
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

Deep-FDA: Using Functional Data Analysis and
Neural Networks to Characterize Network Services

Time Series
Daniel Perdices , Jorge E. López de Vergara , Javier Ramos

Abstract—In network management, it is important to model
baselines, trends, and regular behaviors to adequately deliver
network services. However, their characterization is complex,
so network operation and system alarming become a challenge.
Several problems exist: Gaussian assumptions cannot be made,
time series have different trends, and it is difficult to reduce
their dimensionality. To overcome this situation, we propose
Deep-FDA, a novel approach for network service modeling that
combines functional data analysis (FDA) and neural networks.
Specifically, we explore the use of functional clustering and
functional depth measurements to characterize network services
with time series generated from enriched flow records, showing
how this method can detect different separated trends. Moreover,
we augment this statistical approach with the use of autoencoder
neural networks, improving the classification results. To evaluate
and check the applicability of our proposal, we performed
experiments with synthetic and real-world data, where we show
graphically and numerically the performance of our method
compared to other state-of-the-art alternatives. We also exemplify
its application in different network management use cases. The
results show that FDA and neural networks are complementary,
as they can help each other to improve the drawbacks that both
analysis methods have when are applied separately.

Index Terms—functional data analysis; network monitoring
and management; autoencoders; service characterization; time
series; baseline model.

I. INTRODUCTION

IN recent times, network service monitoring has become a
task of paramount importance for both network managers

and researchers. Service monitoring allows characterizing the
traffic to obtain baselines that are useful for the detection of
performance faults and security problems. Given the growing
complexity of large corporations’ networks that comprise
several thousands of subnets, manual network inspection and
characterization using all the generated monitoring data has
become an unfeasible task. Thus, it is necessary to find an

Manuscript received May 1st, 2020; revised September 21st, 2020; revised
December 11th, 2020; accepted January 17th, 2021.

All authors are with Universidad Autónoma de Madrid, Spain. Daniel
Perdices and Jorge López de Vergara are also with Naudit HPCN, Spain.

This work has been partially supported by the European Commission under
the project H2020 METRO-HAUL (Project ID: 761727), by the Spanish State
Research Agency under the project AgileMon (AEI PID2019-104451RB-C21)
and by the Spanish Ministry of Science, Innovation and Universities under the
program for the training of university lecturers (Grant number: FPU19/05678).

Cite as: D. Perdices, J. E. López de Vergara, J. Ramos, “Deep-FDA: Using
Functional Data Analysis and Neural Networks to Characterize Network Ser-
vices Time Series,” IEEE Transactions on Network and Service Management,
2021. DOI:10.1109/TNSM.2021.3053835

automatic way to identify when any of these network segments
is not behaving as expected. To this end, the services that are
provided on top of such networks have to be characterized.

To make the most of monitoring data, we need to build
baseline models [1]–[3], which provide a forecast of the time
series of the next period (e.g. hour, day, week, month), that
allow for behavioral differentiation and accurate prediction,
which is an actual challenge in network management [4]. Ad-
ditionally, the huge amount and diversity of data obtained from
service monitoring calls for the application of more capable
statistical techniques and machine learning approaches in order
to build reliable models for service characterization [5]. Such
models may be used to increase the operational intelligence
and ease the life of network managers and security teams when
troubleshooting problems, thus reducing their response time to
incidents.

Specifically, two of the most relevant applications of base-
line models are capacity planning and alarming. The motiva-
tion of the first case is straightforward. In order to proactively
provision resources for services, we need to know in advance
the expected values of service related metrics (i.e. load) to
ensure that the service is delivered without problems. This
approach is an improvement over traditional reactive systems
that are typically based on short-time predictions, which can
lead to temporal stress periods where systems are saturated due
to underprovisioning, until service is scaled up. On the other
hand, alarming is an important task in network management,
where operators need be notified about abnormal behaviors
that may be caused by a variety of reasons, such as network
attacks or device failure. Having a baseline estimate that
characterizes the network services allows operators to detect
anomalies automatically.

Traditionally, baseline approaches rely on several assump-
tions such as process stationarity or data Gaussianity, which
are not always applicable [6]–[8] given the fast paced changing
nature of current services and network deployments. Even
checking some of the hypotheses is an arduous task since
different trends, such as workdays vs holidays, must be sepa-
rated beforehand. These multiple trends usually lead operators
to manually establish the baselines or thresholds, which is a
solution that clearly does not scale for large networks with
thousands of services. In this light, several methods have
been proposed to characterize how a given service works.
The straightforward solution is the application of clustering
techniques, such as k-means, to group the values of a variable
or a set of variables in order to identify the different behaviors.

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3421-7633
https://orcid.org/0000-0002-4057-4688
https://orcid.org/0000-0003-2972-0370
https://dx.doi.org/10.1109/TNSM.2021.3053835
http://www.ieee.org/publications_standards/publications/rights/index.html

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

Once we have grouped similar behaviors together, we can rely
on classical methodologies [9] to provide more accurate and
significant models.

However, traditional multivariate clustering algorithms are
not suitable when working with traffic time series, given
that the model treats some inherent characteristics, such as
the high correlation between consecutive points, as redundant
information. Moreover, the periodicity of the repeated patterns
and events is a key characteristic when working with time
series and the multivariate approaches do not take into account
such structure. On the other hand, these time series can
be considered as functional data [10], [11] solving these
redundancy issues either by adjusting the basis or using such
conditions as part of the structural hypothesis.

Besides direct approaches, such as functional k-means [12],
another approach is to reduce the dimensionality of the
problem and project the time series to a finite dimension
space in order to capture relevant characteristics. Then, a
clustering over such relevant characteristics can be performed.
Traditionally, this process is done by means of Principal
Components Analysis (PCA) or, in this case, by means of
Functional PCA (FPCA) [13], where the latter approach has
the advantage of working properly with high dimensional data,
i.e. we can have fewer curves than the length of the time grid
of the series.

In recent years, with the development of advanced artificial
neural network techniques and the boom of deep learning [14],
mechanisms similar to FPCA have been used to obtain better
embeddings. For instance, autoencoder (AE) neural networks
are based on a similar idea, where an input space of dimension
d is zipped into an embedding with a lower space dimension
K and then unzipped again to obtain an output space of
dimension d. The idea behind this type of neural network is
that the embedding captures the relevant information, allowing
us to differentiate behaviors in a much more controlled space.
As this type of networks is typically fed with multivariate
data and do not perform correctly when working directly with
time series, we propose the use of functional basis as input to
perform a functional clustering approximation so both methods
can be compared.

In this work, we combine FDA-based techniques and neural
networks to characterize network services based on time series
classification, exploring the feasibility of using both methods
together to make the most of each one and overcome their limi-
tations. For instance, neural networks present a huge amount of
hyperparameters that must be tuned in order to obtain accurate
results. Typically, this problem is addressed by parameter
space exploration techniques that try to minimize the loss
function or other similar metric, varying the configuration
of the hyperparameters of the neural net. This is a highly
demanding task, both in terms of time and computing power
and, in some scenarios, it produces similar results to the ones
obtained with FPCA, as we will show in following sections.

Our approach for network service modeling, called Deep-
FDA, is based on the use of functional clustering and neural
networks, and we apply it on concurrent flow time series
obtained from aggregated enriched network flow records.
Using our characterization method for every segment in a large

network allows for an automatic baselining process. With these
baselines, we can identify deviations from expected behavior,
especially when the subnets expose multimodal behavior,
and trigger alarms that are inspected on-demand by network
managers instead of manually inspecting thousands of network
segments, thus easing network managers’ life. Our proposal
solves the problems stated before to obtain baseline models
that characterize the network behavior, given that: (i) it can be
applied to non-Gaussian distributions; (ii) it works properly
with time series with multiple trends; (iii) it defines a way in
which time series can be inputted to an AE neural network,
allowing its application to this type of data, reducing their
dimensionality.

To the best of our knowledge, this work has several novel
contributions to the state of the art, which are: (i) the use of
advanced preprocessing techniques, such as companding for
network time series; (ii) the mixture functional model used
to describe network time series, which is able to adapt to
more complex situations than other models; (iii) the adaption
of clustering benchmarking metrics to the functional setting,
using functional distances instead of vector distances; and
last but not least (iv) the FDA-based approach to neural
network inputs, where we incorporate functional data structure
in neural networks showing significant results, such as the
FPCA relation with autoencoders.

The rest of the paper is organized as follows: In Section II
we review similar works and pinpoint the strengths of our
proposal compared with the state of the art. Next, Section III
presents the methodology used for both preprocessing the
data and constructing and applying our proposed model. In
Section IV, we evaluate our model and present the results for
synthetic and real-world data and in Section V, we present the
relevant lessons learned and take away messages derived from
this work. To sum up, Section VI concludes this paper.

