Generating Balanced and Realistic BGP Traffic for
Machine Learning-Based Anomaly Detection

Shadi Motaali, Jorge E. Lopez de Vergara, Luis de Pedro and Ivan Gonzélez
Escuela Politécnica Superior, Universidad Auténoma de Madrid, Spain
{shadi.motaali, jorge.lopez_vergara, luis.depedro, ivan.gonzalez} @uam.es

Abstract—Machine learning (ML)-based BGP anomaly detec-
tion faces key challenges, including severe dataset imbalance and
lack of ground-truth labeling. Public repositories such as RIPE
RIS and RouteViews provide raw BGP data, where anomalies
represent less than 5% of traffic—insufficient for training robust
ML models. This paper presents a methodology to generate
balanced and realistic BGP traffic using Scapy-based packet
construction with full RFC compliance and process-ID-based
labeling. The framework produces protocol-compliant packets,
simulates both normal and anomalous scenarios, and exports
datasets in PCAP and ML-ready CSV formats with controllable
class distribution. Validation through GNS3 simulations, Cisco
traces, and PCAP-to-Scapy reconstruction confirms byte-level
correctness. A proof-of-concept dataset containing 45 928 labeled
UPDATE messages achieved 96.88% classification accuracy using
Random Forest, demonstrating that the generated traffic captures
realistic behavioral patterns suitable for ML-based anomaly
detection and model evaluation.

Index Terms—BGP, Synthetic Trafficc, Anomaly Detection,
Scapy, Network Security, Dataset Generation, Traffic Generation

I. INTRODUCTION

Border Gateway Protocol (BGP) serves as the fundamental
routing protocol of the Internet, enabling autonomous systems
(AS) to exchange routing information and maintain global con-
nectivity. However, BGP, in its original design, lacks intrinsic
route validation or cryptographic protection mechanisms, rely-
ing instead on trust between peers. Although later extensions
such as TCP-AO [1]], RPKI [2], and BGPsec [3] enhance
security, their deployment is still far from complete. This
partial adoption leaves the global routing system vulnerable
to attacks—including prefix hijacking and route leaks—that
can lead to traffic interception, Denial-of-Service events, and
large-scale outages.

To solve this problem, machine learning (ML) offers
promise for detecting BGP anomalies by learning patterns
from historical traffic data. However, ML effectiveness criti-
cally depends on training data quality and balance [4]]. Existing
public datasets suffer from severe class imbalance (anomalies
< 5% of traffic), missing ground-truth labels, and timestamp-

This work is partially funded by a grant from the Dept. of Electronics
and Communication Technologies at Universidad Auténoma de Madrid, as
well as by the R&D activity program with reference TEC-2024/COM-504
and acronym RAMONES-CM, granted by the Comunidad de Madrid through
the Directorate General for Research and Technological Innovation via Order
5696/2024.

based labeling ambiguity when correlating traffic with docu-
mented incidents.

Generating synthetic BGP traffic that addresses these dataset
limitations while maintaining realism presents several techni-
cal challenges:

o Protocol Complexity: BGP involves complex state ma-
chines, session establishment procedures, and diverse
message types (OPEN, UPDATE, KEEPALIVE, NOTI-
FICATION) that must follow strict RFC specifications.

o Attribute Handling: BGP UPDATE messages contain
multiple path attributes (AS_PATH, NEXT_HOP, LO-
CAL_PREF, COMMUNITIES) that must be correctly
formatted and consistent.

e Dual-Stack Support: Modern deployments require
proper handling of both IPv4 and IPv6 through Multi-
protocol BGP (MP-BGP).

o Attack Realism: Synthetic anomalies must accurately
represent real attack scenarios while maintaining protocol
validity.

o Scalability: Network simulation platforms
GNS3 [5]) require substantial resources.

