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On the Modeling of Multi-Point RTT Passive
Measurements for Network Delay Monitoring

Daniel Perdices , David Muelas , Iria Prieto , Luis de Pedro , Jorge E. López de Vergara

Abstract—Many network management actions need a simulta-
neous consideration of several elements’ state. This is becoming
an even more complex matter with the advent of reconfigurable
deployments, where scaling functions up can prevent perfor-
mance bottlenecks. Therefore, fine-grained detection of significant
burdens arises as a cornerstone to optimize their monitoring
and operation. We present AdPRISMA (Advanced distributed
Passive Retrieval of Information, and Statistical Multi-point
Analysis), a passive monitoring system intended to fit models
for network delay measurements with clustering elements to
improve representation of central and extreme behaviors. As
distinguishing features, it relies on cost-effective multi-point
round-trip time (RTT) passive network measurements, and is
able to select a suitable parametric model optimizing the trade-
off between fitting and complexity. AdPRISMA can correlate
records collected from several vantage points and detect where
performance issues are most likely to appear; adjust alarms in
terms of the probability of events; and adapt its behavior to dy-
namic network conditions while presenting a fair identification of
anomalous situations. We evaluate AdPRISMA with experiments
both in virtual environments and with real-world data to provide
evidences of its applicability and capabilities to represent network
elements’ delay.

Index Terms—network monitoring, network delay, round-trip
time, probability, passive measurements, performance manage-
ment, pro-active management.

I. INTRODUCTION

IN recent times, network environments have turned from
mostly static infrastructures to more flexible deployments,

where software-based configurations are becoming common.
With that, network managers have to tackle decisions that
ground on simultaneously considering the state of several
points of the network, to detect and solve possible performance
burdens—e.g., by scaling up affected network equipment in
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virtual networks, or by increasing the capacity of links. From
the monitoring standpoint, methods and systems have to
address these new possibilities and necessities of management
activities, providing enhanced assistance for network opera-
tions [2].

Monitoring systems usually rely on active or passive mea-
surements to detect possible issues. The use of the latter
approach reduces risks in operational environments, as it
provides Key Performance Indicators (KPIs) with minimal
alteration of infrastructure. However, with the increasing het-
erogeneity of services and data rates in current deployments,
passive data gathering is posing significant challenges. In
this light, some recent network monitoring efforts are dealing
with the thinning and capping of network data [3], and the
exploitation of the distributed nature of these data to shift part
of the analysis to the network equipment [4].

Moreover, network measurements must be robustly and
consistently analyzed to opt for the most adequate decisions
for incident solving and prevention. Thus, the application of
suitable statistical modeling can improve pro-active policies,
which motivates the application of methods that adapt to the
evolution of KPIs [5]. This can help both to reduce false
positive ratios and to automate actions, therefore simplifying
management activities.

With these facts, we point to the following desirable char-
acteristics for novel network monitoring solutions:

1) Distributed and passive data gathering: the retrieval
of information should be distributed among different
network elements. Monitoring systems should exploit
capabilities of the equipment to improve scalability with
a horizontal division of tasks. This can be implemented
using several functionalities of common network equip-
ment. For instance, we point to opportunistic retrieval
from built-in capabilities (e.g., exploitation of OpenFlow
records); existing passive monitoring elements (e.g.,
NetFlow or IPFIX exporters); and traffic forwarding
based on SPAN ports or selective OpenFlow rules.

2) Correlation of multi-point measurements: measurements
should be exploited to provide contextual data and link
observations from different elements. As network issues
usually affect complete segments, measurements that
encompass only single points can hide the location,
extension and nature of the problems. Therefore, corre-
lation of measurements can provide deeper insights into
performance issues and network state.

3) Application of statistical models: stochastic nature of
network measurements requires a suitable statistical
modeling. Otherwise, results may not reflect actual
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TABLE I: Parametric models included in AdPRISMA.

Parametric model Density function Mode

Normal(µ, σ) f (x |µ, σ) =
1

√
2πσ2

exp {−
(x − µ)2

2σ2 } µ

Lognormal(µ, σ) f (x |µ, σ) =
1

xσ
√

2π
exp {−

(ln x − µ)2

2σ2 } eµ−σ
2

GEV(µ, σ, ξ) f (x |µ, σ, ξ) =
1
σ
t(x)ξ+1 exp {−t(x)}, t(x) =

{
(1 + ξ( x−µσ ))

−1/ξ if ξ , 0,
exp {−(x − µ)/σ } if ξ = 0.

{
µ + σ

(1+ξ )−ξ−1
ξ if ξ , 0,

µ if ξ = 0.

Burr Type XII(α, c, k) f (x |α, c, k) =
kc

α

( x
α

)c−1 (
1 +

( x
α

)c )−(k+1)
, x, α, c, k > 0 α

(
c−1
kc+1

) 1
c

α-stable(α, β, µ, σ) No closed formula No closed formula

network conditions and spurious values can lead to
biased decisions. Models should consider a compromise
between goodness of fit and complexity, to optimize
analytics and prevent unnecessary computational costs.

4) Robust data processing: model fitting needs to include
methods to extract relevant information from time-
varying measurements. That fact entails a compromise
between the granularity of detectable events and re-
siliency against noisy or isolated excursions.

