
UML Profiles for the Specification and Instrumentation of QoS Management Information in
Distributed Object-based Applications

Juan I. Asensio†, Víctor A. Villagrá, Jorge E. López·de·Vergara, Julio J. Berrocal.

Department of Telematic Systems Engineering
Technical University of Madrid (DIT-UPM). Spain.

{jasensio ,villagra,jlopez,berrocal}@dit.upm.es
† Visiting researcher from U. of Valladolid. Spain

ABSTRACT

This paper focuses on the QoS management of IT systems based
on object-oriented distributed applications. It presents a way of
specifying application-level QoS information during the
development of object-based distributed applications: a UML
profile (an extension to the UML) based on QoS concepts and
principles defined by ISO/ITU-T in their works on QoS in ODP,
that can be applied to the specification of QoS management
information independently of those particular details related to
the distributed object-based distributed computing platform
architecture used in each case. It also presents a solution
(another UML profile) for modeling the instrumentation of QoS
monitoring mechanisms within the monitored applications. The
contributions presented in this paper are intended to facilitate the
development of distributed object-based applications whose
QoS can be managed in an integrated way.

Keywords: QoS management, QoS specification, QoS
monitoring, UML profile, distributed object-based applications.

1. INTRODUCTION

The Quality of Service (QoS) management of IT systems is one
of the key aspect for their success due to the great
competitiveness of the environment in which they are deployed:
no matter what technology they are based on, only those
systems that increment the level of satisfaction of their users,
when using them, will gain acceptance. Therefore, although lots
of definitions of the term Quality of Service can be found, in the
context of this paper Quality of Service will be understood as
the set of non-functional aspects of a system that determine the
satisfaction level of the users of the functionality they provide.

Quality of Service Management refers to the set of activities
devoted to the surveillance and control of the resources
involved in the provision of an adequate QoS level. QoS
Management is a global task in the sense that it takes into
account all kind of resources that support the service(s)
provided by an IT system: network resources, system resources,
middleware resources, applications, etc. All of them must be co-
ordinated in order to fulfil the overall goal of obtaining QoS
levels that match the users’ needs. That way of understanding
QoS is called “end-to-end QoS”. End-to-end QoS implies a top-
down translation of user-level QoS requirements into lower
level QoS requirements.

This paper focuses its attention into the QoS Management of
one particular type of resources: applications. Furthermore, it
deals with one particular kind of applications: those supported
by distributed object-based processing platforms (CORBA,
RMI, DCOM ,...). These applications are becoming more and

more important in the IT world mainly because they can be
easily deployed over heterogeneous environments, because they
present important advantages for their developers and because
they can integrate legacy application within new, upgraded
systems.

This paper proposes new techniques for facilitating the
introduction of QoS aspects in this type of applications during
their development. More precisely, it defines ways of creating
design models of an application enhanced with all the QoS
aspects of it, as well as ways of modeling how to introduce
support (within the application itself, if needed) for managing
that QoS. The proposals of this paper must be understood as an
enhancement of traditional development process of distributed
object-based applications in order to take into account QoS
issues.

The proposals of this paper are based on the ITU-T QoS
framework [14] (that provides basic QoS concepts and
principles for distributed object-based applications), and the
Unified Modeling Language, UML [8] (that is extended in order
to support the mentioned QoS concepts and principles during
different modeling activities of different development
processes).

This paper proposes two complementary extensions to UML:

• The first one (called UML-Q) would allow, for instance,
specifying (at design time) how long it should take to
obtain the results of the invocation of a method of a
particular object of an application.

• The second one (called UML-M) would allow specifying
how it should be checked whether that requirement is
satisfied or not during run time: introducing new code into
the application, by monitoring external events, etc.

Adequate tool support of these extensions might facilitate the
introduction of QoS management capabilities within the
application, independently of the their functional scope (i.e. e-
commerce, tele-education, etc.).

