IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS

Enhancing conditional stalling to boost performance
of stream-processing logic with RAW dependencies

Tobias Alonso*, Gustavo Sutter*”, Sergio Lépez-Buedo

Abstract—Ambiguous read-after-Write (RAW) dependencies
are omnipresent in multiple streaming applications, establishing
hard to optimize bottlenecks. Considering actual input data, these
may rarely be true dependencies. However, the increasingly used
High-Level Synthesis (HLS) compilers must assume the worst-
case scenario, as they rely on static optimizations. Conditional
stalling is a simple yet impactful technique, useful even when
conflicts are common. At the cost of a small area penalty, it allows
improving (in some cases, by several times) the mean throughput
of these systems. In this brief, we describe a high-frequency HLS
implementation of the technique and examine its behavior as a
function of input and architecture characteristics, with the goal
of understanding when to use it and how to optimize throughput.

Index Terms—Hardware design, High-Level Synthesis, Read-
after-Write dependency, runtime optimization, latency masking.

I. INTRODUCTION

ATA dependencies are omnipresent in very diverse ap-

plications. As these can be major obstacles towards
obtaining a high-throughput implementation, their detection
and optimization has been a subject of study for decades [,
[2]. Addresses may be computed at runtime, so it might not
be clear whether a memory operation is dependent on another.
Static analysis (at compile time) may confirm the presence or
not of a conflict, that is, when the addresses of these operations
are equal, so there is a dependency, limiting parallelism. Based
on this evaluation, appropriate optimizations can be applied.
Additionally, the analysis may reveal conflicts in specific loop
iterations. Here, several optimizations have been proposed [3],
[4]], (5], [6], e.g., varying the processing rate as a function of
the induction variable.

However, some dependencies are ambiguous at compile-
time, so if only relying on static analysis, operations must
be scheduled assuming the worst-case scenario. Thus, if the
dependency distance (D D) is the maximum number of cycles
separating the pair of dependent operations that still violates
the dependency in case of a conflict, then the initiation interval
(II) —number of clock cycles the logic needs to be ready
to process a new input or iteration— will be DD + 1. We
refer to this II as Ilp,s. Often, these ambiguous dependencies
do not occur frequently, and thus, the hardware will have a
considerable amount of unnecessary idle cycles.

For half a century, different compile-time, runtime, and
hybrid optimizations have been proposed [2], [7], [8l], [9].
Yet, most of these techniques have not been incorporated in

Manuscript submitted 30" November 2022; revised 9 January 2023;
accepted 10™ January 2023.

The authors are with the High Performance Computing and Network-
ing Research Group, Escuela Politécnica Superior, Universidad Auténoma
de Madrid, Spain. ({tobias.alonso, gustavo.sutter, sergio.lopez-buedo,
jorge.lopez_vergara} @uam.es).

This work was supported in part by the Spanish Research Agency under
the project AgileMon (AEI PID2019-104451RB-C21).

and Jorge E. Lépez de Vergara

current High-Level Synthesis (HLS) compilers [10], [L1], [12],
so, recently, many works have focused on applying them to
HLS design and tools. Bypasses from write to read operations
were proposed in [[13]] to improve scheduling when Read-after-
Write (RAW) dependencies were present. As a result, II can
be reduced down to the processing logic latency, eliminating
the memory latencies from the equation. Although useful for
simple logic, it is not very effective for deeper pipelines.
Moreover, it adds a multiplexer to the data path, which can
have a noticeable frequency penalty, particularly for wide paths
and high-frequency designs.

In [14l], a conditional stalling (CS) scheme was imple-
mented in a source-to-source compiler to improve loop pipelin-
ing, which was later used in [15]]. This technique, inspired by
pP architecture, consists of running a pipeline at full rate when
no conflicts are detected, while stalling the appropriate stages
until those that appear are solved. In this way, ﬁsys < Ipase,
where ﬁsys is the average II of the optimized system.

Squash and replay on top of bypassing was proposed in [16]]
to deal with data dependencies. This technique, used in super-
scalar PP, consists of speculatively executing an operation and
if a conflict is later detected, the dependent operations are
suppressed and the pipeline is restored to the stage it was when
the violation occurred to replay all operations. When there is
a conflict, this technique incurs in penalty cycles, which is not
the case for CS, and also, it increases the complexity of the
logic, which favors frequency penalties.

