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Abstract α-stable distributions are a family of proba-

bility distributions found to be suitable to model many

complex processes and phenomena in several research

fields, such as medicine, physics, finance and network-

ing, among others. However, the lack of closed expres-

sions makes their evaluation analytically intractable,

and alternative approaches are computationally expen-

sive. Existing numerical programs are not fast enough

for certain applications and do not make use of the

parallel power of general purpose graphic processing

units (GPGPUs). In this paper, we develop novel par-

allel algorithms for the Probability Density Function

(PDF) and Cumulative Distribution Function (CDF) –

including a parallel Gauss-Kronrod quadrature–, quan-

tile function, random number generator and maximum

likelihood estimation of α-stable distributions using
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gies, Escuela Politécnica Superior, Universidad Autónoma
de Madrid, Spain
E-mail: guillermo.julian@estudiante.uam.es,
{jorge.lopez vergara, ivan.gonzalez, luis.depedro}@uam.es

Javier Royuela-del-Val, Federico Simmross-Wattenberg
Image Processing Lab, E.T.S.I. Telecomunicación, Universi-
dad de Valladolid, Spain
E-mail: {jroyval, fedesim}@lpi.tel.uva.es

OpenCL, achieving significant speedups and precision

in all cases. Thanks to the use of OpenCL, we also eval-

uate the results of our library with different GPU ar-

chitectures.
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1 Introduction

The Central Limit Theorem is a well-known mathemat-

ical result, which states that the standardized sum of

a sufficiently large number of independent, identically

distributed random variables with finite variance and

mean will resemble a normal (Gaussian) distribution.

This theorem can be generalized for random variables

with infinite moments: the resulting distribution is then

called an α-stable (or just stable) distribution (Gne-

denko and Kolmogorov, 1968). Its name comes from an-

other interesting property (Nolan, 2015): the fact that,

given X1, X2 independent copies of a random variable

X with stable distribution, then

aX1 + bX2
dist.
= cX + d (1)

for some constants a, b, c > 0 and d ∈ R.

These properties make stable distributions a suit-

able model for many events in different fields that nat-

urally exhibit such high variability rates that they can-

not be adequately modeled using simple statistical dis-

tributions. For example, in medicine they are used for

segmentation of brain matter in Magnetic Resonance

Imaging (MRI) (Salas-González et al., 2013) and as a

model for ultrasound denoising (Achim et al., 2001); in

physics they can be used to study and predict atomic

http://dx.doi.org/10.1007/s11222-016-9691-9
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behavior (Bardou, 2002); in finance they are a common

model for asset pricing (Mittnik and Rachev, 1993);

and their use in networking allows detection and un-

derstanding of traffic events and patterns (Simmross-

Wattenberg et al., 2011; Li et al., 2015).

However, a problem arises when these distributions

are used in environments where quick results are needed,

such as in medical imaging, High Frequency Trading

(HFT), or monitoring of multiple network links. It is

complex to deal with α-stable distributions since they

lack closed expressions for their Probability Density

Function (PDF) and Cumulative Distribution Function

(CDF) and require complicated, computationally ex-

pensive approximations and numerical methods, such

as those we will present later, to be applied in solving

any of the aforementioned problems. The problem wors-

ens when these functions must be evaluated many times

in a time-restricted scenario, such as when estimating

parameters in real time, for instance, to monitor net-

work traffic behavior or to render echographic images

from a medical probe.

Throughout this paper, we develop a novel approach

to compute α-stable distributions using OpenCL (Stone

et al., 2010), considerably improving speed and allowing

massively parallel computation of the PDF and CDF

functions. In turn, these two functions will allow us

to parallelize calculations of the quantile function (also

called CDF−1) and the estimation of parameters. For

completeness of the library, a parallel generator of α-

stable distributed random numbers has also been im-

plemented, based on the method proposed by Weron

and Weron (1995).

Our purpose is to allow the use of these distribu-

tions in time-constrained environments where existing

solutions such as John Nolan’s STABLE program1 or

libstable2 (Royuela-del-Val et al.) are not fast enough;

or where GPU cards are available to offload work from

the CPU.

To achieve our goal, we have developed a paral-

lel implementation of the Gauss-Kronrod quadrature

rule (Kronrod, 1965) for numerical integration, and an

implementation of a maximum likelihood estimator based

on contracting grid search algorithms (Hesterman et al.,

2010) that has been modified using asynchronous

OpenCL commands to maximize the use of all the com-

ponents in the pipeline: given that our algorithm is not

memory intensive, the data transfer costs are almost

negligible compared with the OpenCL kernel setup costs.

1 Available at J.P. Nolan’s website: http://academic2.

american.edu/~jpnolan.
2 Available at Javier Royuela-del-Val’s website: http://

www.lpi.tel.uva.es/~jroyval/.

The scheduling of the different kernels is left to the

OpenCL driver implementation.

We have used the OpenCL framework for the imple-

mentation in order to broaden the platforms where our

software can run: not only GPUs from different vendors

(such as NVIDIA or AMD) but also new parallel plat-

forms such as Alpha Data’s FPGA boards (Alpha Data,

2013) or Intel’s Xeon Phi co-processor (Intel, 2013).

However, this paper is only centered in the application

running on GPUs, leaving tests on other platforms as

future work.

In spite of using OpenCL, a device-agnostic lan-

guage, and maintaining same code for every platform,

we have carefully observed memory layout and con-

currency issues in our algorithm so that performance

in readily available devices, specifically NVIDIA and

AMD GPUs, is maximized wherever possible.

Results are very promising, with our software, avail-

able at GitHub3, being several times faster than lib-

stable, the current fastest implementation (Royuela-del-

Val et al.), while keeping precision and accuracy.

The rest of the paper is structured as follows: next

subsection discusses related work. Section 2 analyzes

the equations and mathematical algorithms that will

be used for the computation of the distribution. Sec-

tion 3 shows the translation from those equations to an

implementation in OpenCL using parallel algorithms.

Finally, we expose our results in section 4, with a cor-

responding performance analysis, and our final conclu-

sions in section 5.

1.1 Related work

Given their usefulness in several different knowledge

areas, several approaches for the computation of α-

stable distributions have been developed. Most are cen-

tered on giving a complete implementation, such as

John Nolan’s STABLE based on the numerical equa-

tions from the same author (Nolan, 1997), a framework

for MATLAB (Liang and Chen, 2013) or another for

the R software (Wuertz and Maechler, 2015).

Other implementations have centered in the per-

formance of the methods. A first approach consists of

using alternative methods to evaluate the equations:

for example, Menn and Rachev (2006) approximate the

Fourier inversion integral by means of the Simpson rule

for a subset of the parameter space, Robinson (2014)

uses interpolation formulae for log-stable distributions

– these are α-stable distributions with maximum skew-

ness to the right – and Lombardi (2007) and Koblents

3 https://github.com/hpcn-uam/libstable-opencl

http://academic2.american.edu/~jpnolan
http://academic2.american.edu/~jpnolan
http://www.lpi.tel.uva.es/~jroyval/
http://www.lpi.tel.uva.es/~jroyval/
https://github.com/hpcn-uam/libstable-opencl
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et al. (2016) use Monte Carlo methods for parameter es-

timation. A second approach is the use of parallelism,

such as libstable (Royuela-del-Val et al.), which uses

thread parallelism; or the software proposed by Belo-

vas et al. (2013), which uses OpenMP to improve speed

just on the maximum likelihood estimator. However, we

have not found in the literature any development that

accelerates all computations of this type of distribution

using general purpose GPUs and maintaining a high

level of accuracy.

Additionally, the implementation of the α-stable al-

gorithms is difficult in parallel environments if we want

to go beyond the simple parallelization of point com-

putations, which is the trivial and common approach

with other probability distributions where the PDF and

CDF have simpler expressions. Only parallel implemen-

tations for fast calculation of more complicated func-

tions, such as the inverse Poisson CDF for large num-

bers (Giles, 2015) or for a parameter estimation algo-

rithm via maximum likelihood (Hesterman et al., 2010),

can be found in the literature.