The paper is structured as follows: section 2 presents the
ISO/ITU-T work on QoS which is the conceptual base for the
content of the paper; section 3 gives an overview of the way
UML has been extended for developing the results presented in
this paper; section 4 presents the developed language (UML-Q)
for QoS management information specification and illustrates
its usage in a simple example; section 5 presents the proposed
UML extensions for QoS monitoring modeling (UML-M);
section 7 summarizes the paper and presents some future
research topics.

2. THE ISO/ITU-T QOS FRAMEWORK AND ITS

APPLICATION TO ODP

QoS Management of IT systems is a very broad and complex
challenge, event when restricting its scope to the QoS
Management of distributed object-based applications. Different
architectures for structuring all the aspects QoS Management
involves have been proposed. But when comparing these
architectures [3][11], a fundamental question arises: what are
the characteristics that an “ideal” QoS Management
Architecture should have? This question should be answered by
means of QoS frameworks that precisely define the QoS
concepts involved in the QoS Management domain and that
provide architectural patterns and other tools that must be used
as the basis for the development of QoS Management
architectures.

One of the most important and complete QoS frameworks is the
one that is currently being jointly developed by ISO and ITU-T.
The ITU-T X.641 Recommendation (ISO/IEC IS 13236) [14]
provides a framework that defines the QoS basic principles,
concepts and terminology that can be used in order to develop
different contributions related to QoS. The goal of ISO/ITU-T is
providing a framework whose contents are generic enough so as
to be applied to basically all the aspects of IT. The main concept
of the this QoS framework is that of “QoS Characteristic” which
is defined as “a quantifiable aspect of QoS, which is defined
independently of the means by which it is represented or
controlled”.

This generic framework has been refined in order to be used in
two particular areas: communications based on architectures
compliant with the OSI reference model and distributed object-
based applications compliant with the RM-ODP standards
[13][12]. This last particularization has been adopted as the
conceptual base for the scope of this paper. It defines Specific
ODP QoS concepts such as “QoS Relation” (mutual obligations
of an object and its environment) which is the basic component
of “QoS requirements”, “QoS capabilities”, “QoS offers” and
“QoS contracts”. It also gives some ideas of how QoS aspects
can be introduced into the five viewpoints prescribed by RM-
ODP, it points out other important QoS management functions
and, finally, it identifies the main requirements on notations for
expressing QoS (representation of all the potential types of QoS
characteristics, support for QoS aspects that depend on
measurements coming from different places, etc.).

All these aspects have motivated the main two subjects covered
by this paper:

• Definition of a language capable of specifying quality of
service information that is compliant with the concepts
defined in the work of ISO/ITU-T on QoS in ODP: UML-
Q described in section 4.

• Definition of a language capable of modeling QoS
monitoring mechanisms (one of the most important
mechanisms that support the QoS management functions
identified in the described frameworks) within distributed
object-based applications: UML-M described in section 5.

Both languages are examples of the so-called “UML profiles”.
The following section describes this concept.

3. UML PROFILES

Although UML is a general purpose modeling language, it
contains extensibility mechanisms that can be used to tailor it to
specific domains (QoS information specification, for instance).
These extensibility mechanisms can be understood as indirect
modification, at the model level, of the UML meta-model [8].
The standard extensibility mechanisms of UML are stereotypes,
tagged values and constraints . These extensibility mechanisms
are called “lightweight extensibility mechanisms” [1] in contrast
to the direct manipulation of the UML “meta-model” that can be
interpreted as “heavyweight extensibility mechanisms”
(addition of new meta-classes, meta-associations, etc.).

In order to give support to the gradual adoption of “standard”
UML extensions, OMG has introduced the concept of “UML
profile” which, in spite of the lack of a normative definition, has
already been used in several OMG technical groups. A “profile”
[9] might be defined as an “specification that specializes one or
several standard meta-models, called “reference meta-models”.
In the context of OMG, all those reference meta-models must be
compliant with the meta-meta-model prescribed by MOF
(Meta-Object Facility) [7] of OMG.

This paper defines two UML profiles in order to use this
modeling language for the specification of QoS information
related to distributed object-based applications and for the
modeling of mechanisms for monitoring the specified QoS
information.