We also notice that CS is very suitable for stream processing
applications (e.g. network packet processing, data compres-
sion, data analytics). For these, high throughput is typically
sought, and RAW dependencies are common. Yet, in the
work in [[14] (previously mentioned) only a modest throughput
improvement (approx. 7.5% on average) was observed for the
chosen applications over long input sequences, even showing
a performance decrease in some cases. Although these results
are input dependent, they are in part explained by a 23% (on
average) increase in the clock period caused by the stalling
control logic, as noticed in that work. Also, processing logic
is pipelined ignoring the input characteristics, resulting (as we
will show) in lower throughput.

In this brief, focusing on stream processing applications
and with the aim to generate results that can be extrapolated
to other applications and implementations, we analyze the
technique as a function of the data and logic characteristics,
rather than for particular cases. In addition, we describe how
to implement CS with no or negligible frequency penalties
and low area overhead. Finally, we provide models that could
be employed by compilers to take design decisions. Example
systems, as well as the developed simulation and mathematical
models, are available through a public repository [17]].

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See |http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8632-9146
https://orcid.org/0000-0001-8820-5956
https://orcid.org/0000-0002-0815-7921
https://orcid.org/0000-0002-4057-4688
http://www.ieee.org/publications_standards/publications/rights/index.html

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS

II. IMPLEMENTATION OF CONDITIONAL STALLING

If the address generation logic is not dependent on the
processing logic intermediate or final outputs, the dependency
control logic can be implemented as a preceding stage. Fig. [I]
shows a C++ HLS description of such a stage. In the following,
we assume to be optimizing a RAW dependency. WaitList
stores in list the write addresses of the data units to
process—namely, packets—sent to the output in the last DD
cycles. For each packet, to determine whether there is a
conflict, the stage checks if the read address matches any of
the addresses in 1ist. If there is conflict, instead of sending
it to the processing stage, the packet is kept until no conflict
is detected. During these cycles, bubble packets (flagging they
must not be processed) are sent to the output, ensuring proper
synchronization with the processing stage even if there is
intermediate storage between them. Alternatively, if there is
a tight coupling between these stages, the first stage may not
produce any output (the second one must use non-blocking
reads). Given that the stalling stage creates a dependency-free
input pattern, the processing module (logic to optimize) can
be pipelined as if no dependencies exist, achieving a better II
for a given pipeline depth, which we call II,,, ideally equal to 1
to maximize throughput. For HLS implementations, this only
involves adding a compiler directive (or pragma), indicating
that there are no dependencies associated with the memory
accesses within DD cycles.

To verify the performance of the stall stage, a group-
wise float64 accumulation example was developed using Vitis-
HLS 2021.1 targeting Xilinx Z7020-1 and ZU7EV-2 chips for
different DD and address bit widths (AW). This example was
chosen because it allows us to test the technique for a deep,
high-performance pipeline. Two versions of the system were
implemented, one with the conflict detection logic merged
within the processing logic, as in [14], and the other with
the logic in a separated stage. As DD and AW grow, so does
the depth of the conflict detection logic, which may end up
becoming the critical path. Note that, in the former version,
the processing loop operations (e.g., the exit condition) get
entangled with the conflict detection logic (e.g., to determine
if a new packet needs to be consumed, we need to verify
both the loop exit condition and whether the current iteration
presents a conflict), and thus, the critical path is worsened.
Conversely, if a preceding stage evaluates the conflicts, the
processing stage only needs to check for a new valid input.

As a result, the latter reaches a higher clock frequency
(+30% and +40% higher for Z7020 and ZU7EV resp), as
shown by table I} Note that the frequency improvement will be
a function of the complexity of the loop control operations. In
this case, we have evaluated the simple and very common

TABLE I
STALL STAGE HLS IMPLEMENTATION PERFORMANCE COMPARISON.

Part Max. freq | DD =8 AW=8 | DD = 16 AW=16
BRAM Stage Merged | Stage Merged
77020-1 400 200 1507 1657 1257
ZU7TEV-2 637 635 450! 575! 395!