In line with these trends, we present the design of Advanced
distributed Passive Retrieval of Information, and Statistical
Multi-point Analysis (AdPRISMA), an evolved version of
our previous solution [1], intended to (i) passively collect
network data (e.g., traffic traces, flow records, . . . ) from several
vantage points in the network; (ii) aggregate and filter data to
estimate Round Trip Time (RTT) components corresponding
to different network segments; and (iii) fit and select the most
suitable statistical model for these measurements. We focus on
RTT, as this specific KPI has been extensively used to detect
and forecast network bottlenecks [6], [7].

Our proposal integrates several models that proved to fit
RTT distributions fairly: AdPRISMA automatically ranks
those models, and select the one with the highest goodness of
fit and lowest complexity. Extending our previous work [1],
this paper also shows how AdPRISMA can include data
aggregation strategies, applying different time-windows and
data projection methods. With this, it improves the trade-
off between granularity of the events and resilience against
artifacts or distortions.

Hereby, AdPRISMA constitutes a promising starting point
to provide a flexible and general framework able to detect
changes in the stochastic behavior of network KPIs while
optimizing computational cost. We note that measures of
centrality (e.g., mean, median or mode) provide an easy-
to-understand indicator of KPI departures. Remarkably, the
mode is a significant value (i.e., the most common value for
a specific random variable), its estimation from a sample is
challenging, and is robust against outliers and censored or
truncated data [8].

The main contributions of our work are the study of RTT
decomposition to facilitate the correlation of measurements
and location of issues; and the definition of a methodology
to rank models that puts together goodness of fit and com-
plexity, paving the way for automated selection of the optimal

statistical model for passive measurements. Additionally, we
show that the statistical mode can be fairly obtained from
the inferred models. The operation of AdPRISMA allows
distributing the data collection process among several vantage
points; correlating measurements retrieved from heterogeneous
data sources; and it provides flexible models that adapt to
changing behaviors. These aspects can help defining part of
the system functionality in terms of OpenFlow rules, records
exported to SDN controllers, and embed network monitoring
functions in virtual networks, paving the way for improved
monitoring processes in virtual and Software-Defined infras-
tructures.

To present our results, the rest of this paper is organized as
follows: Section II reviews several related works that motivate
our proposal. After that, Section III presents the architecture
of AdPRISMA, describing the main functional blocks of our
prototype, its operation and the method for the automation
of model selection. On its part, Section IV assesses the
functionality of the prototype, and reports the results of a
case study that highlights the relevance of the model selection
process. Finally, Section V discusses the findings of our study,
and Section VI concludes the paper and depicts future work
lines.

II. RELATED WORK

In this section, we present related works that motivate the
design of AdPRISMA. We start with a review of statistical
models for RTT measurements, to justify the selection of the
models in our system. Then, we consider previous results
that ground the assumption of validity of this representation,
and methods to collapse individual flow estimates and obtain
indicators of vantage points’ performance. Finally, we focus
on other monitoring frameworks that share design principles
with our proposal.

A. Statistical models for RTT

Statistical modeling of network KPIs has deserved much
attention, given its importance for network operation. This
interest has resulted in a vast amount of literature reporting
how different probability distributions represent network mea-
surements, which extends to delay and RTT modeling. Table I
compiles the parametric models included in our solution
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(with closed expressions for density function and mode when
available) to summarize the analysis of the literature.

Given their central position in inference, probability theory
and empirical research [9], normal and lognormal models
are a common approach when coping with data analysis.
However, the research of KPIs in operational networks has
exposed that many times they exhibit heavy-tailed behaviors
in existing deployments, which grounded the exploration of
more complex models able to capture large deviations [10]–
[12]. As we will detail in the following sections, our system
considers several parametric models (some of them with heavy
tails) and compares their performance, taking into account
different metrics to optimize the trade-off between goodness
of fit and complexity. In [13], the authors explored which
distribution adjusted single-hop delays in computer networks.
Their conclusions pointed to a good representation of this KPI
with Weibull distributions, as delays presented fair unimodal
behaviors. Similar results were reported in [14], while in this
latter case multi-modal behaviors were observed (somehow
expectable, as that work analyzed end-to-end delays) so mix-
tures of Weibull distributions provided good fitting to the
measurements. Inspired by these results, we explored two
additional parametric families, which for some values in the
space of parameters lay near Weibull distributions.

On the one hand, we have considered the Generalized
Extreme Value (GEV) distribution [15], given their suitability
to represent variables with large and rare values. Remarkably,
GEV distributions generalize Weibull, Gumbel and Fréchet
distributions, which motivates the selection of this model. On
the other hand, we also introduced Burr Type XII distributions
to model RTT, motivated by the relation of this parametric
family with Weibull distributions [16]. The complexity of
both models is comparable to Weibull distributions, but their
broader flexibility can potentially reduce deviant cases.

Additionally, in recent times α-stable distributions have
been applied to model RTT [12]. This family is very flexible
and general, but much more complex that those previously
commented. In fact, the fitting of the parameters of α-stable
distributions is computationally expensive [17], [18] and there
is no closed expression for their density function. Remarkably,
α-stable distributions appear in the generalized central limit
theorem and converge to normal distributions for some values
in the space of parameters.

B. Time-varying network modeling

As stated above, the properties of several parametric dis-
tributions offer a promising framework to describe RTT and
delay components in operational networks. While this is a pri-
mary step along data modeling, model fitting requires a time-
dependent consideration to guarantee that such representation
can exist. In other words, we wonder to what extent measure-
ments are stable—i.e., they follow a given distributional law
during observations periods.