(e.g.,

This paper addresses these challenges by presenting a
systematic methodology for generating balanced and realistic
BGP traffic through Scapy packet manipulation and com-
prehensive RFC compliance, including the fix of a Scapy
BGP module issue that produced non-compliant KEEPALIVE
messages. The remainder of this paper is organized as fol-
lows: Section [l reviews related work on BGP datasets and
traffic generation, Section [[TI] presents the proposed generation
methodology and describes the implementation details, Sec-
tion [TV] mentions validation process, and preliminary results.
Finally, Section [V] concludes the paper and outlines directions
for future work. The complete implementation is available at
our GitHub repository

II. RELATED WORK

Public BGP datasets from RIPE RIS [|6]], RouteViews [7],
and CAIDA [8] operate global networks of route collectors
gathering routing tables and updates from multiple vantage
points. While comprehensive, these datasets pose challenges
for ML training: raw messages lack ground-truth labels, pri-
vacy concerns limit analysis, and manual timestamp-based

Uhttps://github.com/shadimotaali/BGP_Traffic_Generation_by_Scapy

https://github.com/shadimotaali/BGP_Traffic_Generation_by_Scapy

labeling is unreliable. Fonseca et al. [9]] attempted a feature en-
gineering approach for detection, but remained fundamentally
limited due to dataset quality.

Traffic generation has evolved from replay-based tools [[10]
that cannot create novel scenarios to sophisticated Al-based
methods. Recent generative models include Generative Ad-
versarial Networks (GAN) [11] and Graph Neural Networks
(GNN) [12] that model topology and patterns but require
substantial real traffic for training and cannot guarantee RFC
compliance. Recent works [[13]], [[14] explored using LLMs to
generate Scapy code for multi-protocol conversations (ICMP,
ARP, DNS, HTTP), either through prompt engineering or by
training a model specifically for this task. While promising
as an intermediate code generation layer, these methods have
limited BGP protocol coverage and do not address dataset
balance. BGP-specific tools like BOPIS [[15] combine BGP,
OpenFlow, and Scapy for SDN monitoring but emphasize real-
time analysis rather than systematic dataset generation.

Beyond dataset generation, several works address detection
and root cause analysis—downstream applications requiring
quality training data. For instance, [16] uses routing depen-
dence analysis with wavelet-based detection and PCA for root
cause localization, validated on three real-world events. The
work in [[17] introduced BEAR, an LLM framework for ex-
plaining detected anomalies. BEAR addresses data scarcity by
generating event specifications via LLM, retrieving real BGP
data from public collectors, and injecting synthetic anomalies.
While achieving realism through data modification, it remains
constrained by available patterns and cannot easily control
class distribution.

In contrast, our methodology generates traffic from scratch
without requiring real data, providing complete control over
balance and labels. Table [I| (Appendix) compares all ap-
proaches.

III. METHODOLOGY
A. Overview

Our methodology for generating balanced and realistic BGP

traffic consists of five key components:

1) RFC Compliance Framework: Generated traffic is
constructed directly from RFC-defined BGP message
formats, replicating each field and byte structure speci-
fied in the standard.

2) BGP Session Establishment: Implementing complete
TCP handshake and BGP OPEN/KEEPALIVE ex-
change.

3) Normal Traffic Generation: Creating diverse legitimate
BGP UPDATE scenarios.

4) Anomalous Traffic Generation: Systematically gener-
ating various attack patterns.

5) Dataset Export and Labeling: Converting packets to
machine learning-ready formats with process-ID track-
ing.

During development, a large language model (Claude Son-

net 3.7 [18]]) assisted primarily with initial code scaffolding
and Scapy boilerplate generation, such as repetitive attribute

handling and basic packet construction templates. Neverthe-
less, the overall architecture, traffic generation logic, attack
scenario design, and validation pipeline were developed man-
ually. All LLM-generated code segments were subsequently
reviewed, corrected where necessary, and validated against
RFC specifications and Cisco/GNS3 traces. The final imple-
mentation (4075 lines of Python code) runs independently
without runtime LLM access. This workflow—using LLMs
for accelerating initial development while maintaining rigorous
manual validation—may inform other researchers exploring
similar tools for protocol-level code generation.

B. BGP Session Establishment

Our implementation follows RFC 4271 [19] compliance
throughout the session lifecycle. Sessions are established over
TCP port 179 with standard three-way handshakes. All TCP-
level requirements are met, including window sizing (RFC
879 [20]), sequence number tracking, and a 60-byte minimum
packet size with padding.

Following TCP establishment, peers exchange BGP OPEN
messages containing: version 4, AS numbers (2-byte and 4-
byte formats per RFC 4893 [21]), 180-second hold time,
and IPv4-format BGP identifier. Optional parameters adver-
tise capabilities: Multiprotocol support for IPv4/IPv6 uni-
cast (RFC 4760 [22]]) with AFI/SAFI values, route refresh
(RFC 2918 [23]]), and 4-byte AS support.