In our case, we face not only complex equations, but

also the need to calculate an integral by means of nu-

merical methods. Adaptive quadrature methods such

as Gauss-Kronrod are not well suited for parallel im-

plementations due to their recursive nature: alternative

methods such as (Thuerck et al., 2014) or (Arumugam

et al., 2013) have been developed to bypass this issue.

However, the use of dynamic, efficient subdivisions of

the integration interval does not necessarily result in

improved performance due to restrictions on the avail-

able resources, workgroup layout and to the increased

computations required by these algorithms.

Our implementation takes a simpler approach, mak-

ing use of the parallel capabilities of the GPUs to com-

pute a high-order quadrature with a fixed number of

subintervals. In cases where precision is not good enough,

we resort to a quick check that considerably improves

the precision, as we will explain in section 3.1.4.

2 Background

In this section we expose the equations used for the

computation of α-stable distributions and the numeri-

cal integration algorithm that will be used.

2.1 Equations for α-stable distributions

α-stable distributions are modeled by four parameters.

α ∈ (0, 2] is the stability index, β ∈ [−1, 1] the skewness

parameter, σ > 0 the scale parameter and µ ∈ R the

location parameter. σ and µ are explicitly not named

standard deviation and mean of the distribution, de-

spite being the common notation for these two con-

cepts, because for α-stable distributions, standard de-

viation only exists for α = 2, and the mean is only

defined for α > 1.

One of the main problems of α-stable distributions

is the lack of closed formulas for the probability density

function (PDF) and cumulative distribution function

(CDF). However, the equations devised by Nolan (Nolan,

1997) allow the numerical computation of the PDF and

CDF. These equations use a re-parameterization of the

location parameter µ to µ0, where both values are re-

lated by (2):

µ =

{
µ0 − β tan

(
απ
2

)
σ α 6= 1

µ0 − β 2
πσ lnσ α = 1

(2)

The equation for a standard4 α-stable distribution

(i.e., with location parameter µ = 0 and scale parame-

ter σ = 1) denoted by X are the following:

fX(x;α, β) =



α

π(x− ζ)|α− 1|

·
∫ π

2

−θ0
hα,β(θ;x) dθ x > ζ

Γ (1 + 1
α ) cos θ0

π(1 + ζ2)
1
2α

x = ζ

fX(−x;α,−β) x < ζ

(3)

FX(x;α, β) =



c1(α, β) +
sign (1− α)

π

·
∫ π

2

−θ0
e−gα,β(θ;x) dθ x > ζ

1

π

(
π

2
− θ0

)
x = ζ

1− F (−x;α,−β) x < ζ

(4)

4 Evaluations for general distributions are calculated shift-
ing and scaling the parameter x as usual.
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where

ζ(α, β) = −β tan

(
πα

2

)
(5)

θ0(α, β) =
1

α
arctan

(
β tan

(
πα

2

))
(6)

Vα,β(θ) = (cosαθ0)
1

α−1

(
cos θ

sin
(
α(θ0 + θ)

)) α
α−1

· (7)

· cos(αθ0 + (α− 1)θ)

cos θ
(8)

gα,β(θ;x) = Vα,β(θ) · (x− ζ)
α
α−1 (9)

hα,β(θ;x) = gα,β(θ;x)e−gα,β(θ;x) (10)

c1(α, β) =


1

π

(
π

2
− θ0

)
α < 1

1 α > 1

(11)

However, the equations have a discontinuity when

α = 1. This is solved by changing the expressions to

fX(x; 1, β) =


1

2|β|
e−

πx
2β

∫ π
2

−π
2

h1,β(θ;x) dθ β 6= 0

1

π(1 + x2)
β = 0

(12)

FX(x; 1, β) =



∫ π
2

−π
2

e−g1,β(θ;x) dθ β > 0

1

2
+

1

π
arctanx β = 0

1− FX(x;α,−β) β < 0

(13)

with

g1,β(θ;x) = e−
πx
2β V1,β(θ) (14)

h1,β(θ;x) = V1,β(θ) · e−g1,β(θ;x) (15)

V1,β(θ) =
2

π

( π
2 + βθ

cos θ

)
e

1
β (

π
2 +βθ) tan θ (16)

This change does not imply a discontinuity: it has al-

ready been demonstrated (Nolan, 1997) that this piece-

wise definition of the PDF and CDF is continuous.

From these expressions, it is clear that there is room

for acceleration using parallel algorithms to integrate

the expressions in (3), (12), (4) and (13): numerical inte-

gration algorithms rely on the evaluation of the integral

at different points, with the evaluations being indepen-

dent. Instead of relying only on one thread to do the

evaluations serially, multiple threads can be scheduled

so each one evaluates one point.

2.1.1 Gauss-Kronrod quadrature

As said before, equations (3) and (12) can be calculated

using numerical integration algorithms. However, not

all algorithms are appropriate for this problem. Adap-

tive algorithms that rely on several iterations to achieve

a precise value suffer from warp divergence issues, and

the cost of the multiple serial evaluations of the inte-

grand will also affect performance. An alternative ap-

proach is (Thuerck et al., 2014), where the authors de-

vise the ∂2 heuristic algorithm to generate integration

intervals, avoiding recursion in the GPU while achiev-

ing the desired precision by the user.

This approach is, however, not appropriate for this

situation. As exposed in the previous section, the func-

tion to be integrated changes with x, the point in which

the PDF or CDF is evaluated at. Thus, in order to cal-

culate the PDF or CDF at n points, it would be needed

to apply n times the ∂2 heuristic, which brings in a sig-

nificant performance loss, given the cost of the function

evaluation.

Our solution requires the use of static quadrature

rules without iterations, avoiding thus the cost of sev-

eral serialized calculations of the integrand. It might

use more intervals than the ∂2 heuristic algorithm, but

as the GPU workgroups can only be of certain sizes, the

reduction in the used number of intervals would not nec-

essarily imply a reduction in the resources used. Given

that the integral to calculate the probability distribu-

tions is one-dimensional, the number of required inter-

vals is not high and thus, specialized algorithms that

dynamically create the necessary subdivisions, such as (Aru-

mugam et al., 2013), are not needed and their extra

performance cost can be avoided.

For the integration of each subinterval we have cho-

sen Gauss-Kronrod quadrature, as it yields accurate re-

sults and error estimates which are quick to compute

and do not rely on the different results between itera-

tions.

Gaussian quadrature states that∫ b

a

f(x) dx ≈
n∑
i=1

wi · f(xi) (17)

for a certain set of points xi ∈ Xn and correspond-

ing weights wi ∈ Wn. The Gauss-Kronrod quadrature

rules (Kronrod, 1965) are a common variant where a

first set of n nodes is chosen and then extended with

n+ 1 additional points.

Thus, an evaluation of the function in the set of

2n + 1 Gauss-Kronrod nodes yields both a high order

estimate for the integral and an error estimate. Listing 1

shows pseudo-code for a traditional implementation of

the Gauss-Kronrod quadrature.
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function GK Integrate(f , a, b)
gauss← 0
kronrod← 0
center← b−a

2

for i = 0; i < 2n+1
2

; i+ + do
x← X [i]
v ← f(center + x)
if x 6= 0 then . Avoid evaluating twice at the 0

node
v ← v + f(center− x)

end if

gauss← gauss + v · WG[i]
kronrod← kronrod + v · WK [i]

end for

result← kronrod
error← |kronrod− gauss|
return result, error

end function

Figure 1 Pseudo-code for a serial implementation of the
Gauss-Kronrod quadrature rule, where X is the set of nodes
and WG,WK the corresponding weights for the Gauss and
Kronrod rules. WG[i] is zero if i is only a Gauss-Kronrod
node.

3 Proposed algorithms and implementation

In this section, we will show the algorithms used to

parallelize the PDF and CDF evaluations (section 3.1

and section 3.2), including an approach for simultane-

ous calculation of both in section 3.3, and also the al-

gorithms for the quantile function and parameter esti-

mation (sections 3.4 and 3.5). A discussion of limita-

tions imposed by the hardware and the framework is

presented in section 3.6.

