualquier sistema de monitorización. 

  
• Mejorar la precisión temporal eliminando el error de cuantificación. El dispositivo 

Trimble Resolution T puede permitir reducir el error en +/-10ns. Esto es algo que 
simplemente no se puede obviar para versiones futuras.  

 
• La arquitectura con diferentes dominios de reloj puede permitir alcanzar 175Mhz al 

reloj empleado en la generación de marcas de tiempos. Si se logra que trabaje a esa 
velocidad se podría llegar a ofrecer una resolución de hasta 5,7 ns. 

  
• Un gran avance sería el permitir cambiar las reglas de filtrado, pero sin usar la 

reconfiguración ni tampoco descargar de nuevo el “Bit stream”. Esto podría ser 
realizado mandando una orden bajo UDP/TCP desde el cliente. El paquete 
solamente tendría que seleccionar el filtro al que modificar los parámetros y la 
información para las nuevas reglas. No obstante, si el cliente desea añadir o quitar 
filtros no hay mas remedio que reconfigurar la FPGA. 

 
• Introducir un sistema uLinux puede acarrear múltiples beneficios. Entre ellos el 

mayor procesamiento de los datos filtrados, permitiendo la generación de 
histogramas, en vez de mandarlos casi sin procesar.  

 
• La implementación de un árbol PAM reconfigurable podría disparar la versatilidad 

y capacidad del sistema. El árbol PAM podría ser desarrollado empleando varios 
“filtering cores” que serían los nodos del árbol. Esta nueva estructura traería nuevos 
retos que deberían de ser resueltos. Por ejemplo, ¿podrían ser posible compartir 
nodos de diferentes árboles? ¿Cual sería la mejor estructura hardware para integrar 
los nodos? 
Al menos, se puede responder a la primera pregunta. Si, quizás podría ser resuelto 
utilizando FIFOs a la entrada del nodo y al mismo tiempo marcando de alguna 
manera el paso de los paquetes por según que nodos transcurra.
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ASIC   Application Specific Integrated Circuit 
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DRAM  Dinamic Random Access Memory 
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Anexos 

A PRESUPUESTO 
 
1) Ejecución Material 

• Compra de ordenador personal (Software incluido)....... ............................  2.000 € 
• Compra de equipos Hardware ....................................................................... 2100€ 
• Alquiler de impresora láser durante 6 meses .................................................... 50 € 
• Material de oficina .......................................................................................... 150 € 
• Total de ejecución material .........................................................................  3.300 € 

2) Gastos generales 

• 16 % sobre Ejecución Material ................................................................  352 €  

3) Beneficio Industrial 

• 6 % sobre Ejecución Material ..................................................................  132 € 

4) Honorarios Proyecto 

• 640 horas a 15 € / hora...........................................................................  9600 €  

5) Material fungible 

• Gastos de impresión...................................................................................  60 € 
• Encuadernación........................................................................................  200 € 

6) Subtotal del presupuesto 

• Subtotal Presupuesto............................................................................  14160 € 

7) I.V.A. aplicable 

• 16% Subtotal Presupuesto .................................................................   2265.6 € 

8) Total presupuesto 

• Total Presupuesto..............................................................................  16425,6 € 

 
Madrid, Mes Septiembre de 2008 

El Ingeniero Jefe de Proyecto 
 
 

Fdo.: Fernando Alonso Marcos 
Ingeniero Superior de Telecomunicación 
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B PLIEGO DE CONDICIONES 

Este documento contiene las condiciones legales que guiarán la realización, en este 
proyecto, de un Sistema de monitorización de Ethernet. En lo que sigue, se supondrá que el 
proyecto ha sido encargado por una empresa cliente a una empresa consultora con la finalidad de 
realizar dicho sistema. Dicha empresa ha debido desarrollar una línea de investigación con objeto 
de elaborar el proyecto. Esta línea de investigación, junto con el posterior desarrollo de los 
programas está amparada por las condiciones particulares del siguiente pliego. 

Supuesto que la utilización industrial de los métodos recogidos en el presente proyecto ha 
sido decidida por parte de la empresa cliente o de otras, la obra a realizar se regulará  por las 
siguientes: 

  
Condiciones generales 

 
 1. La modalidad de contratación será el concurso. La adjudicación se hará, por tanto, a la 
proposición más favorable sin atender exclusivamente al valor económico, dependiendo de las 
mayores garantías ofrecidas. La empresa que somete el proyecto a concurso se reserva el derecho a 
declararlo desierto. 
 
 2. El montaje y mecanización completa de los equipos que intervengan será realizado 
totalmente por la empresa licitadora. 
 
 3. En la oferta, se hará constar el precio total por el que se compromete a realizar la obra y 
el tanto por ciento de baja que supone este precio en relación con un importe límite si este se 
hubiera fijado. 
 
