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Abstract

In many optical network scenarios, such as Storage Array Network (SAN) replication, keeping latency under control is cornerstone to provide
a proper Quality of Service (QoS). Hence, measuring latencies in such optical networks becomes fundamental. However, for low distances,
microseconds resolution is required, which, in turn, demands ad-hoc hardware implementation for the measurement device. Alternatively, a
more cost-effective solution is that of software-based methods, but up to date they were not precise enough at 10 Gbit/s or above. In this paper,
we analyze current high-performance packet engines, such as DPDK, and pinpoint the issues involved when it comes to measure latencies in
high-speed optical networks. Based on these findings, we propose the use of a software-based solution to measure latency. Furthermore, we also
propose an extension that serves to measure bandwidth as well, with the novel concept of convoy of packet trains.
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1. Introduction

Precise measurements of end-to-end latencies in optical net-
works are of fundamental importance for performance evalu-
ation of data-center systems such as Storage Array Network
(SANs) with synchronous replication. Figure 1 shows a SAN
replication scenario, which is common in many data-centers. In
order to perform a write operation in the SAN, the data must be
saved in both primary and backup SANs, which must provide
explicit confirmation that the data has been saved. As a result,
the write latency is constrained by the round-trip time between
the primary and backup SAN. To speed up write operations, a
dark fiber or wavelength is setup between primary and backup
SAN, just to carry the input/output traffic to/from the SAN as
fast as possible and with no interference with the rest of the traf-
fic. This is a common scenario in critical transactional systems
such as credit card authorization systems, which demand a very
tight response time and synchronous copies of all transactions.

Being RTT the round-trip time between the primary and sec-
ondary SAN and N the number of write operations that can be
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performed in parallel in the primary database, we note that the
throughput ρ, in write operations per second, is upper bounded
as follows

ρ <
N

RTT
(1)

Usually, synchronously replicated SANs are not located very
far apart, to avoid large RTTs. Actually, primary and backup
SANs may be placed at 10 kilometers distance from each other,
in the same city, namely an approximate RTT of 100 microsec-
onds. If N = 10 write operations can be performed in parallel,
it turns out that increasing the RTT in just 10 microseconds
makes the overall throughput decrease in roughly 10,000 oper-
ations per second, which is very significant. Such decrease is
due to the fact that Eq. 1 is hyperbolic and small increases in
the denominator have a large impact on the result.

The previous motivation shows that an accurate estimation of
the RTT becomes of fundamental importance to assess the SAN
performance. Chances are that the network operator switches
the optical fiber to a longer path, and the resulting increase of
latency in the microseconds timescale has a large impact on the
performance. Hence, continuous monitoring of the latency at
the microsecond resolution is in order.

In order to measure latency with such a fine-grain granular-
ity, reflectometers can be used in an optical segment. How-
ever, such reflectometry does not take into account the interme-
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Figure 1. SAN replication scenario

diate active equipment such as SAN switches (Fiber Channel
-FC-, Fiber Channel over Ethernet -FCoE- or Internet SCSI -
iSCSI-) which make an integral part of the path between end-
points. To account for such intermediate hops, a packet or
packet train [1, 2] can be sent from one endpoint, which, upon
reflection in the other endpoint, comes back to the transmitting
endpoint for RTT calculation. Such packet probing technique
can be implemented either in hardware or in software.

We note that a hardware-based implementation, at multi-
gigabit-per-second speeds, is very expensive. Actually,
software-based solutions, running on general-purpose hard-
ware, are more cost-effective. In this article, we explore the
limitations of such software-based solutions, both in terms of
precision and fine-tuning of measurement parameters. Our find-
ing shows that, if the measurement parameters are carefully se-
lected, the resulting measurement is precise enough to measure
optical network latencies in the microseconds timescale.

Furthermore, going back to our SAN case study, we note that
the SAN controller workstation, which is usually a Unix/Linux
solution, is an ideal choice for running the software-based mea-
surement solution. Hence, continuous monitoring of the optical
network can be performed. This has the benefit of promptly
alerting the SAN manager in case an increase of latencies is
observed. More specifically, we show that measuring optical
network latencies with very high precision (hundreds or even
tens of nanoseconds) is feasible at software level if the follow-
ing issues are taken into account: i) the effect of packet queu-
ing and the difficulties in packet timestamping due to the non-
deterministic nature of software; ii) the lack of granularity in
the system clock, which complicates matters for obtaining a
precise time measurement.