After a successful OPEN exchange, peers confirm
establishment via KEEPALIVE messages. We discov-
ered Scapy [24] KEEPALIVE implementation violates
RFC 4271, requiring 19-octet messages. Multiple in-
heritance (class BGPKeepAlive (BGP, BGPHeader))
combined with layer binding causes duplicate headers and
38-byte packets. We corrected this using BGPKeepAlive ()
directly, producing compliant 19-byte packets validated against
GNS3 and Cisco implementations.

C. Traffic Generation Strategy

1) Traffic Generation Parameters and Timing: To balance
realism with reproducibility, we employed a hybrid approach
combining static topology structure with randomized param-
eters. Static components include AS relationship structure
(peering topology), AS tier assignments (Tier 1/2/3 hierar-
chy), and basic prefix allocation schemes. Randomized com-
ponents include AS numbers within tier-appropriate ranges
(Tier 1: 1000-5000, Tier 2: 10000-20000, Tier 3: 30000-
50000, Private: 50000-65000), IP addressing with random
private subnet assignments (Tier 1: 100.64.0.0/10, Tier 2:
172.16.0.0/12, Tier 3: 192.168.0.0/16, Peering: 10.0.0.0/8,
Public prefixes: 203.0.0.0/8, 198.51.100.0/24), BGP param-
eters (randomized router IDs, hold times 60-180s, LO-
CAL_PREF values, community strings), and session timing
with realistic random delays. However, three specific IP ad-
dresses and AS numbers are kept static for reproducible attack
scenario generation and validation.

For temporal realism, BGP UPDATE packets are generated
over a configurable interval (e.g., 20 min), where inter-arrival

times are sampled from a Pareto distribution to reproduce the
bursty, heavy-tailed timing observed in real routing traffic [25]],
[26]:

axd

fla) = 5

where x,, is the minimum delay and « controls tail heav-

iness; o« = 2.5 models normal behavior and o« = 1.8

attack conditions. The resulting traffic shows median and 95"-

percentile delays of 0.015 s and 0.040 s (see Appendix [II).

This configuration yields temporally realistic synthetic traces
for downstream feature extraction and anomaly detection.

2) Normal Traffic Generation: To create diverse and re-
alistic normal BGP traffic, we implemented eight distinct
legitimate routing scenarios representing common operational
events in production networks: (1) ORIGIN attribute changes
(IGP/INCOMPLETE transitions), (2) AS_PATH modifications
through legitimate path prepending for traffic engineering, (3)
NEXT_HOP changes during route updates, (4) LOCAL_PREF
modifications for policy-based routing, (5) COMMUNITIES
attribute updates for route tagging and filtering, (6) Duplicate
announcements caused by prefix repetition, (7) AS_PATH
length variations due to topology changes, and (8) ROUTE
AGGREGATION/SUMMARIZATION for prefix consolida-
tion.

3) BGP UPDATE Messages with Path Attributes: Our
implementation generates complete BGP UPDATE messages,
contains mandatory path attributes (ORIGIN, AS_PATH,
NEXT_HOP) and optional transitive/non-transitive attributes.
Our implementation generates complete UPDATE messages
based on attribute patterns observed in public BGP reposito-
ries (RIPE RIS, RouteViews), as these datasets represent the
realistic attribute combinations studied in anomaly detection
research.

For IPv4 announcements, we generate UPDATE
messages with: ORIGIN (IGP/EGP/INCOMPLETE),
AS_PATH with realistic AS sequences, NEXT_HOP
addresses, MULTI_EXIT_DISC (MED), LOCAL_PREF,
ATOMIC_AGGREGATE flags, AGGREGATOR information,
and COMMUNITIES (standard and extended). For IPv6, we
use MP_REACH_NLRI (Multiprotocol Reachable NLRI)
with AFI=2 (IPv6), SAFI=1 (Unicast), global and link-local
next-hop addresses, and properly encoded IPv6 prefixes.