For the sake of brevity, we do not we do not de-

scribe the implementation of our parallel random num-

ber generator, based on the work developed by Weron

and Weron (1995), as it is a straightforward paralleliza-

tion.

3.1 PDF evaluation

The evaluation of the α-stable PDF requires to ascer-

tain the value of an integral by numerical methods. The

approach presented in libstable (Royuela-del-Val et al.),

using the Gauss-Kronrod quadrature, is very well suited

for general purpose GPUs if the iterative subdivision al-

gorithm is replaced by a fixed partitioning that returns

precise enough results: given the cost of the integrand

evaluation and the parallelization capabilities of GPG-

PUs, it is more efficient to calculate a large number of

points at the same time than calculating less points but

iteratively.

In order to use the full capabilities of the GPU pro-

cessor, the workload has been scheduled in the best pos-

sible way to reduce memory access times and improve

parallelism. The memory layout avoids any memory

bottlenecks: all the threads access memory positions ei-

ther sequentially, when storing the partial results, or by

broadcasting when retrieving constants from the global

memory space. The algorithm does not suffer from di-

vergent threads, as all of them execute the same algo-

rithm and go through the same branching paths.

Our algorithm is divided in three sections:

section 3.1.1 explains the workgroup layout chosen to

take advantage of the GPU capabilities to calculate the

integral, the procedure for the evaluation of the func-

tion at the necessary points is detailed in section 3.1.2

and section 3.1.3 shows how the final calculations are

done, avoiding large performance hits due to memory

sharing and synchronization issues. Finally, some pre-

cision issues found during the development and the so-

lutions implemented are discussed in section 3.1.4.

3.1.1 Workgroup layout

First, the global arguments (parameters of the distribu-

tion, pre-calculated values and indicators of the equa-

tions that should be used) are transferred to the GPU

constant memory space (NVIDIA, 2009a). The points

to be evaluated are sent to global memory space. The

two buffers to hold the results (Gauss and Kronrod

sums) are created and their addresses passed as argu-

ments to the kernel.

Once the memory layout is ready, the kernel is en-

queued to compute the numerical integration in the

GPU. The integration interval in (3) is divided in a fixed

number of subintervals. The Gauss-Kronrod quadrature

algorithm is then applied to each one of these intervals.

This approach allows a natural two-dimensional,

static workgroup layout for the GPU (see fig. 2): each

local workgroup is responsible for the evaluation of a

single point, and in that workgroup the (i, j) item will

calculate the jth Gauss-Kronrod point of the ith subin-

terval. With this notation, there will be I subintervals,

J Gauss-Kronrod points and a total of I ·J threads per

workgroup.

The Gauss-Kronrod quadrature method involves two

identical sets of operations on each point: calculation of

the value where the function should be evaluated, eval-

uation of the function to integrate and then multiplica-

tion by the corresponding weight of the point. The only

difference between the Gauss and Kronrod quadratures

is the weight assigned to each point (which will be 0 in

points not pertaining to the Gauss quadrature).

This, together with the fact that Gauss-Kronrod

quadrature is symmetrical, allows the extensive use of

vector operations to improve performance in the kernel

and reduce the number of instructions.
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Workgroup layout

S
u

b
in

te
rv

a
ls

(I
)

Gauss-Kronrod points (J)

a b

Numerical integration
1 point per thread

(i, j)

a b

Numerical integration
2 points per thread

Figure 2 Workgroup layout and integration strategy. Each one of the I rows in the workgroup maps to a subdivision of the
integration interval. The jth column integrates evaluates the integral at the jth Gauss-Kronrod point of the corresponding
subinterval. When using multiple points per thread, one thread evaluates the function at more subintervals. Not pictured for
simplicity: each point is actually two points located the same distance from the subinterval center, as the Gauss-Kronrod rule
is symmetric.

3.1.2 Point evaluation procedure

The two values where the function will be evaluated are

obtained as a vector named x

x =

(
a

a

)
+ l ·

(i+ 0.5

i+ 0.5

)
+

(
abscissa[j]

−abscissa[j]

) (18)

where i is the subinterval index, j is the index of the

point to be calculated, abscissa is an array holding the

offsets for the Gauss-Kronrod quadrature points (stored

in constant memory space), a is the beginning of the

whole integration interval and l is the length of the

subinterval, calculated as l = L
I with L the length of

the entire integration interval.

Equation (18) first calculates the center of the subin-

terval and then adds the corresponding Gauss-Kronrod

abscissas, which are symmetric with respect to the ori-

gin (in this case, the origin is the subinterval center).

Finally, the result is properly scaled and translated to

fit with the integration interval.

The integrand is then evaluated at those points us-

ing OpenCL’s vector operations, thus obtaining two re-

sults with just one call to the function to be integrated.

Both results are added and the resulting sum is multi-

plied by the vector of weights, of which the first coordi-

nate is the Kronrod quadrature weight and the second

one is the Gauss weight. The final result of the eval-

uation is a vector with the values of both Gauss and

Kronrod quadrature rules at the given point.

Our software allows the use of larger vectors to by-

pass limitations on the size of workgroups (see sec-

tion 3.6 for an explanation) and to increase the num-

ber of subdivisions of the integration interval. We can

substitute two-dimensional vectors by four or eight-

dimensional vectors to evaluate, respectively, two or

four subintervals per thread, thus doubling or quadru-

pling the subdivisions of the integration interval and

obtaining more precise results. In this case, the vector

x from (18) would be calculated instead as

x =


a
...

a

+l·




I · 0 + i+ 1

2

I · 0 + i+ 1
2

...

I(n− 1) + i+ 1
2

I(n− 1) + i+ 1
2

+


abscissa[j]

−abscissa[j]
...

abscissa[j]

−abscissa[j]




(19)

with n the number of points being evaluated per thread

(1, 2 or 4) and I the second dimension of the workgroup

size.

The main change in (19) is that, apart from using

wider vectors (size 2n), we assign to each thread n dif-

ferent subintervals. For example, using 16 subdivisions

with 2 points per thread, threads with subinterval in-

dex i = 1 would integrate points in the subintervals 1
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and 9. It is also easy to see that, when n = 1, (19) is

equivalent to (18).

A downside of this implementation is the fact that

some hardware may serialize the vector operations if

the vectors are too wide. In this case, instead of exe-

cuting one instruction per operation with vectors of size

8, it may execute two instructions, each one computing

4 components of the vector. This issue may result in

noticeable performance impact depending on the hard-

ware and the points per thread used.

In our tests, we have found that a total of 16 sub-

divisions with two points per thread achieves the best

balance between performance and precision. Increasing

the number of points per thread affects performance

without meaningful precision improvements. The re-

sults discussed in section 4 use this setting by default.

3.1.3 Final result calculations

Once all the points have been evaluated, a local mem-

ory barrier command is issued to synchronize all the

threads in the local workgroup, and the sum of the val-

ues of every point is calculated using a reduction in

O(log2 n) operations that maximizes thread usage and

memory coalescing. Local memory barriers are used as

the synchronization mechanism between threads, as it

is the most efficient way to complete the sums.

This reduction is first applied to the points in each

subinterval and then to the partial sums of each subin-

terval. A detailed pseudo-code algorithm is presented

and explained in listing 3.

Require: subinterval index i,GKpoint p
for o = points count/2; o > 0; o >>= 1 do

if p < o then
sums[i][p]← sums[i][p] + sums[i][p+ o]

end if

barrier(local)
end for

for o = subintervals count/2; o > 0; o >>= 1 do
if i < o then

sums[i][p]← sums[i][p] + sums[i+ o][p]
end if

barrier(local)
end for

Figure 3 Pseudo-code for the reduction that returns the fi-
nal results, where >>= is the shift and assignment operator.
First, the threads for each interval perform a parallel sum
of all the results of each point, stored in a two-dimensional
array sums of dimension subintervals count × points count.
Partial results are also stored there. At the end of the loop,
the values sums[i][0] will contain the Gauss-Kronrod results
for each subinterval. The procedure is then repeated with
those results.

