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Abstract—This paper explores the problem of flow metering
in 100 GbE links, presenting a flow exporter architecture based
on a FPGA acceleration card using only on-chip memory. Peak
performance without packet sampling even at the maximum
packet rate is assured and means to avoid data loss are provided,
since a low level of aggregation is achieved. This is the first
approach in a series of architectures that are built upon the
previous one, where the resources of the custom hardware
are gradually increased, improving the aggregation level, while
the required commodity hardware resources for subsequent
stages are consequently lowered. We consider that FPGA-fabric
offers adequate flexibility and performance for this task and is
capable of reducing overall system cost. A functional prototype
of the system has been implemented on the Xilinx VCU118
development board configured to export TCP sessions records.
This achievement represents a cornerstone of a 100 GbE FPGA
flow exporter design, that aims for supporting in the order of
tens of millions concurrent flows.

Index Terms—networking, packet processing, TCP flows.

I. INTRODUCTION

Network traffic monitoring is required for performance
assessment, traffic classification and the detection of problems,
such as congested or broken links, as well as Distributed
Denial-of-Service (DDoS) attacks. This information, in turn,
is used in the high-level management of routers, anti-virus and
firewalls.

The question is whether, in the near future, commodity
hardware will still be suitable or not for tracking traffic in a
highly aggregated node of the network. This doubt arises when
we observe that, for example, high-speed traffic recording
and subsequent packet-by-packet analysis is not practical any
more, whereas it was a common practice in the past.

Alarmingly, this situation is likely to worsen in the coming
years taking into account that Nielsen’s law has held steady
for more than 30 years now, in opposition to the rate of
improvement of processor performance, which, according to
David Patterson and John Hennessy, has been decreasing over
the last years [1].

Others are more optimistic, quoting Peter Denning and
Ted Lewis [2], “Data parallelism further assures us we can
grow systems performance as long as the workloads have
sufficient parallelism”. Unfortunately, there are on-line traffic
analyzes in which the workload balance across cores cannot
be assured [3]. Besides, for this type of analysis, a high-
bandwidth, low-latency memory system is mandatory, so by
adding more cores we might not only reach the point of

diminishing returns, but also see a detriment in performance
because of memory access overhead.

To address this problem, we consider that we should focus
on both the deployment platforms and the analysis algorithms.
Keeping this in mind, we consider systems that aggregate
traffic in flows, from which it is possible to gather information
such as the status of connections, the bandwidth utilization,
Round-Trip Time (RTT) or analyze attacks on a server [4]–
[6]. This technique, at the expense of losing per packet
information, has the advantage of requiring considerably less
memory resources. After detecting the characteristics of the
anomaly, for example, we can filter the desired traffic for in-
depth investigation.

To aggregate flows in high-speed links we still need to
have a great computational power and a high-bandwidth, low-
latency memory. Likewise, the flexibility is an important factor
these days, due to the rate at which new systems and protocols
are developed. Therefore, and in line with David Patterson who
states: “For general-purpose applications, we have run out of
ideas for making them faster. The path forward is domain-
specific architecture”1, taking that into account, we delve deep
into FPGA-based architectures for flow metering.

FPGAs enable the use custom-designed hardware in cases
in which would be inviable with Application Specific Circuit
Technologies (ASICs) due to their high costs, and, at the same
time, they provide a greater flexibility given the possibility
of updating the implemented hardware. We estimate that an
implementation using a XCVU9P FPGA and DRAM memory
can support in the order of tens of millions concurrent flows.
More expensive, but already available FPGA with integrated
High Bandwidth Memory (HBM) can further increase perfor-
mance, due to massive increase in bandwidth.

The rest of this article is structured as follows: In section
II an introduction to flow monitoring is presented, followed
by a discussion of the state-of-the-art of flow export systems
in section III. Then, in section IV, the flow exporter hardware
constrains are analyzed, while the description of the proposed
architecture is in section V, and section VI details the proof of
concept specifications and results. Finally, in section VII, the
contributions of this paper are summarized and future work is
proposed.

