
On the feasibility of 40 Gbps network data capture and retention
with general purpose hardware

Guillermo Julián-Moreno
NAUDIT HPCN S.L.

Madrid, Spain
guillermo.julian@naudit.es

Rafael Leira
Univ. Autónoma de Madrid (UAM)

Madrid, Spain
rafael.leira@uam.es

Jorge E. López de Vergara
UAM & NAUDIT HPCN S.L.

Madrid, Spain
jorge.lopez vergara@uam.es

Francisco J. Gómez-Arribas
UAM & NAUDIT HPCN S.L.

Madrid, Spain
francisco.gomez@uam.es

Iván González
UAM & NAUDIT HPCN S.L.

Madrid, Spain
ivan.gonzalez@uam.es

ABSTRACT
New Ethernet standards, such as 40 GbE or 100 GbE, are already
being deployed commercially along with their corresponding
Network Interface Cards (NICs) for the servers. However, network
measurement solutions are lagging behind: while there are several
tools available for monitoring 10 or 20 Gbps networks, higher
speeds pose a harder challenge that requires more new ideas,
di�erent from those applied previously, and so there are less
applications available. In this paper, we show a system capable of
capturing, timestamping and storing 40 Gbps network tra�c using a
tailored network driver together with Non-Volatile Memory express
(NVMe) technology and the Storage Performance Development Kit
(SPDK) framework. Also, we expose core ideas that can be extended
for the capture at higher rates: a multicore architecture capable of
synchronization with minimal overhead that reduces disordering
of the received frames, methods to �lter the tra�c discarding
unwanted frames without being computationally expensive, and
the use of an intermediate bu�er that allows simultaneous access
from several applications to the same data and e�cient disk writes.
Finally, we show a testbed for a reliable benchmarking of our
solution using custom DPDK tra�c generators and replayers, which
have been made freely available for the network measurement
community.

CCS CONCEPTS
•Networks → Network monitoring; Network measurement;
•Computer systems organization→ Multicore architectures;

KEYWORDS
Network monitoring, tra�c storage, multicore architecture, packet
storage, o�-the-shelf systems, DPDK, SPDK, NVMe
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’18, Pau, France
© 2018 ACM. 978-1-4503-5191-1/18/04. . . $15.00
DOI: 10.1145/3167132.3167238

ACM Reference format:
Guillermo Julián-Moreno, Rafael Leira, Jorge E. López de Vergara, Francisco
J. Gómez-Arribas, and Iván González. 2018. On the feasibility of 40 Gbps
network data capture and retention with general purpose hardware. In
Proceedings of ACM SAC Conference, Pau, France, April 9-13, 2018 (SAC’18),
9 pages.
DOI: 10.1145/3167132.3167238

1 INTRODUCTION
�e advantage in passive network monitoring is its capability to
access the packets that are being transmi�ed between hosts for
inspection either online or at a later time. Online capture of network
tra�c may be used to detect a�acks, anomalies or a drop in the
quality of service.

However, some network measurement algorithms cannot be
executed online because of time restrictions, data requirements
or human input. Detailed analysis of networks such as the one
done in [11] or forensic analysis [4] using either specialized tools
or general-purpose ones such as Wireshark require more time and
the a posteriori knowledge of which tra�c intervals to study, and in
most cases they are not fast enough to run online or require human
input and control. In these situations, timestamping of the incoming
frames is required to be able to establish causality relationships
between frames and also to extract measurement statistics of the
network.

�erefore, any monitoring application must be capable of both
feeding online applications with packets on the �y, and also storing
them in a manner that is easily accessible for analysts. Additionally,
it should capture the highest number of network possible frames
with accurate timestamping as possible to minimize information
loss.

�e capture process can be done using specialized hardware, but
a “so�ware capture process” using general purpose hardware is
usually the preferred approach due to the lower costs and increased
�exibility. �ere are several so�ware solutions that allow the
capture and storage of tra�c for 10 Gbps networks but not for
higher speeds, such as the mentioned 40 Gbps or above. One
of the reasons is the steep increase in complexity of the data
capture at these higher data rates. For example, while capturing
at 10 Gbps can be possible using just one CPU core, at 40 Gbps
the hardware requirements are too high to achieve such data rate.
As an illustration, in the worst case, two consecutive packets of

SAC’18, April 9-13, 2018, Pau, France Guillermo Julián-Moreno et al.

minimum size (64 Bytes including CRC) would arrive with a gap of
just a few 16.8 ns between them. If we compare this to a successful
access to the L3 cache in an Intel Skylake CPU at 3.40 GHz, it
would represent more than the 75 % of the time between those
two packets [8]. �ese facts emphasize the need to make use of
parallelism and multiple cores.

A straightforward parallelism using, for instance, the NIC queues
for workload distribution across cores (Receive Side Scaling or RSS
technology), could be an option to solve this problem. However,
as we will discuss along this article, it is not the best approach in
certain situations and a more sophisticated approach is needed to
cover all these cases.

�roughout this paper, we present a system able to capture,
timestamp, and store network tra�c at 40 Gbps, working on Intel 40
GbE network interface cards and using SPDK (Storage Performance
Development Kit) to store network tra�c directly to NVMe disk
arrays with an architecture that goes beyond the usual practices
on capture drivers at lower speeds. Additionally, we include some
techniques to reduce the tra�c supported by applications allowing
capture even in systems without high-speed storage systems. �e
application of these results have other multiple gains: less TAPs
or SPAN ports are needed, monitoring cabling is reduced, and the
overall hardware complexity of the network measurement system is
also reduced, cu�ing down the total monitoring costs, both in terms
of hardware and operation. Furthermore, the presented architecture
could be expanded and scaled to capture at higher rates in the future.

�e rest of this paper is organized at follows. �e next section ex-
amines the state of the art in capture and storage engines, followed
up by our proposed design and our implementation in section 3.
Later, in section 4 we explain our main use cases and which test
methodology has been applied to check and measure our system.
�en, the results are shown in section 5. Finally, in section 6 we
discuss the obtained results and present the �nal conclusions.

2 RELATEDWORK
�e literature is extensive for tra�c capture and storage in 10 GbE
networks, but not so much in 40 GbE or higher networks. Moreover,
those works cover only either reception of network tra�c at 40
Gbps, or storage of general data at high speeds. In our study, we
have not found an integrated system capable of both receiving the
tra�c and storing it directly to disk for later analysis.