II. RELATED WORK

Few works have addressed the use of FDA applied to
network related data. In [15], authors propose an architecture
for network data processing using functional data and evaluate
some application cases such as clustering, outlier detection and
capacity planning. Furthermore, authors in [16] apply func-
tional data techniques over a set of Key Performance Indicators
(KPIs) to predict potential performance problems in radio
cells. Authors in [17] explored co-clustering methods for func-
tional data by an adaption of the expectation-maximization
algorithm to functional data, showing the application of co-
clustering to mobile networks. Although these works point out
some interesting applications of the functional data analysis,
they lack the service-oriented approach, the combination with
machine learning and the functional multi-modal approach.

On the other hand, in recent years several works have used
machine learning and neural network techniques applied to
network data. For instance, authors in [18], present a survey
on the application of machine learning techniques to different
network areas, such as traffic prediction and classification or
network security and routing.

Other approaches, like [19], present a traffic monitoring
analytics system. Such system uses clustering techniques and

PERDICES et al.: DEEP-FDA: USING FUNCTIONAL DATA ANALYSIS AND NEURAL NETWORKS TO CHARACTERIZE NETWORK SERVICES TIME SERIES 3

autoencoders over flow features extracted from incoming
traffic to detect attacks and anomalies with a 76% recall.
Similarly, in [20], authors apply variational autoencoders over
NetFlow data to detect and cluster network anomalies. Other
works like [21] use autoencoders, isolation forest and PCA
techniques to detect anomalous packets in TCP data transfers
by means of clustering.

The above works provide valuable insight into the appli-
cation of machine learning techniques over network data,
but they are focused on classifying either individual packets
or flow records rather than classifying network aggregates
using time series information. These approaches are suitable
for anomalies or attacks detection, where some previous
knowledge is available, but not for service or behavioral
characterization. In this work, we present clustering techniques
applied to time series of network aggregates, not suitable for
fine-grained network monitoring, but more useful to network
provisioning and performance assessment.

Recently, Hidden Markov Models (HMM) and Bayesian
networks have also received much attention in network mon-
itoring. Authors in [22] present a HMM to predict traffic
volume in terms of flow counts using an auto regressive
approach. In [23], a system is presented to segment time series
of network delay using an Infinite HMM. Although the latest
approach is helpful to detect different states of the network,
they lose the time component, so it is not possible to know
when the network will change from one state to other. Our aim
here is different: we classify the whole daily time series and
not time sub-intervals, since we are interested in characterizing
frequent trends of the network operation without losing the
time component.

Focusing on service characterization, authors in [24] model
key service metrics using infrastructure measurements in a
cloud environment by means of mixture density neural net-
work. This type of network provides as output model the
parameters for a mixture of Gaussian distributions. Using such
a model, they can predict Service-Level Agreement (SLA)
conformance. Although this work is somehow similar to our
proposal, it focuses mainly on the prediction of conformance
using mean values estimated from a distribution. In our case,
we provide a model based on a mixture of stochastic processes
(not necessary Gaussian processes), whereas they present a
Gaussian mixture model for each time, leading to having
precise models in each time moment, but not being able to see
time-dependent behaviors such as correlation between events.

Finally, while all previous works addressed the classification
or characterization problem by using either functional or ma-
chine learning approaches separately, regarding the joint use
of functional data and neural networks there is little literature.
For instance, in [25], a method for using functional data as
input for neural networks is presented. In such work, several
methods for functional processing such as FPCA or projection
on smooth bases are presented. A similar approach is presented
in [26], focusing on multi-layer perceptrons. While these
works present some interesting foundational ideas that are used
in this paper, they rely on simple neural networks that are far
from modern deep neural network models. Moreover, there are
some contributions of the neural networks to the functional

data analysis; more explicitly, radial basis function neural
networks [27] exposed a kernel method that is inherently based
on a functional data representation of the data. Nevertheless,
its application to networking has been limited [28] and it is
restricted to this type of basis representation, where we pro-
pose a more general idea of using any functional orthonormal
basis representation.

III. METHODOLOGY

The methodology of Deep-FDA aims at characterizing net-
work service behavior through their time series, by classifying
the different trends that arise on daily basis. It is presented in
three parts: (i) data preprocessing, where we ensure the data is
suitable for the different methods; (ii) model and methods defi-
nition, where we state our model, its assumptions and methods
to estimate the parameters to define the functional centroids
of every time series classes; and (iii) application of the model,
where obtained properties and results are commented.

A. Preprocessing the data
Scale differences and inconsistencies can heavily affect both

machine learning and functional data analysis techniques [29].
Thus, the first step of any data analysis pipeline should be
rectifying the scale. For that purpose, we perform a normal-
ization using the maximum of the time series so that all values
go from 0 to 1.

However, outliers can affect this normalization process,
leading to an ineffective use of the aforementioned range.
Moreover, network traffic burstiness causes a large span in
traffic values. To cope with these issues, we employ com-
panding (compressing and expanding) methods that transform
the signals to take advantage of the full range.

Table I contains the precise formulation of the employed
companding methods, as defined in [30]. In addition, Figure 1
shows a comparison of the original signal, the scaled signal
and the signal after the application of companding processes.
Both mentioned companding methods map the interval [0,1]
to [0,1] with a logarithmic scale and, in the case of the
A-law, with a linear region where the transform is just a
scaling. This helps us coping with the effects of outliers and
deviations while keeping the details of low-amplitude regions,
thus allowing us to properly classify and differentiate the time
series.

In the case of Figure 1, we see that a peak in the number of
connections at the end of the day (due to periodical backups)
causes an underused range when processing data. Although
this issue seems shallow, we require that the curves are well
spaced, i.e. the L2 distance,

dL2 (f ,g)2 =
∫ T

0
(f (t) − g(t))2dt, (1)

or the L1 distance,

dL1 (f ,g) =
∫ T

0
| f (t) − g(t)|dt, (2)

between curves of different clusters is high enough, so that our
method can correctly detect the different clusters. If the time
series are not distant, some clusters that are detectable without
the peak will no longer be found due to the normalization,
as they will be very close in the normalized [0,1] interval.

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

TABLE I
COMPANDING METHODS FOR SIGNAL x ∈ [0, 1] IN TERMS OF

PARAMETERS A, L = 1 + log(A) AND µ.

Name Transform (F(x)) Inverse Transform (F−1(y))

A Law 1
L

{
Ax if x ≤ A−1

1 + log(Ax) otherwise
1
A

{
y(1 + log(A)) if y ≤ L−1

e(yL−1)x otherwise

µ Law log(1+µx)
log(1+µ)

1
µ ((1 + µ)

y − 1)

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (h)

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f c
on

ne
ct

io
ns

Original curve
A-law (A=87.6)

-law (=255)
-law (=1023)

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
sc

al
e

Fig. 1. Example of time series preprocessing for the number of flows. Left
axis shows the original scale, whereas right axis shows the scaled range.

B. Defining the model and the method

For the purpose of modeling different time series classes, we
define Xt =

∑d
i=1 θiX

(i)
t as the model for our data, where θi are

some random coefficients that satisfy (i) support(θi) = {0,1},
i.e. θi only takes values in the set {0,1}, and (ii)

∑d
i=1 θ = 1,

i.e. only one of the θi can be activated at the same time. The
X (i)t are stochastic processes defined as

X (i)t = µ
(i)
t + ε

(i)
t , (3)

where µ
(i)
t are some deterministic functions and ε

(i)
t are

random error terms with E[ε(i)t] = 0 and Var[ε(i)t] = (σ
(i)
t)

2,
i.e. ε(i)t is heteroscedastic, in contrast to linear models, which
require homoscedasticity [31].

Bear in mind that the model aims at defining a concept akin
to a mixture of stochastic processes, where we have random
coefficients that select which curve the sample comes from.
A clear example of this type of behavior can be found, not
only in workdays and in non-working days, but also in the
first day of the month and special days (e.g. when offers
are released). Furthermore, although the model considers a
more general concept, our methods will not be able to detect
different mixtures if µ

(i)
t are very close, where closeness is

defined in terms of the distance that we will be minimizing
in our method (normally L2 or L1 distances, as defined in (1)
and (2), respectively). A limitation of these methods is that
they heavily rely on the centroids, so if, for instance, we have
two components i and j such that d(µ(i)t , µ

(j)
t) ≈ 0, then only

one cluster is detected, no matter how different ε(i)t and ε
(j)
t

are.
In order to estimate each term, we propose several tech-

niques that aim at the same unsupervised learning problem.
The first approach proposes an algorithm to solve the problem

directly, whereas the rest use projection to an embedding to
solve the problem in a lower dimension space.