In this article, we report on the lessons learned in software-
based latency estimation at multi-gigabit-per-second speeds,
which are useful for practitioners in the field. We also release a
code that can be used to carry out such high-precision measure-
ments in the optical network. In the next section, we explore
how hardware and software have been used to date in order to
measure networks and networking devices. Then, we survey

the Intel Data Plane Development Kit (DPDK)1, as the current
de facto standard in packet processing engines. We explain how
packet-handling process works in DPDK and its strengths and
drawbacks for the design of network measurement tools. The
article follows with the experimental results in a real dark fiber
setup. Finally, we present a simple methodology to measure
high-speed networks using DPDK, followed by the conclusions
that can be drawn from our research.

2. Related work

The state of the art features several software measurement
tools, such as iPerf2, Aria23, or JMeter4, each of them devoted
to measure different network or application layer parameters.
The performance of these applications depends on the Operat-
ing System (OS) and kernel network stack where they run. We
note that commonly used OS, such as Linux or Windows, are
not deterministic. Consequently, the response time of any sys-
tem call is not bounded, which applies to system calls to ask for
the system time as well. On the contrary, Real-Time Operating
Systems (like Linux RT5) offer better response time guarantees,
albeit they are not totally deterministic as well.

As it turns out, the fact that response time is not guaranteed
by the OS has an impact on software-based traffic injection
measurements, and especially in latency measurements. That
is the reason why there is a strong criticism against software-
based traffic injection, and in favor of hardware devices, such
as FPGAs [3, 4, 5, 6]

The answer from the software community, in order to ad-
dress this call for better precision and accuracy, was to create
pktgen [7]. The pktgen software runs in kernel space and is al-
lowed to have direct access to network interface cards (NIC)
queues. As a result, most overheads due to kernel context
switching and packet queuing are removed. Consequently, pk-
tgen performs better than the corresponding userspace counter-
part does, which employs a standard socket programming in-
terface. However, the use of non-deterministic kernel functions
(a simple printk already has an unbounded response time), as
well as the kernel network stack, hampered pktgen suitability
above 1 Gbit/s. After much work, pktgen has significantly im-
proved performance, even though it is well below 10 Gbit/s [8].

In order to scale to higher speeds, a radical departure from
the traditional socket-based paradigm (even at kernel level) was
in order and packet engines appeared in the scene. For exam-
ple, Luca Deri provided the first packet engine (PF RING [9])
whereas Sangjin Hal et al. provided the first one that uses co-
processors (PacketShader) [10]. In their work, they mapped
some network functions to userspace, skipping the kernel net-
work stack, which drastically reduced the number of system
calls needed to read or write network packets. Such a novel
design approach allowed them to fully exploit the capabilities

1http://dpdk.org/
2https://github.com/esnet/iperf
3https://aria2.github.io/
4http://jmeter.apache.org/
5https://rt.wiki.kernel.org
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of commercial high-speed (10 Gbit/s) network cards. Some-
time later, different researchers adopted this idea to create their
own userspace drivers. Among others, Netmap, HPCAP, or the
popular DPDK engine [11]. The combination of this innovative
approach with the latest developments in virtualization tech-
nology has made possible to implement different network de-
vices [12, 13] with general-purpose hardware.

As it turns out, DPDK technology has overwhelmed the rest
of packet engines currently available. Such an engine, which
was primarily developed to build software-based switches and
routers, has indeed set a milestone in the state of the art. The
cornerstone of DPDK is the ability to work at userspace, skip-
ping almost all kernel calls, and the availability of an abstrac-
tion layer that allows working with several network cards and
even switches such as FM10k6. Such DPDK developments
have been used to implement low latency tools [12, 14, 15],
which represent fundamental contributions for the state of the
art in software-based traffic injection.

In this regard, Moongen [16], as a packet injector alternative,
promises packet generation based on LUA scripts with latency
measurements at nanoseconds level. However, this is limited to
NICs that support hardware-based timestamping, which is typi-
cally provided for specific packet types, such as PTP packets in
Intel cards. However, security policies are becoming more and
more stringent and chances are that PTP packets are filtered out
in their way from source to destination being measured.