1https://www.computerworld.com/article/3209724/computer-processors/
cpu-architecture-after-moores-law.html

https://www.computerworld.com/article/3209724/computer-processors/cpu-architecture-after-moores-law.html
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Fig. 1: Typical flow monitoring system.

II. FLOW MONITORING

According to the IPFIX standard [7], a flow is defined as “a
set of packets or frames passing an observation Point in the
network during a certain time interval. All packets belonging
to a particular Flow have a set of common properties”. Typi-
cally, IP addresses, source and destination ports and transport
protocol among others are chosen as part of the key that
identifies a flow. This is how Netflow v5 defined it [8], the
first widespread protocol for flow export, although since 2013
IPFIX has become the Internet standard for this purpose. In
the latter, bidirectional flows (biflow) [9] are contemplated,
comprised of those streams that connect the same points but
have opposite direction.

A flow monitoring system consist of three components,
which are shown in Fig. 1. The flow exporter creates flow
records from the traffic going through the observation point
and then sends these records to one or more flow collectors,
where they are stored and processed. Finally, an analysis
application inquiries the collectors and analyzes the data.
Probes can be placed in different nodes of the network,
normally in high-aggregation links are chosen.

The flow table is the memory that contains the records of
active flows. Every time a packet is received from a new flow,
an entry is created in the table, which will be released when
the flow record is transmitted, that is, the flow is exported.
Most commonly, flows are exported for the following reasons
[10]:

• Inactive timeout: A flow is said to be active if at least one
packet belonging to it is received in the last Ti seconds.
When a flow turns inactive, it is exported. Ti is usually
set by default to 15 seconds.

• Active timeout: If a flow remains active for more than Ta
seconds, it is exported.

• Resource constrains: For example, if a new flow entry
needs to be created and there is no place in the memory
to store it, one of the flows that generate the conflict is
exported. This situation is called a collision.

In practice, other reasons are also used to export flows, such
us:

• TCP flow control: If a FIN flag in each direction or an
RST flag in any of them is received, the flow is exported.

To go deeper into the topic of flow monitoring, there is a
tutorial in [11] that describes the topic in depth.

III. STATE OF THE ART

The aggregation of traffic in flows is usually carry out in
routers and switches, taking advantage of the resources they
already have, as is the case of Cisco’s NetFlow [12]. However,
they usually use packet-sampling techniques, which are a
function of their level of congestion. This leads to data loss,
however several researchers are looking for ways to reduce it
[13].

As mentioned before, higher speed networks (10 Gbit/s
and beyond) are becoming more frequent, especially in data
centers, making this task even more challenging. Therefore,
if a greater precision in the analysis is desired, a dedicated
system is required. Several implementations of flow exporters
have been proposed using CPUs, GPUs, FPGAs and hybrid
versions, distributing the load of the system in different ways
among these devices. Down below are mention some of this
implementations.

Marco Forconesi et al. [14] presented an architecture to
export flows in 10 GbE networks based on the NetFPGA-
10G platform, which is capable of handling the maximum
packet rate (14.88 Mpps) without sampling and up to 786,432
concurrent flows using a SRAM memory for the flow cache.

Paula Roquero et al. in [15] proposed a CPU-GPU flow
generator for 10 GbE links system capable of obtaining
complex information related to the TCP protocol, such as the
detection of retransmissions with memory at the packet level,
achieving a processing rate of up to 4.4M packets per second
(Mpps).

Viktor Puš et al. in [16] deployed an exporter running
on a 20-core server with a custom FPGA (Virtex-7 H580T)
based Network Interface Card (NIC), capable of supporting
the export of flows from 100 GbE links. Here, according to
the result of a hash function applied to header fields of the
packets, the NIC injects the packets into 16 queues allocated
in main memory (64 GB DDR4) of the two E5-2660v3 CPUs.

In the latter case, the offloading provided by FPGA enables
the system, which makes us consider whether the CPU con-
tinues to perform tasks for which the FPGA is more suitable,
and hence reducing the cost of the system (since a lower
performance server would be required) or enabling support
of higher speed links.

For this reason, we decided to explore the offloading of the
packet aggregation using FPGAs. This work is the continua-
tion of the previous work [17], where we presented a 40 GbE
flow exporter. Here, a 100 GbE version is described, which is
implemented in the Xilinx VCU118 development board, which
underneath uses a XCVU9P FPGA.