Frequencies are in MHz and rounded to the closest multiple of 5.
BRAM were configured in read-first mode.
! Critical path is located within in conflict detection logic.

template <typename T, int DD> struct WaitList {
T list[DD];
Waitlist(T init val){
for (int i= ©; i<DD; i++) list[il= init val;

void update(T val){
for (int i= DD-1; i=0; i--) list[i]=list[i-1];
list[0] = val;

bool is in 1ist(T val){
bool found=false;
for (int i= 0; i<DD; i++) found |= list[i]==val;
return found;
}
+i
void stall stage(FIFO<pkt t> &in, FIFO<pkt t> &out){
#pragma HLS PIPELINE II=1
static WaitlList<wait id t,DD> waitlist(EMPTY);
static pkt t packet;
static bool conflict = false;
if (!conflict) packet = in.read();
conflict = waitlist.is in list(packet.read addr);
packet.valid = conflict? 0:1;
out.write(packet);

waitlist.update(conflict?EMPTY:packet.write addr);
}

Fig. 1. Stalling stage HLS code.

case where a fixed number of samples is processed. As
a reference, the maximum clock frequency for the on-chip
memories (BRAMSs) is also shown in the table. In the case
of the 77020, we attribute the larger frequency gap to the
slower FPGA fabric of this low-end device. Considering the
achieved frequencies, we think most systems would experience
a low or negligible frequency impact when adding the stalling
stage in the pipeline. Also, the stage requires few resources
(function of DD and AW). For DD = 8 and AW = 8, approx.
300 LUTs and 600 flip-flops were consumed, which represents
0.55% of the available resources in the low-end Z7020 device.
This increases to 0.75% (400 LUTs and 800 flip-flops), for
DD = 16 and AW = 16. Of course, area overhead is expected
from pipelining the address generation and/or processing logic.

As done in super-scalar uP, to mitigate or eliminate the
frequency penalties observed for wide addresses, they may
be hashed and then compared to detect conflicts. High-
performance hardware hashes exist, so their utilization should
not have frequency penalties. Of course, a lower number of
operation identifiers (cardinality, C) decreases performance,
but it might not be noticeable for high C' (see section [[V).

Although these results are compiler-dependent, they do
provide useful information about how to maximize throughput
when implementing this technique within either a source-to-
source or HLS compiler. Additionally, regarding designing
with current HLS compilers, it shows that providing hints in
the code about the architecture we aim for is still useful.

III. MODELING CONDITIONAL STALLING

The ﬁsys of a system using CS is a function of the
address distribution (data dependent) and DD (architecture
dependent), rather than the algorithm itself. For example, con-
sider image-processing applications using pixels as addresses.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS

Scanning 8-bit artificial images has (in general) a much higher
probability of obtaining single-pixel-value bursts, producing
lots of conflicts, compared to 16-bit raw photographic images.

The analysis is focused on two addresses distributions: the
uniform and the Zipfian. The former may emerge naturally,
while in other cases it results by design, e.g., in context-
based data compression, contexts are sought to be equally
probable to improve compression [[18]. Zipf-like distributions
also have been observed to characterize classes in different
applications [19]], e.g., web requests [20], and serves as a
skewed probabilities example. To limit the extension of the
analysis, we restrict it to in sifu updates (read address = write
address), more common in stream processing. Results also
apply to i.i.d. stateless address distributions.

A. 1l distribution for DD =1

Given a block of W packets with addresses coming from a
uniformly distributed source with cardinality C', we want to get
P(Ily). When DD = 1 and the pipeline is full, there are two
packet acceptance sequences: the new packet is accepted in the
next cycle (Sp), or it waits one cycle and it is accepted in the
following one (S7). It is easy to see that the number of S7 (/V7)
~ B(n=W,p =). Given that the block takes W — Ny +
N -2 cycles to be processed, P (Il = cycles/W) = P(N; =
cycles —W). From this, it follows that Ilyys = 1+p =1+ .

For the Zipf and other stateless distributions, an approxi-
mated model can be obtained setting the binomial parameter
p =P, =" P(a)?, where A is the address set and P, is
the mean collision probability between two addresses.

B. Hidden Markov model for DD > 1

A Hidden Markov model (HMM) can capture the behavior
for general DD. It is only presented for the uniform case,
given that it allows a simplification that makes the size of the
model manageable. In general, without this simplification, we
consider it simpler to rely on simulations or approximations.