RTT can be decomposed, as we develop below, in delay
components that affect network traffic along a path. Therefore,
a reasonable condition for RTT stability is the stability of
those components. Given the importance of such components

in overall network performance, several previous works have
addressed its modeling and understanding. For instance, a
formal model for stochastic components of delay in common
network equipment is presented in [19]. In that work, the
authors pointed to relevant factors—remarkably, network load
and node capacity—that provided a suitable estimator for
delay components.

In that same line, we consider that under stationary net-
work load and in the absence of changes in node capacity,
delay components can be considered short-term invariants:
this seems a reasonable condition, as a result of empirical
and grounded analysis of network load [20]. In this latter
work, authors analyzed a method for the detection of abrupt
short-time changes in network load, showing that under very
general assumptions this indicator can be considered invariant.
Then, they applied cluster aggregation to test the model
compliance—specifically, multivariate Gaussian model—and
detected excursions from the typical behavior.

Following a somehow similar approach, we put together
these previous results to define a projection method to pre-
filter individual flow estimations in time windows, selecting
representatives for central and extreme values. Then, we
characterize the typical behavior of projections using the
aforementioned models. Additionally, we also introduce a
control measurement to assure stability of the estimates using
Dictyogram [21]. This method describes the evolution of flow
characteristics by accounting the frequency of their values
within a set of order statistics. Hence, it provides a flexible
evaluation of changes in the distribution with the analysis of
its corresponding variation rates.

C. Multi-point distributed monitoring systems

Beyond improving techniques to retrieve information from
measurements, network monitoring and analysis solutions
need to suit novel operational architectures. This entails that
data capture and deployment processes should evolve towards
more scalable and flexible approaches. As an illustrative
situation, current trends regarding network slicing and virtual
networks on top of shared hardware require this type of
approaches to gather data without incurring in high costs—
e.g., movement of big data volumes. This matter is not a
particularly new concern for network monitoring, and many
previous results explored principles that can help to improve
current systems.

For instance, the design of cooperative monitoring sys-
tems [22] arose as a promising approach to alleviate the short-
comings of monitoring scalability. These classical ideas can
pave the way for improved solutions in the network monitoring
scope, as stated in [2]. The architecture of AdPRISMA shares
many of the principles that guided these proposals.

Even more important is that many current network mon-
itoring efforts are focused on how to take advantage of
the ever increasing capabilities of network equipment. This
opens the gate to disaggregate network monitoring, moving
specific tasks to the most suitable equipment in the network.
Turboflow [4] is a recent proposal that relies on the embedding
of flow generation into programmable switches. However, the
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Fig. 1: Functional modules of AdPRISMA.

authors of that work highlight that stateful information may
limit the complete implementation of some processes in the
network hardware. In the same line, Sonata [23] distributes
monitoring tasks to different network elements, providing a
query-based API that can be exploited by other modules.
Parallel to these proposals, AdPRISMA provides high-level
analytics after aggregation and correlation of traffic packets
or flow records that may be produced by different sources and
methodologies.

Finally, and regarding the trends in virtualization and
software-definition of networks, we point to other recent works
that exploit containers to define flexible monitoring services
that can be instantiated on demand and linked to specific
applications [24]. The modular design of AdPRISMA is
totally aligned with these trends, providing a higher decoupling
of data gathering and analytics. Such approaches can push
network monitoring proposals toward microservice-oriented
architectures [25].

III. SYSTEM ARCHITECTURE AND DESCRIPTION

Along this section, we describe the main functional compo-
nents of AdPRISMA, which are summarized in Fig. 1. In the
current proof of concept implementation, AdPRISMA relies
on flow records to conduct the analysis and modeling of RTT.
To prevent ambiguities, we clarify that hereafter we refer to
TCP flow as a set of TCP packets with a common 4-tuple,
which traverse a particular vantage point in the network during
a specific time interval, as stated in RFC 7011 [26].

Additionally, we synthesize the operation of AdPRISMA in
Fig. 2. First of all, passive measurements are gathered from the
available vantage points. These measurements are aggregated
in AdPRISMA, and correlated to obtain estimations of RTT
and its components—that is, the increments along the network
segments defined by vantage points. After that, the system
fits and selects the parametric model for measurements, and
provides estimations of significant central values—e.g., mean,
median and mode— and other order statistics such as extreme
values. This leads to flexible and adaptable profiles for alerts,
thus providing indicators of performance issues.

A
B

C

Control
node

SYN

SYN-ACK

ΔRTT1 ΔRTT2

AdPRISMA 

Links 

Alerts and notifications 

Passive data gathering 

Fig. 2: Operation of AdPRISMA. Red arrows represent a
sample connection traversing the three monitored points of the
network, distinguishing the different RTT components that are
estimated to detect possible bottlenecks.

In the following, we detail these operations and how they
are implemented within the different functional blocks. For
our description, we follow a constructive approach that first
considers how data are gathered and preprocessed, and then
details how they are exploited to build the models.

A. Data gathering and preprocessing

Flows are collected in several ways. Some examples are
Netflow or IPFIX [26], and other custom tools that send at
least information about when every flow starts. Except for
special cases, these timestamps are taken from SYN and SYN-
ACK segments, which let us have an estimation of RTT
that only requires that both flows of the same connection
are sampled. Regarding performance issues in this process,
we may distinguish two different situations: flow aggregation
in a computing element different to network equipment, and
aggregation inside the networking elements. In the first case,
it is possible to capture traffic up to 40 Gb/s in commodity
hardware—e.g., see [27], [28]. In the case of monitoring
functions within network equipment, performance issues may
appear depending on traffic characteristics and capabilities
of specific hardware, while commercial equipment includes
support for these operations.

