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Abstract. The increasing use of encryption protocols such as Transport Layer
Security (TLS) has led to enhanced privacy and security for internet users. How-
ever, this development has also enabled malware to conceal its communications
within encrypted channels. In this work, we explore the application of machine
learning techniques to detect malware in encrypted network traffic. To this end,
we compare two distinct approaches: one based on statistical flow features and the
other one based on TLS fingerprinting (JA4+). In order to accomplish this objec-
tive, we have developed and evaluated two state-of-the-art solutions—a MalDIST-
inspired model and JA4+ fingerprint-based classification. The experimental re-
sults, based on a curated dataset, show that both models exhibit high levels of
accuracy. Notably, JA4+ fingerprinting offers a favorable trade-off between ac-
curacy metrics and overall processing speed compared to the MalDIST-inspired
model, making it a promising candidate for deployment in real-world environ-
ments. Furthermore, we introduce JA4TS, another fingerprinting technique that
focuses on TCP SYN-ACK packets, enhancing the capability of the JA4+ frame-
work to predict malware by identifying TCP/IP stack characteristics, a subject of
particular relevance as SNI encryption becomes more prevalent. These findings
underscore the efficacy of lightweight, metadata-based models for malware de-
tection in encrypted traffic, particularly in the context of IoT and IloT networks,
where privacy and efficiency are paramount.

Keywords: TLS, JA4+, JAATS, Malware Detection, Machine Learning, Encrypted
Traffic, Flow Statistics

1 Introduction

The continuous evolution of network traffic presents an ongoing challenge for mal-
ware detection systems. Malicious actors increasingly exploit encrypted protocols like
TLS (Transport Layer Security) to evade detection, embedding control commands and
exfiltrating data in hidden ways. According to [6], over 71% of malware today uses
SSL/TLS to mask its operations. While encryption is essential for user privacy, it also
introduces challenges for security monitoring.

The adoption of encryption protocols such as HTTPS and VPNs has become
nearly ubiquitous, particularly following regulatory pushes for data protection and the
widespread use of cloud services. These encryption techniques, while necessary for
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confidentiality and integrity, reduce visibility for intrusion detection systems (IDS),
which traditionally rely on payload inspection. Consequently, many conventional secu-
rity solutions are rendered ineffective, creating a need for new paradigms focused on
metadata analysis and behavior-based profiling.

Machine learning has emerged as a promising solution in this context, offering the
capacity to recognize complex patterns in encrypted traffic based on side-channel infor-
mation. Rather than attempting decryption or deep packet inspection, machine learning
algorithms can use flow-level statistics, timing information, and TLS fingerprinting to
distinguish between benign and malicious behavior. In particular, fingerprinting tech-
niques like JA4+ [1]] allow the identification of applications and actors based on the
structure of their TLS handshakes, even when payloads remain encrypted.

In this work, we conduct a comprehensive study and implementation focusing
on two prominent detection models: a statistical model inspired by MalDIST and a
fingerprinting-based classifier using JA4+. By rigorously evaluating and comparing
these methods on diverse datasets, we aim to determine the strengths and trade-offs of
each approach, revealing the efficiency of JA4+. We also explore the emerging JA4TS
fingerprint, which analyzes TCP SYN-ACK packets to infer server TCP/IP stack char-
acteristics, presenting it as a crucial advancement for future-proofing malware detection
against evolving encryption practices like SNI encryption.

This work is particularly relevant in the context of emerging IoT and IIoT envi-
ronments, where encrypted communications are pervasive and lightweight, and real-
time detection systems are essential. By leveraging TLS metadata rather than payloads,
the proposed models align with privacy-preserving monitoring practices while ensuring
robustness and efficiency—key requirements in sustainable and secure cyber-physical
systems.