Furthermore, we note that the measurement traffic must adapt
to the network setup and not the other way around. For exam-
ple, in case Fiber Channel is encapsulated over Ethernet (FCoE)
neither UDP nor PTP can be used to send the measurement
packets, as FCoE is a level 3 protocol, which renders NIC-
hardware timestamping unfeasible. Fortunately, a software-
based solution is adaptable to any network. In the former ex-
ample, we can actually use reserved fields on the FCoE packets
to place the timestamp.

Our experimental results show that further research is nec-
essary to understand the strengths and drawbacks of DPDK as
a generic framework to measure latency in optical networks.
As stated in the previous section, there are typical optical net-
work scenarios that call for latency measurements in the mi-
croseconds timescale. Our findings show that DPDK is good
enough to measure such latencies at 10 Gbit/s if and only if
packet sizes and inter-packet times are carefully tuned. Such
sensitivity analysis, which is fundamental in order not to bias
the measurements severely, was missing in the literature.

3. DPDK packet handling

In this section, we provide a brief overview of the DPDK
packet handling subsystem, depicted in Figure 2. Within DPDK
environment, packets are handled as mbuf s, which are the
packet-descriptor used in kernel space. An mbuf contains in-
formation related to a particular packet, namely the memory
address where the packet is stored, its length and the physical

6http://dpdk.org/doc/nics

port where it was received. Typically, and in order to speed-up
processing and avoid system calls, an mbufpool is instantiated
at the beginning. Such pool is a memory region of a specific
NUMA node where packet descriptors can be requested with
low latency and at a high rate. Before a packet is ready to be
enqueued, the mbuf metadata fields must be filled up, namely
the packet length or the parameters that indicate that the packet
belongs to more than one mbuf.

Most importantly, DPDK works with packet batches, namely
a batch of mbufs (i.e. an mbuf array) serves as an input for the
transmission queue, no matter the number of packets we wish to
enqueue at a time, and even in case a single packet is enqueued.
However, performance depends on the number of packets in the
batch and, usually, 144 mbufs is the recommended number.

Furthermore, whenever a physical port in a NIC is initialized,
it is also mandatory to instantiate at least two software queues,
for packet transmission and reception respectively. A software
queue is a ring buffer with a finite number of mbuf pointers.
Such pointers are handled by the NIC, which reads or writes in
the available mbufs in the transmission or reception queues.

In order to mitigate possible delays and jitter in PCIe trans-
actions, the NIC has a small internal queue that bridges the
host software queue and the NIC processor. As it turns out,
the NIC chipset performs some pre-processing of the packets
being placed in such internal NIC memory. For instance, Re-
ceive Side Scaling (RSS) is a technique that serves to distribute
the incoming packets in the CPU cores, such that higher inges-
tion rates can be achieved. In this regard, an RSS hash can be
obtained per packet, which is used to demultiplex the packet
stream into the former queues. Other hardware-level features
include PTP timestamping, for instance.

Once the card has processed the packet, it is ready to be sent
to the physical interface. We note that depending on the trans-
mission technology, the packet can be queued again until it is
finally sent to the physical medium. For example, let us con-
sider a 10 Gigabit Ethernet (GE) NIC with an optical SFP+

transceiver, which uses the 10 Gigabit Media Independent Inter-
face (XGMII) protocol to interplay with the card chipset. Such
protocol does not allow sending a frame arbitrarily at any time
because a certain bit alignment is in order. This alignment im-
plies that the inter-frame gap length is not necessarily constant
and equal to 12 Bytes. In fact, the 10 GE standard [17] specifies
that it can be reduced up to 5 Bytes as long as the 12 Bytes are
observed as an average. Such XGMII effect causes small vari-
ances in the latency between packets, even in dedicated hard-
ware devices, in the order of a few nanoseconds.

3.1. DPDK limitations for traffic injection
As noted before, either packet pairs or trains can be used as

measurement traffic. We may wish to send a packet train to
measure the behavior of optical or Fiber Channel switches in
the path with different traffic burstiness. However, we note that
DPDK has limitations when working with packet batches of
arbitrary size, which must be taken into account. More specifi-
cally, there is a minimum number of packets in a batch, mainly
because the NIC works with a minimum number of packets in
the PCIe transactions. Fortunately, such minimum number of
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Figure 2. DPDK workflow

packets is small enough, for example, 4 packets in the 40 GE In-
tel XL710. Besides, a latency is introduced in the transmission
queue. Indeed, when DPDK is requested to send a small batch
of packets, it puts them in the transmission queue and informs
the NIC. Then, some nanoseconds later, the NIC polls the mem-
ory where the packet descriptors are placed and it starts trans-
mitting the frames. If another packet batch is enqueued before
the previous batch is completely sent, the network card groups
both batches without any additional interruption. The time in-
terval between the NIC notification and NIC transmission is not
constant, resulting in a severe bias in latency estimation, even
at the microsecond timescales.