Route withdrawals require special handling. For IPv4 with-
drawals, we found an implementation issue with Scapy layer
stacking. Our solution creates the BGP UPDATE instance
first without layering it on BGPHeader, sets the withdrawn-
routes, path-attr, and NLRI fields directly on that instance, then
layers it with BGPHeader and processes normally. For IPv6,
we use MP_UNREACH_NLRI to represent route removals.
Normal traffic also includes legitimate path attribute updates:
LOCAL_PREF changes, AS_PATH length variations, COM-
MUNITIES modifications, and route re-announcements with
different attributes.

4) Anomalous Traffic Generation: Our methodology gen-
erates three primary categories of BGP anomalies selected
for operational relevance and direct mapping to attributes

T > T, (1

commonly used in detection research: (1) Prefix Hijacking
— unauthorized announcement of legitimate prefixes including
both exact prefix hijacks and more-specific sub-prefix hijacks
that exploit longest-prefix matching; (2) Path Manipulation
— malicious AS_PATH modifications including path short-
ening to attract traffic, invalid AS sequences, and prepend-
ing anomalies that deviate from normal traffic engineering
patterns; and (3) UPDATE Flooding (DoS) — excessive
UPDATE message generation designed to overwhelm BGP
peers and consume processing resources.

To enable training of balanced ML models, we employ
process-ID—based labeling, where each packet is tagged during
generation with a unique identifier. Attack packets are tracked
in a dedicated set, allowing precise labeling as “normal”, “pre-
fix_hijacking”, “path_manipulation”, and “dos_attack™ during
dataset export. This approach provides perfect ground-truth
labels without the ambiguity of timestamp-based labeling used
in real-world datasets. The generation process allows con-
trollable class distribution, enabling the creation of perfectly
balanced datasets (50-50 normal/abnormal) or custom ratios
based on specific research requirements, addressing the severe
imbalance problem in public BGP datasets, where anomalous
traffic represents less than 5% of total traffic.

Although these attack patterns represent real-world scenar-
i0s, we emphasize that the generated attack traffic is intended
exclusively for research and machine learning model training,
not for deployment or live network testing.

5) BGP NOTIFICATION Messages: NOTIFICATION mes-
sages are legitimate protocol-defined messages for error han-
dling and session termination per RFC 4271 [19]]. Unlike
attack scenarios, these represent proper BGP behavior when
errors occur. We generate five types: (1) Message Header
Error (Code 1) with Bad Message Length subcode, (2) OPEN
Message Error (Code 2) with Bad Peer AS subcode, (3)
UPDATE Message Error (Code 3) with Malformed Attribute
List subcode, (4) Hold Timer Expired (Code 4), and (5) Finite
State Machine Error (Code 5). Each NOTIFICATION message
is accompanied by the corresponding TCP ACK responses to
maintain an accurate session state throughout the simulation.
Moreover, NOTIFICATION messages are labeled as “normal”
rather than anomalous traffic, since they represent legitimate
protocol behavior under error conditions.

IV. EXPERIMENTAL EVALUATION
A. Validation Methodology

We validated our generated traffic through four complemen-
tary approaches. (1) GNS3 Cross-Comparison: We config-
ured identical BGP sessions in GNS3 with Cisco IOS routers
using the same AS numbers and IP addresses, then compared
packet structures, field values, and message sequences via
Wireshark. (2) Cisco Trace Comparison: We analyzed our
packets against Cisco BGP traces [27], comparing packet
length distributions, header formats, attribute ordering, and
TCP characteristics. (3) RFC Compliance Verification: We
systematically verified RFC 4271 [[19] compliance, including

message headers (Marker, Length, Type), FSM state transi-
tions, attribute formats, and error handling. (4) Bidirectional
PCAP Validation: We used a PCAP-to-Scapy conversion
tool [28] to reverse-engineer our PCAPs.

Figure [I] (see Appendix) illustrates this bidirectional val-
idation process. Using the PCAP-to-Scapy conversion tool
with the Scapy BGP contrib module, we successfully reverse-
engineered our generated PCAPs, reconstructing complete
BGP session establishment (OPEN, KEEPALIVE) and UP-
DATE messages with all path attributes, including ORIGIN,
AS_PATH, NEXT_HOP, MED, LOCAL_PREF, and COM-
MUNITIES (Panel B). Wireshark dissection (Panel C) con-
firms RFC 4271 compliance. The perfect correspondence
across all BGP attributes and NLRI prefixes validates that
our generated traffic is both RFC-compliant and correctly
parseable by programmatic and network analysis tools. This
bidirectional validation—generating Scapy code to produce
PCAPs, then converting PCAPs back to Scapy code—confirms
the structural integrity of our generated traffic.