1) Direct approach: functional k-means: Since most of
the multivariate clustering algorithms work with distances,
functional versions can be derived. Here, we describe the
functional k-means algorithm [32], an adaption of the original
k-means algorithm [33] to the functional setting:
• Initialization: The algorithm chooses k curves as initial

centroids of the clusters. This can be done by a random
selection or a more intelligent random process known as
k-means++ [34], whose objective is to select k initial
curves that are not very close to each other.

• Iterative step: With the centroids of previous iteration (or
the initial centroids), we divide our sample into clusters
by assigning a cluster to each curve depending on the
closest centroid. The closest centroid is determined either
by minimizing the L2 distance (1) or the L1 distance (2).
Once each cluster is computed, the centroid of the cluster
can be updated with the deepest function, i.e. by using a
depth measurement [35]. These depth measurements gen-
eralize the concept of median and quantiles for functional
data. Authors in [36], [37] provide precise definitions
of the properties of a depth measurement, which is a
function D(f ,P) that indicates how ”deep” the function
f is in terms of the distribution of the data, P. In
our case, we consider the following half-region depth
measure [38]–[40]. Given that P is estimated by the
samples { fi}Ni=1, we define our depth measure

D(f ,P) = min(SLP(f), ILP(f)), (4)

where

SLP(f) = mean
i=1,...,n

1
T

∫ T

0
1{t∈[0,T]; f (t)≤ fi (t)}(t)dt (5)

and

ILP(f) = mean
i=1,...,n

1
T

∫ T

0
1{t∈[0,T]; f (t)≥ fi (t)}(t)dt, (6)

being 1A(t) the indicator function of set A. SL and
IL measure the proportion of time that f is below the
samples or above the samples.

• Stop criterion: The algorithm has finished when it reaches
an iteration limit or the clusters do not change from one
iteration to the next one.

In this case, the centroids are always functions of the
sample, so the zero-mean property of the noise is necessary
and, in some cases, the centroid is not the visually expected
centroid, but just the most similar one in the sample. We will
cover this issue and its solution in the evaluation section.

2) Projection-based methods: principal components and
autoencoders: Another possible approach is to reduce the
dimensionality and to project the data to a finite dimension
space, which converts the problem of clustering in a functional
space to the same problem in RK . Several alternatives can be
found in the state of the art:
• Principal Component Analysis (PCA) and Functional

Principal Component Analysis (FPCA): in this case, we
try to find directions that contain the maximum amount
of information of the original variable, i.e.

PERDICES et al.: DEEP-FDA: USING FUNCTIONAL DATA ANALYSIS AND NEURAL NETWORKS TO CHARACTERIZE NETWORK SERVICES TIME SERIES 5

x1

x2

xd

Input
layer

y1

y2

x̂1

x̂2

x̂d

Output
layer

...
...

...
...

...

...

.

.

.

.

Fig. 2. Architecture of an autoencoder. Green nodes represent the original
data X and its compressed version X̂, red nodes the embedding output Y ∈ R2

and blue nodes intermediate layers.

α(i) = arg max
β, 〈β,α(j) 〉=δi , j

[Var (〈X, β〉)] , (7)

where δi, j is the Kronecker’s delta, X is the data,
{α(i)}K

i=1 are the principal directions (sorted by the value
of Var

(
〈X, α(i)〉

)
) and 〈·, ·〉 is the scalar product. For

PCA [41], we have the functions evaluated at some time
grid {tk}dk=1, so X is a random vector whose components
are {X(tk)}dk=1, α(i) ∈ Rd and

〈X, α(i)〉 = 〈X, α(i)〉Rd =
d∑

k=1
X(tk) · α

(i)
k
. (8)

For FPCA, we have that X is the stochastic process X ,
α(i) ∈ L2([0,T]) and

〈X, α(i)〉 = 〈X, α(i)〉L2([0,T]) =

∫ T

0
X(t) · α(i)(t)dt. (9)

In both cases, computation of these {α(i)}K
i=1 can be

achieved by extracting the eigenvalues of either the co-
variance matrix Σ = [Cov(X(ti),X(tj)]di, j=1 for PCA or the
covariance operator k(t, s) = Cov(X(t),X(s)) for FPCA.
Note that an advantage of FPCA over PCA is that
its principal functional component maps directly to the
functional structure, whereas PCA may suffer from the
curse of dimensionality due to data sparsity [42].
Once principal components are calculated, we need to
fix the embedding dimension to some small K (typically,
K = 2,3). The process to project any sample X (n) to our
embedding space is as simple as defining it as a vector

Y (n) =
[
〈X (n), αi〉

]K
i=1

. (10)

Then, Y (n) is usually referred as the coordinates in the
principal component basis and the aforementioned oper-
ator is just a linear transformation that projects L2([0,T])
to the embedding space RK maximizing the amount of
information, measured by the explained variance. This
last property is equivalent to the minimization problem

min
{αi }

K
i=1;{yi }Ki=1

E
©«
X −

K∑
i=1

yiαi

2ª®¬ , (11)

where ‖·‖ for PCA is the norm-2 of Rd and for FPCA is
the L2-norm.

• Autoencoders (AE): we train a neural network where
input and output are the same with a bottleneck in a
middle layer, i.e. a hidden layer with K neurons, where
K stands for the dimension of the desired embedding.
Figure 2 illustrates this concept. This allows us to encode
the original space into a K dimensional one when being
trained with loss function the Mean Squared Error (MSE)

MSE =
1
N

d∑
i=1
(xi − x̂i)2. (12)

Bear in mind that neural networks are usually fed with
multivariate data, so there are two possible methods to do
it with functional data: (1) ignore the functional nature
of the data and, like PCA, use a time grid to build X =
[X(tk)]dk=1 or (2) use a basis such as a Fourier Basis, finite
elements, B-splines or even the FPCA basis with K big
enough, make it an orthonormal basis (if it was not) and
use the coordinates in this basis as input of the neural
network.
In first case, the minimization of the MSE leads to the
minimization of the norm-2 of X as an element of Rd ,
i.e.

X̂ = arg min
C∈Rd

E

(
d∑
i=1
(xi − ci)2

)
= arg min

C∈Rd
E ‖X − C‖2

Rd
,

(13)
whereas in the second case the minimization of the MSE
and the basis representation leads to a much stronger
property, thanks to a generalization of the Pythagorean
Theorem called Parseval’s identity:

X̂ = arg min
f ∈L2([0,T])

E

(∫ T

0
(X(t) − f (t))2dt

)
= arg min

f ∈L2([0,T])
E ‖X − f ‖2

L2 . (14)

In equation (14), we are assuming two hypotheses: 1) the
closure of the span of our basis completes the space (i.e.
any element of the space can be represented as a limit of
elements built with our basis) and 2) the basis is finite. In
ideal conditions, this would mean a contradiction, but in
an experimental setup where we have a sampling limit, it
is impossible to have an infinite functional basis as well
as an infinite coordinate space. Therefore, the norm of our
functions can be computed exactly by this sum, given that
we are assuming the signals are completely represented
using the basis.
As an example, when the embedding layer is of length
K , there are no more hidden layers and the activation
functions are linear. The first case is equivalent to PCA,
whereas the second case is equivalent to FPCA. This can
be shown easily since the aforementioned situation leads
to an output of the form X̂ = y1V1 + · · · + ykVk , where
Y = (y1, . . . , yK) is X projected in the embedding space
and V1, . . . ,VK are some vector of Rd or some functions
of L2([0,T]), resulting in the minimization problem given
by equations (13) and (14)

min
{Vi }

K
i=1 , {βi }

K
i=1

E
©«
X −

K∑
i=1

βiVi

2ª®¬ , (15)

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

which is equivalent to PCA and FPCA as defined in (11).
This result indicates that not only PCA and FPCA are
special cases of an AE, but also that PCA and FPCA
can be used to estimate a priori the complexity of the
AE. This is a helpful result, given the difficulties one can
encounter when training neural networks and selecting
hyperparameters.

As an advantage of this type of methods, once clusters are
computed in the embedding, centroids can also be calculated in
the embedding. These centroids may not arise from a statistical
argument as before, but they become a reasonable alternative
to use when they are mapped to their corresponding function
in the original space.

3) Choosing the most suitable K: In both cases, there is
a question that remains unanswered: which K is the most
suitable one? To answer it, we use the silhouette coefficient,
which we extend to the functional domain as

SCK = mean1≤ j≤nsK (j), (16)
where

sK (j) =
bK (j) − aK (j)

max{aK (j), bK (j)}
, (17)

aK (j) =
1

|Cj | − 1

∑
i∈C j ;i,j

d(i, j) (18)

and
bK (j) = min

i,j

1
|Ci |

∑
l∈Ci

d(l, j), (19)

where Ci stands for the cluster which the curve ith belongs
to, and |Ci | the number of curves in the cluster. Note that
this applies for the methods of both families, with the only
observation that distances can be measured either in the
embedding or in the original space for the second group of
methods, which may lead to slightly different results. To deal
with this, we will ignore the distances in the embedding, since
they might not be representative in the original space in the
case of AE. Once the silhouette coefficient is computed for
each K , we select the K so that SCK is maximum.