Some problems have been identified when using the above
concept of profile and UML (mainly related to the reduced set
of data types that can be used at the meta-model level) and it is
not clear how to represent the UML meta-model extensions
introduced by the profile. Nevertheless, this paper has adopted
the following approach so as to define the proposed UML
extensions:

• New stereotypes and tagged-values are represented by
means of elements of a new “virtual meta-model”.
Stereotypes are represented by new meta-classes that
maintain a generalisation relationship with the
corresponding base meta-classes. Tagged-values are
represented by means of meta-attributes.

• In the new virtual meta-model some new meta-associations
are added. This addition might be considered as a
heavyweight extension to the UML. Nevertheless, this new
meta-associations can be considered as a way of
representing meta-attributes whose type is the meta-class
that is placed on the opposite end of the meta-association.
This consideration implies that the tagged-values (that
would represent those meta-attributes at the model level)
should be allowed to use values whose types might
correspond to elements of the meta-model.

All these ideas are used in the following sections for describing
UML-Q and UML-M.

4. UML-Q: A UML PROFILE FOR QOS MANAGEMENT

INFORMATION SPECIFICATION IN

DISTRIBUTED OBJECT-BASED APPLICATIONS

One of the items identified in the work developed by ISO/ITU-
T regarding QoS in ODP is the need for a QoS language capable

of representing all the QoS information related to a system
during all its life cycle. UML-Q is the proposal of this paper for
solving this issue.

UML-Q (UML for the QoS information specification) is a UML
profile for the specification of QoS information in distributed
object-based applications. UML-Q is based on the concepts
coming from RM-ODP [13] and from the ISO/ITU-T
framework on QoS and its refinement for ODP [14][12]. As
UML-Q is based on RM-ODP concepts, it is independent from
particular distributed object-oriented processing platforms
(CORBA, RMI, etc.). UML-Q does not imply the use of any

particular application development methodology. It only needs
that the software engineering methods used in the chosen
methodology include models with contents similar to those
prescribed by the information and computational ODP
viewpoints, and that those models are expressed using UML

UML-Q is defined in terms of a new “virtual meta-model”
based on the UML meta-model, as it was described in the
previous section. The new “virtual meta-model” is described in
terms of:

• What types of QoS information can be specified

• How QoS information can be combined

• How QoS information is related to application models

For instance, Figure 1 shows the part of the new “virtual meta-
model” of UML-Q that defines the modeling constructs needed
to specify different types of QoS information.

UML-Q relies heavily on a contract specification language
called OCL (Object Constraint Language) [8]. OCL is related to
UML-Q in two senses:

• It is used for expressing QoS requirements

• It is used for detailing the well-formedness rules (the static
semantics) of UML-Q itself (in the same way as it is used
for defining the well-formedness rules of UML [8]).

In order to illustrate the usage of UML-Q, Figure 2 shows a
UML model (a simplified computational viewpoint) of what
might be a currency trading system (this example is extracted
from [4]).

Figure 3 shows how UML-Q can be used to define QoS
information (numberOfFailures, delay, etc.) that is grouped into
categories (reliability, performance, etc.). This QoS information
(based on the QOSCharacteristicType modeling element) is
defined independently of the application it is going to be applied
to (these definition therefore might be reused).

TradingStation

RateService

RateServiceI

TradingService

TradingServiceI

latest(c1 : Currency, c2 : Currency) : Rates
analysis(c : Currency) : Forecast

Figure 2. Simplified computational model (expressed in
UML) of a distributed object-based application whose QoS

management information has to be characterized.

All this defined QoS Information can be “attached” to the
application UML model by means of instances of several UML-
Q “virtual meta-classes” in the way shown in Figure 4.

Figure 4 also shows some QoS requirements (instances of
QOSConstraint, according to the “virtual meta-model” of
Figure 1), which are OCL expressions.