3.1.4 Precision issues when x→∞ or x→ ζ
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Figure 4 Behavior of the function hα,β(θ;x) from (10), for
α = 1.2 and β = −0.3. For these values, ζ ≈ −0.923: it can
be seen that when x tends to that value, h behaves like a
singular peak.
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Figure 5 Behavior of the function hα,β(θ;x) from (10), for
x = 22, α = 0.3 and β = 0.9. In this case, there is a sharp in-
crease at the beginning of the interval that must be integrated
carefully to reduce the error.

The integrand function hα,β comes closer to a singu-

lar peak when x→∞ or when x→ ζ (see fig. 4). This

behavior reduces the precision of the numerical method

considerably.

In the special case of x→ ζ, the specific formula for

x = ζ from (3) can be used when x is in a small interval

around ζ. However, this is not enough as the intervals

where the approximation is valid are not big enough,

and neither solves the precision problem when x→∞.

In previous implementations (Royuela-del-Val et al.),

the proposed solution to the problem is the determina-

tion of that peak using numerical methods and the us-

age of different integration methods around that peak.

However, we have found a more suitable approach for

our implementation.

As GPGPUs are highly parallelizable, the cost in

cycles of increasing the number of nodes of the Gauss-

Kronrod quadrature is almost negligible and only af-

fects the cycles invested in the summation of all the re-

sults. But as the summation is done in O(log2 n) time,
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we can effectively double the degree or the number of

subintervals with minimal performance impact.

Thus, high-order Gauss-Kronrod quadrature formu-

las are used to reduce considerably the impact of the

peaks without needing additional measures.

However, when α > 1, increasing the points used

in Gauss-Kronrod may not be enough to achieve the

desired precision or is not even possible: GPGPUs limit

the size of local workgroups, so there is a ceiling in the

number of points that can be used (this issue is further

discussed in section 3.6).

This could be considered as a failure of the single-

iteration approach to the numerical integration stated

at the beginning of section 3.1, with a possible solution

being the use of adaptive algorithms such as (Thuerck

et al., 2014) in these difficult parameter cases. However,

we have solved this problem without resorting to such

complex and costly approaches: we use simple checks

based on knowledge of the specific integrand that do not

affect performance significantly and achieve the desired

precision.

After obtaining the Gauss-Kronrod result for each

interval, the first thread of each subinterval (i.e., the

(i, 0) thread) checks if its contribution is greater than

a certain threshold (experimentally chosen in order to

achieve enough precision). This way, the interval in

which the integrand hα,β has significant values is de-

tected.

If this contributing interval is too small (again, the

threshold has been determined experimentally in order

to achieve the desired precision), it will be an indicator

of the presence of a sharp peak. A reevaluation is then

triggered and the local workgroup reevaluates the inte-

grand in that contributing interval, increasing precision.

This process can be repeated again if the contributing

interval is still too small.

This method avoids large performance hits in evalu-

ations in which the single pass evaluation is good enough

(there is only an additional local memory barrier, the

rest is achieved using atomic operations), and returns

precise results when the integrand comes close to a sin-

gle point; all of this while maximizing GPGPUs parallel

capabilities.

Another precision issue happened with small values

of the stability index (α < 0.3). As shown in fig. 5, the

integrand increases abruptly at the beginning of the

interval and decreases the precision of the numerical

integration. The method of contributing subintervals

exposed above does not detect this issue. In order to

improve the accuracy in these cases, we force instead a

reevaluation in the beginning of the integration interval.

3.2 CDF evaluation

The evaluation of the CDF uses the same algorithms

presented in the previous section. Because of the simi-

larity of the equations for the PDF and the CDF (see

(3), (4) and (12), (13)), the code used is exactly the

same: a flag decides whether the function to compute

will be the PDF of the CDF. Depending on the flag,

the code will compute accordingly the multiplication

factors of the integral and, in the case of the CDF,

the number to be added after the integration is com-

pleted (c1(α, β) or 1− c1(α, β) depending on whether x

is greater or less than ζ).

The integrand of the CDF evaluation is better be-

haved than the PDF one, so no additional measures had

to be taken to achieve significant precision.

3.3 Combined PDF and CDF evaluation

As explained above, an advantage of the equations used

for the evaluation of the PDF and CDF ((3), (4) and

(12), (13)) is that they are similar. The integrand of the

PDF is the same as the one of the CDF except for one

additional operation, for all values of α.

This allows computing simultaneously the PDF and

CDF values, a feature that will become especially use-

ful when computing the quantile function (section 3.4).

However, our implementation of this dual mode (called

PCDF throughout the code) is that error estimates are

not generated, as those would increase the complexity

of the code, and would subsequently affect performance.

The evaluation code is exactly the same as the one

for the PDF and CDF evaluations. The difference is

that, when calculating the integrand at the necessary

abscissas as explained in section 3.1.2, the code does not

return a pair with the values of the Gauss and Kron-

rod quadrature nodes (that is, the integrand multiplied

by the corresponding Gauss or Kronrod weights), but

instead returns a pair with the values of the Kronrod

quadratures for the PDF and CDF. The rest of the

procedure is the same, with the kernel returning two

arrays. The host code will detect that a PCDF evalua-

tion has been issued and will return the two arrays to

the client code.

3.4 Quantile function evaluation

Given a probability p, the quantile function Q(p) spec-

ifies the value for which the probability of the random

variable being less than or equal to this value is equal

to the given probability. Formally, that is expressed as

Q(p) = inf
x∈R

{
p ≤ FX(x)

}
(20)
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where FX is the CDF. When FX is continuous, as it

is in the α-stable case, the quantile function can be

simplified as the inverse of the CDF: Q = F−1X .

There is not a closed analytic formula for a gen-

eral quantile function. Thus, it requires a numerical in-

version of the CDF function: given a probability p for

an α-stable distribution with parameters α, β, µ, σ, the

equation

φ(x) = FX(x;α, β, µ, σ)− p = 0 (21)

has to be solved for x to obtain the result.

To find that root and obtain the desired results we

have used the Newton method. This algorithm uses

knowledge of the derivative of the function, achieving

fast rates of convergence. The successive points are cal-

culated using the following equation, beginning with an

initial guess x0:

xn+1 = xn −
φ(xn)

φ′(xn)
(22)

with the error estimation calculated as

ε =

∣∣∣∣xn+1 − xn
xn+1

∣∣∣∣ (23)

The algorithm iterates until the desired accuracy is

achieved. The fast convergence of the Newton method

allows us to move completely the algorithm to the GPU.

The implementation of the algorithm uses the same

code that would be used in a regular implementation for

common programming languages. Each workgroup cal-

culates one quantile value to allow parallel calculation

of multiple quantiles. The first thread of each work-

group determines the initial guess using interpolation

on precalculated values, obtains its corresponding PDF

and CDF values and calculates the next guess and er-

ror estimate. These steps are repeated until the error

estimate is lower than the desired accuracy. When the

iterations stop, the thread saves the result and error es-

timate in a global array: once all the workgroups finish

their evaluations, the kernel will finish and control will

return to the host code.

The differences with a regular Newton algorithm im-

plementation come from the fact that the calculation of

PDF and CDF values requires multiple threads with the

workgroup layout from section 3.1.1. Thus, the point

where the PDF and CDF are going to be evaluated is

distributed to all the threads of the workgroup using

local memory and a single barrier. The error estimate

is transmitted in the same way, so all the threads of the

workgroup finish at the same time: when the guess has

reached enough precision.

3.5 Parameter estimation

Once the algorithm for the parallel evaluation α-stable

PDF is implemented, an immediate application is pa-

rameter estimation. Given the cost of the PDF evalu-

ation, maximum likelihood estimators have not been

a practical option, and alternative approaches based

on other estimators have been proposed (Koutrouvelis,

1981; McCulloch, 1986).