B. Dataset Export and Characteristics

Our system exports generated traffic in two formats for dif-
ferent analysis purposes. All packets are written to PCAP files
using the Scapy wrpcap () function, enabling analysis with
Wireshark, packet-level inspection, debugging, and integration
with existing network analysis workflows.

Additionally, we developed a custom parser to extract BGP-
specific features and export them to CSV format, directly
usable for ML feature engineering and model training. The
CSV export includes 13 features per UPDATE message: mes-
sage type, timestamp, subtype (announcement/withdrawal),
peer IP address and AS number, announced/withdrawn pre-
fix, AS_PATH (as string), ORIGIN type, NEXT_HOP ad-
dress, MED value, LOCAL_PREF value, COMMUNITIES (as
string), AGGREGATOR flag and information, and critically,
label (“normal”, “prefix_hijacking”, “path_manipulation”, and
“dos_attack™) based on process-ID tracking.

The generated dataset demonstrates balanced class distri-
bution with 54.21% normal updates, 12.33% prefix hijacking
instances, 12.60% path manipulation instances, and 20.86%
DoS attack updates. Complete dataset characteristics are in
Table [IT] (Appendix).

Our implementation generates 20 minutes of mixed BGP
traffic in approximately 24 minutes on commodity hardware
(MacBook Pro, M4-Pro, 24 GB RAM, Scapy 2.6.1) spending
about 8 GB in the process. This implementation enables a
more convenient generation of time-bounded, realistic datasets
without the large memory overhead commonly required by
simulation-based approaches [5] which would need many more
resources to have a similar topology. Detailed generation
performance metrics are reported in Table [[V| (Appendix).

C. Machine Learning Classification Validation

To validate the utility of the generated dataset for machine
learning (ML)-based anomaly detection, we trained a Random

Forest classifier [29] (scikit-learn, n_estimators = 100)
on the 45928 BGP UPDATE messages. From the exported

CSV containing 13 packet-level fields per UPDATE file, 25
temporal and statistical features were computed over sliding
time windows following [4]]. These features capture UPDATE
message rates, AS_PATH characteristics, prefix announcement
and withdrawal patterns, as well as path attribute dynamics.

The dataset was aggregated into 158 time windows and sub-
jected to binary classification (normal vs. anomalous traffic)
using an 80-20 train—test split with stratified sampling to pre-
serve class distribution (54.21% normal, 45.79% anomalous
windows). The Random Forest classifier achieved an accuracy
of 96.88%, with precision, recall, and F1-score of 0.98, 0.95,
and 0.96, respectively. The confusion matrix indicated only
one false positive among 32 test windows. These results serve
as an internal consistency check confirming discriminative
patterns in the synthetic data, although not as standalone proof
of full realism.

While class balance is not strictly mandatory for anomaly
detection, training on severely imbalanced data typically de-
grades sensitivity to minority classes. Our methodology pro-
vides controllable class distribution at the packet level, unlike
oversampling techniques (e.g., SMOTE [30]]) that operate
on extracted feature metadata. This enables researchers to
generate balanced training sets while reserving imbalanced test
sets for reflecting operational conditions.

V. CONCLUSION AND FUTURE WORK

The presented framework adheres to RFC-defined formats,
supports diverse attack simulations, and provides precise
ground-truth labeling with PCAP and ML-ready exports. Val-
idation on 45 928 labeled UPDATE messages using a Random
Forest classifier achieved 96.88% accuracy, confirming that
the generated traffic realistically represents BGP behavior and
is suitable for training and evaluating ML-based detection
models.

While our proof of concept demonstrates the feasibility
of synthetic BGP traffic generation, several limitations guide
future work. The current dataset models 11 autonomous sys-
tems with independent per-session traffic generation, whereas
the global Internet includes over 70 000 ASNs with complex
inter-peer dependencies. Future extensions will scale the topol-
ogy and model route propagation effects, where UPDATE
messages at one peer trigger subsequent announcements at
downstream peers, better capturing convergence dynamics.
We will incorporate Routing Information Base (RIB) records
for richer temporal and topological context calibrated against
RIPE RIS collector data, and evaluate whether models trained
on synthetic data generalize to real BGP traces. Additional
learning models (XGBoost, SVM, LSTM, Transformer) will
be assessed, comparing our packet-level generation against
metadata-level oversampling techniques (e.g., SMOTE). The
attack taxonomy will expand to include route leaks [31]-[33],
BGP session hijacking, and coordinated multi-AS attacks.