AdPRISMA estimates RTT by subtracting the start times
of two TCP flows that share temporal and spatial localities,
and the 4-tuple swapping source and destination addresses and
ports. Then, it correlates equivalent flows: TCP flows sharing
the 4-tuple and time interval but observed in different points
of presence. This process is described in Algorithm 1.

Once RTT is estimated and correlated, the equivalent flow
contains information of the flow in several locations. By
looking at Fig. 2, we observe that RTT in hop j is given
in (1):

RTTj =

N∑
i=j

∆RTTi (1)
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Algorithm 1 Flow aggregation.

1: function getSuperflows(flows. . . )
2: table ← InitializeSuperFlowsTable()
3: for flow in flows do
4: if flow is ip and tcp then
5: if flow.srcPort < flow.dstPort or

(flow.srcPort = flow.dstPort and
(flow.srcIp < flow.dstIp)) then

6: quintuple ← (flow.srcIp, flow.srcPort, flow.dstIp,
flow.dstPort, flow.ipProto)

7: else
8: quintuple ← (flow.dstIP, flow.dstPort, flow.srcIp,

flow.srcPort, flow.ipProto)
9: end if

10: table[quintuple].addFlow(flow)
11: end if
12: end for
13: return(table)

By inverting this linear operator, we obtain an estimation of
the component in the network segment between vantage point
j and j + 1 as in (2):

∆RTTj = RTTj − RTTj+1 (2)

Note that, in contrast to one-way delay measurements, these
estimations do not require clock synchronization, since the
RTTj are absolute values, each one computed with the flow
estimates performed in the same vantage point j with its local
clock as a single reference time. As this process involves a
single clock source, synchronization among different vantage
points is not required.

B. Model selection and adaptation

Due to the stochastic nature of network measurements,
statistical models are needed. In our case, these models are
intended to characterize ∆RTTj behavior, so that frequent
events can be distinguished from anomalies or deviant events.

Apart from how challenging model fitting can result, the
selection of an optimal model to be used emerges as key
matter for systems as ours. For this aim, we have equipped
AdPRISMA with several criteria, summarized in Table II, to
adapt its behavior to a wide range of situations:

1) Coefficient of Determination (R2): A well-known metric
of goodness of fit is the coefficient of determination,
R2. This metric is based on a linear fitting of (xk, yk),
where xk are the order statistics of the sample and yk are
the corresponding quantiles of the model. If the samples
follow the model, there must be a strong linear relation,
which entails that R2 must be close to 1. This is a
necessary but no sufficient condition [29], so although
this method cannot provide a formal proof of goodness
of fit, it can be applied to rule out the parametric models
with the lowest values—i.e., to select that with the
strongest linear relation between the order statistics of
the sample and estimated distribution.

TABLE II: Summary of metrics for model selection.

Metric Description Expression
R2 Only considers fitting. 1 − SSres

SStot

AIC Considers both fitting and
number of parameters. 2(k − log(L̂))

BIC Considers fitting, number of
parameters and sample size. log(N )k − 2 log(L̂))

2) Akaike Information Criterion (AIC): This a statistical
method to compare different models based on two
factors: complexity and goodness of fit. It has the
expression in (3):

AIC = 2(k − log(L̂)) (3)

where k is the number of parameters of the model and
L̂ is the maximum of the likelihood function [30]. It
is remarkable that complexity is just evaluated with the
number of parameters, and this makes it an optimistic
approach.

3) Bayesian Information Criterion (BIC): Related to the
aforementioned AIC, it introduces an additional compo-
nent, which is the number of samples. This is intended
to reduce overfitting in parametric models, so that the
complexity and goodness of fit are balanced [31]. It is
defined as in (4):

BIC = log(N)k − 2 log(L̂) (4)

where N stands for the sample size and the rest of
variables were described in AIC.

These three criteria allow choosing the most appropriate
model based on complexity and goodness of fit, and on the
situation and requirements of the other top-level system that
use this information. For instance, for real-time applications,
simpler models are preferred so the model computation is not
a bottleneck in the monitoring system.

Finally, and taking into account previous discussion about
time-varying KPI distributions, we note that these criteria
provide a basis for adaptive systems. That is, if none of the
goodness of fit metrics above point at a suitable model, obser-
vations could be partitioned in subsets to represent behavior
with several distributions.

C. Aggregation of single-flow estimates

Given the high variance of single-flow-based estimates,
we envisaged an aggregating procedure to better characterize
vantage point modeling. In other words, as AdPRISMA is
intended to provide indicators for issues at network elements
or segments, spurious variance in flow behavior could lead
to biased conclusions. To separate this latter type of deviant
situations from sustained changes in the vantage points’ be-
havior, we have introduced a windowed filtering of single-flow
observations.

We recall that AdPRISMA tries to obtain a model for
the distribution of {∆RTTi} for separate network segments.
Therefore, it requires some stability on the fitted distribution.
In this regard, we detected two main issues that may appear
because of the flows stochastic behavior. On the one hand,
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changes on the underlying distribution can lead to sub-optimal
adjustments—e.g., a sustained change on the expectation of
{∆RTTi}. On the other hand, the convergence to a fair
approximate of the distribution depends on the number of
observations, as stated in the Glivenko-Cantelli theorem [32].