2.1 High speed network capture
Most high-performance network capture systems developed in the
last years are focused on 10 GbE networks, as reviewed on [16].
�eir main ideas, such as bypassing the Linux network stack, batch
processing, optimization for Non-Uniform Memory Access (NUMA)
architectures and memory mapping, are still useful but not su�cient
for capture in 40 GbE networks.

In the literature, the few solutions that are able to capture tra�c
at that speed do not propose new architectures and instead extend
already developed systems. One approach is the use of several 10
GbE NICs [21, 22]: it allows linear scaling with appropriate NUMA
allocation policies [19], but it needs more hardware (NICs and an

appropriate spli�er for the incoming tra�c) and the resource usage
is not particularly e�cient as it cannot scale up or down easily.

�e second approach is using 40 GbE NICs with multiple RSS
queues in the NIC to distribute the workload between di�erent
cores. �e main representatives here would be the Data Plane
Development Kit (DPDK1), PF RING, netmap and PFQ. We have
not found a benchmark comparing those at 40 Gbps rates, only
standalone performance �gures for DPDK, netmap and PFQ, in
both cases without timestamping of the frames nor storing the
capture frames. DPDK achieves 40 Gbps forwarding frames of size
128 bytes or greater [7] (a scenario less demanding than tra�c
capture) using 4 cores, and PFQ achieves capture (without storage
nor timestamping) at 40 Gbps for frames of size 256 bytes or
greater using 5 RSS queues [2]. Regarding netmap, we did not
�nd performance assessments in the literature, although its web
page2 claims that it can reach 30 Mpps (equivalent to line rate at
145 bytes per frame at 40 Gbps) in unspeci�ed conditions.

FlowScope [10] is another solution that was published a�er our
work was �nished. It uses MoonGen and DPDK as a base for
building a 100 Gbps aggregated tra�c capture system with several
NICs and RSS queues. �e authors claim that their system is capable
of capturing to memory at line rate for frames of size 128 bytes or
higher. However, they do not evaluate in deep the performance
when writing to disk that tra�c data. Moreover, its implementation
can only save small peaks, since its storage media is not fast and
large enough and can only store packets at 16 Gbps.

�ere are, however, two main downsides when using RSS. First,
the packets are assigned to each queue based on a hash function
which usually takes into account the IP addresses and ports of
each packet. For normal operations, this is a very advantageous
approach as it tends to place packets pertaining to the same �ow
in the same queue. But it also requires tweaking to avoid a non-
uniform distribution among cores that leaves relatively unoccupied
while overloading others. �ere are algorithms that ensure uniform
distribution of �ows among RSS queues [23] but these do not
account for scenarios that may be present when monitoring an
entire network with few dominant �ows in terms of bandwidth.
In this scenario, where having all the packets of a �ow distributed
to the same core is not essential, replacing RSS distribution by a
simpler algorithm might be bene�cial.

�e second issue is the suitability of this approach when the
purpose of the capture is a later analysis of the tra�c. By using
multiple queues, packets and their timestamps can be unordered on
reception, something that can severely a�ect analysis applications.
Also, the zero-copy schemes they use may not be especially e�cient
when the focus is the storage of the tra�c, as we will discuss later.

Overall, to the best of our knowledge, there is not any so�ware-
based system for capturing, timestamping and storing tra�c at 40
Gbps using 40 GbE NICs. Moreover, there is room to explore an
architecture that, while using parallelism, does not use RSS queues
and achieves high performance storage and precise timestamping
with minimal disorder.
1h�p://www.dpdk.org
2h�p://info.iet.unipi.it/∼luigi/netmap/

http://www.dpdk.org
http://info.iet.unipi.it/~luigi/netmap/

On the feasibility of 40 Gbps network data capture and retention with general purpose hardware SAC’18, April 9-13, 2018, Pau, France

2.2 High speed storage
�e two most prominent storage solutions in this �eld are
incidentally named the same: NVMeDirect. �e �rst one [20] use
smart network cards capable of moving the data directly to and
from a NVMe drive, without any CPU intervention other than the
initial con�guration. �ey claim to reach, using several drives and
network cards, aggregated data rates above 100 Gbps. However,
this project is oriented to data access and sharing one NVMe drive
with a set of computers in a cluster. It has not been designed nor
used to store packets from a network interface.

�e second project [12] is very similar to the Storage
Performance Development Kit (SPDK)3 project used in this work.
Unlike the other project discussed above, the key idea here is to
exploit the performance of NVMe drives bypassing the operating
system with a user-level driver, following the idea used in DPDK
with network cards. �e advantages of a user-level driver are clear:
easier debugging, failure protection (memory protection), and less
context switches. During our development, we have decided to use
SPDK instead of NVMeDirect. Despite that [12] shows a slightly
be�er performance than SPDK, NVMeDirect is currently on an
early stage and partially unmaintained, whereas SPDK currently
has a very active development.

2.3 High speed tra�c generation
Apart from designing and developing the capture system, we also
need to test it and measure its performance in several scenarios.
However, it is di�cult to have a high-speed real network with
enough tra�c to perform this type of testing. �ese networks are
owned by ISPs, telecommunication operators and large enterprise
networks, and user data is usually protected by existing regulations.
�erefore, the only possibility is to use tra�c generators and
players.

One of the most used high-speed tra�c generator is the DPDK-
based PKTGEN-DPDK4. Nevertheless, due to its generality, this tool
cannot perform at the maximum theoretical link speed: PKTGEN-
DPDK can only send small PCAP �les, which makes it di�cult
to saturate a 40 Gbps link. A solution to send larger PCAP �les
is DPDK-REPLAY5. However, this tool is currently deprecated (it
uses DPDK-1.8.0, and the current version is 17.8), and it is only
optimized for 10 Gbps tra�c. In our tests, it only achieved around
5 Gbps when using CAIDA traces [3].
3h�p://www.spdk.io/
4h�ps://github.com/pktgen/Pktgen-DPDK
5h�ps://github.com/marty90/DPDK-Replay

A more speci�c tool could leverage all the available system
resources and perform be�er. In section 4 we will show our own
solution to achieve fast tra�c generation, with two di�erent tools.