[1]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

REFERENCES

J. Touch, A. Mankin, and R. Bonica, “The TCP Authentication Option,”
Internet Engineering Task Force, RFC 5925, Jun. 2010. [Online].
Available: https://www.rfc-editor.org/rfc/rfc5925.txt

H. Schulmann, N. Vogel, and M. Waidner, “Rpki: Not perfect but good
enough,” 2024. [Online]. Available: https://arxiv.org/abs/2409.14518
M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” Internet
Engineering Task Force, RFC 8205, Sep. 2017. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc8205

S. Motaali, J. E. Lépez de Vergara, and L. de Pedro, “Hybrid feature
selection and explainable machine learning for bgp anomaly detection,”
in Proc. 4th International Conference on Computing, IoT and Data
Analytics, Madrid, Spain, 2025.

GNS3 Technologies, “GNS3: Graphical network simulator,” https://
www.gns3.com/,

RIPE Network Coordination Centre, “RIPE routing information
service (RIS),” |https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris.

] U. of Oregon, “Routeviews project,” http://www.routeviews.org/.

CAIDA, “The center for applied internet data analysis (caida),” https:
/Iwww.caida.org/.

P. Fonseca, E. S. Mota, R. Bennesby, and A. Passito, “BGP dataset
generation and feature extraction for anomaly detection,” in 2019 IEEE
Symposium on Computers and Communications (ISCC). IEEE, 2019.
Yazan Siam, “Tcpreplay,” https://github.com/appneta/tcpreplay.

Y. Yin, Z. Lin, M. Jin, G. Fanti, and V. Sekar, “Practical gan-based
synthetic ip header trace generation using netshare,” SIGCOMM, Aug.
2022.

T. J. Anande and M. S. Leeson, “Generative adversarial networks
(gans): A survey on network traffic generation,” International Journal
of Machine Learning and Computing, vol. 12, no. 6, Nov. 2022.

J. A. Delgado-Soto, J. E. Lopez de Vergara, I. Gonzilez, D. Perdices,
and L. de Pedro, “GPT on the wire: towards realistic network traffic con-
versations generated with large language models,” Computer Networks,
vol. 265, no. 111308, Jun. 2025.

I. Gonzdlez, J. E. Lopez de Vergara, J. A. Delgado-Soto, D. Perdices,
and L. de Pedro, “Training LLMs to speak network,” in Proceedings of
the 4th International Conference on Computing, loT and Data Analytics,
ICCIDA 2025, Madrid, Spain, Jul. 2025.

A. SECK, S. EZABOLO, C. S.E.BASSENE, and N. C. SENE, “Bopis-
software: A python based software application for sdn east-west inter
autonomous system communication and programmable network moni-
toring tool,” WINCOM, 2023.

S. Zhao, X. Huang, and P. Zhang, “Locating the root cause of large-scale
BGP anomaly with routing dependence,” in 2024 IEEE International
Performance, Computing, and Communications Conference (IPCCC).
IEEE, 2024.

H. Li, M. Fedeli, V. Kolar, and D. Klabjan, “BEAR: BGP event
analysis and reporting,” arXiv preprint arXiv:2506.04514, June 2025.
[Online]. Available: https://arxiv.org/abs/2506.04514

Anthropic, “Claude AlL” https://claude.ai.

Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4
(BGP-4),” Internet Engineering Task Force, RFC 4271, Jan. 2006.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4271.txt

J. Postel, “The TCP Maximum Segment Size and Related Topics,”
Internet Engineering Task Force, RFC 879, Nov. 1983. [Online].
Available: https://www.rfc-editor.org/rfc/rfc879.txt

Q. Vohra and E. Chen, “BGP Support for Four-octet AS Number
Space,” Internet Engineering Task Force, RFC 4893, May 2007.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc4893.txt

T. Bates, R. Chandra, D. Katz, and Y. Rekhter, “Multiprotocol
Extensions for BGP-4,” Internet Engineering Task Force, RFC 4760,
Jan. 2007. [Online]. Available: https://www.rfc-editor.org/rfc/rfc4760.txt
E. Chen, “Route Refresh Capability for BGP-4,” Internet Engineering
Task Force, RFC 2918, Sep. 2000. [Online]. Available: https:
/Iwww.rfc-editor.org/rfc/rfc2918.txt

Scapy Project, “BGP Contrib Module — Scapy Documentation,” https:
/Iscapy.readthedocs.io/en/stable/api/scapy.contrib.bgp.html.