IV. PROBLEM STATEMENT

A. Scenario

The hardware system for flow aggregation offloading may
look like fig. 2. The pre-processing comprises the packet
level operations, while in the flow metering, the flows are
created. Optionally, flow inspection and filtering might take
place before they are send to the output, where, depending on
the destination of the exported flows, they have to be processed
accordingly. Also, mains to control the hardware might be
desired (dashed arrows).

If the flows are sent over the network, packetization should
be compliant with a flow export protocol such as the IPFIX
standard. Another option is to implement the system as a NIC,
similarly to [16], in which case a DMA controller could be
used to write in the main memory of the server, distributing
the load between the cores properly.
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Fig. 2: Hardware accelerator

B. Timing constrains

Inside the FPGA, a transaction with the input packet inter-
face may carry data from more than one packet since they
do not need to be align to the bus width. Considering that
processing this transaction would increase the complexity of
the hardware, as a first approach, we will consider that a
module care of this, presenting a new packet in a different
transaction. However, by doing this, we are reducing the bus
throughput, having the worst case scenario when it is required
the minimum possible transactions for a packet with just one
byte of data in the last transaction.

Because of this alignment plus the fact that there is a
minimum packet size, the trade-off between bus size and
clock frequency is not as straightforward as a simple serial
to parallel conversion. Taking into account the specifications
of the Ethernet protocol, we arrive at the following formula,
which relates the maximum link speed supported by a 512 bits
wide bus with the frequency F at which it is clocked:

F = Link speed/356 (1)

If a 100 GbE link is to be supported, the formula shows
that the internal bus must be clocked at least at 280.9 MHz,
which is a feasible frequency for the state-of-the-art FPGAs.

Moreover, it is necessary to know the maximum packet rate.
Considering the same assumptions as before, we arrive to:

Min

[
clock cycles
packet

]
=

⌊
672 · F

Link speed

⌋
(2)

Replacing F by 280.9 MHz and a link speed of 100 Gbit/s
min[cycles/packet] is equal to b1.88c = 1. Particularly, we
decided to increase the clock frequency of the bus to 300 MHz
in order to get in the worst case one packet every two clock
cycles since the frequency is still adequate and this will ease
restrictions such as the number of memory ports available.

C. Memory constrains

Let us first assume that it is desired to offload completely the
flow metering process. In this case, the memory system should
have enough capacity and flexibility to host the maximum
amount of concurrent flows. At the same time, we should
be able to read and update it every 6.72 ns in the worst
case. This case presents when all the packets in the link have
the minimum size and all of them belong to different flow,
reaching over 2.23 Giga concurrent flows for an idle timeout
of 15 seconds.

However, [18] indicates that the ratio of number of flows to
the volume of the traffic in Mb/s tends to be between 100 and
1000 when the idle timeout is 15 seconds. For a full saturated
100 GbE link, this would imply between 5.5 Mega and 100
Mega concurrent flows. In order to obtain a ball-pack number,
let the flow entry be 128 bytes wide. In this case, the capacity
of the memory system should be around 7 GiB.

Regarding bandwidth, if it is assumed that just one entry
is read and updated every time a packet arrives, it would be
required to read at a rate of 17.73 GiB/s and write at 17.73



GiB/s. Additionally, it has to be added the bandwidth required
for the exporting process, which is dependent on the flow table
structure. Assuming a trivial memory scan every second, it
would require to read at a rate of 7 GiB/s.

Taking this into account, DDR4 memories seem to be an
adequate alternative. Yet, the latency of this memories plus the
latency of the memory controller is in the order of hundreds of
nanoseconds according to our benchmarks. Nevertheless, they
may still be suitable if we design a way to mask this latency,
for example, using a cache memory and pre-fetching.

For the cache to make sense, the probability distribution
of the memory address required needs to be different to the
uniform distribution, and it needs to be known to a certain
degree to achieve the appropriate cache hit rate. Considering
how the stack protocols work, it is expected to see temporal
locality of flows and between opposite flows, that is, with
in biflows. For this reason, we contemplate using on-chip
memory as a N-way cache and DDR4 for the main memory.