C. Using the model

Before specifying how the model can be used, some remarks
about numerical computations must be made. First, it is
worth noting that, due to numerical limitations, curves are
represented by the evaluation in a grid of points. Therefore, the
use of the model or the method is limited to a discretization
of the functions, which conveniently simplifies the problem.
For the application of the algorithm, we need to estimate the
distance between two curves. This can be done by either fitting
a basis so our data is just represented by the basis coefficients
and basis integrals can be exactly computed or approximated
by numerical integration methods such as finite elements.

Once the model is trained, centroids and classified curves
are obtained. Centroids provide an estimation of µ(i)t , which
can act as new baseline or even more complex baselines
can be obtained from the clusters themselves together with
aforementioned methodologies [9]. Usually, such methodolo-
gies are based on moving median or moving average [43]
of previous data. Deep-FDA provides a systematic way of
grouping up similar time series, so baselines can be calculated

with previous data that share a trend, instead of getting biased
conclusions due to the presence of multiple modes or trends.
The final objective of these baselines is to provide critical
monitoring services such as alarming or load estimation. On
the other hand, cluster proportions can also give an insight
of the distribution of the priors that are represented by the
{θi} random variables of our model. In addition, the classified
curves and their distribution could be exploited to obtain
information about ε(i)t and thus, thresholds for the baselines.

Our proposed models can be used for network management
tasks in both proactive and reactive ways depending on the
application domain. One of the most interesting use cases
of our tool is the capacity planning and resource usage
optimization. When it comes to load estimation, it is easy
to allocate resources using the centroids, since they provide
full day estimation of the load. Using each centroid we can
define classes (for instance high, medium and low activity)
and we can scale up or down resources proactively for specific
services. This allows for elastic resource assignment, which is
of paramount importance in multi-tenant environments where
resources must be accommodated dynamically in order to
maximize their usage while keeping the quality levels high.
For example, analyzing the number of connections metric we
can scale up and configure service resources (servers, load
balancers, etc.) in advance to accommodate more clients in the
peak hours, instead of reacting when the system is saturated
and clients are already suffering the diminished performance
of the service.

Focusing on reactive management, we face the classic
problem of alarming services to detect anomalies or abnormal
behaviors, such as service outages or traffic increments, which
may be related to attacks or misconfigurations. First, we
need to define what an anomaly is. Such definition is not
universal and may depend on the network conditions and
service characteristics. In our use case, we try to generalize
defining an anomaly as something unexpected. More formally,
an anomaly [44], [45] at time ta is every Xta that is far away
from the normal or expected value:

|Xta − g({Xt : t < ta})| > T({Xt : t ≤ ta}), (20)

where g({Xt : t < ta}) is the prediction based only on the
past, i.e. g({Xt : t < ta}) ≈ E

[
Xta |{Xt : t < ta}

]
, and T

is some threshold that may also depend or not on previous
behavior. Normally, T is chosen so that the number of risen
alarms is not overwhelming for the network managers, but
sensible enough to detect and react to undesired conditions.
The regressor g is a function that predicts Xt using the history
of the time series. In our proposal, we can directly use the
closest µ(c)t . This is, the function g returns the closest centroid
with negligible computation cost, since centroids have been
previously calculated.

IV. EVALUATION

For the performance evaluation of Deep-FDA, we provide
two scenarios: one model-driven simulation where we generate
random samples reproducing the model and a second one
where we employ three months’ worth of real network data.

PERDICES et al.: DEEP-FDA: USING FUNCTIONAL DATA ANALYSIS AND NEURAL NETWORKS TO CHARACTERIZE NETWORK SERVICES TIME SERIES 7

TABLE II
HYPERPARAMETERS FOR THE EXPERIMENTS

Functional k-means
Parameter Value

Distance L2 distance
PCA

Number of components 2
FPCA

Number of components 2
Autoencoder

Input Coefficients in the functional basis
Number of hidden layers 3

Size of hidden layers [5, 2, 5]
Activation functions ReLu

Loss function MSE
Optimizer RMSProp

Learning rate 0.01

Additionally, we show two use cases of the applicability of our
approach using real data. For the reproducibility of the results,
Table II contains the hyperparameters of the methods, and code
of the experiments has been made publicly available1.

A. Simulations

We reproduce the experiments performed in [35], which
Cuevas et al. introduce to benchmark functional classification
methods, but using different random variables θi . Although the
context is different (supervised vs unsupervised), we want to
test our method under challenging situations where they find
substantial differences among classifiers.

To compare the results, different metrics are considered.
First, distances to the centroids are calculated, that is, how
far are the centroids from the functions µ(1)t and µ

(2)
t . Second,

classification metrics such as the precision or the recall [41]
are also computed. Although this is not a supervised learning
problem, simulations offer the opportunity to determine which
component each sample comes from.

1) Case 1: balanced clusters: We define the mean functions
µ
(1)
t = 30(1−t)t1.2 and µ(2)t = 30(1−t)1.2t and the random noise

functions ε1
t and ε2

t as two independent Gaussian processes
with zero mean and covariance Cov(X(s),X(t)) = 0.2exp(−|s−
t |/0.3). Also, θ1 ∼ Bernoulli(0.5) and θ2 = 1 − θ1, i.e. both
clusters are balanced and the choice is random.

2) Case 2: imbalanced clusters: We proceed as before but
θ1 ∼ Bernoulli(0.85), this is, we assume a situation where
clusters are not balanced. Although the authors in [35] do not
cover imbalanced experiments, these cases are closer to real
data, as we will see in next section.

Figure 3 shows centroids and obtained samples, where the
overlap and the small difference between the two centroids
are the most remarkable difficulties. As we see in Figure 4,
the centroids obtained as the deepest time series of the sample
are noisy, and it is arguable that they estimate µ

(1)
t and µ

(2)
t .

On the other hand, the centroids obtained from the median
resemble better the original µ(1)t and µ

(2)
t .

Table III summarizes the results obtained, in terms of
precision, recall, L1 distance (2) and L2 distance (1) between
real and estimated centroids. We tested different sample sizes,

1Available at https://github.com/hpcn-uam/deepfda-experiments

0.0 0.2 0.4 0.6 0.8 1.0
4

2

0

2

4

6

8

10 Cluster 1
Cluster 2

Fig. 3. Clusters and Gaussian processes of case 1.

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

Centroid 0 (deepest)
Centroid 1 (deepest)
Centroid 0 (median)
Centroid 1 (median)

(1)
t
(2)
t

Fig. 4. Centroids obtained by the k-means algorithm for the case 2 (imbal-
anced clusters) for N=60.

roughly corresponding to periods of two months, three months
and one year. Between the k-means approach using just the
deepest or adding the median curve, we see that effect in terms
of the cluster results are negligible but, given the improvement
in the L1 and L2 distances, estimates of the centroids µ

(1)
t

and µ
(2)
t are better. PCA and FPCA performed similarly in

most cases and only a few slightly better scores of PCA
over FPCA can be observed. This is something usual given
that FPCA usually incorporates a small regularization term to
guarantee that the covariance operator is positive definite, a
requirement for FPCA. Besides, AE with small sample sizes
do not perform well, since neural networks usually need far
more samples to converge. This issue with AE can be solved
by augmenting the data adding noisy samples. For higher
sample sizes, performance is comparable to PCA and FPCA.
Bear in mind that AE can be improved given a sufficient
sample size, even if we fix the embedding dimension, thanks
to the addition of more hidden layers. This means that, even
if scores are worse in this case, it is a promising solution to
detect imperceptible patterns.

