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Abstract—Border Gateway Protocol (BGP) anomalies, such as
route hijacks, misconfigurations, and worm-induced disruptions,
significantly threaten global Internet stability. While machine
learning (ML) methods have improved anomaly detection, crit-
ical challenges persist: limited availability of comprehensive
IPv6/IPv4 labeled datasets and significant preprocessing delays
that prevent real-time anomaly classification. This research deals
with extending established dataset-generation methods to create
robust, parallel datasets for IPv4 and IPv6 anomalies. It further
evaluates advanced ML models, including LSTM, Transformers,
and Graph Neural Networks (GNNs), specifically focusing on
reducing detection latency. Our approach aims to integrate
optimized preprocessing workflows, diversified datasets, and
streaming-based inference. We expect this will improve anomaly
detection accuracy and speed, moving closer to practical real-
time BGP anomaly detection.

Index Terms—BGP, Anomaly Detection, IPv6, Real-Time Mon-
itoring, Machine Learning, Feature Extraction, Dataset Genera-
tion

I. INTRODUCTION

The Border Gateway Protocol (BGP) manages inter-domain

routing for thousands of Autonomous Systems (ASes) around

the globe, making it essential for the stability of the global

Internet. However, BGP is susceptible to issues like hijacks,

route leaks, and misconfigurations, which can cause both

partial and widespread disruptions [1], [2]. Machine learning

(ML) and deep learning (DL) approaches—e.g., Random For-

est, LSTM (Long Short-Term Memory), and Transformers—

have shown promise for automating BGP anomaly detec-

tion [3], [4]. However, major challenges remain: (1) Publicly

available BGP repositories (e.g., RouteViews, RIPE NCC) pro-

vide both IPv4 and IPv6 data; nevertheless, previous research

has predominantly focused on IPv4 during preprocessing,

leading to limited characterization of IPv6 anomalies [2]. (2)

Existing ML-based detection pipelines often involve extensive

preprocessing steps, which can take several minutes before

feature extraction and classification, introducing delays that

hinder real-time mitigation [4]. (3) The absence of standard-

ized IPv4/IPv6-labeled datasets limits model generalization
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and benchmarking [2], [4]. To address these issues, this paper

proposes an approach to improve BGP anomaly detection by:

• Developing parallel IPv4 and IPv6 datasets, incorporating

diverse BGP anomalies.

• Evaluating low-latency ML architectures (LSTM, Trans-

formers, GNNs and Random Forest) to enhance real-time

classification.

• Implementing feature-based anomaly localization, en-

abling more precise mitigation.

The remainder of this paper is organized as follows. Sec-

tion II surveys the state-of-the-art in BGP anomaly detection

and dataset generation. Section III clarifies existing gaps

and their implications for IPv6 research. Section IV presents

the principal research questions. Section V outlines our ini-

tial methodology, followed by a comprehensive approach.

Section VI concludes the paper, highlighting how unified

IPv4/IPv6 datasets and near real-time ML frameworks can

strengthen BGP resilience, and showing future directions in

this research.

II. STATE-OF-THE-ART REVIEW

Recent research from 2017 to 2024 on BGP anomaly

detection has employed a range of methodologies, from

traditional statistical methods to advanced machine learning

and deep learning techniques. Statistical methods typically

involve heuristic or threshold-based detection mechanisms and

have demonstrated efficacy in identifying large-scale anoma-

lies such as route leaks or hijacking events [1]. However,

these approaches have difficulties detecting subtle or small-

scale anomalies and often necessitate frequent and manual

updates [2].

Machine Learning (ML) techniques such as Random Forests

and Support Vector Machines (SVM) have significantly ad-

vanced anomaly detection accuracy and adaptability. For in-

stance, in [2] they used feature selection combined with SVM

models to achieve high accuracy in distinguishing anomaly

types such as route table leaks and link failures. Furthermore,

the work in [3] reviewed multiple ML techniques, highlighting

the robustness of SVMs in detecting various BGP anomalies,

including worms and ransomware attacks.

Deep Learning (DL) methods, notably LSTM networks and

autoencoder architectures, have effectively modeled temporal



dynamics in BGP anomalies. The work in [5] demonstrated

the superiority of an LSTM-based autoencoder in identifying

anomalies such as route hijacks and misconfigurations, signif-

icantly outperforming traditional ML methods.