3 PROPOSED DESIGN AND
IMPLEMENTATION

�roughout this section we will explain the proposed one-copy
design to achieve 40 Gbps capture, �rst explaining the architecture
of the base HPCAP driver and why is it still useful for our case, and
then describing the architecture in each stage of the capture.

3.1 Previous architecture
�e proposed work builds on a previous capture driver for 10
Gbps [14], which provides the base for high-performance capture
and storage. It consists of a modi�ed version of the original drivers
for the NIC, of which the most important part is the replacement
of the original reception logic with our custom one.

One of the di�erentiating factors of this solution with respect to
other such as DPDK or the Linux packet mmap interface [1] is the
one-copy design. Usually, capture systems are zero-copy: the NIC
copies the received frames via Direct Memory Access (DMA) and
then the client application reads from them. However, if the main
focus is storage, this approach is less e�cient. When writing to disk,
it is desirable to copy all the frames in a contiguous manner and
write them in blocks to maximize performance. But it is impossible
to know the packet sizes beforehand so the card will not be able to
copy all the packets in a contiguous memory region.

�erefore, it is more e�cient in this case to use the one-copy
approach: the driver copies the frames contiguously from the NIC
ring to an intermediate bu�er that client applications can read
(client reading mechanisms will be further discussed in section 3.4).

For be�er management of the stored tra�c, our system writes
timestamped �les of 2 GB, allowing the analyst a quick location
of the desired segment of tra�c, and also facilitating easy rotation
of old captures. To enforce write operations of constant size (thus
improving performance) and avoid spli�ing packets between �les,
a �nal padding packet is inserted during the capture when there is
not enough space in the 2 GB �le to write the next incoming frame.

�e architecture for multiple readers is also maintained. With it,
one interface accepts several applications reading the same tra�c,
supporting scenarios such as having one application analyzing
live tra�c and another separate one copying it to permanent
storage [17]. �is approach allows the storage applications to
operate in blocks without reading every packet to determine the
size of each �le, therefore improving e�ciency.

NIC

Driver
DMA
copy

1

23

4

Rx

Intermediate bu�er

Client
application

Bu�er
reading

Write
to disk

Figure 1: A schematic of the architecture of our driver: �eNIC copies the new frames to the RX ring via DMA. Each threadwill
copy the frames from its assigned sector to an intermediate bu�er. Client applications can map that bu�er to their memory
space to read and store the frames.

http://www.spdk.io/
https://github.com/pktgen/Pktgen-DPDK
https://github.com/marty90/DPDK-Replay

SAC’18, April 9-13, 2018, Pau, France Guillermo Julián-Moreno et al.

3.2 Reading from NIC
�e usual approach that NICs use in reception is to write the packets
in the RX ring in host memory using DMA. As discussed previously
in section 2.1, the main approach for parallelism in tra�c reception
is the use of multiple RSS queues, so that the CPU can read by using
multiple cores. But there is another possibility: if we disable RSS
queues and use just one reception ring we remove any potential
problem with uneven distribution of the tra�c between queues.

A �rst approach to read from this ring with multiple threads
could be �rst-come-�rst-served (FCFS), where each thread reads
the �rst available descriptor. However, this would cause two
problems: continuous synchronization between threads that would
decrease performance, and disorder in the copied packets. �e
alternative implemented for this driver is the division of the ring
in several sectors, assigning one to each thread as in �g. 1. �us,
no synchronization mechanism is needed as every thread knows
exactly which descriptors can and cannot be read and the process
become cache-friendly with a predictable latency and throughput.
Furthermore, the only disorder of the frames can happen on the
boundary of each sector, when two threads are copying their
corresponding frames at the same time without respecting their
relative order.

Synchronization is only needed for one action: the ordered return
of ownership to the NIC of the read descriptors as required by its
speci�cation, so it can �ll them again with new packets. �is
ownership change is preferred to memory allocations/deallocations
of descriptors in order to improve performance. As the network
card requires the descriptors to be returned in order, our system
ensures by means of an atomic variable that each thread can only
release those in its assigned sector a�er all the descriptors in the
previous sectors have been returned.

For testing purposes, we also implemented the option to use RSS
queues and assign each consumer thread to a di�erent ring. In this
case, the implementation is straightforward as there is no need for
synchronization between threads at this stage, and in our tests the
performance was similar if the incoming tra�c was such that the
workload was evenly distributed. However, this is not the preferred
approach due to, as discussed previously, uneven distribution and
increased disorder of frames and timestamps.

3.3 Write to intermediate bu�er
A critical step in the reception of tra�c is to write the intermediate
bu�er from which the clients will be able to read, either in a packet-
by-packet fashion or writing in blocks to disk. All the reception
threads will write to this bu�er, so an e�cient synchronization
method is required to enable high-performance packet capture.

�e abstract model for this bu�er is a multiple reader - multiple
writer queue. However, several aspects of the driver design allow
the implementation of shortcuts and optimizations that improve
performance. �e basic synchronization tool is an atomic variable
that points to the o�set in the bu�er where the next packet should be
wri�en. �is variable is incremented by each thread before writing
the packet, thus making the allocation immediately e�ective for all
threads. As the size of the intermediate bu�er is controlled by the
driver, there is no need to add further synchronization mechanisms
to ensure that the o�set stays inside of the available memory range:

the driver can allocate, using Linux hugepages, a bu�er with a size
that is a divisor of 232 bytes. �us, a 32-bit variable for the o�set
can be used by performing modulo operations, and it will over�ow
appropriately without extra controls that would imply additional
synchronization and poorer performance.

�e same idea allows the control of the o�set inside the �le for
padding control. As explained in section 3.1, our driver uses padding
to ensure that packets are not split between �les, allowing direct
writes to disk. �is is still a desirable feature when the target storage
system uses NVMe disks: it divides frames into �xed-size blocks
that can be easily indexed. To keep this capability in the driver, the
padding algorithm needs to be adapted to the new write scheme.
�e problem to solve is what to do when a thread allocates space
for a packet that would be split into two �les. A possible approach
would be reverting that allocation and writing only the padding to
�ll up the �le. However, this would require more synchronization
mechanisms that would slow down the system.