In terms of performance, all methods but the AE can be
trained with 100 curves (more than 3 months of data) in less
than a second in commodity hardware (i7-1068NG7, 32 GB
RAM). Training artificial neural networks, such as AE, using
common libraries like Keras [46] can vary from seconds
to several minutes. This system is supposed to re-compute

https://github.com/hpcn-uam/deepfda-experiments

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

TABLE III
RESULTS OF THE EXPERIMENTS WITH SYNTHETIC DATA FOR DIFFERENT CONFIGURATIONS OF THE PARAMETERS

Case 1: balanced clusters Case 2: imbalanced clusters
Experiment Precision Recall L1 distances L2 distances Precision Recall L1 distances L2 distances

F. k-means N=60 0.93103 0.93103 0.80747, 0.85301 1.00959, 1.06130 0.87500 0.58824 0.80747, 0.75365 1.00959, 0.94715
with median 0.93548 1.00000 0.17028, 0.20957 0.21123, 0.26858 1.00000 0.74194 0.26790, 0.55455 0.32386, 0.64678

F. k-means N=120 0.98182 0.76056 0.83224, 0.74568 1.02664, 0.95606 0.95000 1.00000 0.78501, 0.74499 0.99911, 0.93045
with median 0.92727 1.00000 0.11272, 0.16516 0.14534, 0.20065 0.47000 0.90385 0.24270, 0.65084 0.29543, 0.74889

F. k-means N=360 0.85185 0.98773 0.78501, 0.76361 0.99911, 0.98696 0.98305 0.80556 0.78819, 0.76475 0.96087, 0.91427
with median 0.95238 0.97297 0.07627, 0.07682 0.09528, 0.09744 0.98305 0.87879 0.06515, 0.13854 0.08136, 0.17489
PCA N=60 0.96774 1.00000 0.13131, 0.16403 0.16821, 0.21379 1.00000 0.75000 0.25478, 0.56055 0.29804, 0.65403

PCA N=120 0.96923 0.92647 0.09033, 0.14816 0.11298, 0.17953 1.00000 0.95238 0.07703, 0.18788 0.09816, 0.23166
PCA N=360 0.95238 0.97826 0.05821, 0.06100 0.07280, 0.07664 0.96678 0.99658 0.05155, 0.09762 0.06422, 0.12366
FPCA N=60 0.96774 1.00000 0.15670, 0.23892 0.19767, 0.29530 0.53846 1.00000 0.23362, 0.53867 0.27395, 0.61573

FPCA N=120 0.96923 0.92647 0.11445, 0.15417 0.14161, 0.18603 1.00000 0.95238 0.07760, 0.27962 0.10012, 0.33064
FPCA N=360 0.95238 0.97826 0.06451, 0.05751 0.07843, 0.07613 0.96678 0.99658 0.08739, 0.12541 0.10425, 0.15362

AE N=60 0.63636 0.61765 0.42593, 0.38448 0.49871, 0.44875 0.50980 0.92857 0.27384, 0.64494 0.33641, 0.74088
AE N=120 0.93846 0.96825 0.16077, 0.23679 0.20234, 0.28080 0.56075 0.90909 0.24730, 0.68374 0.29386, 0.77499
AE N=360 0.94578 0.96319 0.09355, 0.12453 0.11849, 0.15043 0.96429 0.80597 0.15626, 0.24205 0.19043, 0.28721

clusters and centroids at nights, when monitoring systems can
spare resources for this task. Nevertheless, since each network
segment has its own clustering, this can be done in parallel
using computing resources in the cloud or a cluster.

B. Real-world data

For this second scenario, we use a dataset2 that comprises
four months’ worth of daily time series of the number of
concurrent flows in several network segments of a multi-
national company in Spain. The aggregation per network
segments is performed so that services of similar nature are
merged together. Although manual labeling of the data is a
possibility, we approach this problem as a non-supervised
one to ensure the scalability of the approach to network
monitoring. Consequently, the metrics computed before are
not available and we have to focus on metrics that do not rely
on the ground truth. Some examples are:

1) Functional silhouette coefficient (SC): using the metric
defined in equation (16), we can compute not only a
metric to choose the most appropriate number of clusters
but also a metric to compare the result of different
procedures. In this case, we need to compare all of them
in the original space and not in the embedding space,
since embeddings are not always available as in k-means
or they do not necessarily represent the distance in the
original space.

2) Functional Davies-Bouldin Index (DBI): in this case,
DBI [47] is based on metric properties that we also
extend for the functional case. Calling the scatter of the
cluster Ci Si = mean

x∈Ci

d(x, µ̂i) (21)

and the separation of the clusters
Mi, j = d(µ̂i, µ̂j), (22)

where µ̂i is the centroid of cluster Ci , we can define a
ratio between the two quantities above

Ri, j =
Si + Sj

Mi, j
, (23)

2Available at https://github.com/hpcn-uam/deepfda-experiments/tree/
master/dataset

which preserves properties such as being positive, being
symmetric and improving in the following situations: if
two clusters are equally compact (Sj = Sk) but one is
farther away from Ci than the other (Mi, j ≤ Mi,k), then
Ri, j > Ri,k and the dual one, if two clusters are equally
far from Ci (Mi, j = Mi,k), but one is more compact
than the other (Sj ≤ Sk), then Ri, j < Ri,k . To measure
the performance of cluster Ci , the worst Ri, j is chosen,
i.e. we define

Di = max
i,j

Ri, j (24)

and the functional DBI as

DBI = mean
i={1,...,K }

Di . (25)

In contrast to silhouette coefficient, this metric relies
heavily on the centroids to ensure the obtained clusters
are tight and separate one from each other. Besides, it
is computationally less expensive to compute since it
only iterates once over the whole set of time series.
Nevertheless, the more clusters we have, the better this
metric scores, so it is only comparable if we fix the same
number of clusters for all the methods.

From the network under study, we have selected four net-
work segments that provide different services, which represent
some of the most interesting cases that arise when facing
network monitoring in real-world environments. Each time
series is a full day of the metric aggregated in intervals of
five minutes, and days are not necessarily consecutive.

1) Network segment 1, survivable branch appliance: It
contains several devices responsible of the uninter-
rupted Voice over IP (VoIP) communications of different
branches of the company. Figure 5a shows the time
series of the number of connections among the day.
Several trends can already be guessed but, in fact, it
seems to have a stable behavior between 15 to 75
connections.

2) Network segment 2, regional DHCP and DNS servers:
It is composed of several servers that act as DHCP or
DNS of the company for a whole geographical region.
Figure 5b displays the time series of the number of
connections among the day. Although it seems to have

https://github.com/hpcn-uam/deepfda-experiments/tree/master/dataset
https://github.com/hpcn-uam/deepfda-experiments/tree/master/dataset

PERDICES et al.: DEEP-FDA: USING FUNCTIONAL DATA ANALYSIS AND NEURAL NETWORKS TO CHARACTERIZE NETWORK SERVICES TIME SERIES 9

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

20

40

60

80

100

120
Nu

m
be

r o
f c

on
ne

ct
io

ns

(a) Network segment 1

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

500

1000

1500

2000

2500

Nu
m

be
r o

f c
on

ne
ct

io
ns

(b) Network segment 2

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0

500

1000

1500

2000

2500

Nu
m

be
r o

f c
on

ne
ct

io
ns

(c) Network segment 3

0 2 4 6 8 10 12 14 16 18 20 22 24

0

2000

4000

6000

8000

N
um

be
r

of
co

nn
ec

ti
on

s

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 s
ca

le

Original signal
After companding

Time (h)

(d) Network segment 4

Fig. 5. Network segments daily time series for three months.

a very bursty behavior, it is periodic and has to do with
the synchronization with the rest of regional servers.

3) Network segment 3, payment gateway 1: It is composed
of only one server that acts as gateway for the payment
mechanism, providing not only connectivity to bank
companies but also security mechanisms to protect the
data of the transactions. Figure 5c depicts the time series
of the number of connections among the day. Clearly,
it exposes three different trends that are stronger in the
peak hours of activity of the day.

4) Network segment 4, payment gateway 2: Like the previ-
ous segment, it is composed of only one server that acts
as gateway for the payment mechanism. In Figure 5d,
the time series of the number of connections among the
day can be observed. Although it is related to a payment
system as before, we see a rather different case. Some
similarities are still present such as the three trends and
the peak hours of the morning and the afternoon, but
the peak activity at the last hour of the day is the most
remarkable event that makes it difficult to differentiate
the three existing trends. Because of this, we employ the
aforementioned companding procedure using the µ-law
with µ = 1023, which makes the apparent clusters more
spaced apart.

For all the network segments described above, we have fitted
the methods described in previous sections. Results in terms
of SC and DBI are shown in Table IV. As a reminder, SC
does not take into account centroids, so it is common to have

ties if two methods formed the same clusters. Thus, we must
look at the DBI to distinguish which algorithm scores better.
Additionally, DBI is always better if the number of clusters is
high, so we must fix the number of clusters, which is done by
voting among the decision given by SC for all the classifiers.
K-means algorithm is usually better than projection-based
algorithms, which is reasonable since projections reduce the
amount of information, whereas direct approach can work with
the whole signal. Difficult cases as network segments 2 and 4
are particularly hard for PCA or AE, which can be due to the
loss of information of the projection and the small number of
samples for training. It is remarkable that in case of network
segment 4, FPCA scores better than PCA, given that it is able
to differentiate better the two clusters that were very close, as
we will cover next.