However, these methods are iterative so their paral-

lel implementation is not straightforward. On the other

hand, the presence of a PDF evaluation algorithm in

GPGPUs facilitates the implementation of a parallel

maximum likelihood estimator for the four parameters

of the distribution. As the likelihood function of α-

stable distributions has a single maximum and evolves

smoothly (DuMouchel, 1973), the estimator is consis-

tent. Thus, this has been the parameter estimation method

finally implemented.

The search algorithm has been chosen to maximize

the use of the parallel processor. A contracting grid

search algorithm (Hesterman et al., 2010) evaluates mul-

tiple points per iteration (see fig. 6), so it is well suited

for GPGPUs.

α

β

α

β

α

β

Figure 6 An illustration of the contracting grid algorithm to
find the maximum of the log-likelihood function.

Before using the contracting grid search algorithm

a first rough estimate is calculated using McCulloch’s

estimators. They calculate quickly a first estimate that

can be used to reduce the search space.

This first estimate is used as the center of the grid.

Our software sets the grid width and calculates the set

of points in the parameter space where the likelihood

should be evaluated. These evaluations are also done

with OpenCL in the GPU in order to improve perfor-

mance.

The point with the maximum likelihood is set as

the new center of the grid and a new set of points is

calculated with a narrower grid. This continues until

the grid is smaller than the error tolerance or when the

maximum difference of likelihood between the points of

the grid is small enough.

The use of McCulloch’s as initial estimations impose

a limitation on our MLE, which is the impossibility to
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fit stable data with α < 0.6: McCulloch’s estimators are

not valid in that region. Without initial estimations, a

search in the whole space of parameters (specifically,

location and scale parameters) is not feasible and our

ML estimator will not return meaningful results.

To further improve performance with regards to the

work of Hesterman et al. (2010), OpenCL kernel trans-

fer and setup costs are reduced using asynchronous com-

mands and multiple queues. Consequently, all the com-

ponents in the pipeline (host CPU, PCI memory trans-

fer bus and GPU processor) are used simultaneously,

reducing waiting times and speeding up execution.

Another possibility that our software can use to im-

prove performance is to rely on McCulloch’s estimators

for the parameters µ and σ, and setting the grid estima-

tion only for α and β. On each iteration, the estimation

of µ and σ is recalculated with the new α, β values to

further improve precision.

3.6 Hardware limitations

During the development, we have faced hardware lim-

itations that forced us to change the initial approach.

The main inconvenience has been the limitation on the

size of workgroups.

OpenCL workgroups are not of unlimited size: the

maximum number of local work items depends on the

hardware and the kernel complexity. In order to work

with multiple points and multiple dimensions, we had

to reduce the number of subdivisions, a solution that

caused some precision issues, as discussed in

section 3.1.4. Even with this fix implemented, the limit

on the number of subdivisions is still present so, de-

pending on the used GPU model, the precision can de-

crease significantly if enough workgroups are not avail-

able. Dynamic parallelism (i.e., spawning new kernels)

was not possible because it is not supported in the

OpenCL versions we have used.

These hardware limitations also discarded a single-

kernel, all-GPGPU approach for parameter estimation,

having to resort to multiple command queues. The for-

mer approach would have required even bigger work-

groups that would not have been supported by our test

hardware.

Although OpenCL is presented as a framework to

develop parallel algorithms independently of the un-

derlying hardware, we have found that the hardware

actually matters. For example, our software can’t com-

pile the kernel when used on OpenCL platforms without

support for double-precision numbers, or does not work

on some CPUs due to hard limits on the size of work-

groups, and requires capabilities not available in some

platforms, such as atomic operations or vector opera-

tions.

4 Results

In this section, we expose the results obtained by our

developed software and compare them with libstable

as the current fastest serial implementation (Royuela-

del-Val et al.). We describe our testing devices in sec-

tion 4.1, show the results for the PDF evaluation, CDF

evaluation, quantile function and parameter estimators

in sections 4.2, 4.3, 4.5 and 4.6 respectively. Addition-

ally, in section 4.7 we analyze the performance param-

eters of our code to find the bottlenecks.

As we explained at the beginning of section 3, for

brevity we do not provide detailed results of the straight-

forward parallelization of the random number generator

algorithm proposed by Weron and Weron (1995). As ex-

pected, we checked that it that performs better than the

serial counterpart (the GNU Scientific Library imple-

mentation (Gough, 2009)) for enough random numbers

generated (in our tests, 1000 or more).

4.1 Testing devices and environment

We have tested our application in three different GPUs,

named as follows:

– TeslaM : A NVIDIA Tesla M2090 GPU, Fermi ar-

chitecture, with 6GB of GDDR5 memory and 512

cores at 1.3 GHz. It offers a memory bandwidth of

177 GB/s.

– TeslaK : The most advanced card in our test setup,

an NVIDIA Tesla K40 card, Kepler architecture,

targeted for high performance servers and worksta-

tions. This card has 12 GB of GDDR5 memory and

2880 cores at 745 MHz. The memory bandwidth is

288 GB/s.

– AMD : An AMD/ATI Radeon R9 290X GPU, GCN

architecture, with 4GB of GDDR5 memory and 2816

cores running at 1 GHz. The offered memory band-

width is 352 GB/s.

Table 1 shows the relevant performance details for

each GPU card. The data has been retrieved from the

specifications of the vendors (NVIDIA, 2012, 2013; AMD,

2013). The local memory bandwidth (referred to as

“shared memory” in NVIDIA documentation) for the

whole device has been calculated from those specs and

from the corresponding computing architectures

(NVIDIA, 2009b, 2014; AMD, 2012) as follows:

local bw = bank bw·banks / SU· cores

cores / SU
·core clock
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(24)

where the bank bandwidth is expressed as the num-

ber of bits that can be read/written per processor. The

scheduling unit (SU, referred to as “wavefronts” in

AMD’s architectures and “warps” in NVIDIA’s) are

groups of 32 and 64 cores in NVIDIA and AMD ar-

chitectures, respectively.

All the devices ran the same code, which is the main

advantage of using OpenCL. The OpenCL version used

has been 1.1 in the NVIDIA cards, as it does not offer

drivers for newer versions of the framework. The AMD

card used OpenCL version 2.0. This has to be taken into

account when evaluating the results, as the newer im-

proved versions offer better performance and precision.

The only activated option for the compilation of the

OpenCL kernel is -cl-no-signed-zeros. The compil-

ers used are the ones included in the respective SDKs:

CUDA 6.0 in the NVIDIA cards and AMD APP SDK

2.9 in the AMD case.

The comparisons have been made with libstable run-

ning on an Intel Core Xeon E5-2630 v2 with 12 cores

running at 2.60 GHz, compiled with GCC 4.7.2 with op-

tions -O3 -march=native and linked against Fedora’s

official build of the GSL library, version 1.15.

4.2 PDF evaluation

α β Abs. error Rel. error Precision

0.25 0 5.11 · 10−14 8.64 · 10−11 1.14 · 10−9

0.25 0.5 5.96 · 10−14 1.05 · 10−10 1.31 · 10−9

0.25 1 5.29 · 10−18 2.52 · 10−16 3.26 · 10−17

0.5 0 1.36 · 10−19 2.32 · 10−16 4.2 · 10−17

0.5 0.5 1.08 · 10−19 2.06 · 10−16 6.43 · 10−17

0.75 0 2.71 · 10−19 9.22 · 10−16 3.77 · 10−10

0.75 0.5 2.71 · 10−19 8.71 · 10−16 6.72 · 10−10

0.75 1 4.13 · 10−18 4.05 · 10−16 1.24 · 10−10

1.25 0 5.58 · 10−16 1.26 · 10−11 1.07 · 10−16

1.25 0.5 4.48 · 10−16 1.23 · 10−11 1.43 · 10−11

1.25 1 2.78 · 10−17 1.81 · 10−15 1.81 · 10−11

1.5 0 2.37 · 10−16 2.96 · 10−11 1.05 · 10−16

1.5 0.5 2.13 · 10−16 2.93 · 10−11 1.09 · 10−16

1.5 1 2.17 · 10−19 4.11 · 10−16 7.59 · 10−12

Table 2 Precision results when x ∈ (−100, 100) for the PDF
of a standard (µ = 0, σ = 1) stable distribution.