This entails a bias-variance trade-off—i.e., the balance
between how far is the estimated model to the theoretical
distribution, and how the model fits the observations. Ad-
PRISMA copes with this matter by clustering single-flow
observations in time windows. We distinguished two possible
strategies to proceed with this aggregation.

On the one hand, the first strategy is intended to extract a
central representative within each time window. This would
lead to robust models for typical behaviors sustained along
time. This can be accomplished using a projection as in (5):

∆RTT(t) = arg min
x∈R

∑
j∈Jt

(d(∆RTTj, x)), t ∈ T (5)

where t ∈ T represents the time-domain partition, Jt the
index set of {∆RTTi} within each element of the time-domain
partition, and d(·, ·) a distance—e.g., any Lp distance. The
projection can lead to different centroids, such as the median
(L1) or average (L2) for the observations within the interval.
With this, AdPRISMA introduces a variance-reduction pro-
cedure that can attenuate the effect of flow distortions—i.e.,
isolated extreme values do not affect model fitting.

On the other hand, the second strategy pursues the determi-
nation of boundaries for extreme values. This is accomplished
by using order statistics of the observations within each time
window as in (6):

∆RTTp(t) = inf

{
x : p ≤

1
|Jt |

∑
j∈Jt

1[0,x](∆RTTj)

}
, t ∈ T (6)

where t ∈ T represents the time-domain partition, Jt the
index set of {∆RTTi} within each element of the time-domain
partition, 1A(t) the indicator function of set A—i.e. its value
is 1 if t ∈ A and 0 otherwise—and p ∈ [0, 1] indicates the
selected probability level. This approach is useful to define
and model extreme values’ bounds with sensitivity to trends
along time.

Bias control on projections is accomplished with the study
of convergence to a robust empirical estimate of the theoretical
distribution function. Dictyogram [21] offers a basis for quan-
titative criteria to determine whether the time-domain partition
suffices to a reasonable convergence—i.e., if the number of
observations offer a fair representation of the distribution.
Dictyogram maps time-depending study of the distribution of
a flows’ characteristic, such as the ∆RTT, onto the analysis of
the number of flows lying on categories defined in terms of
order statistics of the specific characteristic.

To do so, once the values corresponding to a grid of
probability levels {xk}k=1,...,N are selected, then flows can be
partitioned using the intervals in (7):

Ik =


[0, x1] if k = 1
(xk−1, xk] if 1 < k < N + 1
(xN,∞) if k = N + 1

(7)

These intervals induce a set of time series with the number of
flows within each interval and time window, which we denote
as fk(t) in (8):

fk(t) =
∑
j∈Jt

1Ik (∆RTTj) (8)

Using these series, we can define a relative measure of
variation along time as presented in (9):

d[ fk(t)] =
∑

k | fk(t) − fk(t − 1)|∑
k fk(t)

, t ∈ T (9)

which accounts for the cumulative relative variation of the
number of flows in each category.

Then, bursts in d[ fk(t)] are equivalent to abrupt variations
in the Empirical Cumulative Distribution Functions (ECDFs)
in adjacent time windows. In other words, the stability of this
function offers a quantification of ECDFs’ stability.

D. Summarizing the models: centrality measures

Once a suitable model—any for central or extreme values—
has been fitted to data, computation of some relevant statistical
summaries can be performed. In this light, the mode of a
sample is a prominent centrality measure that returns the most
probable value of a distribution. However, and given that
finding a good parametric model is not always feasible, we
also evaluated alternative methods to estimate the mode.

We have considered methods for the univariate case—see
the analysis in the introduction of [8]—and studied both
indirect (that is, relying on a non-parametric density function
estimation) and direct (essentially, search methods around
intervals where the mode is likely to appear) proposals:

1) Estimation through the Kernel Density Estimator (KDE):
This approach arises from the definition of mode. First, the
KDE, a PDF estimator, is calculated. The mode is estimated
as the maximum of the KDE, as in (10):�Mode(X) = arg max

x∈R
f̂ (x) (10)

While this method can reveal important details about the
density function (e.g., shape or number of modes), it depends
on the convergence of KDE to the actual PDF.

2) Half-Sample Mode (HSM) algorithm: The HSM al-
gorithm is a robust and fast method to approximate the
mode [33]. This algorithm is based on the principle that
“the mode is in the smaller interval that contains half of the
sample”. By applying this idea, we reduce both computations
and assumptions, making this approach a good one to use in
many situations.

IV. EVALUATION

A. Experimental design

The validation of AdPRISMA proof of concept encom-
passed three different stages: first one, with laboratory experi-
ments, where we tested the system in controlled environments;
second and third ones with real data coming from different
enterprise data centers.
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(b) Scatter plot of hops 1 and 2 for ∆RTT.

Fig. 3: Results for the virtual environment. The × shows the intersection of the modes of hops 1 and 2.

TABLE III: Estimated mode of ∆RTT1 and ∆RTT2 in the virtual environment, for each of the methods.

∆RTT1 ∆RTT2
Model Mode R2 AIC BIC Mode R2 AIC BIC
KDE 24.669ms - - - 28.817ms - - -
HSM 24.699ms - - - 28.755ms - - -
Normal 25.125ms 0.811 -54393.423 -54380.389 30.561ms 0.789 -44919.993 -44906.959
Lognormal 24.665ms 0.827 -54897.417 -54884.382 28.893ms 0.830 -45842.766 -45829.732
GEV 24.640ms 0.948 -56638.769 -56615.216 28.951ms 0.976 -48284.294 -48264.742
Burr Type XII 24.650ms 0.956 -56636.163 -56616.612 28.657ms 0.996 -48324.508 -48304.956
α-stable ∼24.650ms 0.970 56625.412 -56599.344 ∼29.098ms 0.272 -48052.870 -48026.801

The first stage was accomplished in an emulation-based ex-
perimental environment1 on top of mininet [34], [35]. Virtual
networks were deployed in commodity hardware (a laptop PC
with a quad-core processor, 8GB RAM) and configured as
follows:

1) Create a linear topology with either routers or switches
as non-terminal nodes. Specifically, we used 6 hops in
our experiments.