Attribute
(from Core)

QOSObligationType
<<stereotype>>

QOSExpectationType
<<stereotype>>

QOSExpectation
<<stereotype>>

QOSRequirement
<<stereotype>>

QOSContract
<<stereotype>>

QOSOffer
<<stereotype>>

QOSObligation
<<stereotype>>

QOSCapability
<<stereotype>>

Constraint
(from Core)Namespace

(from Core)

ModelElement
(from Core)

*

1..*

+ stereotypeConstraint
*

+ constrainedElement

1..* {ordered}

*

0..1

+ ownedElement

*

+namespace
0..1

Package

(from Model Management)

*

*

+importedElement
*

*

{ xor}

StructuralFeature
(from Core)

QOSConstraint
<<stereotype>>

Feature
(from Core)

Classifier
(from Core)

*

1..*+feature

*

{ordered}

+owner

1..*
1

*

+type 1

{ordered}

QOSConstraintContainer
<<stereotype>>

+qosConstraint

QoSCharacterisedFeature
<<stereotype>>

1

+type

1

1+type 1

QOSConstraintContainerType
<<stereotype>>

+type

QOSValue
unit : String
ordering : String

<<stereotype>>

QOSCharacteristic
<<stereotype>>

1..*
0..1

+base
1..*

+derived 0..1

1..*

+qoscharacterisedfeature

1..*

QOSCharacteristicType
isDerived : Boolean

<<stereotype>>

* *
+qoscharacteristictype

* *

11

QOSType
<<stereotype>>

11

1
+type

1

Figure 1. Portion of the UML-Q meta-model (shadowed elements are defined by UML-Q. Non
shadowed elements belong to the UML meta-model)

Reliability
<<QOSCategory>>

Performance
<<QOSCategory>>

numberOfFailures
<<QOSValue>> value : Integer

<<QOSCharacteristicType>>

TTR
mean : Real
variance : Real
percentile_100 : Real
<<QOSValue>> value : Integer

<<QOSCharacteristicType>>
availability

<<QOSValue>> value : Integer
<<QOSCharacteristicType>>

delay
mean : Real
percentile_50 : Real
percentile_80 : Real
percentile_100 : Real
<<QOSValue>> value : In teger

<<QOSCharacteristicType>> throughput
<<QOSValue>> value : Integer

<<QOSCharacteristicType>>

{unit = failures/year,
ordering = decreasing}

{unit = ms,
ordering =
decreasing

{ordering =
increasing} {unit = sec,

ordering =
decreasing}

{unit = mb/sec,
ordering =
increasing}

Figure 3. Example of UML-Q specification of QoS
information.

TradingStation

RateService

RateServiceI

TradingService

TradingServiceI

<<QOSObligation>>

context numberOfFailures_RateServiceI inv:
type.value < 10

context TTR_RateServiceI inv:
type.percentile_100 < 2000
type.mean < 500
type.variance < 0.3

context availability_RateServiceI inv:
type.value > 0.8

<<QOSObligation>>

context delay_latest inv:
type.percentile_50 < 10
type.percentile_80 < 20
type.percentile_100 < 40
type.mean < 15

context delay_analysis inv:
type.value < 4000

ReliabilityContainer
<<QOSObligationType>>

(from QOSConstraintContainerTypes)

PerformanceContainer
<<QOSObligationType>>

(from QOSConstraintContainerTypes)

<<QOSDependency>>

<<QOSAssignment>>

<<QOSAssignment>>

<<QOSDependency>>

Figure 4. UML-Q specification of QoS information attached
to the UML application model.

5. UML-M: A UML PROFILE FOR MODELLING QOS

MONITORING MECHANISMS

QoS management information specification is only one aspect
of the overall problem or QoS management. Different QoS
management functions are needed in order to fulfil the specified
users’ QoS requirements: monitoring, negotiation, adaptation,
etc. This paper deals with the problem of monitoring QoS
aspects of distributed object-based applications. More
concretely, it presents another UML profile for modeling, in a

more flexible and efficient way, the instrumentation of
monitoring mechanisms within distributed object-based
applications whose QoS has to be monitored.