Despite certain limitations imposed by the hardware

(see section 3.6), table 4.2 shows that in the interval

(−100, 100) our software achieves reasonable precision

in comparison with the software libstable (Royuela-del-

Val et al.): absolute error is small, both calculated as the

difference with libstable and as the difference between

Gauss and Kronrod quadrature rules, nearing machine

precision in some instances. Relative error committed

is also small, below 1.05× 10−10 in every instance.

The error is measured as the median of the abso-

lute differences between the result of our software and

the one of the libstable software (Royuela-del-Val et al.)

taken as reference. The precision is the estimated rel-

ative error committed, calculated from the difference

between Gauss and Kronrod quadrature rules.
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Figure 7 Performance of the PDF calculation in different
GPU cards in comparison with the results obtained with lib-
stable on an Intel Core Xeon CPU, depending on the number
of points evaluated. Hardware details are exposed at the be-
ginning of section 4.
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Figure 8 Variation of the performance depending on the
parameters. The software was tested with 500 points in a
NVIDIA Tesla M2090.

Regarding performance, the parallel PDF evalua-

tion considerably improves performance when the num-

ber of points to be evaluated is significant enough (e.g.,

a libstable execution can be faster when evaluating just

one point). In our tests, 1000 point batches showed a

significant speedup: from 0.031055 ms per point

(32200.93 point evaluations per second) with libstable
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Global
bandwidth

(GBps)

Local
bandwidth

(GBps)

Core clock
(GHz)

Core
count

Compute
units

PCIe bus

Tesla M 177 2662 1.300 512 16
PCIe 2 x16

(8GB/s)

Tesla K 288 17165 0.745 2880 90
PCIe 3 x16

(15.75 GB/s)

AMD 352 2816 1.000 2816 44
PCIe 2 x16

(8GB/s)

Table 1 Specifications for the test devices.

Millisec. / point Points per sec.

Tesla K 0.003 333333.33
Tesla M 0.0042 238095.24

AMD 0.0028 357142.86
Libstable 1 thread 0.0311 32200.93

Libstable 12 threads 0.0072 138850.32

Table 3 Summary of the different PDF performance mea-
sures for 1000 points.

to 0.003 ms per point or 333333.33 point evaluations

per second on a NVIDIA Tesla K40 card, which makes

it 10.35 times faster.

Our solution is even faster than libstable using 12

threads on an Intel Core Xeon CPU, that despite show-

ing significant performance improvements with regards

to the single threaded tests (0.007202 ms per point or

138850.32 points per second with 1000 points) is still

slower than our solution running both in the Tesla K40

and in the Tesla M2090, as the last one achieves 0.0042

ms per point (238095.24 points per second).

Fig. 7 shows the evolution of performance depend-
ing of the number of points being evaluated in differ-

ent hardware, and table 3 shows the exact performance

measures for 1000 points. It can be observed that there

are not further performance gains after a certain num-

ber of points: this is caused by the fact that GPUs

cannot absorb an unlimited number of workgroups; in-

stead, the workgroups are separated in batches and

their execution is serialized.

An interesting result is the comparison between the

NVIDIA cards and the AMD Radeon R9 290X GPU.

First, we have to take into account that the AMD card

does not support workgroups as big as the NVIDIA

ones, so we had to halve the number of integration

subintervals. To account for the decrease in precision,

we doubled the number of points per thread, so our soft-

ware used vectors of 8 doubles in each thread, a change

that decreases performance.

Even with this handicap, for 1000 points, the AMD

GPU achieves significant performance speedups (0.0028

ms per point and 0.0028 points per second), taking only

93.33% of the time of the high-end NVIDIA Tesla K40

computing card, and running faster than the multi-

threaded libstable on an Intel Core Xeon CPU.

Possible reasons for the comparable speeds on such

different cards (the AMD is a gaming card, while the

Tesla are specialized for high-performance computing)

could be the high memory bandwidth in the AMD and

the upgraded OpenCL version (AMD supports OpenCL

2.0, while NVIDIA only has OpenCL 1.1 drivers), which

includes improved memory coalescing features and bet-

ter overall performance. It has also been shown (Fang

et al., 2011) that NVIDIA cards show better perfor-

mance with CUDA than with OpenCL. We explore fur-

ther this issue in section 4.7.

Fig. 8 shows how the performance varies depending

on the parameters used. Our software is faster when

α ∈ (0.4, 1) as that is the region where integration be-

comes easier and does not require further passes to im-

prove precision. When α comes closer to 2, the inte-

grand behaves more like a singular peak and multiple

passes are required, thus slowing down integration. The

skewness parameter β does not affect significantly the

execution time.

4.3 CDF evaluation

As explained in section 3.2, the function to integrate

is better behaved in the CDF than in the CDF. This

translates to higher precision (see table 4 for a com-

parison with libstable taken as reference) without the

need for additional measures. Most of the relative er-

ror is near machine precision, and the lowest precision

(4.99× 10−11) occurs in extreme regions of the param-

eter space.

The behavior of the integrand also affects perfor-

mance: as fig. 9 and fig. 10 show, the CDF is slightly

faster than the PDF as it does not need as much reeval-

uations to achieve significant precision. It is not unex-

pected given the fact that the majority of the code is

shared between the two calculations.
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α β Abs. error Rel. error Precision

0.25 0 7.65 · 10−12 4.99 · 10−11 4.12 · 10−10

0.25 0.5 1.24 · 10−11 4.47 · 10−11 4.72 · 10−10

0.25 1 5.55 · 10−17 1.49 · 10−16 1.92 · 10−17

0.5 0 6.66 · 10−16 3.83 · 10−15 1.45 · 10−16

0.5 0.5 7.39 · 10−16 7.5 · 10−15 1.42 · 10−16

0.75 0 6.66 · 10−16 2.58 · 10−15 3.04 · 10−12

0.75 0.5 7.1 · 10−16 1.82 · 10−15 2.89 · 10−13

0.75 1 3.33 · 10−16 3.62 · 10−16 5.98 · 10−14

1.25 0 7.55 · 10−16 1.51 · 10−15 1.51 · 10−16

1.25 0.5 7.36 · 10−16 2.17 · 10−15 2.05 · 10−9

1.25 1 5.55 · 10−16 6.67 · 10−16 3.2 · 10−9

1.5 0 7.46 · 10−16 1.43 · 10−15 4.89 · 10−15

1.5 0.5 7.07 · 10−16 1.64 · 10−15 1.39 · 10−14

1.5 1 5.55 · 10−16 6.67 · 10−16 6.62 · 10−16

Table 4 Precision results when x ∈ (−100, 100) for the CDF
of a standard (µ = 0, σ = 1) stable distribution.
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Figure 9 Performance of the CDF calculation in different
GPU cards in comparison with the results obtained with lib-
stable on an Intel Core Xeon CPU, depending on the number
of points evaluated.
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Figure 10 Variation of the performance of the CDF depend-
ing on the parameters. The software was tested with 500
points in a NVIDIA Tesla M2090.

Millisec. / point Points per sec.

Tesla K 0.0029 344827.59
Tesla M 0.0041 243902.44

AMD 0.0024 416666.67
Libstable 1 thread 0.0525 19042.18

Libstable 12 threads 0.0115 87244.81

Table 5 Summary of the different CDF performance mea-
sures for 1000 points.

As with the PDF, the CDF performance is not espe-

cially affected by the skewness parameter β, being the

stability index α the one determining the evaluation

time.

4.4 Combined PDF and CDF calculation

As explained in section 3.3, the similarity of the CDF

and PDF integrand functions allows our software to

calculate simultaneously both functions without signif-

icant performance decreases.