For each network segment, best results are shown in Fig-
ure 6. For the case of network segment 1, it can be observed
in Figure 6a that two clusters were obtained. These clusters
are clearly low load days (holidays, weekends, days with less
people working) and workdays. In this case, we observed that
both patterns are stationary and the use is homogeneous along
the day. In addition, centroids visualization allows us to see
the central behavior separated from the random component.
In this example, we see that the clusters help us not only
to detect different trends but to see that the deviation of the
noise also depends on the cluster, e.g. low load days are
more regular than workdays, where we see strong deviations,
even doubling the number of connections in short periods. For
low-load days, time series can also jump to levels similar to

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

TABLE IV
RESULTS OF THE CLUSTERING METHODS FOR THE REAL-WORLD DATASET FOR SEVERAL SIZES OF DATASET

Network Segment 1 Network Segment 2 Network Segment 3 Network Segment 4
Methods SC DBI SC DBI SC DBI SC DBI

F. k-means (1 month) 0.61714 0.47776 0.42202 0.80097 0.89050 0.11431 0.82868 0.20817
with median 0.61714 0.41333 0.49735 0.76369 0.85614 0.17242 0.82868 0.22088

F. k-means (2 months) 0.59032 0.65805 0.32844 1.05486 0.84572 0.20396 0.83508 0.25474
with median 0.59032 0.57102 0.37922 0.87207 0.84572 0.18104 0.83508 0.25324

F. k-means (3 months) 0.57107 0.66552 0.29950 1.22141 0.86293 0.21974 0.78822 0.30459
with median 0.57107 0.59909 0.34325 1.24314 0.86293 0.21802 0.77675 0.29689

PCA (1 month) 0.61714 0.54452 0.49735 1.00426 0.89050 0.21448 0.85415 3.76542
PCA (2 months) 0.59032 0.59857 0.37978 1.31938 0.84572 0.22227 0.83508 3.89442
PCA (3 months) 0.57107 0.61461 0.36283 1.54504 0.86293 0.22415 0.81444 3.94855
FPCA (1 month) 0.61714 0.56901 0.45510 1.72075 0.89050 0.23799 0.85415 0.26204

FPCA (2 months) 0.59032 0.61359 0.37978 2.03991 0.84572 0.28235 0.83508 0.29437
FPCA (3 months) 0.57107 0.59858 0.34250 1.82842 0.86293 0.26692 0.81444 0.32805

AE (1 month) 0.61714 0.81439 0.47984 4.58737 0.89050 1.85030 0.77582 6.93602
AE (2 months) 0.59032 0.58760 0.34726 2.30413 0.84487 0.30296 0.75568 2.62730
AE (3 months) 0.55785 0.60325 0.33632 2.23477 0.86293 0.23725 0.74551 5.33807

* SC: More is better. DBI: Less is better.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
sc

al
e

Cluster 1
Cluster 2

(a) Network segment 1

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
sc

al
e

Cluster 1
Cluster 2
Cluster 3

(b) Network segment 2

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
sc

al
e

Cluster 1
Cluster 2
Cluster 3

(c) Network segment 3

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

al
ize

d
sc

al
e

Cluster 1
Cluster 2
Cluster 3

(d) Network segment 4

Fig. 6. Clusters for each network segment. Best centroids are represented as wider black lines with the same line style.

the cluster 1 from 10 to 22 h. Other state-of-the-art systems
would incorrectly consider that, when time series of cluster 2
intersects the centroid of cluster 1, they are just one cluster.
As we consider the global behavior instead of the local one,
we are able to detect properly that there are two global types
and, even if they intersect at some time interval, they have
different characteristics, as for instance, the dispersion level,
in contrast to other state-of-the-art alternatives [24].

On the other hand, the case of network segment 2 is
completely different, as it can be seen in Figure 6b. We
see three different clusters: the low load one with almost
no peaks, and two high load ones with peaks, where the
only difference between them is a small shift in time. Since
these servers depend both on human behavior (DNS queries,
DHCP renovations) and automatic behavior (synchronization
among regional branches of the company), the series are

PERDICES et al.: DEEP-FDA: USING FUNCTIONAL DATA ANALYSIS AND NEURAL NETWORKS TO CHARACTERIZE NETWORK SERVICES TIME SERIES 11

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
First dimension of the embedding

1

2

3

4

5

6
Se

co
nd

 d
im

en
sio

n
of

 th
e

em
be

dd
in

g Cluster 1
Cluster 2
Cluster 3
Centroid

Fig. 7. Embedding space for network segment 3 obtained using an Autoen-
coder. Linear relation is marked as a dotted line.

not stationary, but they are periodical. This shows both an
advantage and a disadvantage: on the one hand, human oper-
ators would not have been able to deal with the periodicity
issue and they would only consider two clusters instead of
the three detected by the system. On the other hand, any
trend that is not periodic every 24 hours or a multiple of
24 hours can lead to multiple clusters. Nevertheless, clusters
are still usable for daily baselines and this issue will only
affect the estimation errors, since cluster sizes are smaller.
In other cases, frequent and significant events that happen
at random times can affect negatively baseline models. It
can be solved with more complex probabilistic approaches,
supporting extreme events and studying their distribution [48].
The conclusion of this example is that, even in cases where
bursts may affect the metric, clustering methods are able to
detect trends based on the functional structure of the data.

Network segment 3 exhibits a rather different nature, as it
is shown in Figure 6c. There are three clusters: one of low
load days, where we cannot even observe a trend and almost
assume it is stationary, regular load days, where the daily trend
is remarkable, and high load days. For high load days, we
could barely see four examples in two months, which means
that our methods were able to detect even low probability
tendencies that are significantly apart from the most common
ones. This case proves the usefulness of this approach. One of
the motivations was to help in the definition of baselines by
grouping similar trends. In this case, operators were unable to
estimate when a day belonged to cluster 1, since it has some
random and user-dependent behavior. Our system provides a
baseline for these days, preventing false alarms and improving
monitoring capabilities.

Network segment 4 shows a similar case but with significant
differences, as it is depicted in Figure 6d. Although some
similarities are clear, such as the shape, it is noticeable that
high load and regular load clusters are much closer than
before, as well as the periodical bursts that happen at the end of
the day, but only in two of the three clusters. This shows that
companding and preprocessing methods help us to separate
the clusters, improving the results and that such techniques

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
sc

al
e

x=0.35
x=0.69
x=1.03
x=1.37
x=1.71
x=2.05

Fig. 8. Manifold representation for network segment 3 for some values of
the parameter.

can detect periodical phenomena that affect the time series
every single day.

As we have shown in the previous two cases, similar
services may behave very different not only in terms of
magnitude but also in terms of the shape. In fact, this pre-
dominant shape of network segment 3 is detectable also in
the embeddings. Figure 7 is an example where the embedding
of an AE provides a stronger representation. As we see, data
has restrictions and the dimension of the data is only one. This
means that this type of representation does not only help to
find clusters but also to find the real dimension of the data.
In this case, this means that, if the decoder part of the AE is
called φ(x, y) and the line equations is y = mx + b, then we
have that

Φ(x) = φ(x,mx + b) (26)

is a parametrization of a manifold of dimension 1 in L2([0,T]),
which means that our functional data, which presumably had
infinite dimension, indeed it has only dimension 1 and it
can be represented by just the first component obtained in
the embedding of our AE. Figure 8 contains the result of
Φ(x) for several values of x. It is easy to see that this
parametrization is more than just a scaling or a shift, since
higher values of the parameter makes the trajectories more
variable. For network management, this is extremely useful
since it provides a structure of the time series that should be
observed, meaning that deviations from this structure should
be reported as incidences to network operators.

C. Use Cases

This subsection shows, without loss of generality, the fea-
sibility of using Deep-FDA on real network monitoring tasks
such as capacity planning and anomaly detection for alarming
by means of simple examples.

As a specific use case, baselines can be used for capacity
planning. First, we only consider the baseline that acts as an
estimation of the time series. Figure 9a depicts in green a time
series of one day not included in the training dataset from
segment 3 and baselines obtained using both Deep-FDA and
traditional baselines using moving median (blue and orange,

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
sc

al
e

Estimation using Deep-FDA
Estimation using traditional baselines
Example time series

(a) Time series and baseline estimates

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

-40%

-30%

-20%

-10%

0%

10%

Re
la

tiv
e

er
ro

r

Deep-FDA
Traditional baselines

(b) Relative error of the estimates

Fig. 9. Example of the improvements on capacity planning using Deep-FDA
using data from high-activity cluster of segment 3.

respectively). To compare the results, Figure 9b shows the
relative error in both cases.

In the depicted example, it is critical to detect different
trends, as resulting baselines may be distorted due to specific
high-load events, such as occasional backups or equipment
misconfigurations. As we can see, at busy hours (10 AM
and 5 PM), traditional baselines tend to under-estimate the
expected number of connections (between 30% and 40%
percent of relative error). If we use such a baseline for in-
advance dynamic resource provisioning, chances are that users
may suffer performance issues due to a lack of resources.
In contrast, the Deep-FDA baseline significantly reduces the
provisioning error.