Lots of solution for the monitoring of distributed systems in
general and of distributed object-based applications in particular
have been proposed. Some of them presents very powerful
monitoring languages for specifying how to combine and
process monitoring information obtained from the monitored
system although all that combination and/or processing is done
in a centralized way. Other proposals present a distributed but
fixed architecture for processing monitoring information that
takes into account the possibility of introducing part of the
processing into the application itself thus reducing the amount
of interchanged monitoring information but reducing as well the
performance of the monitored application. All of them use the
same set of concepts (type of monitoring information, types of
monitoring functional units) but use them in different and fixed
ways. Nevertheless, every distributed application has its own
characteristics (performance requirements, distribution
properties, and so on) that make some of the existing
monitoring solutions more suitable than others. Even in some
cases, a combination of monitoring solutions can be the best
approach.

In order to facilitate the application of all these monitoring
concepts and techniques in a flexible way, this section presents
UML-M (UML for modeling QoS Monitoring mechanisms).
UML-M is a UML profile that defines new and specific
modeling constructs that facilitate the modeling of QoS
monitoring information and the corresponding processing
functions. UML-M is intended to be used during the design
phase of a distributed object-based application in order to model
the introduction (instrumentation) of the necessary QoS
monitoring information processing functions and for defining
what monitoring information they are going to process and
interchange. The added value of UML-M resides in that it
enables the developers of the monitoring infrastructure to focus
on generic monitoring concepts and procedures without taking
into account the concrete mechanisms that can implement the
modeled functionality. In other words, the goal of UML-M is
modeling, in a flexible and generic way, how distributed object-
based applications have to be instrumented in order to monitor
their QoS (QoS that has been specified by means of UML-Q).
UML-M does not propose new monitoring architectures or
monitoring techniques but it tries to facilitate the modeling of
QoS monitoring infrastructure in distributed object-based
applications, infrastructure that can be implemented using
existing monitoring architectures and techniques.

UML-M defines modeling elements for representing QoS
monitoring information and generic QoS monitoring functional
units. In UML-M the QoS monitoring information is based on
events that are generated by the monitored application or are
“extracted” from it by using the appropriate mechanisms
(probes). Those events can be processed in different stages until
the final (and useful) monitoring information arrives to the
corresponding managing entity. The monitoring events can be
correlated (for obtaining new events), and filtered (for selecting
the interesting monitoring information). They can also be used
for calculating metrics (measurements of QoS characteristics of
interest, QoS characteristics that may have been defined by
means of UML-Q). Those metrics can be reduced (metrics are
used for calculating new ones) and can be monitored (in order
to test if a particular QoS requirement is being satisfied).

According to the ODP framework that has been chosen as the
conceptual base for the contributions presented in this paper, it
is important to point out that the introduction of QoS monitoring
mechanisms in distributed object-based applications should be
done at the ODP engineering level. The reason for that is that by
using this approach, the developers of the functional aspects of
the monitored application (that focus their efforts in the
enterprise, information and computational ODP viewpoints) are,
in the majority of cases, not affected by the introduction of
those QoS monitoring functions. According to this fact, UML-
M can be considered as a complement to UML when it is used
as a language for the ODP engineering viewpoint. In this sense,
some stereotypes for representing ODP engineering concepts
have been defined as a previous stage to the specification of
UML-M.

UML-M defines a set of modeling constructs by extending the
UML meta-model in a similar way as UML-Q and thus,
creating a new “virtual meta-model”.

Figure 5 presents a simple example of how UML-M can be
used. That figure shows a basic ODP engineering object
(TradingService) that is the engineering view of the
TradingService computational class shown in Figure 2.

That basic engineering object is maintained by an engineering
capsule called TradingServiceServer. The TradingService
basic engineering object generates start/stop events associated
to the invocation of its operations that are filtered by the
DelayFilter instance of the MonPreType UML-M virtual
meta-class in order to select only the monitoring events
associated to the latest() operation. Those events are processed
by the DelayCalculator instance of MonMetricType in order
to generate values of the delay_latest QoS Characteristic. This
is basically the meaning of the contents of Figure 5. The class

diagram shown in Figure 5 can be instantiated into an object
diagram with concrete values assigned to the attributes of those
classes. Thus, for example, the monLanguage attributed of an
instance of the DelayCalculator stereotyped class of Figure 5
might have the value “AML” in order to indicate that the
behavior of that metric calculator is going to be determined by
an AML expression. AML (Activity Monitoring Language) is a
particular monitoring language proposed in [5]. This example
shows how UML-M is able to reuse existing proposals related
to the monitoring of distributed object-based applications.