The remainder of this paper is organized as follows. Section [2] presents the state
of the art in network malware detection and fingerprinting techniques. Next, Section [3]
describes the methodology, including dataset preparation and model architecture. Then,
Section [] reports the experimental results and performance analysis. Later, Section [3]
discusses the implications of the findings, and finally, Section [f] concludes with future
directions for improvement and deployment.

2 State of the Art

The rise of encrypted traffic has shifted the landscape of network security. Traditional
techniques, such as Deep Packet Inspection (DPI), rely heavily on payload visibility.
However, encryption protocols like TLS prevent such inspection, thus reducing the effi-
cacy of conventional IDS. As a result, research has shifted towards leveraging metadata
and side-channel information to detect anomalous or malicious behavior without de-
crypting content.

This challenge is even more pronounced in Internet of Things (IoT) and Industrial
IoT (IIoT) environments, where devices often exhibit inconsistent TLS implementa-
tions. Paracha et al. [12] analyzed a wide range of consumer [oT devices and observed
frequent failures to validate certificates, poor cipher suite support, and variability in
handshake behavior. These shortcomings make IoT systems particularly attractive to
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malware authors and highlight the urgent need for detection methods that do not rely
on payload inspection. In this context, lightweight and privacy-preserving approaches
based on TLS fingerprinting and flow-level statistics—such as those explored in this
work—have become increasingly relevant.

TLS fingerprinting has emerged as a solution to this visibility problem. JA3, intro-
duced by John Althouse et al. in 2017 [2]], generates a fingerprint by hashing ordered
values from the Client Hello message (including TLS version, cipher suites, extensions,
elliptic curves, and point formats). JA3S, its server-side counterpart, hashes fields from
the Server Hello.

Despite its utility, JA3 had limitations. For instance, the same application could pro-
duce different JA3 hashes by changing the order of the cipher suites, making it hard to
uniquely identify software. To address this, JA4+ was proposed in 2023 by the same au-
thors [[1]. It expands on JA3 by creating human-readable and structured fingerprints for
various protocols: JA4 (client-side TLS), JA4S (server-side TLS), JA4X (certificate fin-
gerprinting), and JA4H (HTTP). This allows more granular classification and supports
composite analysis using multiple fingerprint types. An additional extension, JA4T and
its server-side counterpart, JA4TS, applies these fingerprints to the TCP handshake pa-
rameters [§]]. This capability is very important for malware detection, as distinct OS
configurations can often indicate the presence of specific malware families or their as-
sociated command-and-control infrastructure.

Fingerprinting methods have proven valuable for identifying both benign and ma-
licious applications based solely on their encrypted handshake behavior. For example,
Matousek et al. [[L1] demonstrated that combining JA4 with JA4S and SNI allows over
89% of flows to be uniquely identified. Their analysis focused primarily on the dis-
tinctiveness of TLS fingerprints across applications and families, providing a taxonomy
of fingerprint structures observed in malware communications. However, their work
did not evaluate the classification performance of these fingerprints within a machine
learning framework, nor did it compare fingerprint-based approaches with statistical
models. In contrast, our work builds on these insights by analyzing the uniqueness of
JA4+ fingerprints, and also integrating them into practical classification pipelines, as-
sessing their detection accuracy, and exploring hybrid models that fuse fingerprinting
with statistical flow features.

In parallel to fingerprinting, statistical analysis of network flows provides a power-
ful framework for identifying malware. Flow-level features such as packet sizes, inter-
arrival times, and TCP window sizes can be aggregated and modeled to uncover anoma-
lous behavior. Bader et al. [3] proposed MalDIST, a multimodal deep learning model
that combines payload bytes, protocol fields, and statistical matrices computed from the
first 32 packets of each flow. Their approach achieves high detection accuracy by lever-
aging both content-based and statistical features. However, the inclusion of payload-
level data, while informative, limits its applicability in encrypted environments, where
payloads are inaccessible or obfuscated. Furthermore, MalDIST relies on deep convo-
lutional architectures applied to matrix-encoded flows, which increases computational
overhead and may hinder deployment in latency-sensitive or resource-constrained set-
tings such as IoT networks.
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In contrast, our work focuses exclusively on metadata and statistical features avail-
able regardless of encryption, avoiding dependency on payload inspection. By simpli-
fying the model architecture and emphasizing inference efficiency, we aim to preserve
robustness while enabling practical deployment. This aligns with recent research trends
that prioritize interpretable, resilient, and lightweight detection strategies suitable for
encrypted traffic scenarios [14].