Recent advancements have also emphasized Graph Neural

Networks (GNNs) and Graph Attention Networks (GATs),

utilizing Autonomous System (AS) relationship graphs to en-

hance anomaly detection and localization precision. The work

in [4] showed graph-based methods significantly improved

detection accuracy for small-scale events. Similarly, in [6] the

use of spatio-temporal graph attention models is proposed,

further improving anomaly detection accuracy and providing

better anomaly localization.

Despite these advancements, a critical gap remains in the ap-

plication of ML techniques to IPv6 anomalies. Publicly avail-

able repositories, such as RIPE NCC [7] and RouteViews [8],

contain both IPv4 and IPv6 routing data. However, research

efforts have overwhelmingly focused on IPv4 datasets, leav-

ing IPv6-specific anomaly detection largely unexplored [2].

The structural differences in IPv6 routing, including longer

AS paths and different prefix allocation policies, necessitate

specialized anomaly detection approaches [4].

Moreover, real-time anomaly detection remains a pressing

challenge [9]. While current detection models achieve accu-

racy improvements, much of the delay originates from data

preprocessing steps rather than model inference times. The

overall pipeline, including feature extraction and classification,

often takes several minutes, which remains inadequate for real-

time mitigation [4]. Additionally, the computational complex-

ity of deep learning models makes real-time implementations

challenging, indicating a need for optimized and scalable

solutions suitable for operational deployment [10].

III. GAPS AND LIMITATIONS

Despite recent advancements, several significant gaps persist

in the domain of BGP anomaly detection, as stated above:

Limited IPv6 Research: Existing datasets and anomaly

detection models predominantly focus on IPv4. The increasing

adoption of IPv6 necessitates research explicitly targeting IPv6

anomalies, which remain underrepresented in current studies

and datasets.

Real-time Detection Challenges: The primary bottleneck

in real-time detection is not only the model inference itself, but

also the preprocessing of raw BGP data, including feature ex-

traction and transformation. This process can take up to seven

minutes, significantly delaying anomaly detection. Optimizing

preprocessing workflows and leveraging real-time streaming

techniques are essential for achieving sub-minute detection

latency [4].

Dataset Shortcomings: As highlighted by [2] and [4], there

is a notable absence of standardized and adequately labeled

datasets covering both IPv4 and IPv6 anomalies. This limi-

tation significantly restricts the ability to develop universally

applicable and robust anomaly detection methods.

Anomaly Localization and Identification: Most existing

methods detect anomalies without adequately identifying their

precise origin or cause. Enhanced localization and root-cause

analysis capabilities are critical for practical anomaly mitiga-

tion and response [6].

These gaps are uniquely tied to BGP’s inter-domain rout-

ing complexity and IPv6-specific behaviors (e.g., Neighbor

Discovery Protocol, NDP), which generic anomaly detection

methods cannot address due to their lack of tailored features

and real-time capabilities. Addressing these gaps is essen-

tial for improving the effectiveness and deployment of BGP

anomaly detection systems, ensuring better network security

and resilience.

IV. RESEARCH QUESTIONS

Considering the gaps identified and the findings of recent

research [2]–[4], [6], [10], this study aims to address the

following research questions:

1) How can BGP anomaly detection methods be ex-

tended and optimized to specifically address IPv6 traffic

anomalies, considering the absence of standardized IPv6

datasets and benchmarks?

2) What machine learning or deep learning methods and

architectures (e.g., Random Forest, SVM, LSTM, Trans-

formers, GANs) are best suited to achieve anomaly de-

tection speeds suitable for real-time response, improving

current benchmarks?

3) What combination of statistical, temporal, and graph-

based features extracted from repositories like Route-

Views [8], RIPE NCC [7], and BGPStream [11] max-

imizes the accuracy and enhances the precision of

anomaly localization and root cause analysis with faster

response time?

4) How can standardized datasets with comprehensive la-

beling for both IPv4 and IPv6 anomalies be developed

and validated to enable consistent and rigorous bench-

marking across diverse anomaly detection techniques?

5) Can hybrid models combining traditional machine learn-

ing, deep learning, and graph-based methods effec-

tively overcome current limitations related to dataset

heterogeneity, feature complexity, and computational

efficiency?

V. METHODOLOGY

This section outlines our integrated approach to address the

BGP anomaly detection challenge, drawing on the dataset-

generation methods introduced by [12] and [4]. Our goal

is twofold: first, to produce parallel IPv4 and IPv6 datasets

that accurately capture diverse anomalies, and second, to

systematically evaluate machine learning (ML) methods for

reduced detection latency. Figure 1 illustrates the structured

workflow of our proposed methodology, from data acquisition

to performance evaluation. Below, we describe each phase of

our methodology in detail.