The second DPDK limitation is the fact that the queues intro-
duce non-deterministic delays. When the network bandwidth
increases, the inter-packet times get smaller and small random
delays have an impact on the instantaneous frame rate, which,
in turn, adds noise to the measurement. To overcome this lim-
itation, several packet trains should be transmitted and the cor-
responding measurement samples should be averaged to reduce
the noise.

The third DPDK limitation is related to clock precision and
synchronization, which affects, in general, to any software-
based traffic injection system. A basic functionality such as
obtaining the current time can vary in precision, accuracy and
computational cost across different CPUs or kernel versions. In
order to obtain a precise timestamp, in the order of hundreds of
nanoseconds, we require that the procedure takes the minimum
CPU cycles as possible. The best way to go is to use the CPU
cycle counter (Time Stamp Counter, TSC), which allows ob-
taining tens of nanoseconds resolution with a single instruction
in assembler. However, this method is only useful if the CPU
supports invariant TSC, namely if the cycle counter is common
to all CPU cores, no matter their current frequency or their en-
ergy saving state (P-state).

3.2. DPDK experimental setup
In order to evaluate the above DPDK limitations and assess

the suitability of DPDK for measuring optical network seg-
ments, we set up an experimental scenario consisting of a loop-
back fiber with a variable length, such that the propagation de-
lay is known beforehand (see Figure 3). Thus, the delay mea-
surements can be compared against a consistent ground truth.

Our testing environment consists of a single server with two
Intel Xeon E5-2630 processors at 2.30 GHz and 16 GB RAM at

Figure 3. Fiber loop used in the testbed.

1333 MHz per NUMA node in quad-channel (32 GB in sum).
The NIC is an Intel 10 Gigabit Ethernet SFP+ 82599ES. The
OS is a Linux CentOS 7.3, with DPDK 17.05 as packet trans-
mission and reception engine.

It is important to take into account that, unlike pure hardware
solutions, software must timestamp the packet before the first
bit has been sent and after all the bits have been received, which
implies that the latency is dependent of the frame size used to
test. Thus, given the refractive index of the fiber (n), the fiber
length in m (l), the speed of light in vacuum in m/s (c0), the link
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data rate in bit/s (r) and the data frame length in bits (b), the
theoretic total delay (d) can be easily calculated as follows:

d = dprop + dtx =
n · l
c0

+
b
r

(2)

where the first term refers to the propagation delay (dprop), and
the second term to the transmission delay (dtx).

For example, based on Eq. 2, in a 2 m long fiber with a typ-
ical refractive index of 1.4444 transmitting at 10 Gbit/s, the re-
sulting delay should be between 96 ns for the shortest frame
(60 bytes at Ethernet layer excluding CRC, preamble and inter-
frame gap) and 1262 ns for the longest frame (1518 bytes at
Ethernet layer with VLAN). We further note that Jumbo-frames
will lead to longer delays.

In the next section, we use the experimental setup described
above in order to evaluate the strengths and drawbacks of
DPDK for high-precision latency measurements in optical net-
works, which will provide guidance into the design principles
of a software-based measurement system.

4. Design principles for high-resolution latency measure-
ment

Due to the DPDK limitations stated above, current DPDK
software for packet injection (such as DPDK-pktgen7) cannot
be used directly without proper tuning.

This is the reason why we have contributed to the state of the
art with our own tool DPDK-LatencyMetter, which is available
to measure optical networks latency with high-resolution 8 and
no special hardware requirements like timestamping capabili-
ties at the NIC level [16]. In what follows, we provide insights
into the design principles of DPDK-LatencyMetter.

4.1. CPU isolation
To minimize random effects, all measurement processes have

to be associated to CPU cores that are isolated from any other
process. This type of isolation can easily be achieved by us-
ing the isolcpus Linux kernel parameter. In any case, it is
advisable that the Linux kernel is compiled with the tickless
option. Otherwise, the process will suffer from periodic inter-
ruptions (a tick happens even if a process is not a candidate to
be replaced by another one), producing context changes, which
artificially introduce peaks in the delay measurements.