The comparison with libstable shown in fig. 11 and

table 6 has been made calling its CDF and PDF func-

tions separately, while using the simultaneous calcula-

tion in the GPU. It is not a fair comparison but shows

how the GPU capabilities can be used and demon-

strates an important advantage for applications that

require the calculation of the PDF and CDF values si-

multaneously.

The time consumed by the simultaneous calculation

is almost the same as the required by the PDF and CDF

evaluations separately. The only disadvantage of this si-

multaneous calculation approach is that error estimates

are not calculated as explained in section 3.3. Precision-

wise, the results are the same than the ones returned

by the standalone CDF or PDF functions.
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Figure 11 Performance of the PDF and CDF calculation in
different GPU cards in comparison with the results obtained
with libstable on an Intel Core Xeon CPU, depending on the
number of points evaluated.
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Millisec. / point Points per sec.

Tesla K 0.003 333333.33
Tesla M 0.0042 238095.24

AMD 0.0026 384615.38
Libstable 1 thread 0.0829 12065.78

Libstable 12 threads 0.0158 63219.12

Table 6 Summary of the different PCDF performance mea-
sures for 1000 points.

4.5 Quantile function

To evaluate the quantile function results, we have gen-

erated a set of equally spaced points in the real line,

then obtained their CDF values and used our quantile

function, comparing its output with the original points

to validate precision. We have filtered out quantiles be-

low 0.1 or above 0.9: given the characteristic heavy tails

of the α-stable distribution, results in those regions will

not be meaningful as the CDF grows too slowly.

α β Abs. error Rel. error

0.25 0 6.18 · 10−5 1.52 · 10−7

0.25 0.5 6.72 · 10−5 3.87 · 10−6

0.25 1 2.79 · 10−5 6.48 · 10−6

0.5 0 4.37 · 10−5 7.89 · 10−7

0.5 0.5 2.94 · 10−5 4.19 · 10−6

0.75 0 1.09 · 10−5 2.21 · 10−6

0.75 0.5 2.34 · 10−5 2.88 · 10−6

0.75 1 2.71 · 10−5 6.92 · 10−6

1.25 0 1.46 · 10−5 4.74 · 10−6

1.25 0.5 4.7 · 10−6 1.92 · 10−6

1.25 1 1.57 · 10−5 6.97 · 10−6

1.5 0 7.5 · 10−6 2.56 · 10−6

1.5 0.5 5.42 · 10−6 1.09 · 10−7

1.5 1 1.4 · 10−5 2.58 · 10−6

Table 7 Precision results when q ∈ (0.1, 0.9) for the quantile
function of a standard (µ = 0, σ = 1) stable distribution.

Millisec. / point Points per sec.

Tesla K 0.0096 104166.67
Tesla M 0.0179 55865.92

AMD 0.0065 153846.15
Libstable 1 thread 0.2631 3800.432

Libstable 12 threads 0.0557 17965.26

Table 8 Summary of the different quantile performance mea-
sures for 1000 points.

Table 7 shows the precision achieved by our soft-

ware with a tolerance setting of just 10−4. The preci-

sion can be set as high as desired, but we have found

this tolerance setting returns precise values with very

good performance. Fig. 12 shows the evolution of the

quantile function performance depending on the num-

ber of evaluated points, with exact numbers for 1000

points in table 8.

Our solution is considerably faster than libstable:

for 1000 points, the Tesla K is 5.8 times faster than the

quantile function from libstable running with 12 parallel

threads on the Intel Xeon CPU.
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Figure 12 Performance of the quantile function calculation
in different GPU cards in comparison with the results ob-
tained with libstable on an Intel Core Xeon CPU, depending
on the number of points evaluated.

4.6 Parameter estimation

To validate the maximum likelihood estimation algo-

rithm presented in section 3.5, we have generated syn-

thetic stable data and then estimated the distributions

using our library. We generated 20 sets of 1000 stable-

distributed values for each one of the 17400 sample
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Figure 13 Bias in the estimation of synthetic stable data.
The dataset consists of 1000 points and 20 experiments for
each possible value of α, β, µ, σ for α ∈ [0.6, 2], β ∈ [0, 1], µ ∈
[−1, 1] and σ ∈ [0.5, 3].
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Figure 14 Box plot of the distribution of the bias in the
estimation of synthetic stable data. The dataset consists of
1000 points and 20 experiments for each possible value of
α, β, µ, σ.

points in the α-β-σ-µ parameter space (that is, α ∈
[0.6, 2], β ∈ [0, 1], µ ∈ [−1, 1] and σ ∈ [0.5, 3]). The bias

is calculated as the difference between the estimated pa-

rameters and the ones the data was generated with. We

only show the bias depending on the α and β param-

eters because we have not found significant changes in

bias when changing µ and σ.

The bias is low in most cases, as fig. 14 shows. Also,

most of the estimation errors happen in the extremes

of the parameter space (see fig. 13) and with the β

parameter, which comes not as a surprise given the fact

that, when α tends to 2, the distribution resembles a

Gaussian one and the symmetry parameter β does not

affect its shape.

Regarding performance, our ML estimation algo-

rithm improves by orders of magnitude the time per

estimation required by a previous ML estimator de-

veloped in libstable (Royuela-del-Val et al.) (11291.476

milliseconds on average compared with 82.73002 mil-

liseconds on the Tesla M2090). Table 9 shows the de-

tailed time results. We have included the results from

the ML estimator from libstable with the PDF being

evaluated in the GPU (named Libstable - TeslaM ). The

GPU evaluation gives a significant speedup but the grid

algorithm shows that there was still room for improve-

ment.

We have also included the results from a MATLAB

maximum likelihood estimator based on off-line pre-

computed PDF values5 (Simmross-Wattenberg et al.,

2015). The comparison is not fair (MATLAB code is

interpreted and probably slower than C code) but it

shows that our algorithm performs better than other

approaches to fast maximum likelihood estimation.

5 Code is available online at http://es.mathworks.com/

matlabcentral/fileexchange/44576-fast-calculation-

of-stable-density-functions-based-on-off-line-

precomputations.

Avg. time (ms) 95th percentile (ms)

Libstable 11291.476 18244.981
Libstable - TeslaM 628.2777 1134.724
Grid - TeslaM 82.73002 168.3666
Grid - TeslaK 20.07744 27.97425
Grid - AMD 120.3731 180.3383
ML offline 257.0785 585.6634

Table 9 Detail of the performance results of the maximum
likelihood estimator: average time for a fit and the 95th per-
centile of the time distribution.

4.7 Kernel performance analysis

To understand the performance results in the different

GPU cards shown in the previous sections, we must

explore how their specifications (see table 1) affect our

code. The usual measure for performance in GPU cards

is the memory bandwidth usage, as it is the common

bottleneck in parallel applications. We have studied the

PDF evaluation as a sample, although the results are

similar in other cases.

Table 10 shows the bandwidth usage depending on

the GPU. The kernel time is the time measured by the

OpenCL driver profiler, so it only takes into account the

kernel execution time in the GPU and not operations

in the host computer, including the setup time.

Tesla M Tesla K AMD

Kernel time (ms) 2.11 1.03 1.44

Kernel global memory
b.w. (GBps)

13.59 27.98 10.00

Global memory b.w.
usage %

7.68 9.72 2.84

Kernel local memory
b.w. (GBps)

980.32 2018.03 1384.36

Local memory b.w.
usage %

36.82 11.76 49.16

Table 10 Bandwidth usage per GPU. The kernel time refers
to the average kernel execution time for a PDF calculation of
500 points.