�e be�er approach is, instead, to write padding at the beginning
and at the end of the �le, marking appropriately that the allocated
space is not a valid frame. �e decision of which thread should write
the padding is delicate: a thread could have allocated insu�cient
space to write the padding header at the beginning of the �le, or
another one could have allocated too much previously leaving no
space for the padding footer at the end of the �le. We do not describe
the full algorithm here due to space reasons, but the main idea is to
compute remaining and used spaces in the bu�er and have a thread
write the padding as soon as it is sure there is no space for packets
or padding to be wri�en by other threads.

3.4 Client reading
�e next step in a usual multiple reader queue would be the
synchronization of the readers and the writer threads. �e
architecture of our driver allows a simple mechanism to meet this
goal.

To avoid overwriting, the driver has a global o�set inside the
bu�er marking the last byte that was read by all listeners. �is
allows the calculation of the available space s in the bu�er and in
turn makes a simple mechanism to avoid overwriting: each thread
writes at most bs/nc bytes in a batch, where n is the number of
threads. �is avoids unnecessary readings of atomic variables each
time a packet is received (although reading atomic variables is fast,
it can a�ect performance in the demanding scenario of 40 Gbps
capture).

�e second issue —writer synchronization— is solved by the
architecture of the driver and the Linux system call mechanism.
Consider the worst possible situation of reading unwri�en regions:
the reading application would have to perform the system call to
the driver through an ioctl, a thread should update the o�set
counter, and as soon as that value is wri�en the system call process
should read the o�set variable. However, even in that worst case,
the kernel still has to �nish the system call and return the execution
�ow to the client application, an operation ranging on the order
of tens of microseconds, at least. On the other hand, the receiver
thread is running without possibility of being stopped or scheduled
out of the processor, and the only task it has to do is to copy the
frame to memory. �us, even in the worst case the time between

On the feasibility of 40 Gbps network data capture and retention with general purpose hardware SAC’18, April 9-13, 2018, Pau, France

the moment the thread increases the counter of wri�en bytes in
the bu�er and any possible read of the memory region is enough
for the thread to actually write those bytes. �erefore, no extra
synchronization mechanisms are required.

3.5 Writing to disk
Each client, as explained in the previous sections, has an o�set
pointing to the �rst byte it can read and the number of bytes
available to read, and will notify periodically to the driver how
many bytes have already been read. �ere is complete freedom on
how that data is read and processed by the client: in this paper we
only describe the two approaches used in the client applications
performing the tests.

�e �rst approach is the one inherited from the 10 Gbps HPCAP
driver. �is application copies the data from the intermediate bu�er
directly to �les in the disk in blocks of 4MB. �is approach is
e�ective as long as the �lesystem is capable of writing at capture
speed. For 10 Gbps, this was accomplished with an array of
mechanical disks in RAID-0 con�guration [15]. Unfortunately, at
the time of developing this work, hardware RAID controllers for
NVMe disks are not available on the market, and so�ware RAID
controllers are not fast enough to capture at 40 Gbps and do not take
advantage of the maximum achievable speed of a NVMe drive array.
�is made us use a second approach to overcome these limitations:
using the Intel SPDK framework, which gives e�cient read/write
access to the disk by using the optimal parameters provided by the
manufacturer.

In order to be able to access an NVMe disk e�ciently, it is
necessary to perform the read and write operations according to the
restrictions of the disk. Some of those parameters are the number
of blocks to read in each transaction, or the depth and number of
queues to use. �ese are usually provided by the manufacturer
and in any case they can be retrieved using SPDK tools. In order
to handle stored data, we have developed our own �lesystem that
adapts to the restrictions and con�guration of the NVMe disks and
to the requirement of distributing �les among disks without using
excessive synchronization.

�e new hpcapdd-spdk tool distributes regions of the
intermediate bu�er between the di�erent threads, using a size
multiple of the optimal write size for the NVMe, so that each
thread is responsible of writing to one disk. �is solution requires
one writing thread for each NVMe disk and it achieves the
maximum possible throughput, and at the same time the smallest
synchronization cost. �e di�erent �les are managed by using the
sector 0 of each NVMe disk, allowing a small, limited number of
�les but enough to e�ciently use the custom so�ware NVMe-RAID.

3.6 Filtering and range selection
Although the architecture previously described allows the capture
at high rate in a scalable fashion, we have nevertheless developed
features to allow our so�ware to run not only in high-end hardware
but also in more �exible environments.

�e �ltering system is designed to be simple and fast. It allows
the de�nition of several “strings” of bytes and their position in the
frame, with a limit of 128 rules. �e driver checks each packet for

the presence or absence of those strings in the speci�ed positions
and then copies or discards the packet as con�gured by the user. As
an example, this solution allows discarding UDP and ICMP packets
or capturing only the packets with source or destination port 80 or
8080.

Another possibility for reducing the disk workload of the capture
is to store a range selection of the bytes of the frame. �is allows
the user selecting which bytes are going to be saved, thus removing
information deemed unnecessary. For example, the system could
store only the �rst 200 bytes of each packet, or only the TCP header
(in this case, a �xed range of bytes must be provided as the driver
does not read nor interpret any header nor �eld in the frame).

3.7 Timestamping
Implementing a precise timestamping method is a great challenge
and in no way trivial. Given that the time between frames is on
the order of nanoseconds, it is necessary to use libraries with a
response time at most in the order of tens of nanoseconds6, which is
an important overhead in both the reception and sending processes,
and of course, it also a�ects the precision of the resulting timestamp.

Retrieving the current time from the system to timestamp
a packet using user-level calls would increase the inaccuracy:
performing a system call has a variable delay and oscillations
between hundreds or even thousands of nanoseconds per call.
�is makes user-level timestamping using the system clock a non-
adequate method for packet timestamping.

�erefore, we have decided to timestamp all the received frames
on arrival in the driver polling threads, retrieving the current time
using the getnstimeofday() kernel function before the received
packet is copied to the intermediate bu�er. �e other approach
(timestamping all frames in hardware) is, unfortunately, not
available in all NICs. We have also decided to avoid timestamping
only each N packets (batch timestamping) as those approaches
have worse results regarding accuracy [18].

4 TESTING METHODOLOGY
�e testing of the system consisted of two servers connected by
a single QSFP+ DAC cable, where the �rst computer acted as a
tra�c generator and the other one as the tra�c receiver. For the
reception, four di�erent types of tests have been made. �e �rst
type is done without any clients reading from the bu�er, ensuring
that the architecture is capable of pulling all the received frames
at line rate. �e second type adds a client reading from the bu�er
and then discarding the frames, which allows the testing of the
maximum reception rate without disk storage. �e third type of test
includes the storage application saving all the tra�c to NVMe disks.
Finally, the fourth one consists in sending �les with previously
captured tra�c at maximum rate through the network interface
and storing them in the disks.