1) Model: As observed in fig. |2} each state captures the
occupation pattern of the pipeline —in a binary manner, bubble
(0) or packet (1)— after having accepted a packet. Then, states
are named ignoring the first stage occupation (always full) and
the size of the state set is 2°P~1, For each new packet, there
is a state transition that depends on whether there is a conflict
or not and, if there is one, with which stage. Additionally,
associated with each transition, there is an observed property,
which is the number of cycles required to accept the new
packet (instantaneous Ilgy). The model is characterized by the
transition (T"M) and emission (E M) matrices, which contain
the probabilities of a state transition and of emitting an II,
given the current state.

2) Automatic model generation: Each state has as many
conflict transitions as it has packets in the pipeline, plus one
non-conflict transition. If the new address conflicts with the
one in the stage = € [0..DD-1], then the emission will be IT =
DD+1—x and state + (state+2PP~1) /2!, The probability
of that conflict to occur is P, = % If there are multiple
transitions between a pair of stages, the transition probability
is the sum of all the individual probabilities. If there are no

II=1 —>
1I=2
1I=3
II=4 -

Fig. 2. Hidden Markov model example for DD = 3 and C > 3.

conflicts, then II = 1 and the new state is computed as before.
Finally, notice that depending on C, there are forbidden states
and transitions given that there might not be enough different
addresses to fill the pipeline. A complete implementation can
be found in the public repository. As an example, equation
shows T'M and EM matrices for DD = 3 and C' > 3.

00 01 10 1 Lt

; P, 2.7, 2.P, 00

TM = 0 P, 0 P, 01

1-Pc 1-2.P,. 0 0 10

0 0 1-2.P, 1-3.P, 11

(1

00 01 10 11 II
1-Pc 1-2.Pc 1-2.Pc 1-3.Pc\ 1
EM | 0 P, 0 P | 2
0 0 P, P, 3
P, P, P, P, 4

Using the HMM matrices, we can compute, for example,
Iy =1[1...(DD+1)]- EM -, where the first row vector
contains the value of the II emissions and 7 is the steady state
distribution column vector (obtained from T°'M). Notice that
EM - 7 is the steady distribution of ILgys.

3) Approximation of the Il distribution for general block
size: The distribution of Il for any block size W and DD,
is not trivial. However, we can obtain a good approxima-
tion modeling the system as a stateless one with only two
possible packet acceptance sequences: Sy (No conflict) and

S1 (the average conflict sequence). It is not hard to see that
DD—1

P(Sy) = ZfzzDD_2+1 w; and Sy emits Iy = 1. S; emits

the mean conflict cycles, II; = (Ilys—P(Sp))/P(S1), where
P(S1) = 1-P(Sp) and Il is given by the HMM. In this way,
the number of S; in the W block (/NV7) follows a binomial
distribution and P(Ilys = cycles/W) = P(Ny = el
(notice that cycles =W — Ny + N7 -1I; € R).

C. A simple Tlsys approximation

Although exact for the uniform distribution, the HMM
requires somewhat compute-intensive operations. There are
occasions where faster methods are preferred, despite not
being exact, and we also would like to have estimations for
other distributions. We obtain a simple formula (exact for
DD = 1) by assuming that the probability of having a full
pipeline (no bubbles) is equal to 1. As a result, we get:
Iy < F5(DD, P.) = 1+(DD?*+DD)-P,/2. This is an upper
bound because the full state has the highest conflict probability.
The bound will be tighter as P.- DD grows smaller, given that
the probability of this state gets closer to 1.

As Tl increases, a linear approximation, Fy (DD, P,), fits
very well the data (see fig. . Then, we may set an ﬁsys above
which Fj(-) is used instead of F(-). Finally, using F5(-) to
estimate F} (-) coefficients, we obtain:

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS

DDy = DDy, = (/8- (Mim=1)/ P + 1)-1)/2
b=0F,/0pp(DDijm, Pc) = (2 DDy, + 1) - P2

(2)
_ {DD < DDyim, 1+ (DD? + DD) - P, /2

gy ~ _
e DD > DDy, Wiy +b- (DD-DDyjpp,)

In general, an I, = 1.35 results in good approximations
(see ﬁg.E[). For a more conservative approach (higher, pes-
simistic Il estimations), higher II;;;, may be used.