To know to degree of the temporal locality, if any, we
conducted a series of cache memory simulations ranging from
a capacity of 1 KiFlows (210 flows) to 1 MiFlows (maximum
cache size of Cisco’s Netflow [19]), contrasting different levels
of cache associativity and uniflows versus biflows. Every time
a new flow was observed, an entry was created in the cache.
If there was a collision, the flow closest to be expired was
removed, as if it was displaced to main memory. In this way,
for each collision we would have a write and a read to this
memory.

Regarding the configuration of the simulated system, a hash
function was used to map flow to cache addresses, employing
Jenkins’s one at a time for flow uniflows and xor operations
for biflows. The in active timeout was set to 15 seconds and
there was no active timeout.

As we did not have access to any 100 GbE trace, we created
one by mixing ten traces provided by CAIDA, captured during
2018 from a 10 GbE link [20]. Traces of both directions of five
months were merged after editing their timestamps in order to
appear that the captures started at the same time. Figure 3
shows the results of these simulations, where the vertical axis
is the percentage of packets that produce a collision and the
horizontal is the cache capacity in number of flows.

It is observed that even for the highest capacities there is a
collision approximately every 5 packets, which is not enough
to obtain the necessary average access time. To achieve this,
we might use other latency masking techniques such as out of
order processing.

However, another approach can be followed noticing that,
although the cache memories that can be fit in the FPGA are
not capable by themselves to enable the use of the DDR4
memories, with a capacity of a few tens of Kiflows they
achieve an aggregation of two, that is, on average the entries
taken out of the cache have information of two packets. There-
fore, instead of completely offloading the metering process,
as first approach, we could simply send the collided flows
to main memory of a server, where a bigger flow table will
be maintained. In this way, the server load would be greatly

Fig. 3: Percentage of collisions vs cache size

reduced compared to the case of having to process each packet
directly since it would have to process on average half the
number of elements, and no packet parsing would be required.

As for the temporal locality of response flows in the cache,
for this type of link, uniflows should be preferred over biflows,
when the entry size for the latter are approximately 15% bigger
than the former’s. After analyzing the traces, it was observed
that the opposite flow seemed to be routed differently, which
may not happen to the same extent in other nodes of the net.

Regarding the level of associativity of the cache, it is
observed that, on average, the collision percentage decreases in
1.8% when a 2-way cache is used instead of a direct mapped.
Then, from 2 to 4 ways we there is a 0.9% increase, from 4
to 8 a 0.4% and from 8 to 16 a 0.2%.

Concerning flow tables with more than 64 MiFlow entries,
the ratio converges to 7% and 7.16% for biflows and uniflows,
respectively. For this sizes and the described set up, there are
almost no collisions when the level of associativity of the
memory is equal or greater than 4, confirming the hypothesis
on the number of concurrent flows. Further experiments should
take place to be able to extrapolate these results.

D. First Approach

Along what has been exposed, hereafter is presented a flow
exporter architecture implemented on an FPGA-fabric using
only on-chip memory able to achieve a coarse aggregation in
100 GbE links, which is meant to be completed in commodity
hardware. It was design as a point in a series of architectures
that are built incrementally upon the previous one — making
the project more manageable—, and looking to explore dif-
ferent degrees of offloading of the flow metering process with
the aim of reducing overall system cost and, possibly, enabling
this processing in future high-speed links.



V. PROPOSED ARCHITECTURE

A. High Level Description

The system has a pipeline architecture to maximize the
processing rate and take advantage of FPGA capabilities. Ad-
ditionally, this enables to achieve a great degree of decoupling
between the different modules of the system, which facilitates
the independent development of each of them, provided that
the protocols and interfaces are respected.

The first stage is the Parser, which filters packets and
extracts information from them. Then, the Hash function
computes the address of the cache flow, where the records are
stored. The Data Updater module is responsible for updating
the information of a flow entry each time a new packet that
belongs to it arrives. The Exporter continually examines the
table for expired flows, which will be passed to the output
interface.