We used two di�erent �les: a trace from the CAIDA [3] dataset,
with a size of 222 GB; and another one with tra�c captured in our
university student laboratories, with a size of 4.3 GB. �e average
frame size in these �les was of 787 and 910 bytes respectively. Both
are sent in a loop to transmit 1 TB of tra�c.
6h�ps://github.com/hpcn-uam/hptimelib

https://github.com/hpcn-uam/hptimelib

SAC’18, April 9-13, 2018, Pau, France Guillermo Julián-Moreno et al.

Our driver was con�gured in the reception server with di�erent
number of receiving threads, appropriately distributed in the NUMA
architecture for optimal performance. For best results, we also
con�gured the driver so that it allocates the memory region for the
NIC ring in the same NUMA node where the card is placed, and the
intermediate bu�er in the other node, where the client applications
are executed. We also ensured that the assigned cores were isolated
to avoid interferences caused by the Linux scheduler.

4.1 Hardware used
Regarding the hardware, we used the three servers shown in table 1.
One server was used for tra�c generation and two for reception,
of which only RX Server 2 had an array of 6 NVMe Intel DC P3600
800 GB SSD drives.

Table 1: Speci�cations of the servers used for testing.
Hyper�reading was disabled.

Tra�c generator RX Server 1 RX Server 2

CPU Intel Xeon E5-
1620 v2

Intel Xeon
E5-1620 v2

2 × Intel Xeon
E5-2630 v4

Clock 3.70GHz 3.70GHz 2.20 GHz
Cores 4 4 2 x 10
Memory 32 GB 32 GB 2 x 64 GB
NIC Intel XL710 Intel XL710 Intel XL710
Storage SATA RAID SATA RAID 6 x NVMe
Est. cost 7,000e 7,000e 10,000e

To ensure optimal results, we measured the performance of
the NVMe array con�gured as a RAID-0 so�ware unit and also
by using SPDK. In both cases we used a chunk size of 128 KB,
which is the optimal write size for each drive and produces the
best performance in sequential writing. �e benchmark results are
shown in �g. 2 along with the theoretical maximum performance
(the speci�cation [5] shows that each drive should have a maximum
rate for sequential writes of 1 GB/s). �e so�ware RAID achieved a
maximum performance of only 31 Gbps, which represents only
a 65 % of the maximum theoretical rate and is not enough to
capture at 40 Gbps. �e SPDK framework improves considerably the
performance, writing at 45 Gbps (93 % of the theoretical maximum
disk write speed), which is enough for our purposes.

During the tests, we used the Intel XL710 network adapter. In
order to achieve optimal performance, we disabled the following
characteristics: checksumming, segmentation and fragmentation
o�oading, hashing and VLAN �ltering. Although these features
might be useful for normal usage of the NIC, in our speci�c capture
scenario they are not required (the tra�c is going to be stored as-is,
without reassembling of �ows nor checksums veri�cations) and
they would slow down the capture and provide erroneous time
measurement; therefore they are kept disabled.

We also performed tests with a Mellanox MT27500, another 40
GbE NIC. It has the advantage of being able to timestamp frames
in hardware, a method more precise than doing it in so�ware.
However, we found a signi�cant bo�leneck in the card. A�er
integrating the mlx4 en driver with our system, we performed
the basic test (just reception of the frames without copying them

0

10

20

30

40

50

2 3 4 5 6

R
at

e
(G

bp
s)

Number of discs

Disk write rate

Software RAID
SPDK

Theoretical max speed

Figure 2: Performance of the NVMe disk array.

to the intermediate bu�er, the less demanding scenario possible)
and we only achieved line rate capture without losses for frames
with large size (600 bytes), something that did not happen with
the Intel XL710 NIC. �e capture rate seemed to be limited by
the card: the improvement in reception rate was minimal when
changing from one to two consumer threads, and inexistent with
even more threads. By disabling almost all the features of the
card (including those mentioned to for the Intel NIC, and also the
RSS distribution system) we achieved line rate capture in the least
demanding scenario for frames of size 300 or higher (for reference,
in the same scenario with the Intel XL710 we capture all frames
of size 100 and higher), but the issue with the non-improvements
with scaling persisted. �erefore, we decided to not include the
Mellanox results in this study.

4.2 Tra�c generation
Two independent tools have been coded to carry out the tests, the
�rst one for the generation of synthetic tra�c7 and the second one
to have a fast PCAP replay tool8. Both tools have been developed
using DPDK, since it supports our 40 Gbps card and is well suited
for our purposes of tra�c generation.

Our developed tools improve between 10% and 40% the
performance of the state-of-the-art tools using small packets, with
a single queue. However, that is not enough to saturate a link
at 40 Gbps, so we used multiple send queues, with each queue
associated to an independent thread and core.

�e stress application sends synthetic tra�c so its implementa-
tion is simple: based on parameters provided by the user (packet
length, MAC address, etc.), a single packet is built in memory and
later sent using the multiple queues at maximum rate. Our mea-
surements (�gure 3 on the facing page) show that the application
is capable of generating and sending up to 42 million packets per
second in our tra�c generator, therefore saturating the 40 Gbps
link with packets of length 96 bytes or greater.

Sending a PCAP �le at 40 Gbps represents a tougher challenge
compared to synthetic tra�c since it requires to read the �le at
the sending speed with almost negligible latency. Our tool maps
the target �le in memory (using Linux’s mmap call), requesting
7h�ps://github.com/hpcn-uam/iDPDK-LatencyMe�er
8h�ps://github.com/hpcn-uam/iDPDK-PcapSender

https://github.com/hpcn-uam/iDPDK-LatencyMetter
https://github.com/hpcn-uam/iDPDK-PcapSender

On the feasibility of 40 Gbps network data capture and retention with general purpose hardware SAC’18, April 9-13, 2018, Pau, France

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

R
at

e
(G

bp
s)

Frame size (bytes)

Generation rate

Send rate
Theoretical max rate

Figure 3: Synthetic tra�c rates achieved.

the operating system to preload the entire �le if possible (that is,
if there is enough memory available). �e application reads the
looped �le in�nitely, allocating each packet descriptor and copying
its PCAP payload on the �y. �is allows sending �les as large as
the available RAM of the computer, or even larger if the backing
storage system is fast enough. In fact, we were able to transmit
at 10 Gbps using 10 HDDs in a RAID-0 con�guration and a single
transmission thread. �e high speed of the RAID system may not
even be needed if the traces are truncated, as the CAIDA ones are.
�ere, frames truncated at IP level and the TCP/UDP layer is added
during runtime. �erefore, to send those traces at 40 Gbps we only
need to read the �le at a rate of about 2.3 Gbps.