A. Dataset Replication and Extension

The dataset replication and extension phase establishes the

foundational datasets required for our experiments. Initially,



Data Acquisition: 
RouteViews, RIPE NCC, 

BGPStream

Preprocessing: Feature 
Extraction,  Labeling & 
Normalization,  Quality 

Assurance

Machine Learning Setup: 
Model Selection, Latency 

Measurement

Exploratory Analysis & 
Validation : Feature 
Importance Analysis

Iterative Refinement & 
Deployment : 

Complex Anomaly 
Inclusion, Real-time 

Integration

Performance 
Evaluation

Fig. 1. Flowchart of the proposed methodology for BGP anomaly detection.

we collect relevant historical BGP data, replicate existing

feature extraction pipelines, and subsequently extend these

processes to include IPv6-specific characteristics. The detailed

workflow includes:

• Data Acquisition: We collect historical BGP updates

from multiple repositories—such as RouteViews [8],

RIPE NCC [7], and BGPStream [11]—ensuring coverage

of both IPv4 and IPv6 vantage points. Known anomaly

events (e.g., route leaks, hijacks) are identified via official

incident logs or prior literature.

• Reproducing Existing Pipelines: Following the feature-

extraction processes by [12] and [4], we parse the raw

BGP messages into standardized records that include

features like AS path length, announcements/withdrawals,

and route flaps.

• Extending for IPv6: These pipelines are tailored to

handle variations in the generation of the IPv6 dataset, in-

cluding differences in prefix length distribution, address-

ing structure, and unique IPv6 routing behaviors such

as Multi-Protocol BGP extensions for 128-bit addresses,

link-local next-hop resolution via NDP, and enhanced

session security through IPsec support. While maintaining

a parallel structure, this approach allows for additional

data or slightly modified feature extraction steps for IPv6,

thereby ensuring accurate representation and sufficient

coverage. This careful consideration addresses the dataset

gap highlighted in Section III while preserving the capac-

ity to conduct meaningful comparative analyses between

IPv4 and IPv6 anomalies.

B. Feature Extraction and Dataset Structuring

To assess whether IPv4 and IPv6 anomalies share compara-

ble characteristics, we generate parallel datasets by applying an

identical set of standardized preprocessing steps and extracting

the same features from IPv4 and IPv6 data. This approach

of creating parallel datasets facilitates a direct and equitable

comparison, enabling us to ascertain whether IPv6 anomalies

necessitate additional or specialized detection methods. Specif-

ically, the features extracted include:

• Feature Categories:
– Volume-based metrics: Announcement/withdrawal

counts, flaps, and duplication rates.

– AS-path features: Path length, edit distance, unique

ASes, and path changes.

– Graph-based features: Node centrality, clustering

coefficients, and AS relationship graphs for capturing

topological shifts [6].

– Address structure metrics: Prefix length, address dis-

tribution, and other address-related attributes consis-

tently captured for both IPv4 and IPv6.

• Labeling and Consistency: Each dataset entry is labeled

based on already-known BGP anomaly events, such as

route leaks (e.g., the Turk Telecom leak in 2004) and sub-

prefix hijacks (e.g., the Pakistan Telecom YouTube hijack

in 2008). We apply uniform time-binning to allow side-

by-side comparisons of IPv4 and IPv6 events, ensuring

consistent normalization across vantage points.

• Quality Assurance: We run exploratory data checks

(e.g., outlier detection, missing data analysis) to validate

the integrity of both IPv4 and IPv6 data subsets.

In previous works [4], [12], researchers often utilized extensive

feature sets, such as 48 statistical or 15 graph-based features,

to characterize BGP anomalies. In this study, we aim to

investigate whether comparable detection accuracy can be

achieved with a reduced feature set, thereby improving compu-

tational efficiency and model interpretability while maintaining

robustness across IPv4 and IPv6 datasets.

C. Machine Learning Setup for Reduced Delay

Our machine learning setup specifically targets the reduction

of detection latency to enable near real-time anomaly classifi-

cation. To achieve this objective, we have established a struc-

tured pipeline covering the entire lifecycle—from selecting ap-

propriate machine learning models and accurately measuring

latency to evaluating the trade-offs between detection speed

and classification accuracy. The following key phases guide

our ML implementation strategy:

• Model Selection: We implement a pipeline to evaluate

a range of ML/DL techniques—Random Forest, SVM,

LSTM, Transformers, and potential GAN-based frame-

works—based on their detection accuracy and computa-

tional requirements.