IV. PERFORMANCE ANALYSIS
A. Il improvement for a given processing latency

Fig. 4] compares Iy, with ﬁsys when CS is applied and
the processing module is pipelined to achieve II, = 1 without
changing the frequency or D D (the processing latency remains
constant). This is shown for both distributions and different
cardinalities (C'). The Zipf parameter s is set to 1.8 to evaluate
a very skewed distribution (P(1) = 0.6 for an 8-symbol
source), in contrast to the uniform. Notice that, even for low
C and very skewed distributions, Il improves significantly.
Naturally, as P, decreases (larger C and/or smaller s), the
throughput improvement increases.

In general, e.g., due to the nature of the problem or
the available buffer size, we need to understand the ﬁsys
behavior for packet blocks of a given size. The worst-case
performance for non-deterministic address sequences is Ilpye,
which occurs for single-address bursts. Of course, as the block
size increases, this sequence becomes rarer. To illustrate this,
fig. |4|also shows, using violin plots, the PDF of ﬁsys for blocks
of 1000 operations, where the 99™ percentile (delimited in the
fig. by a horizontal line) is noticeably better than Ilp,e.

B. Evolution of throughput with increasing pipeline depth

For feed-forward circuits (there are no feedback paths), we
can increase throughput using a deeper pipeline to reduce the
clock period. However, there are many technology-dependent
inefficiencies associated with this process (work imbalance,
increased clock skew, additional routing delays, etc.) [21] [22}
Chapter 2]. A simple model to estimate the resulting clock
period for S > 1 stages would be: P = Tippnp/S + T, where
T':omp 1s the period for the single-stage logic and T}, the sum
of pipelining penalizations, assumed approximately constant.
In fig. B the FF curve shows the normalized throughput
estimation for a feed-forward circuit with T, = 8ns and
Tpp = 0.9ns as a function of logic stages. These constants fit
the behavior of the example system in section

A dependency creates a feedback loop in a module. If
the dependency loop logic is deepened to increase frequency

& .e- C=2

g C=4

4] .- C=8
.g Lo C=16

T e C=32
< 4 C=64
E C=128
- e o C=256
0 5 10 15 C=512
Dependency distance <=+ C=1024

Fig. 3. Relative error of Eq. [2| with II;;;, = 1.35 for random distributions.

4
6w Ipase l L
+ ~7(1.8,4) o + x
5. % ~Z(1.8,8) . > e
* ~7(1.8,1024) ' - - —
v ~U@) = i v
A< ~ue - = g ¥
- o ~U(16) - - o .
—_ <
3+ 4 ~U(64) - - v —
~U(1024) = - = .
2 l i = —_ = * °
—_— v
N v =
iR 2 oo e e T T
0 1 2 3 4 5 6 7 8

Dependency distance

Fig. 4. Tlsys violin plots (99" percentile delimited) for blocks of 1000 packets
for uniformly and Zipf with s = 1.8 distributed addresses.

® FF
2 407 % ~u12)
35 A ~U128)
* ~U(32)
3.0 ¢ ~U(@®)
~7(1.8,512)
257, ~7(1.8,8)
2.0- Baseline

1.5+

Normalized rate (samples/

1.0 !
0.5+

Update logic stages

Fig. 5. Throughput estimation as the number of pipeline stages of the
processing module increases for uniformly and Zipf distributed addresses.
For comparison, FF curve shows the feed-forward circuit behavior.

(using only static optimizations), the II increase will more than
compensate the period reduction, worsening throughput. The
baseline curve shows this effect, where, to ease the comparison
with FF, the same T, and T}, are used and the write and
read latencies are set to 0 and 1, resp, then DD = stages—1.

Conversely, when CS is applied, increasing the dependency
loop pipelining has the potential to improve throughput be-
cause Il increases slower. The rest of the curves in fig. E]
are confined between FF and baseline curves, drawing near to
the former as the conflict probability decreases. Although in-
creasing pipelining eventually decreases performance (conflict
penalty increases faster than frequency), the curves show that
most systems can be improved optimizing the pipeline depth.