On the other hand, Figure 10 shows another time series for
the number of connections for segment 3. In this case, we use
the current past data to predict a point in the future. Using
such data, we estimate a threshold of 10%, that is, an alarm
is triggered if the relative error between the estimated value
and the current value is greater than 10%. Note that defining
which threshold to use is out of the scope of this work and
in some cases it can only be possible with human interaction
and feedback data.

In this second example, the threshold using global baselines
is not precise enough due to the presence of the different
trends, whereas the threshold using Deep-FDA takes only the
curves that belong to the cluster of the current time series.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

No
rm

al
ize

d
sc

al
e

Example time series
Estimation (Deep-FDA)
Threshold using traditional baselines
Threshold using Deep-FDA

Fig. 10. Example time series and its prediction using Deep-FDA. Intervals
using percentiles 10 and 90 are also presented with and without Deep-FDA.
Red rectangle exposes an alarm triggered by Deep-FDA

Consequently, it is much more precise and narrow. As an
example, an alarm detected by our system and not by other
state-of-the-art systems is highlighted in the figure.

V. DISCUSSION

The evaluation of Deep-FDA has illustrated the viability
—through simulations and performance assessment with real-
world data— and applicability —through two specific use
cases for network and service management— of FDA and
neural network techniques for network and service charac-
terization based on time series classification. Some of the
most significant ideas and lessons learned that contribute to
the current state of the art are:

1) Preprocessing is a key element to improve the anal-
ysis capabilities: network segment 4 was an important
use case of advanced preprocessing techniques to boost
the performance of all the techniques. It is worth noting
that simple outlier techniques are not always suitable,
because we do not want to get rid of this data, but to see
also the probability of this type of events. In this case,
preprocessing techniques such as companding lead to a
clearer time series without losing the ability to detect
extreme events that are part of the normal behavior of
the network.

2) Mixture functional model provides a global vision
of the daily behavior: as said in previous section, the
importance of the FDA approach is not really working
in infinite-dimension spaces such as L2([0,T]) but on
using the structure of the space. Other alternatives just
consider the local behavior of the phenomenon, whereas
our model provides a global insight so, even if curves
overlap as shown in simulations and network segment
1, it can properly detect the correct amount of clusters,
the centroid and dispersion.

3) Clustering metrics for the functional setting are
useful for training and model selection: as shown in
the comparison between different methods in Table III
and Table IV, proposed functional clustering metrics
such as functional SC or functional DBI exposed that
there is not any rule of thumb to choose one algorithm

PERDICES et al.: DEEP-FDA: USING FUNCTIONAL DATA ANALYSIS AND NEURAL NETWORKS TO CHARACTERIZE NETWORK SERVICES TIME SERIES 13

over the rest. Each approach obtains different results and
has different properties: k-means is the simplest direct
approach, which usually performs well but cannot be
further improved; PCA and FPCA are linear projection
methods and thus, simple yet powerful representations
that depend on the number of components and the
nature of the phenomenon; and AE is the most powerful
technique that is able to learn even non-linear behaviors,
but with several parameters to consider to obtain the best
performance without overfitting.

4) FDA and neural networks can be combined: although
FDA and neural networks seem completely different
approaches for time series and signal analysis, they are
related, as shown in equation (15), and they can be
employed together to improve the weak points of both
techniques. In this case, the result of the performance of
PCA or FPCA can help to dimension properly the neural
network, since the simplest autoencoder is equivalent
to PCA and FPCA, with the great advantage that these
methods do not rely on training and convergence. More-
over, we have presented in this work a novel approach
where an AE is fed with functional data, resulting in a
functional autoencoder, namely Deep-FDA.

These contributions have proven to be useful in the pre-
sented use cases, with direct application to network manage-
ment tasks such as capacity planning and anomaly detection.

VI. CONCLUSION

This paper has presented Deep-FDA, a novel approach
that combines FDA and AE to characterize network services
based on their traffic time series, mixing the potential and
suitability of statistics and neural networks for data analysis
to identify problems and drive management decisions. The
results have shown that Deep-FDA can be a valuable technique
for a better understanding of network and service manage-
ment data, with several advantages over previous available
methods. Specifically, we have shown two use cases, namely
capacity planning and alarming, where Deep-FDA outperforms
state-of-the-art approaches. In conclusion, the application of
our method will help to have a deeper understanding of
the network behavior, which leads to make better decision
with available operational and service data. This work has
grounded the basis for future works, where, following a similar
approach, methodologies can be extended to multivariate time
series whenever network managers consider that they should
be analyzed together. Moreover, further work can focus on
the limitations of baseline models to detect frequent extreme
events that happen at random times.

REFERENCES

[1] D. Helsper, J.-F. Huard, D. Homoki, A. Rasmussen, and R. Jannarone,
“US7280988B2: Method and system for analyzing and predicting the
performance of computer network using time series measurements,”
p. 27, 2007. [Online]. Available: https://patents.google.com/patent/
US7280988B2/en

[2] Y. J. Lin, “US8606913B2: Method for adaptively building a
baseline behavior model,” p. 16, 2013. [Online]. Available: https:
//patents.google.com/patent/US8606913B2/en

[3] J. D. Brutlag, “Aberrant Behavior Detection in Time Series for Network
Monitoring,” in Proceedings of the 14th USENIX Conference on System
Administration, ser. LISA ’00. USA: USENIX Association, 2000, p.
139–146.

[4] A. Clemm, M. F. Zhani, and R. Boutaba, “Network management 2030:
Operations and control of network 2030 services,” Journal of Network
and Systems Management, vol. 28, p. 721–750, 2020.

[5] D. Carrera, G. Casale, T. Inoue, H. Lutfiyya, J. Wang, and N. Zincir-
Heywood, “Guest editorial: Special issue on novel techniques in big data
analytics for management,” IEEE Transactions on Network and Service
Management, vol. 16, no. 3, pp. 797–799, 2019.

[6] R. De O Schmidt, R. Sadre, N. Melnikov, J. Schönwälder, and A. Pras,
“Linking network usage patterns to traffic gaussianity fit,” in Networking
Conference, 2014 IFIP, June 2014, pp. 1–9.

[7] F. Simmross-Wattenberg, J. Asensio-Pérez, P. Casaseca-de-la Higuera,
M. Martı́n-Fernández, I. Dimitriadis, and C. Alberola-López, “Anomaly
detection in network traffic based on statistical inference and alpha-stable
modeling,” IEEE Transactions on Dependable and Secure Computing,
vol. 8, no. 4, pp. 494–509, July 2011.

[8] M. Alasmar, G. Parisis, R. Clegg, and N. Zakhleniu, “On the Distribution
of Traffic Volumes in the Internet and its Implications,” in Proceedings
- IEEE INFOCOM, vol. 2019-April. Institute of Electrical and
Electronics Engineers Inc., 4 2019, pp. 955–963.

[9] C. Vega, J. Aracil, and E. Magana, “KISS Methodologies for Network
Management and Anomaly Detection,” in 2018 26th International
Conference on Software, Telecommunications and Computer Networks,
SoftCOM 2018. Institute of Electrical and Electronics Engineers Inc.,
11 2018, pp. 181–186.

[10] A. Cuevas, “A partial overview of the theory of statistics with functional
data,” Journal of Statistical Planning and Inference, vol. 147, no. 0, pp.
1 – 23, 2014.

[11] J. Ramsay and B. Silverman, Functional Data Analysis. 1997. Springer,
New York, 1997.

[12] F. Ferraty and P. Vieu, Nonparametric functional data analysis: theory
and practice. Springer, 2006.

[13] P. Hall and M. Hosseini-Nasab, “On properties of functional principal
components analysis,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), vol. 68, no. 1, pp. 109–126, 2 2006.

[14] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine intel-
ligence toward tomorrow’s intelligent network traffic control systems,”
IEEE Communications Surveys Tutorials, vol. 19, no. 4, pp. 2432–2455,
2017.

[15] D. Muelas, J. E. López de Vergara, J. R. Berrendero, J. Ramos, and
J. Aracil, “Facing Network Management Challenges with Functional
Data Analysis: Techniques & Opportunities,” Mobile Networks and
Applications, vol. 22, no. 6, pp. 1124–1136, 12 2017.

[16] Y. Ben Slimen, S. Allio, and J. Jacques, “Anomaly prevision in radio
access networks using functional data analysis,” in GLOBECOM 2017
- 2017 IEEE Global Communications Conference, 2017, pp. 1–6.

[17] Y. Ben Slimen, S. Allio, and J. Jacques, “Model-based co-clustering for
functional data,” Neurocomputing, vol. 291, pp. 97–108, 5 2018.

[18] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, 12 2018.