The results found in the table reflect the expected

features of our kernel code. It is not memory intensive,

especially in the global memory space. Each thread re-

trieves only four values from global memory: the point

to integrate (which is the same for all the threads of a

workgroups), the abscissa of the Gauss-Kronrod node

and the two corresponding weights (these last three ac-

cesses are to constant memory, which has a higher band-

width than regular global memory). Finally, there are

only two writes to global memory per workgroup (the

two Gauss-Kronrod integration results): it is not a sur-

http://es.mathworks.com/matlabcentral/fileexchange/44576-fast-calculation-of-stable-density-functions-based-on-off-line-precomputations
http://es.mathworks.com/matlabcentral/fileexchange/44576-fast-calculation-of-stable-density-functions-based-on-off-line-precomputations
http://es.mathworks.com/matlabcentral/fileexchange/44576-fast-calculation-of-stable-density-functions-based-on-off-line-precomputations
http://es.mathworks.com/matlabcentral/fileexchange/44576-fast-calculation-of-stable-density-functions-based-on-off-line-precomputations
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prise that most of the kernel execution time is spent on

tasks other than global memory accesses.

Local memory is used more extensively than global

memory in our code, but still it is not the bottleneck.

The increased usage corresponds to use of local matrices

to hold the partial integration results and the reduction

algorithm exposed in section 3.1.3: although it is faster

than a simple for loop, it is more memory intensive (2N

reads and N
2 writes versus N reads and 1 write of the

for loop).

The results show that our bottleneck is not the mem-

ory, as usually happens with GPU applications, but the

processor. The NVIDIA Tesla K card has the lowest

processor clock of our test setup, 745 MHz. However,

this is not the only factor that dominates performance.

The number of cores is important: more compute units

mean more threads can run in parallel. The PCIe bus

speeds also influence the performance when few points

are computed and the cost of transferring memory and

instructions to and from the GPU are significant rela-

tive to the computation.

To fairly compare the performance results, we have

to take into account what we explained in the previ-

ous sections: as the AMD card does not support work-

groups of size 512, we had to reduce their size and dou-

ble the number of points per thread to maintain pre-

cision. However, when using 2 points per thread as in

the NVIDIA GPUs, the AMD performs better than the

Tesla K in most cases and not only for a large number

of points.

This makes the Tesla M the slowest device: with

just 512 cores, the advantage of the high processor clock

disappears as the card serializes the execution of a large
number of threads. Meanwhile, the AMD card performs

extremely well thanks to the processor speed and high

number of cores, although the fact that it uses PCIe

Gen2 penalizes its performance when it computes a low

number of points. In those situations, the Tesla K is

the best performer despite the low processor speeds, as

it has a really high local memory bandwidth, and the

largest core count and PCIe bus speeds.

These predictions fit with what we found experi-

mentally modifying the code: we found that some in-

structions took an unusual amount of time. For exam-

ple, the exponentiation in (10) takes the 54% of the

kernel execution time on the GPU, which translates to

an approximate 30% of the time required to evaluate a

set of points. This could be caused by our code hitting

the worst-case of the NVIDIA processor’s exponentia-

tion function.

However, the different OpenCL versions and dif-

ferent compilers used (each vendor distributes its own

OpenCL compiler) can also affect the results. The quan-

tile function is only slightly more computationally in-

tensive than the other computations: it involves the

PDF and CDF calculation and the root finding algo-

rithm, but the latter is not complex as it only involves

one check and a small calculation as specified in sec-

tion 3.4. In fact, as fig. 12 shows, the AMD card per-

forms clearly better than the Tesla K after just 250

points evaluating four points per thread instead of two

as the NVIDIA card does. In this case, optimizations

performed by the AMD compiler could improve the per-

formance, explaining the significant performance differ-

ences in this case with respect to the PDF and CDF

results.

5 Conclusions

Throughout this paper, we have shown that significant

performance improvements (up to 10.35 times better

in the PDF and CDF, 27.41 times in the quantile func-

tion and 562.4 times in the maximum likelihood estima-

tions compared with single-threaded solutions) can be

achieved by the use of GPUs, taking advantage of their

parallel capabilities to implement algorithms such as

the Gauss-Kronrod quadrature (section 3.1) and max-

imum likelihood estimation (section 3.5) with enough

precision.

Our solution shows that the use of GPUs, even

consumer-level ones, can be useful to accelerate α-stable

computations to a level where new applications on real-

time environments can be developed. We have also ana-

lyzed the performance of our code (section 4.7), finding

that the GPUs where our code should perform better

are those with high processor speeds and a large num-

ber of cores, as our application bottleneck is not on the

memory but on the processor.

There are further work areas regarding α-stable com-

putations, especially regarding parameter estimation.

In our paper, we have used initial estimators (McCul-

loch, 1986) that do not work in the full parameter space.

Our estimation algorithm could be improved by finding

estimators that work where McCulloch’s does not work

(that is, when α < 0.6) to allow consistent and precise

fit of every kind of stable data.

Another area of work would be the parallelization

of the estimation at a higher level: using the parallel ca-

pabilities of the GPU to estimate multiple sets of data

at the same time. However, our ML estimators would

not be suitable for this task: they already consume a

considerable number of GPU cores, so there would be

no room for an additional parallel level with current

hardware. A possible solution to this problem could be

the replacement of the maximum likelihood estimator
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by another estimator that does not require a high num-

ber of GPU cores. Simpler estimators, such as those

proposed by Koutrouvelis (1981) or McCulloch (1986)

could be used to estimate simultaneously multiple sets

of data in the GPU.

Finally, our approach could also be extended to a

multi-GPU environment: given the independence of the

computations for each point, the evaluations for the

PDF, CDF, quantile function, random number genera-

tion and parameter estimations can be easily distributed

across GPUs to improve performance.
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David Muñoz-Rodŕıguez, Salvador Villarreal Reyes, Ce-

sar Vargas Rosales, Marlenne Angulo Bernall, Deni

Torres-Román, and Luis Rizo Domı́nguez. Heavy

tailed network delay: An alpha-stable. Computación

y Sistemas, 10(1), 2006.

John P. Nolan. Numerical calculation of stable densi-

ties and distribution functions. Communications in

statistics. Stochastic models, 13(4):759–774, 1997.

John P. Nolan. Maximum likelihood estimation and

diagnostics for stable distributions. In Lévy processes,

pages 379–400. Springer-Verlag, 2001.

John P. Nolan. Stable Distributions - Models

for Heavy Tailed Data. Birkhauser, Boston,

MA, 2015. In progress, Chapter 1 online at

academic2.american.edu/∼jpnolan.

NVIDIA. NVIDIA OpenCL Best Practices Guide, Au-

gust 2009a.

NVIDIA. Whitepaper: NVIDIA’s next genera-

tion CUDA compute architecture: Fermi, 2009b.

URL http://www.nvidia.com/content/PDF/

fermi_white_papers/NVIDIA_Fermi_Compute_

Architecture_Whitepaper.pdf.

NVIDIA. Tesla M2090 dual-slot computing processor

module board spec, June 2012.

NVIDIA. Tesla K40 GPU active accelerator board spec,

November 2013.

NVIDIA. Whitepaper: NVIDIA’s next generation

CUDA compute architecture: Kepler GK110/210,

2014. URL http://international.download.

nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-

GK210-Architecture-Whitepaper.pdf.

G. K. Robinson. Practical computing for finite mo-

ment log-stable distributions to model financial risk.

Statistics and Computing, 25(6):1233–1246, 2014.

ISSN 1573-1375.

Javier Royuela-del-Val, Federico Simmross-

Wattenberg, and Carlos Alberola-López. Libstable:
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ulation of Lévy α-stable variables and processes.

Springer-Verlag, Berlin, 1995.

Diethelm Wuertz and Martin Maechler. CRAN Pack-

age ’stabledist’, 2015. https://cran.r-project.

org/web/packages/stabledist/stabledist.pdf.

Vladimir M Zolotarev. One-dimensional stable distri-

butions, volume 65. American Mathematical Soc.,

1986.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://uvadoc.uva.es/bitstream/10324/15155/1/RoyuelaJSSoft.pdf
https://uvadoc.uva.es/bitstream/10324/15155/1/RoyuelaJSSoft.pdf
https://cran.r-project.org/web/packages/stabledist/stabledist.pdf
https://cran.r-project.org/web/packages/stabledist/stabledist.pdf

	Introduction
	Background
	Proposed algorithms and implementation
	Results
	Conclusions