C. Trade-off between Il and area

We have only considered using a processing module with
II, = 1, but it might not be achievable, e.g., due to resource
contention. For the simpler case where the processing logic
consumes both packets and bubbles at a II, rate, the system
behaves as if DD’ = [DD/IL,] scaled by IIj,. Tlhen, the logic
] " sys(DD/) : HP’
where IL,(-) gives Il for a given DD and II, = 1.

Moreover, controlling II, enables different throughput-area
trade-offs. Particularly for deeply pipelined modules and
skewed distributions, increasing II, can have a small impact on
ILys, while the area reduction may be significant as it increases
the possibility of sharing resources and simplifies the control
logic. Additionally, it may reduce pipelining penalties.

may only track DD’ addresses and Il = II

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS

V. DISCUSSION AND CONCLUSION

For systems with 1-cycle-latency memories and single-
stage processing, bypassing (data-forwarding) will generally
be more suitable as it assures an II = 1, although it may
have some frequency penalties. However, as the dependency
distance DD (function of the logic and memory latencies)
increases, bypassing gets less and less effective. It is precisely
here where conditional stalling, CS, has a clear application. As
illustrated by fig. |4 the larger DD, the greater the potential
performance increase CS can offer. This improvement is also a
function of the address distribution, but II will never be worse
than the baseline. In addition, these techniques can be used
together, using bypassing to mask the write latency (reducing
DD) and CS to partially mask the remaining latencieﬂ

Additionally, CS enables throughput improvements by tun-
ing the processing pipeline depth. However, notice that CS
can be a double edge sword (see fig. [5)), since this technique
magnifies the diminishing returns of pipelining. Thus, we may
end up with a higher area and a slower system. To actually
increase throughput, knowledge of the application and of
how frequency varies with the number of stages is necessary.
Nowadays, obtaining the latter is easier than it was in the
past, given that an HLS compiler can automatically iterate over
increasingly deeper pipelines and gather timing data (pre- or
post-RTL-synthesis estimations, or post-RTL-implementation).

Then, when the address distribution, the mean collision
probability (P,), or a representative input vector is available,
mathematical and/or simulation models can be employed to
optimize the logic depth and compute the required buffers for
a given confidence level. Of course, the distribution might not
be stable or very little information about it might be available.
In these cases, taking a pessimistic approach, assuming a
very skewed distribution might be a viable option. A naive
attempt to limit pipelining would be that if DD >= C, the
logic depth should not be increased. However, this is not very
useful as, even with zero pipelining penalties, the throughput
increase after this point is almost null. As future work,
we would like to study the implementation of an adaptive
system with multiple processing units of varying depth (and
clock frequency), choosing at runtime the higher throughput
alternative according to the collected conflict statistics.

Finally, CS enhances portability and functional robustness.
A design may ignore a dependency because it is not true given
known input data properties, but if these properties change or
the design is reused in another system, it might fail. CS ensures
that designs will always be functionally correct.

To summarize, in this brief, we have studied the conditional
stalling technique, showing that, even in adverse cases, it can
significantly enhance performance, particularly when unavoid-
able latencies are present in the dependency path. Moreover,
depending on conflict rates, it can allow improving mean
throughput using deeper pipelines. Finally, this optimization
could be integrated within HLS compilers, which can use the
models here provided to make design decisions, resulting in
better quality of results and increased designers’ productivity.

!For CS to effective, slow memories have to queue enough requests without
significantly increasing the latency (which also has to be bounded to use CS).

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Comput. Surv., vol. 26, no. 4,
p. 345420, dec 1994.

P. P. Chang, W. Y. Chen, S. A. Mahlke, and W.-m. W. Hwu, “Com-
paring static and dynamic code scheduling for multiple-instruction-
issue processors,” in Proc. 24th Annual International Symposium on
Microarchitecture, ser. MICRO 24. New York, NY, USA: Association
for Computing Machinery, 1991, p. 25-33.

M. Griebl, P. Feautrier, and C. Lengauer, “Index set splitting,” Int.
Journal of Parallel Programming, vol. 28, no. 6, pp. 607-631, 2000.
A. Morvan, S. Derrien, and P. Quinton, “Efficient nested loop pipelining
in high level synthesis using polyhedral bubble insertion,” in 2011
International Conference on Field-Programmable Technology, 2011, pp.
1-10.