4.3 Timestamping accuracy
In order to measure timestamp accuracy, we placed two Intel XL710
NICs in our RX Server 2 as using two di�erent servers would lead to
errors caused by the dri� between the CPU clocks [13]. We used the
LatencyMe�er application to send timestamped tra�c to evaluate
our system with the same approach used in [18].

Accuracy of the timestamping system is a�ected by the behavior
of the Intel NIC regarding the descriptor updating. As explained
in [9], the Intel XL710 NIC works with batches of descriptors for
improved performance: it will only post received frames to the RX
ring by groups of eight descriptors, and that a�ects timestamping
accuracy as the interarrival times between packets of the same
batch are going to be smaller than the real value.

We observed these di�erences in our tests: we sent timestamped
packets of size 64 bytes with our tra�c generator at the maximum
possible rate and compared the interarrival time between them with
the time as measured by our driver. �e average error was of 1, 738
nanoseconds with a standard deviation of 3, 296 ns. However, when
we measured the error just in one out of eight packets (that is, only
once per batch) the average fell down to 55 ns with a standard
deviation of 287 ns, which is similar to timestamp accuracies
measured in the literature [18].

�erefore, the e�ect of batching in the NIC introduces a non-
negligible error in the timestamping accuracy. But given that we
are not using RSS queues, the card copies the frames in an ordered
manner to the RX ring, avoiding unordered timestamps necessary
for multimedia protocols that use several concurrent �ows.

4.4 Measurements conducted
In the tests, we measured the tra�c generation rate as reported by
the generation application counters, and the captured bandwidth
and loss percentage as measured by our driver. We also monitored
speci�c counters on the card using ethtool to measure the NIC
performance, speci�cally rx dropped and port.rx dropped. �e
�rst one reveals packets lost because the driver was not fast enough.
�e second one is also relevant because, according to the Intel
XL710 documentation [9], it counts packets lost because “something
is not fast enough in the slot/memory/system” and in some tests
revealed bo�lenecks on the card itself for small frames. �is is not
unexpected, as Intel only claims wire-rate performance for packets
of size 128 bytes and higher [6] and the exact same issue has also
been observed in other works [10].

5 RESULTS
�e results of the di�erent cases discussed in the previous section
are presented below. �e purpose of the �rst test (�g. 4) was to
ensure that our architecture was capable of extracting the frames
from the NIC rings at line rate, without any application reading
them. In this case we observed a bo�leneck in the hardware:
almost all of the losses came from the port.rx dropped counter,
representing frames that were dropped not by our driver but by the
card not being able to service all the frames. Our system is capable
of reading all the packets received by the NIC with just two reading
threads, and it can be seen that the system does not present losses
for frame sizes greater than 105 bytes.

�e second test was performed by having a client process
connected to the driver and reading frames from the bu�er without
storing them, to measure the maximum reading capacity. �ere,
we achieved line-rate capture and timestamping at frame sizes of
300 bytes with 4 receiver threads and just one thread reading from
the bu�er. (�g. 5)

�e third test (�g. 6) consisted on the reception of frames and
their storage in a NVMe disk array. �is �nal test was performed
on RX Server 2 as it was the only one with an NVMe drive array. We
had to increase the number of receiving threads to counterbalance
the lower CPU speed. With this system we were able to store at
line rate the incoming tra�c for frames of 300 bytes and above.

Additionally, we also tested the performance when using RSS
queues to measure the performance e�ects of our approach. We
observed the same performance as long as the tra�c was evenly
distributed between queues, which shows that our approach has
no performance side-e�ects.

Finally, we performed tests reproducing �les containing
previously captured tra�c, as described in the previous section,
sending them in a loop until at least 1 TB was received. As can be
seen in table 2, our testing architecture is capable of sending those
�les at maximum rate and capturing them with only negligible
losses in the CAIDA trace and no losses at all in the University
trace.

We also tested the �ltering features of the driver. Due to the
simplicity of these �lters, they do not worsen signi�cantly the
capture performance. �eir �nal e�ect on performance depends
on how many packets pass the �lters and are copied to memory,
which is the most expensive task. Similarly, the range selection

SAC’18, April 9-13, 2018, Pau, France Guillermo Julián-Moreno et al.

0

25

50

75

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

5

10

15

20

25

30

35

40

Lo
ss

%

R
at

e
(G

bp
s)

Frame size (bytes)

Capture rate

Lost %
Port Drop %

Send rate
Capture rate

Theoretical max rate

Figure 4: Results of the �rst test: retrieval of the frameswith
the NIC.

0

25

50

75

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

5

10

15

20

25

30

35

40

Lo
ss

%

R
at

e
(G

bp
s)

Frame size (bytes)

Capture rate

Lost %
Port Drop %

Send rate
Capture rate

Theoretical max rate

Figure 5: Results of the second test: writing of the frames to
a null device.

0

25

50

75

100

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

5

10

15

20

25

30

35

40

Lo
ss

%

R
at

e
(G

bp
s)

Frame size (bytes)

Capture rate

Lost %
Send rate

Capture rate
Theoretical max rate

Figure 6: Results of the third test: tra�c storage using SPDK.

Table 2: Performance on reception of tra�c capture �les
(test 4).

Name Size Avg. frame size Send rate Loss %
CAIDA 222 GB 787.91 B 39.78 Gbps <0.01

University 4.3 GB 910.08 B 39.82 Gbps 0

improves performance depending on the average packet size. We
observed maximum performance gain when the average packet size
is approximately three or more times the number of bytes being
saved. In that scenario, the performance is equivalent to having no
client applications.