2) Use netem and tc in each link to establish a delay
of (10 + 2i) ms, where i is the index of the hop, and a
capacity of 20 Mbit/s.

3) Capture traffic passing through each interface. As our
method only needs TCP packets with the SYN flag
activated, this capture did not exert a significant impact
on the performance of the environment.

4) Configure terminal nodes as traffic generators. We used
these nodes to generate TCP connections that go through
all hops.

In order to make this situation closer to a real network,
background traffic is introduced. Several techniques were used
to generate such load: (i) ICMP ping with random intervals,
(ii) iperf and (iii) traffic generators that rely on TCP
connections to a conventional TCP or HTTP server [36].

After validation, there were no significant divergences be-
tween the measurements when using any of these methods.
Therefore, we configured several nodes to send ICMP packets
of size 1000 Bytes at random intervals in bursts of 500-
1000 packets to simplify the experiments.

In the second stage of experiments, we analyzed flow
records from a data center network with AdPRISMA to assess

1The source code is available at https://github.com/hpcn-uam/mininetplus .

its outcomes in an actual case study. This dataset, hereinafter
denoted Dataset1, has the following characteristics:

• It includes real traffic traces of core and service switches,
load balancers and virtual machines in operation, gath-
ered from an Internet Service Provider (ISP) data center
network.

• It was captured using the management software of two
vantage points, so no special equipment was completely
dedicated to network monitoring.

Due to the presence of some outliers in the second hop of
the dataset, some preprocessing was applied to visualize and
plot the data. As some of the destinations of the connections
are virtual machines, the outliers were likely caused by the
hypervisors managing virtual machines.

Finally, the third experimental stage was intended to assess
the validity of fixed distribution models along longer obser-
vation periods. For this purpose, we consider a second real
dataset (Dataset2) retrieved from an enterprise datacenter, not
analyzed in our previous work [1]. In contrast to Dataset1,
Dataset2 is composed of roughly seven working hours of
traffic captured in two vantage points deployed to monitor
the performance of an in-between operational firewall during
working hours in one day. This network presents heavy traffic
load during the peak hour around 9:00 AM, and some other
minor peak moments during the rest of the day. Whereas
Dataset1 lasted for only some few minutes, this latter case
represents a scenario where single-flow estimates might not
be stable along time. With this, we assessed the principles
that grounded the projection methodology to obtain node
indicators from individual flow estimates—trying to capture
a fair representation of the global node performance.

https://github.com/hpcn-uam/mininetplus
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Fig. 4: Results for Dataset1. The × shows the intersection of the modes of hops 1 and 2.

TABLE IV: Estimated mode of ∆RTT1 and ∆RTT2 in Dataset1, for each of the methods.

∆RTT1 ∆RTT2
Model Mode R2 AIC BIC Mode R2 AIC BIC
KDE 0.1080ms - - - 0.161ms - - -
HSM 0.1124ms - - - 0.167ms - - -
Normal 0.1042ms 0.990 -4754.719 -4747.567 0.7553ms 0.05 -1728.580 -1721.429
Lognormal 0.0861ms 0.905 -4711.002 -4703.850 0.1223ms 0.295 -4093.103 -4085.950
GEV 0.1055ms 0.992 -4750.049 -4739.321 0.1251ms 0.651 -4251.231 -4240.504
Burr Type XII 0.1063ms 0.995 -4754.618 -4743.890 0.1546ms 0.708 -4275.132 -4264.402
α-stable ∼0.1042ms 0.991 -4750.721 -4282.579 ∼0.1568ms 0.970 -4296.883 -4282.579

B. Results in virtual environment

We recall that the delay among nodes was controlled by
netem in the virtual environment, so the double of the
configured delay is expected as theoretical ∆RTT. The effect of
traffic load increases somehow this bound, and thus estimated
∆RTT should be slightly higher.

Fig. 3 shows scatter plots of the RTT and ∆RTT in the
two first hops—there were no significant differences with
measurements in the other vantage points, so we omit the
consideration of every combination for the sake of brevity.
After truncating extreme values to improve visualization, the
scatter plot for the latter shows a concentrated set of points
around the mode with skewed density functions. Additionally,
Table III summarizes the results of modeling in AdPRISMA.

The results show that GEV, Burr Type XII and α-stable
distributions are close enough (R2 > 0.90) to be considered
fair models. Table III illustrates the value of the multi-metric
ranking. According to the R2, the preferred model would the
sophisticated α-stable distribution. However, AIC points to
GEV as optimal model, because its lower complexity (respect
to α-stable distribution) compensates the loss in goodness of
fit. Finally, BIC considers the Burr Type XII as the best model.
These results show how AdPRISMA can be tuned to take into
account and balance several factors (complexity, number of
samples or just goodness-of-fit) depending on the context.