Recent works have also addressed the limitations of deep learning models in the
context of encrypted traffic. Luis-Bisbé et al. [9] applied explainable Al (XAI) tech-
niques to convolutional neural networks trained on statistical flow data, revealing that
these models often struggle to generalize in the presence of encryption, as critical pay-
load information is unavailable. Their findings underscore the difficulty of relying solely
on deep architectures like CNNs for encrypted traffic classification, and highlight the
value of interpretable features and model simplicity.

Nevertheless, all metadata-based approaches face challenges. For instance, SNI
fields used in JA4+ may become encrypted in future TLS versions (e.g., via Encrypted
Client Hello, ECH). However, the inclusion of JA4TS, which derives fingerprints from
TCP handshake packets, offers a resilient alternative for identifying network charac-
teristics independent of TLS layer encryption. Statistical features can also vary due
to benign software updates or operating system changes. As such, combining comple-
mentary feature types and modeling strategies—as proposed in this work—offers a path
toward more robust and resilient detection systems.

3 Methodology

We developed and evaluated two machine learning models for malware detection over
encrypted traffic: a statistical model inspired by MalDIST and a JA4+-based fingerprint
classifier. This section outlines the dataset, feature extraction, and training process done
to create these models.

3.1 Dataset and Preprocessing

The dataset comprises:

— Malware samples from malware-analysis.net [L0] and Tria.ge [13]], covering sev-
eral malware families, including Dridex} Emotef’] Hancitor’| and Valak]

— Benign samples from ISCX VPN-nonVPN [4]] and clean traffic captured via
Tria.ge.

Additionally, a second dataset from [[11] has been used to compare our solution with
that work.

Each PCAP file with the traffic captures was split into sessions and used to extract
CSVs with statistical features and JA4+ fingerprints. Session labels were assigned and
balanced with SMOTE [3] to mitigate class imbalance.

! https://malpedia.caad.fkie.fraunhofer.de/details/win.dridex

2 https://malpedia.caad.fkie.fraunhofer.de/details/win.emotet
3 https://malpedia.caad.fkie.fraunhofer.de/details/win.hancitor
* https://malpedia.caad.fkie.fraunhofer.de/details/js.valak
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3.2 Feature Extraction
Feature extraction was different for each approach:

— Statistics: 198 flow-level features were computed using scapy and custom Python
tools. They include statistics over packet sizes, timings, TCP window size, and flow
duration, organized across five subgroups, as proposed in the original MalDIST
paper [3l], namely: bidirectional packets, source to destination packets, destination
to source packets, TCP handshake packets, and data transfer packets.

— JA4+ Fingerprints: TLS handshake fields were parsed via t shark, then hashed
to generate JA4, JA4S, JA4TS, as well as the SNI. Extraction tools were built us-
ing Python and shell scripts, with efficient processing times, as detailed in subsec-
tion 431

3.3 Model Descriptions
Two different approaches were implemented:

— MalDIST-inspired model: A Random Forest classifier (50 estimators) with de-
fault hyperparameters trained on statistical features. It provided high accuracy and
explainability.

— JA4+ model: JA4+ features were vectorized with Scikit-learn FeatureHasher
(dimension 1024) and classified using a Random Forest with default hyperparame-
ters. This model favored simplicity with respect to the statistical model.

Although applying optimization techniques to each model could improve results,
the default hyperparameters were kept to ensure a fair comparison and reproducibility.