6 CONCLUSIONS
�roughout this paper we have presented a system capable of
capturing, timestamping and storing network tra�c at 40 Gbps
with negligible losses when testing it with real tra�c traces using
general purpose hardware, such as an Intel NIC and an array of
NVMe drives. �e code has been made available9 under the GPL
license.

From the results presented above, we can see that there is a
payo� when not using RSS parallelism in the capture and reducing
as much as possible the number of synchronization points: in the
base case, we have achieved optimal performance (to the point that
the bo�leneck is in the network card, CPU and hardware system)
by using one RSS queue and two threads divided into di�erent
memory sectors, which enables straightforward scalability without
adding more sincronization points.

Furthermore, our solution using �xed sector assignments
behaves be�er in terms of balancing than if we were using RSS
queues: it does not need con�guration nor tweaking of parameters
to avoid asymmetric workloads and ensures uniform distribution
among the threads even when the conditions of the network change
over time. It also reduces possible errors in the timestamping as
the frames are copied by the card to only one reception ring, so
that our driver processes them in the order they arrived.

Although the one-copy mechanism adds some overhead to the
capture process, it allows high performance storage of the received
tra�c. In our tests, with 6 NVMe disks we achieved 40 Gbps rate in
sequential writing using a multi-threaded writer with one thread
per disk when the frames transmi�ed are of size 300 bytes and
greater. We also tested the validity of this system when using
real-world tra�c from previously captured network traces. �ese
results can be improved with faster o�-the-shelf hardware (the
NVMe storage server only had CPUs at 2.20 GHz). Additionally, we
have also developed a testbed capable of saturating a 40 GbE link
with 96-byte frames of constant size in order to test our system.

However, there is still work to do with this system, such as
a detailed comparison of the disorder induced by the use of our
approach versus using RSS queues, or testing the scalability of
the architecture at higher speeds. Finally, we are planning to use
the knowledge acquired with this development and libraries such
as SPDK to create tra�c generators capable not only of sending
synthetic tra�c but also reading and transmi�ing network trace
�les at 100 Gbps.

ACKNOWLEDGMENTS
�is work has been partially supported by the Spanish Ministry
of Economy and Competitiveness and the European Regional
Development Fund under the project TRÁFICA (MINECO/FEDER
TEC2015-69417-C2-1-R), and by the European Commission under
the H2020 project METRO-HAUL (Project ID: 761727).
9h�ps://github.com/hpcn-uam/hpcap40g

https://github.com/hpcn-uam/hpcap40g

On the feasibility of 40 Gbps network data capture and retention with general purpose hardware SAC’18, April 9-13, 2018, Pau, France

REFERENCES
[1] Ulisses Alonso Camaró and Johann Baudy. 2016. Linux packet mmap. Technical

Report. Linux Foundation. h�ps://www.kernel.org/doc/Documentation/
networking/packet mmap.txt

[2] Nicola Bonelli, Stefano Giordano, and Gregorio Procissi. 2016. Network tra�c
processing with PFQ. IEEE Journal on Selected Areas in Communications 34, 6
(2016), 1819–1833. h�ps://doi.org/10.1109/JSAC.2016.2558998

[3] Caida. 2016. �e CAIDA UCSD Anonymized Internet Traces 2016 - 130000-131000
Chicago. (2016). h�p://www.caida.org/data/passive/passive 2016 dataset.xml

[4] Vicka Corey, Charles Peterman, Sybil Shearin, Michael S Greenberg, and James
Van Bokkelen. 2002. Network forensics analysis. IEEE Internet Computing 6, 6
(2002), 60–66. h�ps://doi.org/10.1109/MIC.2002.1067738

[5] Intel Corporation. 2014. Intel SSD DC P3600 Series (800GB, 2.5in
PCIe 3.0, 20nm, MLC). (2014). h�ps://ark.intel.com/products/80999/
Intel-SSD-DC-P3600-Series-800GB-2 5in-PCIe-3 0-20nm-MLC

[6] Intel Corporation. 2014. Product Brief: Intel Ethernet Controller XL710 10/40 GbE.
Technical Report. Intel. h�ps://www.intel.com/content/dam/www/public/us/en/
documents/product-briefs/ethernet-xl710-brief.pdf

[7] Intel Corporation. 2016. DPDK Performance Report Release 16.11. Technical Report.
Intel. h�p://fast.dpdk.org/doc/perf/Intel DPDK R16 11 NIC performance
report.pdf

[8] Intel Corporation. 2016. Intel 64 and IA-32 architectures optimization reference
manual. (2016). h�p://www.intel.co.uk/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-optimization-manual.pdf

[9] Intel Corporation. 2016. Intel Ethernet Controller X710/XL710 Linux Performance
Tuning Guide. Intel. h�p://www.intel.com/content/dam/www/public/us/en/
documents/reference-guides/xl710-x710-performance-tuning-linux-guide.pdf

[10] Paul Emmerich, Maximilian Pudelko, Sebastian Gallenmüller, and Georg Carle.
2017. FlowScope: E�cient Packet Capture and Storage in 100 Gbit/s Networks. In
IFIP Networking 2017. Stockholm, Sweden. h�p://dl.i�p.org/db/conf/networking/
networking2017/1570334712.pdf

[11] Wolfgang John and Sven Tafvelin. 2007. Analysis of Internet backbone tra�c and
header anomalies observed. In Proceedings of the 7th ACM SIGCOMM conference
on Internet measurement. ACM, 111–116. h�ps://conferences.sigcomm.org/imc/
2007/papers/imc91.pdf

[12] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect: A User-
space I/O Framework for Application-speci�c Optimization on NVMe SSDs.
In 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
16). USENIX Association, Denver, CO. h�ps://www.usenix.org/conference/
hotstorage16/workshop-program/presentation/kim

[13] M. Lévesque and D. Tipper. 2016. A Survey of Clock Synchronization Over
Packet-Switched Networks. IEEE Communications Surveys & Tutorials 18, 4

(Fourthquarter 2016), 2926–2947. h�ps://doi.org/10.1109/COMST.2016.2590438
[14] Vı́ctor Moreno. 2015. Harnessing low-level tuning in modern architectures for

high-performance network monitoring in physical and virtual platforms. Ph.D.
Dissertation. Escuela Politécnica Superior UAM. h�ps://repositorio.uam.es/
bitstream/handle/10486/674401/moreno martinez victor.pdf