Table III also includes estimated modes, including the
computations with KDE and HSM. In each case, we observe
than the mode is around the theoretical expected values, both
for ∆RTT1 and ∆RTT2 (24 and 28ms, respectively) plus an
additional delay of ∼0.7 ms because of the background traffic.
In this case, it is worth noting that the mean (mode estimator
for the normal model) suffered from variable deviations with

respect the expected value, depending on the skewness of
the ∆RTT distribution. In the case of ∆RTT2, α-stable model
also exhibited high distortions, due to numerical errors during
parameter estimations.

C. Analysis of a data center network

Once we have assessed the accuracy of AdPRISMA, we
inspect the results obtained during the study of a real data
center network. In a similar way to the previous experiments,
we present scatter plots of RTT and ∆RTT in Fig. 4, and
summarize the results of model fitting and mode estimation in
Table IV. Additionally, we include in Fig. 5 the representation
of sample data compared to the three models that provided the
best goodness of fit. Fig. 5a and 5c present the comparison
among the estimated densities and the normalized sample his-
togram, and Figures 5b and 5d depict the corresponding violin
plots with some remarkable order statistics—specifically, the
median as centrality measure, and the 5th and 95th percentiles
for extreme values.

For ∆RTT1 (i.e., measurements in the first vantage point),
Burr Type XII model obtained the highest R2, whereas AIC
and BIC suggest that a normal model is also reasonable and
much less complex. This behavior is coherent with the insights
from Fig. 5b, where Burr Type XII presents higher accordance
with the order statistics of the sample, while the adjusted
normal model fairly fits the sample distribution.

However, the behavior of ∆RTT2 (i.e., measurements in
the second vantage point) is very different. In this case,
the preferred model is the α-stable distribution, with better
scores (either when considering R2, AIC or BIC) for any
other option. The skewness and tail of ∆RTT2 prevent from
considering more simplistic models, with poor accuracy in the
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(a) Histogram and density comparison, ∆RTT1. (b) Violin plots, ∆RTT1. Horizontal lines show percentiles 5th,
50th and 95th of the sample.

(c) Histogram and density comparison, ∆RTT2. (d) Violin plots, ∆RTT2. Horizontal lines show percentiles 5th,
50th and 95th of the sample.

Fig. 5: Comparison among models and observation for ∆RTT1 and ∆RTT2 in Dataset1.

representation of the shape and order statistics of the sample
distribution—see Figures 5c and 5d for illustration.

This situation exposes two important matters. First, this
dataset provides evidences of disparity in the behavior of
RTT components among vantage points. That is, we cannot
assume the existence of a one-fits-all model for network KPIs,
even within the same network. Moreover, our results show
that complex models with outstanding performance in some
situations can fail where simpler ones achieve good results.
Additionally, this analysis shows that RTT components (i.e.,
∆RTT) locate and differentiate how traffic is affected when
traversing each of the vantage points. This fact is useful to
detect situations of local saturation in a network segment that
are not detectable with the aggregated RTT.

D. Analysis of network equipment

Once the short data ranges’ modeling have provided good
results for the characterization of real measurements, we move
forward to the evaluation of its outcomes in longer periods.
To do so, we considered the ∆RTT extracted from Dataset2,
which lasts for several hours and exhibits severe extreme
∆RTT values as a result of the firewall operation.

In this case, the situation is completely different due to
the bursty nature of the single-flow estimates. Fig. 6 shows
this situation with the Complementary Cumulative Distribution
Function (CCDF) of ∆RTT for all the flows in the trace,
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Fig. 6: ∆RTT distribution, single-flow estimates, Dataset2.

showing that the aforementioned models cannot fit either
central or extreme values. In this scenario, projections within
different time windows—1s, 30s, 60s, 300s—can reduce the
variance in centrality measures caused by isolated extreme
values.

As stated before, Dictyogram enables the definition of
quantitative metrics to evaluate ECDFs’ stability along time
and determine whether a window size may be suitable. Fig. 7
shows the cumulative relative variation of Dictyogram for the
aforementioned window sizes, by applying (9). Remarkably,
the lower the window size is, the projection effect will become
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(b) 30s-windows.
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(c) 60s-windows.
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(d) 300s-windows.

Fig. 7: Dictyogram cumulative relative variation in Dataset2. Effect of window size for computation of flows per decile.

less noticeable—i.e. models of projected observations can be
expected to be similar to the single-flow ones.

Hence, robust fitting of central delay values will require
larger windows sizes although either excessively coarse or
fine-grained pre-filtering can obfuscate significant punctual
deviations—see the peaks at 8:00 and 12:30 in Figures 7b
and 7c, which are undetectable in Figures 7a and 7d.

These situations clearly translate into different fitted models
after projection, as shown in Fig. 8. This figure illustrates
that the coarser the projection is, the better the model fits:
both Figures 8a and 8b present cases where few extreme
observations impoverish the fitting, whereas Figures 8c and 8d
display models that fairly fit the data up to 99th percentile.

On the other hand, extreme values’ modeling can be tackled
using other order statistics instead of the median. This is useful
to represent boundaries for network equipment performance
improving the detection of service disruptions. Hereinafter, we
consider the 95th percentile for illustrative purposes and aiming
at the discrimination of the large ∆RTT peaks in our data.
Time-based pre-filtering with the later statistical modeling
allows the model to capture extreme values with a reduction of
over- or under-represented atypical observations. The effect of

window size in this procedure is illustrated in Figure 9, which
shows the convergence to a stable situation with an acceptable
fitting of the extreme values and a progressive reduction of the
weight of observations near central values.