This effect can be observed by sending 1000 trains of con-
secutive packets and plotting the latency measurement as they
were received. The Figure 4a shows this scenario with a train
length of 256 packets, without any kind of isolation (kernel or
other processes). The disturbing spike frequency is almost con-
stant for a certain frame-size, but it changes with different frame
sizes. This is due to the fact that a train with larger packets takes
more time to be sent, or in other words, the time between mea-
surements is longer. That is the reason why trains with larger
packets suffer more frequent spikes over time than trains with
smaller ones. The spikes vanish as soon as the tickless and
isolcpus kernel options are activated (as shown in Figure 4b).

7https://github.com/pktgen/Pktgen-DPDK
8https://github.com/hpcn-uam/iDPDK-LatencyMetter

4.2. Power saving

Power saving policies directly affect the CPU clock perfor-
mance and, consequently, the number of MIPS (Million In-
struction Per Second) that can be achieved. Interestingly, we
note that such number of MIPS does not have a noticeable im-
pact on the latency measurements, but it does have in the band-
width measurements. In fact, pure latency measurements do
not require to produce packets at a certain rate, whereas band-
width measurements are influenced by packet generation speed.
In turn, the number of packets that can be generated and en-
queued per second directly depends on the CPU frequency and
its MIPS, as well as other factors, such as NIC-driver imple-
mentation or memory bandwidth.

When the CPU has enough MIPS to reach the maximum link
capacity, both measurements become stable at some point, inde-
pendently of the actual CPU frequency. Nevertheless, the time
needed to reach such steady state directly depends on the MIPS
and the number of packets per second required to achieve it,
which also depends on the frame size (see the ramps/transient
state shown at Figure 4).

4.3. Effect of frame size

Using the simplest packet train method, we have observed a
correlation with the frame size and the delay metrics. In order
to understand this effect, we have sent each train a thousand
times for each frame size. For visibility reasons, we have cho-
sen a frame size interval between 60 and 6000 Bytes at Ethernet
level (excluding CRC, preamble, inter-frame gap, etc.) and we
represent the results in terms of Interval Dispersion Index (IDI,
defined as the variance of each test divided by its average, as
shown in Eq. 3 ).

IDIdelay =
σ2

delay

µdelay
(3)

In order to improve visibility, values above 1.5 times the in-
terquartile range from the mean have been considered as out-
liers and consequently removed.

When the frame length is close to certain sizes, there is a
large variance peak (indeed the packet sizes in the vicinity also
produce high variances), which are due to small misalignments
in PCIe. PCIe works as a packet switched network (which is
called Transaction Layer Packet (TLP)) with fixed packet size
negotiated at boot-up. The TLP size varies from NIC to NIC
because it depends on the manufacturer and link speed. When
PCIe transfer is slightly larger than a TLP size multiple, it pro-
duces a PCIe bandwidth waste. For example, if the TLP size is
fixed to 64 Bytes, a packet with size 65 Bytes requires 2 TLP
packets of size 64 and a PCIe bandwidth waste of about a 50%.

In Figure 5 we observe spikes produced when packet size in
the train is larger than 65 Bytes. Then, starting at 280 Bytes, and
for each 288 Bytes, there is an increment in the IDI, which hap-
pens in bursts. This effect changes in intensity and periodicity
over different machines and network cards, but it is present in
every environment we have tried, and always repeatable for the
same hardware and software combination. In this test, we have
also noticed that the mean and median latency slightly varies
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(a) Kernel with ticks enabled, without isolcpus and CPU in powersave
(default) mode.
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Figure 4. Latency measurements in 1000 consecutive trains, each one of 256 packets.
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Figure 5. Index of dispersion of intervals (IDI) over 2 meters
fiber. The test was carried out using different frame sizes and
always 256 packets as train length.

for each 32-Byte increase, creating a saw-tooth shape in the
measurements. We think both effects are related since the high
variability peak is produced near 288 Bytes, which is 9 times
32. Furthermore, experiments in a different environment (CPU
and NIC card) had a periodicity of 320 Bytes, which is exactly
10 times 32.