[15] V. Moreno, J. Ramos, J. L. Garcı́a-Dorado, I. González, F.J. Gómez-Arribas, and J.
Aracil. 2015. Testing the capacity of o�-the-self systems to store 10GbE tra�c.
IEEE Communications Magazine 59, 9 (2015), 118 – 125. h�ps://doi.org/10.1109/
MCOM.2015.7263355

[16] Victor Moreno, Javier Ramos, Pedro M. Santiago del Rı́o, José Luis Garcı́a-Dorado,
Francisco J. Gomez-Arribas, and Javier Aracil. 2015. Commodity Packet Capture
Engines: Tutorial, Cookbook and Applicability. IEEE Communications Surveys &
Tutorials 17, 3 (thirdquarter 2015), 1364–1390. h�ps://doi.org/10.1109/COMST.
2015.2424887

[17] Vı́ctor Moreno, Pedro M. Santiago del Rı́o, Javier Ramos, David Muelas, José Luis
Garcı́a-Dorado, Francisco J. Gómez-Arribas, and Javier Aracil. 2014. Multi-
granular, multi-purpose and multi-Gb/s monitoring on o�-the-shelf systems.
International Journal of Network Management 24, 4 (2014), 221–234. h�ps:
//doi.org/10.1002/nem.1861

[18] Vı́ctor Moreno, Pedro M. Santiago del Rı́o, Javier Ramos, Jaime J Garnica, and
Jose Luis Garcı́a-Dorado. 2012. Batch to the future: Analyzing timestamp
accuracy of high-performance packet I/O engines. IEEE Communications Le�ers
16, 11 (2012), 1888–1891. h�ps://doi.org/10.1109/LCOMM.2012.092812.121433

[19] MV Vinu Paul, Raktim Bha�acharjee, and R Rajesh. 2014. Tra�c capture beyond
10 Gbps: Linear scaling with multiple network interface cards on commodity
servers. In Data Science & Engineering (ICDSE), 2014 International Conference on.
IEEE, 194–199. h�ps://doi.org/10.1109/ICDSE.2014.6974636

[20] QLogic. 2016. NVMe Direct: Next-Generation O�oad Technology. White
Paper. (Oct. 2016). h�p://www.qlogic.com/Resources/Documents/WhitePapers/
Adapters/WP NVMeDirect.pdf

[21] Pedro M Santiago del Rı́o, Dario Rossi, Francesco Gringoli, Lorenzo Nava, Luca
Salgarelli, and Javier Aracil. 2012. Wire-speed statistical classi�cation of network
tra�c on commodity hardware. In Proceedings of the 2012 Internet Measurement
Conference. ACM, 65–72. h�ps://doi.org/10.1145/2398776.2398784

[22] Martino Trevisan, Alessandro Finamore, Marco Mellia, Maurizio Munafo, and
Dario Rossi. 2017. Tra�c Analysis with O�-the-Shelf Hardware: Challenges
and Lessons Learned. IEEE Communications Magazine 55, 3 (2017), 163–169.
h�ps://doi.org/10.1109/MCOM.2017.1600756CM

[23] Shinae Woo and KyoungSoo Park. 2012. Scalable TCP session monitoring with
symmetric receive-side scaling. KAIST, Daejeon, South Korea, Tech. Rep. TR-
symRSS (2012). h�ps://an.kaist.ac.kr/∼shinae/paper/2012-srss.pdf

https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt
https://doi.org/10.1109/JSAC.2016.2558998
http://www.caida.org/data/passive/passive_2016_dataset.xml
https://doi.org/10.1109/MIC.2002.1067738
https://ark.intel.com/products/80999/Intel-SSD-DC-P3600-Series-800GB-2_5in-PCIe-3_0-20nm-MLC
https://ark.intel.com/products/80999/Intel-SSD-DC-P3600-Series-800GB-2_5in-PCIe-3_0-20nm-MLC
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-xl710-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-xl710-brief.pdf
http://fast.dpdk.org/doc/perf/Intel_DPDK_R16_11_NIC_performance_report.pdf
http://fast.dpdk.org/doc/perf/Intel_DPDK_R16_11_NIC_performance_report.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.co.uk/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/xl710-x710-performance-tuning-linux-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/xl710-x710-performance-tuning-linux-guide.pdf
http://dl.ifip.org/db/conf/networking/networking2017/1570334712.pdf
http://dl.ifip.org/db/conf/networking/networking2017/1570334712.pdf
https://conferences.sigcomm.org/imc/2007/papers/imc91.pdf
https://conferences.sigcomm.org/imc/2007/papers/imc91.pdf
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/kim
https://doi.org/10.1109/COMST.2016.2590438
https://repositorio.uam.es/bitstream/handle/10486/674401/moreno_martinez_victor.pdf
https://repositorio.uam.es/bitstream/handle/10486/674401/moreno_martinez_victor.pdf
https://doi.org/10.1109/MCOM.2015.7263355
https://doi.org/10.1109/MCOM.2015.7263355
https://doi.org/10.1109/COMST.2015.2424887
https://doi.org/10.1109/COMST.2015.2424887
https://doi.org/10.1002/nem.1861
https://doi.org/10.1002/nem.1861
https://doi.org/10.1109/LCOMM.2012.092812.121433
https://doi.org/10.1109/ICDSE.2014.6974636
http://www.qlogic.com/Resources/Documents/WhitePapers/Adapters/WP_NVMeDirect.pdf
http://www.qlogic.com/Resources/Documents/WhitePapers/Adapters/WP_NVMeDirect.pdf
https://doi.org/10.1145/2398776.2398784
https://doi.org/10.1109/MCOM.2017.1600756CM
https://an.kaist.ac.kr/~shinae/paper/2012-srss.pdf

	Abstract
	1 Introduction
	2 Related work
	2.1 High speed network capture
	2.2 High speed storage
	2.3 High speed traffic generation

	3 Proposed design and implementation
	3.1 Previous architecture
	3.2 Reading from NIC
	3.3 Write to intermediate buffer
	3.4 Client reading
	3.5 Writing to disk
	3.6 Filtering and range selection
	3.7 Timestamping

	4 Testing methodology
	4.1 Hardware used
	4.2 Traffic generation
	4.3 Timestamping accuracy
	4.4 Measurements conducted

	5 Results
	6 Conclusions
	References