3.4 Training and Evaluation

Models used 80/20 stratified train-test splits. Metrics included accuracy, precision,
recall, and Fl-score. All implementations used Python 3.10 with scikit-learn,
tensorflow, and imbalanced-learn.

4 Results and Evaluation

This section presents the empirical evaluation of the three proposed models: the
MalDIST-inspired statistical model, the JA4+-based fingerprint model, and the hybrid
model. We compare them in terms of classification accuracy, processing efficiency, and
model robustness.

4.1 Classification Performance

The binary classification task distinguishes between malicious and benign traffic. Ta-
ble [I] summarizes the performance of the three models for binary classification. The
results show that both the MalDIST-inspired statistical model and the JA4+-based fin-
gerprint model achieve high accuracy in distinguishing between malicious and benign
traffic. The JA4+ model, in particular, maintains highly competitive performance across
all metrics. The inclusion of JA4TS in the JA4+ fingerprinting, while showing a slightly
lower accuracy in this specific binary classification context, offers distinct advantages
with encrypted SNI and detailed malware family identification as discussed in Sec-
tion
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Table 1. Binary classification performance (malware vs benign)

Model Accuracy Precision Recall Fl-score
MalDIST-inspired 98.28% 98.10% 98.67% 98.38%
JA4+ (JA4+JA4S) 95.12% 95.11% 95.32% 95.11%

JA4+ (JA4+JA4S+SNI) 98.25% 98.30% 98.18% 98.24%
JA4+ (JA4+JA4AS+IA4TS) 96.28% 96.28% 96.28% 96.28%

4.2 Multiclass Malware Classification

For multiclass classification, the models attempted to classify traffic flows into one of
the five labels: (0) Benign, (1) Dridex, (2) Emotet, (3) Hancitor, and (4) Valak. Figurem
shows the confusion matrix for the MalDIST model using Random Forest, which was
identified as the best performing classifier for this task. We also tested other algorithms,
such as XGBoost, Extra trees, KNN and logistic regression.

Confusion Matrix MalDIST with RF

0 1 2 3 4
Prediction

Fig. 1. Confusion matrix of the MalDIST-inspired model with Random Forest classifier. Labels
are related to (0) Benign, (1) Dridex, (2) Emotet, (3) Hancitor, and (4) Valak.

As seen in the matrix, the MalDIST-inspired model demonstrated strong accuracy
across all malware families, particularly for Emotet and Hancitor. The confusion ma-
trix also reveals that the most frequent misclassifications occurred between Dridex and
Valak, as evidenced by a notable overlap in their predictions. This aligns with the sta-
tistical similarity between their traffic patterns noted during feature analysis. Such con-
fusion may be due to similarities in TLS usage or behavior of the underlying malware
loaders, which emphasizes the importance of richer or complementary features when
attempting to distinguish between closely related families.
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Fig. 2. JA4+ fingerprint heatmaps for different malware families.

Figures [2) and 3] illustrate the distribution of JA4+ fingerprints across malware fam-
ilies and between malware and benign applications, respectively, using the second
dataset from [I1]]. These heatmaps provide visual confirmation of the clustering ef-
fect observed in fingerprint-based models and help to justify their high performance
despite reduced input dimensionality. Notably, combinations that include {JA4S, SNI},
and {JA4S, JA4TS} result in tighter and more distinguishable clusters across families,
suggesting that these components carry discriminative features relevant for classifica-
tion. Conversely, JA4-only representations show more overlap between classes, partic-
ularly when comparing malware against benign traffic. This emphasizes the advantage
of using composite fingerprints to enhance separation between classes.