• Latency Measurement: We measure detection delay as

the time elapsed from receiving a BGP update until

an anomaly label is assigned. This end-to-end latency

is crucial for real-time responsiveness, given that prior

works report detection times often exceeding several

minutes in practical environments.

• Trade-off Analysis: Each model would assess on ac-

curacy, recall, F1-score, and inference speed. We seek

approaches that deliver near real-time detection without

significantly compromising classification performance.

Latency profiling includes per-update processing times

under different load scenarios, ensuring we balance ac-

curacy with system throughput.

D. Exploratory Data Analysis and Validation

This phase includes evaluating feature relevance, optimiz-

ing model parameters, and verifying the generalizability of



anomaly detection techniques across both IPv4 and IPv6

protocols. Specifically, this process involves:

• Feature Importance: Before large-scale experiments, we

use metrics like mutual information or random forest

ranking to highlight the most discriminative features for

IPv4 and IPv6 anomalies. This helps to guide any iterative

feature engineering.

• Hyperparameter Tuning: We apply grid search or

Bayesian optimization to refine model parameters (e.g.,

learning rates, tree depth) for improved detection effi-

ciency.

• Comparative Benchmarks: We run initial validation on

a balanced subset of IPv4/IPv6 anomalies to confirm gen-

eralization across protocols, ensuring that IPv6-specific

differences are not overlooked.

E. Iterative Refinement and Deployment Roadmap

The iterative refinement and deployment roadmap outlines

subsequent steps to progressively enhance our BGP anomaly

detection solution. This iterative process ensures that the

proposed methodology continuously evolves, integrating more

complex scenarios, validating performance under realistic net-

work conditions, and eventually transitioning into operational

deployment. Specifically, future iterations will focus on:

• Complex Anomaly Inclusion: Future dataset iterations

incorporate additional event types (e.g., worm-based traf-

fic surges, policy misconfigurations) to enrich the training

data for IPv4 and IPv6 contexts.

• Scalability Tests: We stress-test each model under high-

volume scenarios to measure throughput and stability,

examining potential bottlenecks in data ingestion or in-

ference.

• Real-time System Integration: Ultimately, we plan to

embed the detection pipeline into streaming architectures

(Kafka, RabbitMQ) or SDN frameworks [13], facilitating

automated anomaly mitigation upon early detection.

F. Performance Evaluation

Finally, we will assess our BGP anomaly detection system,

focusing on key performance aspects in diverse environments,

including varying network scales and IPv4/IPv6 deployments.

This phase will evaluate accuracy (precision, recall, F1-score)

versus latency, targeting sub-minute detection. Scalability will

be tested using high-volume BGP data from RouteViews

and RIPE NCC. We will explore challenges of real-world

deployment, such as preprocessing delays and IPv6 routing

behaviors (e.g., NDP), alongside practical implementation

issues like computational resource demands and integration

with streaming platforms (e.g., Kafka). Our ML approach will

be compared with heuristic methods using historical events

(e.g., the Turk Telecom leak). An implementation roadmap

will guide integration into BGP monitoring systems, enhancing

mitigation.

Overall, this methodology aims to solve two primary chal-

lenges: the lack of standardized IPv6/IPv4 anomaly datasets

and the delay hindering real-time detection. By merging robust

dataset-generation techniques with carefully measured ML

performance under realistic loads, our approach aspires to

deliver a protocol-agnostic (either IPv4 or IPv6), near-real-

time solution for BGP anomaly detection.

VI. CONCLUSION AND FURTHER RESEARCH

In this study, critical gaps in BGP anomaly detection were

addressed, with a primary focus on dataset generation and real-

time performance. By developing parallel and standardized

IPv4/IPv6 datasets and optimizing preprocessing workflows,

the quality and consistency of available data can be enhanced.

Furthermore, through a systematic evaluation of multiple ma-

chine learning algorithms, detection latency would be reduced,

achieving practical real-time applicability.

Although these efforts improved two significant gaps, chal-

lenges such as detailed anomaly localization and compre-

hensive IPv6-specific anomaly characterization remain open

for future research. Continued exploration in these areas will

further enhance the robustness and resilience of global Internet

routing infrastructures.

By systematically pursuing this study, it is expected that

both the depth and breadth of BGP anomaly detection re-

search, particularly for IPv6, will be improved, moving closer

to real-time, scalable, and automated protection of inter-

domain routing.
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