B. Pipelined vs Multicycle Stage

Throughout the design, when the input rate of a module was
equal or lower that one packet every two cycles, multi-cycle
paths (MCPs) were preferred over pipelined stages for several
reasons:

• MCPs allow higher frequencies even if the pipeline is
perfectly balanced because there is no time spent in the
set up and propagation times of the pipeline registers.

• Since pipelines are rarely perfectly balanced, the maxi-
mum allowed frequency of a design is further reduced.

• There is no need to perform the task of balancing the
pipeline, which can be a non-obvious procedure and is
technology dependent, hence making harder the porting
of the design.

• MCPs have lower resource requirements, since no addi-
tional registers are needed

• MCPs allow some logic optimizations. Synthesis tools are
able simplify the logic that would be otherwise divided
by the registers, which leads to further increase in clock
frequency and area reduction.

C. Parser

As stated previously, this module analyzes the incoming
frame, decides to accept it according to the protocols it uses
and extracts or computes the necessary fields for the chosen
flow records. Above 40 GbE traffic processing, we were not
able to close timing in a single stage parser with features such
as: multiple VLAN tags support and trivial computations.

In order to obtain a parser clocked at 300 MHz, a pipelined
version was designed, where the alignment and dissection
tasks were separated into different stages. The proposed trans-
fer protocol between the parser’s stages is as follows: Each
stage appends the extracted data to the received from the
previous one — in AXI4-Stream this would be done in the
TUSER field —, and setting to not valid the analyzed bytes
of the packet when it is presented to the output interface. Then,
if these bytes are no longer required, a packet cutter might be
inserted. In AXI4-Stream TKEEP and TSTRB may be used
to control this operation.

If after each stage the packet is aligned, cutting the previous
header, non-optional fields will be found in fixed positions,
hence the necessary hardware to extract information is con-
siderably reduced. For our needs, we need a module that
aligns the parsed packets by cutting the first 32 · n bits, were
n is an integer. Thus, again, aiming to support 300 MHz
transactions, a barrel-shifter alike method is used, needing
log2(bw/32) = log2(512/32) = 4 stages, where bw stands
for bus width in bits.

D. Hash

The Hash module is responsible for mapping flows ID to
addresses of the flow cache. The choice of the function to be
implemented mainly pursues two objectives:

• Obtain an approximately uniform distribution of ad-
dresses, reducing collisions.

• In the case of using biflows, obtain the same address from
both tuple IDs that belong to the flow

Additionally, for memory systems with hierarchy, it is
desirable to have a low latency function, since the hash is
required for data management and, in this way, it would avoid
the need to store it.

E. Flow Cache

The system uses on-chip true dual port memories to imple-
ment the flow cache, one port for the Data Updater module
and another for the Exporter. Each memory address can store
more than one flow entry, distinguishing each entry by ways
as a N-way associative cache memory. Thus, the effective
memory capacity increases and the probability of collisions
decreases, as it was observed in the simulations.

F. Data Updater

This module condenses all the information coming from
packets of a flow in a set of registers — entry of the flow
table—, thus reducing its output information rate. It is capable
of processing a new packet every two clock cycles as long
as the flow cache has an access time of one clock cycle or
less. To obtain the adequate performance, two clock cycles
are allocated for updating an entry, using MCPs to increase
the maximum length allowed for combinational paths. This
enables the ALU to perform more complex computations.

Figure 4 shows the relationship between the Exporter and
the Output Interface with this module, as well as the two
stages that comprised it: Pre-fetch and Actualization. Despite
of being a non-linear pipeline, these stages have a large degree
of decoupling thanks to the defined communication protocols.

For instance, the memory is configured in “no change”
mode, which means that the output information of the memory
does not change when performing a write operation. Taking
into account that the actualization stage only performs write
operations, the pre-fetch stage is the only one capable of
changing the data output of that port, thus behaving just
like another output register of this latter stage. This fact is
important since, thanks to this, the necessary coordination —



Fig. 4: Data updater architecture.
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and therefore the degree of coupling — between these two
modules decreases considerably.

Another notable point of this design is the low level
coupling between the control and the data path, enabling this
module to handle any database just by changing the ALU since
the control is agnostic of the stored data.