 4. La obra se realizará  bajo la dirección técnica de un Ingeniero Superior de 
Telecomunicación, auxiliado por el número de Ingenieros Técnicos y Programadores que se estime 
preciso para el desarrollo de la misma. 
 
 5. Aparte del Ingeniero Director, el contratista tendrá derecho a contratar al resto del 
personal, pudiendo ceder esta prerrogativa a favor del Ingeniero Director, quien no estará obligado 
a aceptarla. 
 
 6. El contratista tiene derecho a sacar copias a su costa de los planos, pliego de condiciones 
y presupuestos. El Ingeniero autor del proyecto autorizará con su firma las copias solicitadas por el 
contratista después de confrontarlas. 
 
 7. Se abonará al contratista la obra que realmente ejecute con sujeción al proyecto que 
sirvió de base para la contratación, a las modificaciones autorizadas por la superioridad o a las 
órdenes que con arreglo a sus facultades le hayan comunicado por escrito al Ingeniero Director de 
obras siempre que dicha obra se haya ajustado a los preceptos de los pliegos de condiciones, con 
arreglo a los cuales, se harán las modificaciones y la valoración de las diversas unidades sin que el 
importe total pueda exceder de los presupuestos aprobados. Por consiguiente, el número de 
unidades que se consignan en el proyecto o en el presupuesto, no podrá servirle de fundamento 
para entablar reclamaciones de ninguna clase, salvo en los casos de rescisión. 
 
 8. Tanto en las certificaciones de obras como en la liquidación final, se abonarán los 
trabajos realizados por el contratista a los precios de ejecución material que figuran en el 
presupuesto para cada unidad de la obra. 
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 9.  Si excepcionalmente se hubiera ejecutado algún trabajo que no se ajustase a las 
condiciones de la contrata pero que sin embargo es admisible a juicio del Ingeniero Director de 
obras, se dará conocimiento a la Dirección, proponiendo a la vez la rebaja de precios que el 
Ingeniero estime justa y si la Dirección resolviera aceptar la obra, quedará el contratista obligado a 
conformarse con la rebaja acordada. 
 
 10. Cuando se juzgue necesario emplear materiales o ejecutar obras que no figuren en el 
presupuesto de la contrata, se evaluará  su importe a los precios asignados a otras obras o 
materiales análogos si los hubiere y cuando no, se discutirán entre el Ingeniero Director y el 
contratista, sometiéndolos a la aprobación de la Dirección. Los nuevos precios convenidos por uno 
u otro procedimiento, se sujetarán siempre al establecido en el punto anterior. 
 
 11. Cuando el contratista, con autorización del Ingeniero Director de obras, emplee 
materiales de calidad más elevada o de mayores dimensiones de lo estipulado en el proyecto, o 
sustituya una clase de fabricación por otra que tenga asignado mayor precio o ejecute con mayores 
dimensiones cualquier otra parte de las obras, o en general, introduzca en ellas cualquier 
modificación que sea beneficiosa a juicio del Ingeniero Director de obras, no tendrá derecho sin 
embargo, sino a lo que le correspondería si hubiera realizado la obra con estricta sujeción a lo 
proyectado y contratado. 
 
 12. Las cantidades calculadas para obras accesorias, aunque figuren por partida alzada en el 
presupuesto final (general), no serán abonadas sino a los precios de la contrata, según las 
condiciones de la misma y los proyectos particulares que para ellas se formen, o en su defecto, por 
lo que resulte de su medición final. 
 
 13. El contratista queda obligado a abonar al Ingeniero autor del proyecto y director de 
obras así como a los Ingenieros Técnicos, el importe de sus respectivos honorarios facultativos por 
formación del proyecto, dirección técnica y administración en su caso, con arreglo a las tarifas y 
honorarios vigentes. 
 
 14. Concluida la ejecución de la obra, será reconocida por el Ingeniero Director que a tal 
efecto designe la empresa. 
 
 15.  La garantía definitiva será del 4% del presupuesto y la provisional del 2%. 
 
 16. La forma de pago será por certificaciones mensuales de la obra ejecutada, de acuerdo 
con los precios del presupuesto, deducida la baja si la hubiera. 
 
 17. La fecha de comienzo de las obras será a partir de los 15 días naturales del replanteo 
oficial de las mismas y la definitiva, al año de haber ejecutado la provisional, procediéndose si no 
existe reclamación alguna, a la reclamación de la fianza. 
 
 18. Si el contratista al efectuar el replanteo, observase algún error en el proyecto, deberá  
comunicarlo en el plazo de quince días al Ingeniero Director de obras, pues transcurrido ese plazo 
será  responsable de la exactitud del proyecto. 
 