It is important to mention the tagged value {mgmtType=JIDM}
attached to the TradingMgmtHandler instance of the
MonQOSStore virtual meta-class. This is a clear example of
how UML-M models are intended to be implemented by using
concrete techniques. In this case, that tagged value indicates that

TradingMgmtHandler is going to implement management
interfaces that are compliant with the JIDM (Joint Inter-Domain
Management) [10][2] specification and interaction translation
rules in order to allow the access to the QoS monitoring
information (obtained by the monitoring functions contained
within TradingMgmtHandler) from an SNMP-CORBA
gateway. Nevertheless, this fact does not affect the way the
monitoring infrastructure has been modeled. This is the idea
behind UML-M: details related to concrete monitoring
techniques or architectures can be avoided at the design stage.
Even those details might be completely avoided by the
developers if the appropriate development tools are available
(according to the presented example, one of those tools might
map the UML-M model into a JIDM-like monitoring
infrastructure for CORBA-based applications. There might be
other alternatives such as JMX, CIM, etc.).

ARMReceiver

< < incoming>> start : startSignal
< < incoming>> stop : stopSignal

< < MonQOSProtocolRole>>

ARMSender

< <outgoing>> start : startSignal
< <outgoing>> stop : stopSignal

< <MonQOSProtocolRole>>

1

1

1

1

ARM
< < MonQOSChannel>>

delayFilterReceiver

< <incoming>> start : startSignal_latest

< <incoming>> stop : stopSignal_latest

< <MonQOSProtocolRole>>

delayFilterSending

< <outgoing>> start : startSignal_latest
< <outgoing>> stop : stopSignal_latest

< <MonQOSProtocolRole>>

1

1

1

1

delayLatest
< < MonQOSChannel>>

TradingService

(from Computational)

< <ODPBasicEngineeringObjectType>>

DelayCalculator

< <MonBody>> monBody : String
< <MonLanguage>> monLanguage : String
< <IsGeneric>> isGeneric : Boolean

< <MgmtSupport>> mgmtSupport : String
< <SupportedQOSCharacteristic>> qossuppcha : String

< <MonQOSSupport>> get_delay_latest()

< <MonMetricType>>

DelayFilter

< < MonBody>> monBody : String

< < MonLanguage>> monLanguage : String

< <MonPreFilter>>

TradingServiceServer
< < ODPEngineeringCapsuleType>>

11
TradingMgmtHandler

< < MonQOSStore>>
11

11

11

{ isGeneric=false}

{ isGeneric=false}

{ mgmtType =JIDM}

< < instantiate>>

< < instantiate>>

< < instantiate>>

< <instantiate>>

{qoschaatt = delay::value}

{supportedQoSCharacteristicTyp

Figure 5. A UML-M example.

6. JOINT USAGE OF UML-Q AND UML-M

In order to illustrate how UML-Q and UML-M can be jointly
used, this section briefly presents the experience of applying
both of them to the development of a concrete example of
distributed object-based e-commerce application: a prototype,
based on CORBA (using JAVA as the programming language),
of an electronic information and services broker [2]. That
prototype was developed within the scope of the ABS project
(Architecture for an information Brokerage Service) funded by
the European Union.

Figure 6 summarizes how UML-Q and UML-M were used
during the development of the ABS application in order to
obtain a prototype of an e-commerce application whose QoS
might be monitored. In this case, and from an implementation
point of view, a JIDM-based SNMP-CORBA gateway was
developed in order to integrate the QoS monitoring of the
application with network and system management aspects [2].
CORBA interceptors were the basic instrumentation mechanism
used to make the application instrumentation transparent to the
developers of the functional aspects of the electronic broker. All
the implementation process was based on the UML-Q and
UML-M models. Those models might have also been used as
the starting point for other types of application instrumentation
and integrated management (a JMX approach instead of JIDM-
CORBA, etc).