Timing: Figure 5 shows how packets are processed by this
module. When new valid data is presented to its input, the
pre-fetch stage uses the hash to address the memory (arrow 1
in Figure 5), obtaining the entries stored in table in the next
cycle (arrow 2). The parsed information of the packet and the
hash outputted synchronously with the table entries (arrow 3).

When the actualization stage accepts the information, and
as stated before, two clock cycles are assigned to the creation

or update of the entry despite being a combinational process,
given the great number of computations performed in parallel,
each with several levels of logic. In addition to this, a large
routing delay has to be taken into account, since this stage ends
updating the flow table (arrows 5 and 6), which is implemented
in BRAM, which will be disaggregated over the FPGA fabric.

Hazard of data corruption: As it can be seen in figure 4,
the Data updater comprises a non-linear pipeline (one port of
the cache memory it is used in two stages of the pipeline).
Consequently, there is a read after write (RAW) data hazard,
which is detected and corrective measures are applied.

G. Exporter

As its name suggest, this module scans the memory using
the second port of BRAMs, comparing the timestamps against
the current time looking for expired flows and exporting them.
Since the timestamps will eventually overflow, the comparison
for serial numbers defined in the RFC 1982 section 3.2 was
used. The task of exporting is less critical than the actualization
of an entry, so to improve the performance of the system,
data is addressed and gathered using multi-cycle paths to
decrease congestion around the memories and to enable the
Data updater to be closer to the memory tiles, and thus, run
at higher frequencies.

It is important to highlight that the exporter needs to monitor
the operations performed in the port used by the Data updater
to avoid data corruption. When the exporter reads a memory
entry and decides to export it, this entry is erased. Since
this operation is not atomic, if the Data updater reads that
memory entry between the exporter read and write operations,
the memory retrieves the expired flow data, which should be
an empty entry. There is also a similar hazard if the exporter
reads a memory entry while the Data updater is processing it.



For this reason, if this situation is detected, the exporter waits
until there is no more hazard.

H. Timestamp Expander
The Timestamp Expander allows using less bits internally

while exporting long timestamps, increasing the amount of
flows entries that can be fit in memory and reducing the
required memory bandwidth. Therefore, its task is to extend
the timestamps, which can be performed provided that the
internal timestamp is not too small, so it would be possible to
confuse an expired flow (because of the active timeout) with
one that is not because the timestamp clock overflowed more
than once.

VI. PROOF OF CONCEPT

A. Methodology
To develop the proof of concept, VHDL was used to de-

scribe the system’s modules, primarily aiming for performance
through the employment of techniques, such as, long pipelines,
multi-cycle paths and combinational path decoupling when it
was feasible.

Additionally, it was avoided the redesign of already avail-
able and verified IPs provided by the FPGA vendor, in this
case, Xilinx. As for the interfaces protocol, AXI4-Stream was
chosen to intercommunicate the modules for compatibility
reasons with Xilinx’s IP library and, since AXI4 is a well-
spread standard, this choice increases the possibilities of
reusing our IPs in new systems.

Recognizing the need for greater flexibility, as stated earlier,
a high level of decoupling between the control and the data
path was sought, requiring only alterations in the packet
parser and in the processor’s ALU to change the computed
information, paving the way for future projects where these
operations will be defined through higher level languages, as
proposed in [21].

B. Features of the proof of concept
In this proof of concept, only IPv4 packets with TCP

transport protocol were accepted. Bidirectional flows were
aggregated, which were defined by the IP addresses and source
and destination ports, conforming a 4-tuple ID. The prototype
implemented for the testing phase was configured to store up
to 16,384 flows concurrently, distributed in a four-way cache.

a) Information Elements: The chosen information ele-
ments (IEs) per direction were the number of IP payload bytes,
the number of packets, the or-reduction of RST, SYN and FIN
TCP flags, an estimation of the number of retransmissions
and the timestamp of the first packet. For both directions, the
timestamp of the last packet received was introduced. Given
the possibility of collisions, the exported record contains the
necessary information to complete the aggregation process in
the subsequent stages.

b) Parser: In conformity with the IEs, the parser ex-
tracts the 4-tuple, the sequence number and the flags of the
TCP header. Additionally, the module applies a timestamp,
computes number of bytes of IP payload and the sequence
number of the last byte.