Furthermore, empirical analysis shows that JA4TS is effective in differentiating be-
tween diverse malware families and benign applications, as distinct TCP stack behav-
iors often leave unique fingerprints. This can be visually confirmed in the heatmaps
(e.g., Figure [§), where JA4TS-enhanced clusters show clearer separation. However, it
is also notable that JA4TS may struggle with certain types of mobile malware. This
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Heatmap of JA4 between Malware Families and Benign Apps . Heatmap of JA4+JA4S between Malware Families and Benign Apps
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Fig. 3. Comparison of JA4+ fingerprints between malware and benign applications. Upper rows
are PC malware and lower rows are mobile phone malware. Left columns are PC applications
and right columns are mobile apps. Red lines divide each case.

limitation arises because mobile operating systems often employ more uniform or con-
strained TCP/IP stack implementations, leading to less distinct fingerprint variations
among different applications or malware running on them.

These results emphasize the importance of a multi-faceted approach. As the net-
work security landscape evolves towards greater privacy, with initiatives like Encrypted
Client Hello potentially encrypting SNI fields in future TLS versions, JA4TS provides
a vital, independent layer of network fingerprinting that does not rely on TLS-specific
metadata [7]. This makes JA4TS a robust component for maintaining visibility in in-
creasingly encrypted traffic flows.

4.3 Execution Time Analysis

Processing and inference times were measured for each model. Figures[dand[5]show the
comparison in time required for data preprocessing and model inference. Experiments
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were executed on a laptop computer equipped with an Intel i7-1065G7E|, 16 GB RAM,
Ubuntu 22.04, Python 3.10.

MalDIST: Feature Extraction Time per Number of Sessions JA4+ Fingerprint Generation Time

Time (seconds)

2

0 10 20 30 40 50 60 70 80 90 100 % 10 20 30 a0 50 60 70 80 %0 100

Number of Sessions Number of JA4+ Fingerprints

(a) MalDIST-inspired model flow separation (b) JA4+ fingerprints construction time per
and feature extraction time per number of number of fingerprints

flows

Fig. 4. Average data processing time per flow for each model.

Inference Time per Model

60 4

50

N
S

Time (ms)
w
S

204

MalDIST

Model

Fig. 5. Average prediction time per flow for each model.

As depicted in Figure[d] the JA4+ model exhibited significantly faster preprocessing
and feature extraction times compared to the MalDIST-inspired model. This is primarily
because JA4+ focuses on extracting lightweight metadata from the first packets of each

3 https://www.intel.com/content/www/us/en/products/sku/196597/intel-core-i71065g7-
processor-8m-cache-up-to-3-90-ghz/specifications.html
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connection, whereas the MalDIST-inspired approach involves more extensive statistical
calculations over the entire flow. Despite MalDIST-inspired model potentially having a
lower inference time per flow, the substantial reduction in preprocessing time for JA4+
results in a much lower global time (total time from raw traffic to prediction), making
it more efficient for real-time or high-throughput environments. It should also be noted
that the case for 30 sessions in JA4+ is larger than expected. This is because in this case
there are more JA4X fingerprints to be generated than in the other cases, which were
calculated together with other JA4+ signatures (although we finally considered them
unnecessary, as certificates are usually encrypted in latest TLS versions).

Figure [5|further illustrates that both models maintained reasonable inference times,
making them suitable for near real-time and offline analysis scenarios. In this case,
the MalDIST-inspired model is faster because it has a lower dimensionality than the
1024 dimensions generated by the FeatureHasher in the JA4+ fingerprint model.
However, the overall efficiency gain from the faster preprocessing of JA4+ reinforces
its suitability for lightweight deployment, such as inline detection systems.

5 Discussion

Table 2] summarizes key characteristics and performance.