W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of ethernet traffic (extended version),” IEEE/ACM
Transactions on Networking, 1994.

V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson
modeling,” IEEE/ACM Transactions on Networking, 1995.

(27]

[28]
[29]

(30]

(31]

[32]
[33]

Cisco Meraki, BGP - Messages Wireshark, Cisco Systems,
Inc., online documentation; accessed 26-October-2024. [Online].
Available: |https://documentation.meraki.com/MX/Other_Topics/BGP_

-_Messages_Wireshark

Scapy Project, “PCAP to
pcap2scapy.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. Artif. Intell.
Res., vol. 16, pp. 321-357, 2002.

K. Sriram, D. Montgomery, D. McPherson, E. Osterweil, and
B. Dickson, “Problem Definition and Classification of BGP Route
Leaks,” Internet Engineering Task Force, RFC 7908, Jun. 2016.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc7908

G. Huston, “Leaking routes,” 2012.

M. S. Siddiqui, D. Montero, R. Serral-Gracia, X. Masip-Bruin, and
M. Yannuzzi, “Route leak identification: A step toward making inter-
domain routing more reliable,” in Proc. IEEE International Conference
on Communications (ICC), 2014, pp. 3436-3441.

SCAPY,” |https://github.com/toonst/

APPENDIX
TABLE I
COMPARISON OF BGP TRAFFIC GENERATION AND ANALYSIS
APPROACHES
9
£
=
E g‘- w
P £ g
=S| F| 4| £
3 E| 2|58 E
Approach 4 ~ /a - =) A
Real Data [6]-[8] Yes Yes No No Yes Collection
Replay [10] Yes Yes No No Yes Replay
GAN [11] Yes | N/A Yes Part. No Generation
GNN [12] Yes N/A Yes Part. No Generation
LLM [14] No Yes N/A N/A No Generation
BOPIS [15] Yes Yes N/A N/A Yes Monitoring
Localization [16] Yes Yes No Part. Yes Detection
BEAR [17] Yes N/A N/A Part. Yes Explanation
Ours No Yes Yes Yes Yes | Generation
TABLE II
INTER-PACKET DELAY DISTRIBUTION COMPARISON
Metric Pareto Weibull | Gaussian
Mean delay (s) 0.018953 | 0.015780 | 0.017199
Median delay (s) 0.014663 | 0.011948 | 0.014740
95th percentile (s) | 0.040281 | 0.041079 | 0.022789
Max delay (s) 0.087794 | 0.071551 0.109695
Min delay (s) 0.006249 | 0.002290 | 0.004408
TABLE III
PROOF-OF-CONCEPT DATASET CHARACTERISTICS
Characteristic Value
Update packets 45928
AS number 11
Announcements 44975
Withdrawals 953
Normal update 24 898
Prefix hijacking 5665
Path manipulation | 5785
DoS attacks 9580
TABLE IV
RUNTIME BREAKDOWN FOR SYNTHETIC BGP DATASET GENERATION.
Phase Time
BGP Session Establishment 19s
BGP Update Generation(Normal/Anomalous) 23.4 min
PCAP to CSV Conversion 2153 s
Total 23.81 min

https://www.rfc-editor.org/rfc/rfc5925.txt
https://arxiv.org/abs/2409.14518
https://datatracker.ietf.org/doc/html/rfc8205
https://www.gns3.com/
https://www.gns3.com/
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris
http://www.routeviews.org/
https://www.caida.org/
https://www.caida.org/
https://github.com/appneta/tcpreplay
https://arxiv.org/abs/2506.04514
https://claude.ai
https://www.rfc-editor.org/rfc/rfc4271.txt
https://www.rfc-editor.org/rfc/rfc879.txt
https://www.rfc-editor.org/rfc/rfc4893.txt
https://www.rfc-editor.org/rfc/rfc4760.txt
https://www.rfc-editor.org/rfc/rfc2918.txt
https://www.rfc-editor.org/rfc/rfc2918.txt
https://scapy.readthedocs.io/en/stable/api/scapy.contrib.bgp.html
https://scapy.readthedocs.io/en/stable/api/scapy.contrib.bgp.html
https://documentation.meraki.com/MX/Other_Topics/BGP_-_Messages_Wireshark
https://documentation.meraki.com/MX/Other_Topics/BGP_-_Messages_Wireshark
https://github.com/toonst/pcap2scapy
https://github.com/toonst/pcap2scapy
https://datatracker.ietf.org/doc/html/rfc7908