Computational
Mode l
(UML)

Information
Mode l
(UML)

QoS
Specif ication

(UML-Q)

Engineering
Mode l

(UML+UML-M)

SNMP MIB

IDL (management)

JIDM-ST

OMG

JAVA Management
Interfaces

IDL (broker)

JAVA Functional
Interfaces

Instrumentation of
Monitoring Mechanisms

Functional Aspects of
the Application

OMG

Application
Component

ANALYSIS AND
DESIGN

IMPLEMENTATION

Figure 6. UML-Q and UML-M applied to the development of
a distributed object-based application.

7. CONCLUSIONS AND FUTURE WORK ITEMS

This paper has presented the UML-Q and UML-M UML
profiles as a way of facilitating the development of distributed
object-based applications whose QoS can be monitored in an
integrated way and separately from the development of the
functional aspects of the application to be monitored. UML-Q
and UML-M take advantage of the adoption of UML as the de
facto standard language for OO analysis and design. Both
UML-Q and UML-M have been applied to the development of a
CORBA-based application with support for QoS integrated
monitoring using SNMP managing tools [2].

One of our future work items is the extension of existing UML-
based CASE tools in order to support UML-Q and UML-M so
as to facilitate and automate, as much as possible, the
development of object-based applications with QoS monitoring
support.

8. REFERENCES

[1] S.S. Alhir. “Extending the Unified Modeling Language
(UML)”. Internet Document
http://home.earthlink.net/~salhir/ExtendingTheUML.PDF,
1999.

[2] J.I. Asensio, V.A. Villagrá, J.E. López de Vergara, and J.
Berrocal. “Experiences with the SNMP-based integrated
management of a CORBA-based electronic commerce
application”. In Proceedings of the sixth IFIP/IEEE
International Symposium on Integrated Netork
Management. Boston, MA, USA. May 1999. IEEE
Publishing, 1999., pages 517--530. 1999.

[3] Campbell, C. Aurrecoechea, and L. Hauw. “A review of
QoS Architectures”. ACM Multimedia Systems Journal,
1996.

[4] S. Frolund and J. Koistinen. “QML: A Language for
Quality of Service Specification”. Technical Report HPL-
98-10, HP Laboratories, 1998.

[5] S. Frolund, M. Jain, and J. Pruyne. “SoLOMon:
Monitoring End-User Service Levels”. Technical Report
HPL-98-153, HP Laboratories, 1998.

[6] M.J. Katchabaw, S.L. Howard, H.L. Lutfiyya, and M.A.
Bauer. “Making distributed applications manageable
through instrumentation”. In Proceedings of PDSE’97,
Boston, Massachusetts, USA, May 1997.

[7] Object Management Group. “Meta Object Facility
(MOF)”. OMG document ad/99-09-05, September 1999.

[8] Object Management Group. “OMG Unified Modeling
Language Specification version 1.3”. OMG document
ad/99-06-08, June 1999.

[9] Object Management Group. “White Paper on the Profile
Mechanism”. OMG document ad/99-04-07, April 1999.

[10] The Open Group, “Inter-Domain Management:
Specification and Interaction Translation”. Open Group
Document C802, January 2000

[11] Hafid, G. von Bochmann, and R. Dssouli. “Distributed
Multimedia Applications and Quality of Service: a
Review”. The Electronic Journal on Networks and
Distributed Processing, issue 6, February 1998.

[12] ISO. “Working Draft for: Open Distributed Processing -
Reference Model - Quality of Service”. ISO/IEC JTC1/SC
N 10979 Ed 6.4, January 1998.

[13] ITU-T. “Information Technology - Open Distributed
Processing - Reference Model: Overview”. ITU-T
Recommendation X.901 (ISO/IEC DIS 10746-1),
December 1997.

[14] ITU-T. “Information Technology - Quality of Service:
Framework”. ITU-T Recommendation X.641 (ISO/IEC IS
13236), December 1997.

[15] MCI Systemhouse. “Relationship of the Unified Modeling
Language to the Reference Model of Open Distributed
Computing”. MCI Systemhouse white paper, September
1997.