With this, AdPRISMA corroborated its capabilities to reach
a comprehensive yet simple description of how network
elements behave. Remarkably, this description distinguishes
the dynamics of central and extreme values and includes
quantitative criteria to balance variance—i.e., reducing the
effect of bursty measurements—and bias—i.e., considering the
ECDFs’ variability during the projection stage.

V. DISCUSSION

The evaluation of AdPRISMA has illustrated the viability
of monitoring systems with the desirable characteristics that
grounded this work. Our proof of concept and case studies
have exposed some remarkable ideas that improve current
network management state of the art:

1) Passive retrieval of relevant information can be dis-
tributed: AdPRISMA implements a distributed data
gathering strategy, which is useful to improve the scala-
bility of monitoring systems. Then, data aggregation and
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(d) Median ∆RTT, 300s-windows.

Fig. 8: Results for ∆RTT in Dataset2. Time-based aggregation, median projection, with diverse window sizes.

processing provided meaningful contextual information
to characterize the network state comprehensively.

2) RTT components help to locate where performance
issues are most likely to appear: as shown above,
the observations of RTT do not fully characterize the
behavior of RTT components. Therefore, the application
of strategies such as ours can improve the detection and
actuation in case of network issues.

3) Models that are more complex are not necessarily better:
our evaluation and first case study reveal that simpler
models may be better to represent measurements if
complexity is included in the selection criteria. That is,
slight improvements of goodness of fit may not justify
the usage of more sophisticated models.

4) Projection of flow-based estimates can improve the ex-
traction of node-level KPIs: second case study presented
AdPRISMA outcomes when analyzing data lasting for
several hours and in the presence of large peaks in
the RTT component under test. This has exposed a
moral: since single-flow estimates can produce sub-
optimal models with high variance, we need techniques
that reduce the variance and allow us the characterization
of the regular behavior in the vantage point correctly.

However, some practical issues may arise during the oper-
ation of AdPRISMA. For instance, random packet sampling
in vantage points may harm the fitting of models because of
the reduction of mutual observations.

VI. CONCLUSION

We have described AdPRISMA, a network monitoring
system able to provide comprehensive multi-point RTT mod-
eling. It relies on the decomposition of passive RTT values
in components that reflect the state of different network
segments. AdPRISMA is equipped with an automatic model
selection algorithm that takes into account goodness of fit
and complexity to optimize computational cost of analysis.
This fitting also includes projection methods to improve the
extraction of KPI trends from single-flow estimates.

Although experimental results have focused on RTT mea-
surements, our methodology can be extended to other per-
formance indicators measured at multiple points—e.g. delay
variation or jitter at each vantage point. Specifically, Ad-
PRISMA provides a processing engine with a general set of
features for measurements: namely, (a) pre-process, correlate
and cluster the measurements, (b) segment observations using
time or spatial location, and (c) fit models and choose the most
suitable one depending on the situation and trade-offs between
accuracy and complexity. Furthermore, AdPRISMA’s design
and operation make easier the definition of wide monitoring
perspectives, as observations from different vantage points can
be simultaneously considered and correlated.

These features turn AdPRISMA into a promising frame-
work to enrich network management platforms and tools, given
its advantages for the characterization of network KPIs with
high adaptability. For instance, high values can be distin-
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Fig. 9: Results for ∆RTT in Dataset2. Time-based aggregation, 95th percentile projection, with diverse window sizes.

guished from atypical values—as seen in the first case study—,
and projections with different window sizes can be used—as
shown in the second case study—which may be helpful to
improve bias-variance trade-offs. Remarkably, both use cases
were intended to illustrate how these insights can improve
and support the business logic inherent to many management
tasks. Hereby, we believe that our work provides evidences
of AdPRISMA applicability to the monitoring, analysis and
modeling of diverse network KPIs.

In sum, the experimental assessment of our proof of concept
exposed that it provides promising results both in synthetic
scenarios and in field trials with real-world traces gathered
from enterprise networks. Additionally, we have released a
prototype that is freely available to the community.2
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“Anomaly detection in network traffic based on statistical inference and
alpha-stable modeling,” IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 4, pp. 494–509, July 2011.

[12] E. Carisimo, S. P. Grynberg, and J. Alvarez-Hamelin, “Influence of
traffic in the stochastic behavior of latency,” in TMA PhD school, 2017.

[13] K. Papagiannaki, S. Moon, C. Fraleigh, P. Thiran, and C. Diot, “Mea-
surement and analysis of single-hop delay on an IP backbone network,”

https://github.com/hpcn-uam/adprisma


PERDICES et al.: ON THE MODELING OF MULTI-POINT RTT PASSIVE MEASUREMENTS FOR NETWORK DELAY MONITORING 13

IEEE Journal on Selected Areas in Communications, vol. 21, no. 6, pp.
908–921, Aug 2003.

[14] J. A. Hernández and I. W. Phillips, “Weibull mixture model to charac-
terise end-to-end Internet delay at coarse time-scales,” IEE Proceedings
- Communications, vol. 153, pp. 295–304(9), April 2006.

[15] S. Coles, J. Bawa, L. Trenner, and P. Dorazio, An introduction to
statistical modeling of extreme values. Springer, 2001, vol. 208.

[16] P. R. Tadikamalla, “A Look at the Burr and Related Distributions,”
International Statistical Review / Revue Internationale de Statistique,
vol. 48, no. 3, pp. 337–344, 1980.

[17] J. Royuela-del-Val, F. Simmross-Wattenberg, and C. Alberola-López,
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