(A) PCAP-to-Scapy Output Without BGP Module (Basic Parsing Only)

pkt1045 = (

Ether()/

IP(
tos=192,
flags=<Flag 2 (DF)>,
Et
sr 10.125.
dst="10.125.

)/

TCP(

sport=37757,
dport=179,

seq=7629,

ack=3658,

flags=<Flag 24 (PA)>,
window=16384

pkt1045 = [(
Ether()/
P
tos=192,
flags=<Flag 2 (DF)>,

sport=37757,
dport=179,
seq=7629,
ack=3658,
flags=<Flag 24 (PA)>,
window=16384
"/
BGPHeader (
len=74,
type=2
)/
BGPUpdate (
path_attr=
BGPPathAttr(type_flags=<Flag 64 (Transitive)>, type_code=1, attr_len=1, attribute=<BGPPAOrigin origin=IGP |>),
BGPPathAttr(type_flags=<Flag 64 (Transitive)>, type_code=2, attr_len=4, attribute=<BGPPAASPath segments=[<ASPathSegment segment_type=AS_SEQUENCE segment_length=1 segment_value=(2147
BGPPathAttr(type_flags=<Flag 64 (Transitive)>, type_code=3, attr_len=4, attribute=<BGPPANextHop next_hop=10.125.216.9 |>),
BGPPathAttr(type_code=4, attr_len=4, attribute=<BGPPAMultiExitDisc med=100 |>),
BGPPathAttr(type_flags=<Flag 64 (Transitive)>, type_code=5, attr_len=4, attribute=<BGPPALocalPref local_pref=200 |>),
BGPPathAttr(type_flags=<Flag 192 (Transitive+Optional)>, type_code=8, attr_len=4, attribute=<BGPPACommunity community=140705892 |>)

nlri=
BGPNLRI_IPv4(prefix=(24, '1¢
BGPNLRI_IPv4(prefix=(24,
BGPNLRI_IPv4(prefix=(24,

(C) Wireshark Dissection Confirming RFC Compliance

Ethernet II, Src: ForceCommuni_44:a4:al (00:1c:89:44:a4:al), Dst: 00:fc:64:76:b9:31 (00:fc:64:76:b9:31)
Internet Protocol Version 4, Src: 10.125.216.9, Dst: 10.125.216.10
Transmission Control Protocol, Src Port: 37757, Dst Port: 179, Seq: 74, Ack: 1, Len: 74
Border Gateway Protocol - UPDATE Message
Marker: fffffffffffffffffrfffffrffffffef
Length: 74
Type: UPDATE Message (2)
Withdrawn Routes Length: @
Total Path Attribute Length: 39
Path attributes
Path Attribute - ORIGIN: IGP
Path Attribute - AS_PATH: 2147
Path Attribute - NEXT_HOP: 10.125.216.9
Path Attribute — MULTI_EXIT_DISC: 100
Path Attribute - LOCAL_PREF: 200
Path Attribute - COMMUNITIES: 2147:100
Network Layer Reachability Information (NLRI)
10.1.4.0/24
10.1.6.0/24
10.1.8.0/24

Fig. 1. Bidirectional validation of generated BGP traffic using PCAP-to-Scapy conversion and Wireshark dissection confirming RFC compliance.

	Introduction
	Related Work
	Methodology
	Overview
	BGP Session Establishment
	Traffic Generation Strategy
	Traffic Generation Parameters and Timing
	Normal Traffic Generation
	BGP UPDATE Messages with Path Attributes
	Anomalous Traffic Generation
	BGP NOTIFICATION Messages

	Experimental Evaluation
	Validation Methodology
	Dataset Export and Characteristics
	Machine Learning Classification Validation

	Conclusion and Future Work
	References