[19] E. Jalalpour, M. Ghaznavi, R. Boutaba, and T. Ahmed, “Tmas: A traffic
monitoring analytics system leveraging machine learning,” in 2019
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), 2019, pp. 408–414.

[20] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low, and M. C.
Chan, “GEE: A Gradient-based Explainable Variational Autoencoder for
Network Anomaly Detection,” in 2019 IEEE Conference on Communi-
cations and Network Security, CNS 2019. Institute of Electrical and
Electronics Engineers Inc., 3 2019, pp. 91–99.

[21] M. Kiran, C. Wang, G. Papadimitriou, A. Mandal, and E. Deelman,
“Detecting anomalous packets in network transfers: investigations using
PCA, autoencoder and isolation forest in TCP,” Machine Learning, pp.
1–17, 3 2020.

[22] Z. Chen, J. Wen, and Y. Geng, “Predicting future traffic using Hidden
Markov Models,” in Proceedings - International Conference on Network
Protocols, ICNP, vol. 2016-December. IEEE Computer Society, 12
2016.

[23] M. Mouchet, S. Vaton, T. Chonavel, E. Aben, and J. D. Hertog, “Large-
Scale Characterization and Segmentation of Internet Path Delays With
Infinite HMMs,” IEEE Access, vol. 8, pp. 16 771–16 784, 2020.

https://patents.google.com/patent/US7280988B2/en
https://patents.google.com/patent/US7280988B2/en
https://patents.google.com/patent/US8606913B2/en
https://patents.google.com/patent/US8606913B2/en

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT

[24] F. S. Samani and R. Stadler, “Predicting Distributions of Service Metrics
using Neural Networks,” in 14th International Conference on Network
and Service Management, CNSM 2018 and Workshops, 1st International
Workshop on High-Precision Networks Operations and Control, HiPNet
2018 and 1st Workshop on Segment Routing and Service Function
Chaining, SR+SFC 2, 11 2018, pp. 45–53.

[25] F. Rossi, N. Delannay, B. Conan-Guez, and M. Verleysen, “Representa-
tion of functional data in neural networks,” Neurocomputing, vol. 64, pp.
183 – 210, 2005, trends in Neurocomputing: 12th European Symposium
on Artificial Neural Networks 2004.

[26] F. Rossi and B. Conan-Guez, “Functional multi-layer perceptron: a non-
linear tool for functional data analysis,” Neural Networks, vol. 18, no. 1,
pp. 45 – 60, 2005.

[27] D. S. Broomhead and D. Lowe, Radial basis functions, multi-variable
functional interpolation and adaptive networks. Malvern, Worcs.:
Royals Signals & Radar Establishment, 1988.

[28] J. S. Baras, M. Ball, S. Gupta, P. Viswanathan, and P. Shah, “Automated
network fault management,” in Proceedings - IEEE Military Communi-
cations Conference MILCOM, vol. 3. IEEE, 1997, pp. 1244–1250.

[29] P. Ferreira, D. C. Le, and N. Zincir-Heywood, “Exploring Feature
Normalization and Temporal Information for Machine Learning Based
Insider Threat Detection,” in 15th International Conference on Network
and Service Management, CNSM 2019. Institute of Electrical and
Electronics Engineers (IEEE), 10 2019.

[30] International Telecommunication Union, “Pulse Code Modulation
(PCM) of Voice Frequencies,” Recommendation G. 711, nov 1988.

[31] R. R. Wilcox, “Least Squares Regression and Pearson’s Correlation,” in
Applying Contemporary Statistical Techniques. Elsevier, 1 2003, pp.
173–206. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/B9780127515410500274

[32] M. Febrero-Bande and M. Oviedo de la Fuente, “Statistical Computing
in Functional Data Analysis: The R Package fda.usc,” Journal of
Statistical Software, vol. 51, no. 4, pp. 1–28, 2012.

[33] J. A. Hartigan and M. A. Wong, “Algorithm Applied Statistics 136: A
K-Means Clustering Algorithm,” Journal of the Royal Statistical Society.
Series C (Applied Statistics), vol. 28, no. 1, pp. 100–108, 1979.

[34] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, ser. SODA ’07. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2007, pp. 1027–1035.

[35] A. Cuevas, M. Febrero, and R. Fraiman, “Robust estimation and
classification for functional data via projection-based depth notions,”
Computational Statistics, vol. 22, no. 3, pp. 481–496, 9 2007.

[36] I. Gijbels and S. Nagy, “On a general definition of depth for functional
data,” Statistical Science, vol. 32, no. 4, pp. 630–639, 11 2017.

[37] A. Nieto-Reyes and H. Battey, “A topologically valid definition of depth
for functional data,” Statistical Science, vol. 31, no. 1, pp. 61–79, 2016.

[38] Y. Zuo and R. Serfling, “General notions of statistical depth function,”
Annals of statistics, vol. 28, no. 2, pp. 461–482, 2000.

[39] S. López-Pintado and J. Romo, “On the concept of depth for functional
data,” Journal of the American Statistical Association, vol. 104, no. 486,
pp. 718–734, 2009.

[40] S. López-Pintado and J. Romo, “A half-region depth for functional data,”
Comput. Stat. Data Anal., vol. 55, no. 4, pp. 1679–1695, Apr. 2011.

[41] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, ser. Springer Series in Statistics. New York, NY, USA:
Springer New York Inc., 2001.

[42] H. L. Shang, “A survey of functional principal component analysis,”
AStA Advances in Statistical Analysis, vol. 98, no. 2, pp. 121–142, 4
2014.

[48] D. Perdices, D. Muelas, I. Prieto, L. de Pedro, and J. E. López de
Vergara, “On the modeling of multi-point RTT passive measurements for

[43] P. Rousseeuw and A. Leroy, “Related Statistical Techniques,” in Robust
Regression and Outlier Detection. John Wiley & Sons, Ltd, 1987, pp.
248–291.

[44] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Comput. Surv., vol. 41, no. 3, 7 2009. [Online].
Available: https://doi.org/10.1145/1541880.1541882

[45] C. M. Salgado, C. Azevedo, H. Proença, and S. M. Vieira, “Noise versus
outliers,” in Secondary Analysis of Electronic Health Records. Springer
International Publishing, 1 2016, pp. 163–183. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-43742-2 14

[46] F. Chollet, “Building Autoencoders in Keras,” The Keras Blog, 2016.
[47] D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
1, no. 2, pp. 224–227, 1979.
network delay monitoring,” IEEE Transactions on Network and Service
Management, vol. 16, no. 3, pp. 1157–1169, 9 2019.

Daniel Perdices (daniel.perdices@uam.es) is re-
searcher and teaching assistant at Universidad
Autónoma de Madrid (Spain) . He received the B.Sc.
(Hons) degrees in Mathematics and in Computer
Science (2018), the M.Sc. in Mathematics (2019)
and the M.Sc. in Information and Communications
Technologies (2020) and currently is a Ph.D. student,
all at Universidad Autónoma de Madrid (Spain).
He researches on statistics, mathematical modeling,
machine learning, network traffic analysis and SDN.

Jorge E. López de Vergara
(jorge.lopez vergara@uam.es) (S’02-M’04-SM’19)
is associate professor at Universidad Autónoma de
Madrid (Spain), and founding partner of Naudit
HPCN, a company devoted to high performance
traffic monitoring and analysis. He received his
M.Sc. and Ph.D. degrees in Telecommunication
Engineering from Universidad Politécnica de
Madrid (Spain) in 1998 and 2003, respectively.
He researches on network and service management
and monitoring, having co-authored more than 100

scientific papers on this topic.

Javier Ramos (javier.ramos@uam.es) is associate
professor at Universidad Autónoma de Madrid
(Spain). He received the M.Sc. degree in computer
science and the Ph.D. degree in computer sci-
ence and telecommunications from the Universidad
Autónoma de Madrid, Spain, in 2008 and 2013,
respectively. His research interests are in the analysis
of network traffic, quality of service, software de-
fined networks and network function virtualization.

https://linkinghub.elsevier.com/retrieve/pii/B9780127515410500274
https://linkinghub.elsevier.com/retrieve/pii/B9780127515410500274
https://doi.org/10.1145/1541880.1541882
https://link.springer.com/chapter/10.1007/978-3-319-43742-2_14

	Introduction
	Related work
	Methodology
	Preprocessing the data
	Defining the model and the method
	Direct approach: functional k-means
	Projection-based methods: principal components and autoencoders
	Choosing the most suitable K

	Using the model

	Evaluation
	Simulations
	Case 1: balanced clusters
	Case 2: imbalanced clusters

	Real-world data
	Use Cases

	Discussion
	Conclusion
	References
	Biographies
	Daniel Perdices
	Jorge E. López de Vergara
	Javier Ramos