 19. El contratista está obligado a designar una persona responsable que se entenderá con el 
Ingeniero Director de obras, o con el delegado que éste designe, para todo relacionado con ella. Al 
ser el Ingeniero Director de obras el que interpreta el proyecto, el contratista deberá  consultarle 
cualquier duda que surja en su realización. 
 
 20. Durante la realización de la obra, se girarán visitas de inspección por personal 
facultativo de la empresa cliente, para hacer las comprobaciones que se crean oportunas. Es 
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obligación del contratista, la conservación de la obra ya ejecutada hasta la recepción de la misma, 
por lo que el deterioro parcial o total de ella, aunque sea por agentes atmosféricos u otras causas, 
deberá ser reparado o reconstruido por su cuenta. 

 
 21. El contratista, deberá realizar la obra en el plazo mencionado a partir de la fecha del 
contrato, incurriendo en multa, por retraso de la ejecución siempre que éste no sea debido a causas 
de fuerza mayor. A la terminación de la obra, se hará una recepción provisional previo 
reconocimiento y examen por la dirección técnica, el depositario de efectos, el interventor y el jefe 
de servicio o un representante, estampando su conformidad el contratista. 
 
 22. Hecha la recepción provisional, se certificará al contratista el resto de la obra, 
reservándose la administración el importe de los gastos de conservación de la misma hasta su 
recepción definitiva y la fianza durante el tiempo señalado como plazo de garantía. La recepción 
definitiva se hará en las mismas condiciones que la provisional, extendiéndose el acta 
correspondiente. El Director Técnico propondrá a la Junta Económica la devolución de la fianza al 
contratista de acuerdo con las condiciones económicas legales establecidas. 
 
 23. Las tarifas para la determinación de honorarios, reguladas por orden de la Presidencia 
del Gobierno el 19 de Octubre de 1961, se aplicarán sobre el denominado en la actualidad 
“Presupuesto de Ejecución de Contrata” y anteriormente llamado ”Presupuesto de Ejecución 
Material” que hoy designa otro concepto. 
 

 
Condiciones particulares 

 
 La empresa consultora, que ha desarrollado el presente proyecto, lo entregará a la empresa 
cliente bajo las condiciones generales ya formuladas, debiendo añadirse las siguientes condiciones 

particulares: 
 
 1.  La propiedad intelectual de los procesos descritos y analizados en el presente trabajo, 
pertenece por entero a la empresa consultora representada por el Ingeniero Director del Proyecto. 
 
 2. La empresa consultora se reserva el derecho a la utilización total o parcial de los 
resultados de la investigación realizada para desarrollar el siguiente proyecto, bien para su 
publicación o bien para su uso en trabajos o proyectos posteriores, para la misma empresa cliente o 
para otra. 
 
 3.  Cualquier tipo de reproducción aparte de las reseñadas en las condiciones generales, 
bien sea para uso particular de la empresa cliente, o para cualquier otra aplicación, contará con 
autorización expresa y por escrito del Ingeniero Director del Proyecto, que actuará  en 
representación de la empresa consultora. 
 
 4. En la autorización se ha de hacer constar la aplicación a que se destinan sus 
reproducciones así como su cantidad. 
 
 5.  En todas las reproducciones se indicará su procedencia, explicitando el nombre del 
proyecto, nombre del Ingeniero Director y de la empresa consultora. 
 
 6. Si el proyecto pasa la etapa de desarrollo, cualquier modificación que se realice sobre él, 
deberá  ser notificada al Ingeniero Director del Proyecto y a criterio de éste, la empresa consultora 
decidirá  aceptar o no la modificación propuesta. 
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 7. Si la modificación se acepta, la empresa consultora se hará responsable al mismo nivel 
que el proyecto inicial del que resulta el añadirla. 
 
 8. Si la modificación no es aceptada, por el contrario, la empresa consultora declinará  toda 
responsabilidad que se derive de la aplicación o influencia de la misma. 
 
 9. Si la empresa cliente decide desarrollar industrialmente uno o varios productos en los 
que resulte parcial o totalmente aplicable el estudio de este proyecto, deberá comunicarlo a la 
empresa consultora. 
 
 10.  La empresa consultora no se responsabiliza de los efectos laterales que se puedan 
producir en el momento en que se utilice la herramienta objeto del presente proyecto para la 
realización de otras aplicaciones. 
 
 11. La empresa consultora tendrá prioridad respecto a otras en la elaboración de los 
proyectos auxiliares que fuese necesario desarrollar para dicha aplicación industrial, siempre que 
no haga explícita renuncia a este hecho. En este caso, deberá  autorizar expresamente los proyectos 
presentados por otros. 
 
 12. El Ingeniero Director del presente proyecto, será el responsable de la dirección de la 
aplicación industrial siempre que la empresa consultora lo estime oportuno. En caso contrario, la 
persona designada deberá  contar con la autorización del mismo, quien delegará en él las 
responsabilidades que ostente. 
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