4.4. Queueing effects

Figure 6 shows the measured latency against the frame size
and the inter-packet time (sleep time between packets) in two
scenarios: 2 m and 2 Km fiber loops. The only noticeable differ-
ence between both scenarios is the minimal value: 4µs in Fig-
ure 6a and 13µs in Figure 6b. We clearly observe that severe
measurement errors happen if either the frame size increases
or the inter-packet time decreases, as the internal queues build
up. In the case of small packets, the processing time for build-
ing and sending just one packet is large enough in our CPU to
keep the queue empty. Thus, we advocate for the use of small
packets, which provide a reliable measurement for all the tar-
geted inter-packet times. We note that the delay overestimation
is caused by the queueing effect of both the DPDK and the un-

derlying hardware overhead, which makes the packet departure
rate variable instead of constant. Since the packet arrival rate
to the transmission subsystem is constant (sleep between pack-
ets) chances are that the outgoing packets already find packets
in the transmission queue, which adds queueing delay to the
measurement.

Despite the results with 60-Byte frames seem to provide an
apparently stable measurement, a small variance can be ob-
served, which is responsible for a small random noise. In order
to actually verify that such variance is due to random operating
system glitches and not to a hypothetical structural cause, we
analyze the variance decay as the number of samples increases
in a sample mean.

To this end, we consider a batch of N measurements,
X1, . . . , XN , which are deemed independent and identically dis-
tributed as the null hypothesis, with variance σ2 and mean µ.
As it turns out, the sample mean

S =
1
N

N∑
i=1

Xi (4)

is an unbiased estimator of µ and

Var(S ) =
1
N
σ2 (5)

We perform a thousand tests sending N = 100 packets very
far apart in time (15µs) and calculate the corresponding sample
mean S . From Eq. 5 the variance decay in logarithmic scale
versus the number of samples N is equal to

Log (Var(S )) = Log
(
σ2

)
− Log (N) (6)

namely, a linear decay with Log(N). The former equation is
depicted in Figure 7, for a 2 m (left) and a 2 Km (right) long
fiber respectively, which verifies our null hypothesis of inde-
pendence. Thus, we hypothesize that the measurement variance
is due to random operating system glitches.

The same figure can be used to find out the number of times
a 100-packets long train should be repeated in order to reduce
the variance of the sample mean.

6



R. Leira et al. / Optical Switching and Networking 00 (2018) 1–9 7

(a) 2 m long fiber loop. (b) 2 Km long fiber loop.

Figure 6. Queuing effects with different frame size and different sleep times between packets.
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Figure 7. Mean standard deviation convergence over a fiber using single packets.

At this point, we conclude that the usage of packet trains
without control (saturating the queue) leads to severe measure-
ment bias in DPDK.

4.5. Calibration

The former sections have shed considerable light into the dy-
namics of DPDK for high-precision latency measurement in
optical networks. As it turns out, software-based optical net-
work latency measurements are feasible provided that hardware
features such as memory speed, CPU speed, PCIe version and
number of lanes, and other low-level parameters are taken into
account.

For example, following the memory specifications9 it turns
out that the time it takes to read 64 contiguous bytes in a DDR4
memory can vary from 15 to 20 ns depending on the memory
module. Newer processors can handle up to 6 DDR4 chan-
nels, which implies that reading 64 consecutive bytes in a single
channel architecture is equivalent in terms of latency to reading
384 consecutive Bytes in a six-channel architecture. Addition-
ally, memory must have a refreshing progress, which is pro-
grammed by the memory controller. If the memory controller
is not smart enough, it can try to read a memory address, which

9https://www.jedec.org/document_search?search_api_views_

fulltext=jesd79-4%20ddr4

Figure 8. Convoy of packet trains.

is in a refreshing state, yielding an undetermined waiting time
until the data is finally read. The latter effect should happen
very seldom, but in that case, it does introduce some delay vari-
ability.

In the light of the above, we advise to perform calibration
of the measurement device using a loopback fiber in the NIC.
Estimation of the ground truth latency can be performed before-
hand, with the fiber length and refractive index. By comparing
the ground truth with the obtained measurements the low-level
measurement noise, such as transit time through the NIC queues
can be removed, even though such queueing effects are under
the microsecond timescale.