J. Liu, S. Bayliss, and G. A. Constantinides, “Offline synthesis of online
dependence testing: Parametric loop pipelining for hls,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, 2015, pp. 159-162.

J. Liu, J. Wickerson, S. Bayliss, and G. A. Constantinides, “Polyhedral-
based dynamic loop pipelining for high-level synthesis,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 37, no. 9, pp. 1802-1815, 2018.

R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM Journal of Research and Development, vol. 11, no. 1,
pp. 25-33, 1967.

A. Nicolau, “Run-time disambiguation: coping with statically unpre-
dictable dependencies,” IEEE Transactions on Computers, vol. 38, no. 5,
pp. 663-678, 1989.

D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and
W.-m. W. Hwu, “Dynamic memory disambiguation using the memory
conflict buffer,” in Proc. Sixth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASP-
LOS VI. New York, NY, USA: Association for Computing Machinery,
1994, p. 183-193.

Catapult HLS. [Online]. Available: https://eda.sw.siemens.com/en-US/
ic/catapult- high-level-synthesis/hls/c-cplus/

Intel High Level Synthesis Compiler Pro Edition: Reference
Manual. [Online]. Available: https://www.intel.com/content/www/us/
en/docs/programmable/683349/2 1-4/pro-edition-reference- manual.html
Xilinx, Vitis High-Level Synthesis: User Guide Version v2021.1, Xilinx.
J. Rohde, K. Miiller, and C. Hochberger, “Improving hls generated
accelerators through relaxed memory access scheduling,” in 2020 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2020, pp. 74-81.

M. Alle, A. Morvan, and S. Derrien, “Runtime dependency analysis for
loop pipelining in high-level synthesis,” in 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2013, pp. 1-10.

S. Derrien, T. Marty, S. Rokicki, and T. Yuki, “Toward speculative loop
pipelining for high-level synthesis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp.
4229-4239, 2020.

S. Dai, R. Zhao, G. Liu, S. Srinath, U. Gupta, C. Batten, and Z. Zhang,
“Dynamic hazard resolution for pipelining irregular loops in high-level
synthesis,” in Proc. 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA *17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 189-194.
Publication repository. [Online]. Available: |https://github.com/
hpcn-uam/hls-conditional-stalling

M. Weinberger, G. Seroussi, and G. Sapiro, “The loco-i lossless image
compression algorithm: principles and standardization into jpeg-ls,”
IEEE Trans. Image Processing, vol. 9, no. 8, pp. 1309-1324, 2000.

R. T. Fernholz and R. Fernholz, “The universality of zipf’s law
for time-dependent rank-based random systems,” arXiv preprint
arXiv:1707.04285, 2017.

M. A. Kader, E. Bastug, M. Bennis, E. Zeydan, A. Karatepe, A. S.
Er, and M. Debbah, “Leveraging big data analytics for cache-enabled
wireless networks,” in 2015 IEEE Globecom Workshops (GC Wkshps),
2015, pp. 1-6.

S. L. Harris and D. M. Harris, “7 - microarchitecture,” in Digital Design
and Computer Architecture, S. L. Harris and D. M. Harris, Eds. Boston:
Morgan Kaufmann, 2016, pp. 384-484.

K. Olukotun, L. Hammond, and J. Laudon, Chip multiprocessor ar-
chitecture: techniques to improve throughput and latency. Morgan &
Claypool Publishers, 2007, vol. 2, no. 1.

https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://eda.sw.siemens.com/en-US/ic/catapult-high-level-synthesis/hls/c-cplus/
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://www.intel.com/content/www/us/en/docs/programmable/683349/21-4/pro-edition-reference-manual.html
https://github.com/hpcn-uam/hls-conditional-stalling
https://github.com/hpcn-uam/hls-conditional-stalling

	Introduction
	Implementation of conditional stalling
	Modeling Conditional Stalling
	IIsys distribution for DD=1
	Hidden Markov model for DD>=1
	Model
	Automatic model generation
	Approximation of the IIsys distribution for general block size

	A simple mean IIsys approximation

	Performance Analysis
	 IIsys improvement for a given processing latency
	Evolution of throughput with increasing pipeline depth
	 Trade-off between IIsys and area

	Discussion and Conclusion
	References