c) Hash: The flow to memory mapping, is performed
computing an XOR to the 4-tuple, with a symmetry such that
the result is independent of the stream direction. We notice
that this hash does not distribute as well as others in the state-
of-the-art. The study and implementation of better hashes is
left for future work.

d) Timestamps: The timestamps used internally by the
system are 32 bits wide, 20 bits for microseconds and 12 bits
for seconds. Although it would be interesting to reach a greater
precision than µs, this magnitude has been chosen given the
limitations of available memory, and the fact that the network
delay is mostly above 100 µs [22].

e) Retransmission detection: An indicator that there is
a problem in the network is that there are excessive retrans-
missions in a TCP connection, reason why it was proposed
to implement an algorithm that detects them. For this, a
simple method was used, used in [23], which is based on
the hypothesis that the TCP segments arrive in an orderly
manner (according to the order of delivery). This hypothesis is
not necessarily true, given that not all packets travel through
same path. However, according to [24], the number of packets
arriving disorderly is usually very low (less than 0.07%). To
detect a retransmission, the sequence number of the last byte
received is compared with the first byte of the new segment.

C. System debugging and verification

To verify the correctness of the system, simulations and field
tests were carried out. Due to the difficulty to obtain patterns to
compare the results, tests were first carried out with synthetic
traffic aiming to check specific parts of the system, and then,
a more realistic work regimen was tested using real traces and
comparing the results with those provided by a well-known
tool for traffic analysis, Wireshark 2.

D. Field tests

A test system was implemented on the VCU118 Evaluation
Board [25] (FPGA: Xilinx Virtex UltraScale+ 9P). Given that
100 Gbit/s traffic generation was not available at the time of
the tests, the system was verified at 10 Gbit/s, and this work is
left for when the appropriate equipment is available to us. We
employed a server with two 10 GbE interfaces, one for traffic
generation and other for output gathering. Traces of different
characteristics were used, first simple ones to verify specific
behaviors and then, traces of greater volume and level of traffic
aggregation.

After analyzing the behavior of the system in simulation
and field tests, we can say that the system works according
to specifications. Small errors were observed in the number
of retransmissions, due to some disorder of the packets, and
some differences in exported flows were spot, due to collisions
(which can be rectified by adding partial exports, since as it
was mentioned, there is not any information lost). Nonetheless,
this behavior was as expected.

2https://www.wireshark.org/

https://www.wireshark.org/


TABLE I: Resource usage.

Module LUT FF BRAM
Parser 107 422 0
Data Updater 6897 4925 228

flow cache 0 0 228
Exporter 1002 912 0
Total hardware accelerator 8063 7405 228
Total hardware accelerator (%) 0.7 0.3 10.6
Total testing system (%) 3.9 4.1 14.4

Yet, it is considered that more rigorous tests should be
carried out regarding the marking of times, given that the
pattern that was available is not sufficiently precise.

E. Specifications of implemented hardware

As mentioned before, the designed system was implemented
with a clock of 300 MHz, which (based on equations 1 and
2) enables to support the speed of links of 100 GbE, given
its capacity to process a new packet every two clock cycles.
Regarding the resources used in the implementation of the
designed system and the complete test system, they are shown
in Table I. It is noted that sufficient resources, such as 270
Mb of URAM, are available to create a hierarchical memory
system for the flow table.

VII. CONCLUSIONS AND FUTURE WORK

This work has presented a hardware accelerator for a flow
exporter system, which is a cornerstone of a standalone flow
exporter system based on FPGA, providing an efficient archi-
tecture in terms of performance to obtain a series of statistics
of flows established through an Ethernet link at 100 GbE.
Thanks to the decoupling achieved between the data path
and the control logic, this architecture can be reused for the
computation of different statistics to those implemented and
even under a different flow of information without making
structural changes.

It is considered that there is still a long way to go, leaving
for future work the field verification at 100 GbE, the study
of optimal hash functions. Likewise, we will seek to create a
hierarchical memory system for this architecture to be capable
of supporting the order of tens of million concurrent flows.
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