5. Extensions to bandwidth measurement

Even though our focus is to measure optical network latency,
we can easily extend our methodology to measure bandwidth
as well. In this case, packets are sent at full speed in batches
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(packet trains) and the bandwidth estimation, in the receiving
endpoint, is given by the length of the train (in bits) divided by
its corresponding duration.

However, the fact that packets are sent at full speed entails,
necessarily, that the mbufs queue should be saturated and, there-
fore, the latency measurement is severely distorted, as shown in
Figure 6. In a first approximation, we have considered using a
single packet pair to estimate the bandwidth [18]. Nonetheless,
this solution is not suitable for many network scenarios. For
example, for an aggregated LACP link of n physical fibers, a
single packet approach would actually produce exactly n times
less bandwidth that available. In addition, the transmission pat-
tern of the packet pair depends on the LACP policy used, which,
in turn, may distort the measurement. In order to overcome this
issue, we propose a novel methodology to measure both band-
width and latency, which we denote by convoy of packet trains.

Briefly, we send several packet trains at full speed, which
saturate the transmission queue, but only the first packet in the
train is used to measure latency. We note that the first packet is
the head-of-line in the queue and does not incur into the waiting
time that distorts the latency estimation. Therefore, only the
first packet in the train is timestamped, being the rest dummy
packets that serve to measure the link capacity (see Figure 8).
We stress that such timestamp should be written right before the
whole mbufarray is sent to the queue to minimize the waiting
time for this head-of-line packet. We also note that the convoy
of packet trains allows estimating losses in the network, as the
ratio of dummy packets lost.

In Table 1 we show the results obtained with our convoy of
packet trains methodology with the 2 m and 2 Km long fibers,
respectively. The test was performed with a convoy of 100
trains, with 100 packets each.

The expected results for bandwidth measurements should be
equal in both scenarios, namely 9.844 Gb/s for 1518-Byte long
frame and 7.143 Gb/s for a 60-Byte long frame, respectively.
Thus, the results shown in Table 1 are very accurate. The dif-
ference in bandwidth obtained between large and small packets
is caused by the Ethernet frame overloading (CRC, prelude, and
inter-frame gap). In terms of latency, in the 2 meters fiber, the
results should be 144 ns for 60-Byte frames and 2.470 ns for
1518-Byte frames. At this point, we must notice that the er-
ror seen with 60-Byte frames and 1518-Byte frames are not the
same. As explained before, this error is constant for a fixed
frame size, but it does not have a linear dependency with the
frame length. The results expected for the 2 Km fiber are 10,057
ns and 12,383 ns for 60-Byte and 1518-Byte, respectively. As
expected, the difference between 2 m latency and 2 Km are con-
stant between packet sizes.

As a downside, the proposed methodology demands a larger
number of packets and consumes a larger bandwidth from the
measured optical network link. It can also interfere with pro-
duction traffic. Thus, it may be used in combination with
latency measurements with a single packet (or small packet
trains). For example, measuring latency during peak hours and
bandwidth off-peak seems appropriate as a measurement policy
that allows accurately portraying the overall performance of the
optical network link.

Table 1: Bandwidth estimation results obtained in a loopback
scenario using convoy of packet trains

Fiber Length Frame Size Lat. estimated BW. estimated
2 m 60 Bytes 582 ns 7.1 Gb/s
2 m 1518 Bytes 6,685 ns 9.8 Gb/s
2 Km 60 Bytes 10,510 ns 7.1 Gb/s
2 Km 1518 Bytes 16,777 ns 9.8 Gb/s

Conclusions

In this paper, we have proved the feasibility of DPDK-based
measurement engines to measure delay in a high-speed optical
network at the microseconds timescale, provided that a care-
ful tuning of the different DPDK and system parameters is per-
formed. We have also contributed with an open-source mea-
surement software that serves to this purpose. We believe that
the proposed methodology, along with the results presented in
this article, can help researchers and practitioners in the field to
accurately and cost-effectively measure latencies in high-speed
optical networks.
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(MINECO/FEDER TEC2015-69417-C2-1-R), and by the Eu-
ropean Commission under the project H2020 Metro Haul
(Project ID: 761727).

References

[1] A. Johnsson, On the comparison of packet-pair and packet-train mea-
surements, in: Proc. Swedish National Computer Networking Workshop,
2003, pp. 241–250.

[2] J. Ramos, P. Santiago del Rı́o, J. Aracil, J. E. López de Vergara, On the
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