Table 2. Summary of the models evaluated in this work

Model Features Algorithm Accuracy Extraction Time Inference Time
MalDIST-inspired 198 statistics 98.28% 1,65 s/flow 32.6 ms/flow
JA4+ fingerprint  JA4, JA4S, SNI Random Forest 98.25%

JA4+ fingerprint  JA4, JA4S, JAATS 96089 ~ O12s/flow  63.6 ms/flow

The evaluation results reveal several important trade-offs. The JA4+-based model
achieved classification accuracy comparable to the statistical model, but with much
faster feature extraction. This makes it particularly well-suited for deployment in
resource-constrained or time-sensitive environments, such as edge devices or [oT net-
works. The MalDIST-inspired statistical model, while slightly more accurate, incurs
higher processing costs due to the complexity of extracting 198 features per flow. It re-
mains useful for offline analysis and scenarios where model interpretability is essential,
as it provides insights through feature importance rankings.

Notably, the confusion matrix highlights the difficulty of distinguishing between
specific families like Valak and Dridex, suggesting the need for more discriminative
features or additional context. The JA4+ heatmaps confirm that fingerprint combina-
tions involving SNI and JA4S enhance class separation. However, their reliance on TLS
metadata like SNI introduces a potential point of fragility as future TLS versions may
encrypt these fields with ECH. This is precisely where JA4TS offers a notable advan-
tage as the most robust solution for future encrypted traffic challenges. By deriving
fingerprints from TCP SYN-ACK packets, JA4TS provides a resilient mechanism to
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infer TCP/IP stack characteristics, which can be highly indicative of malware behavior,
regardless of TLS layer encryption. This makes the full JA4 suite (JA4+JA4S+JA4TS)
a more future-proof and comprehensive approach for encrypted traffic analysis.

Overall, the results confirm that metadata-based fingerprinting (JA4+) offers an ef-
fective and lightweight detection method. While hybrid models can incorporate diverse
features, simplicity and robustness favor JA4+ for real-world, encrypted traffic analy-
sis. This reinforces the role of TLS metadata as a viable foundation for sustainable and
secure network malware detection.

Another important point concerns evasion and obfuscation. Techniques such as fin-
gerprint spoofing, traffic morphing, or deliberate TLS handshake mutations may allow
sophisticated malware to disguise itself and bypass classifiers. While these methods
were not addressed in our experiments, they represent real-world challenges and under-
line the need for adaptive models and continued evaluation under adversarial scenarios.

6 Conclusion

This work presented the design and evaluation of machine learning models to compare
two malware traffic detection approaches: a MalDIST-inspired statistical model and a
JA4+-based fingerprint classifier. Experiments on a curated dataset of malware families
and benign traffic revealed that models can achieve up to 98% accuracy in binary clas-
sification, with the fingerprint-based model offering the best trade-off between speed
and accuracy. By leveraging readily extractable TLS fingerprints like JA4 and metadata
such as SNI or the TCP handshake options, it is possible to build efficient classifiers
suitable for real-world network defense scenarios.

Notably, JA4+ fingerprinting alone emerges as a practical and effective approach.
It achieves a favorable trade-off between detection accuracy and computational effi-
ciency, while preserving privacy by avoiding payload inspection. This makes it par-
ticularly suitable for real-world deployment in environments where encrypted traffic is
prevalent and low-latency or resource-constrained processing is required, such as in IoT
and IIoT networks. The ability to detect malware using only TLS metadata underscores
the potential of lightweight, metadata-driven models for sustainable and secure network
protection.

Future work may explore the resilience of these approaches under adversarial con-
ditions, including evasion techniques such as TLS handshake mutation, or fingerprint
spoofing. From an architectural standpoint, future research could explore novel meth-
ods for processing and encoding JA4+ fingerprints, leveraging their structure to further
enhance their discriminative power for malware prediction, moving beyond traditional
hashing or feature vectorization to more advanced representations. Moreover, other fin-
gerprints can be necessary to better classify mobile malware. Assessing deployment
on real-time systems—such as inline traffic analyzers or SIEM platforms—would help
validate applicability in operational environments. In particular, extending the dataset to
include more recent malware families (e.g., ransomware or mobile threats) and benign
applications would improve generalizability.

Code availability.  All scripts and models are available at: |https://github.
com/fingopolo/MalJA4DIST
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