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Abstract Current fixed and mobile networks’ behav-

ior is rapidly changing, which calls for flexible monitor-

ing approaches to avoid loosing track with such a fast

evolutionary pace. Due to the many challenges that this

scenario is posing to network managers, we propose the

exploration of Functional Data Analysis (FDA) tech-

niques as a mean to easily deal with network man-

agement and analysis issues. Specifically, we describe

and evaluate several FDA methods with applications

to network measurement preprocessing and clustering,

bandwidth allocation, and anomaly and outlier detec-

tion. Our work focuses on how these FDA-based tools

serve to improve the outcomes of traffic data mining

and analysis, providing easy-to-understand and com-

prehensive outputs for network managers. We present

the results that we have obtained from real case stud-

ies in the Spanish Academic network using throughput

time series, comparing them with other alternatives of

the state of the art. With this comparative, we have

qualitatively and quantitatively evaluated the advan-

tages of FDA-methods in the networking area.
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1 Introduction

Nowadays, network management is suffering an impor-

tant transformation as a result of the evolution of both

the users’ requirements and the deployed technologies.

The use of new communication services and infrastruc-

tures is changing the approaches that Internet Service

Providers (ISPs) follow to maintain and monitor their

networks. This fact, which is inherent to rapidly chang-

ing network dynamics, entails that traditional measure-

ment and analysis methods may easily become not flex-

ible and adaptable enough. Thus, approaches based on

particular statistical assumptions, such as concrete mar-

ginal distributions or stationary processes, are useless

in deployment scenarios where measurements present a

different behavior —e.g., data Gaussianity is the base

of many anomaly detection systems and capacity and

bandwidth allocation methods, but we note that this is

not the case in many scenarios as reported in [30,38].

Furthermore, the design of fixed and mobile network

solutions that reduce both the CAPEX and OPEX and

better suit the clients’ requirements —e.g., such as Self-

Organizing Networks (SONs) [7], Software-Defined Net-

works (SDN), or future cellular networks [2,31]— can

suffer from the application of management approaches

that do not exploit their capabilities. For such architec-

tures, the resources (e.g., bandwidth) can be allocated

in a very flexible manner and the consumers’ habits

change rapidly. Hence, the usage of fine-grained base-

lines can improve current network management solu-
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Fig. 1 Conceptual diagram of our proposal.

tions which are mainly based on static and coarsely

windowed thresholds [15].

Other aspects, such as network data anonymity and

the proliferation of encrypted protocols, limit current

network management techniques. For example, mon-

itoring systems that rely on Deep Packet Inspection

(DPI) [3] are becoming totally useless as encrypted traf-

fic nowadays represents more than 70% of the total In-

ternet traffic1. Moreover, when network data privacy is

mandatory, such techniques are not an option.

Based on the previous statements, we focus on com-

putational methods that (i) do not relay on statistical

assumptions to ensure adaptability to heterogeneous

and evolutionary contexts, in particular those related to

Gaussianity; (ii) help to fine tune management policies

to the evolution of networks with time, even in presence

of non-stationarity; and (iii) enhance the analysis of ag-

gregated measurements that do not require to deal with

sensitive data, by improving the detection of patterns

in time series. Our final objective is to provide network
managers with solutions that alleviate the manual in-

spection of data and provide visual results, which are

easier to interpret.

To this end, we contribute with the application of

Functional Data Analysis (FDA) [24,35] to different

traditional management tasks. FDA considers random

variables which are functions, hence studying the tra-

jectories of stochastic processes as realizations of such

random variables. As a consequence, FDA extends clas-

sic statistical tools to infinite dimensional spaces. In the

network management research field, there is a huge vari-

ety of operational and performance measurements that

can be considered as functional data [9] as they can be

(at least theoretically) taken in a continuous manner

—e.g. time series [28] or density functions [27].

The strength of such methods are evaluated by con-

sidering several use cases that represent current net-

work management challenges. To better assess such use

1 https://www.sandvine.com/trends/encryption.html

cases, we have used real throughput time series ob-

tained from the Spanish Academic network and the

available implementations of FDA methods. Hence, we

illustrate their applicability to network data analysis

following an out-of-the-box approach —that is, without

any kind of tuning. Additionally, the employed dataset

and the developed code is available under request, for

the sake of reproducibility of our results and also for

illustrative purposes.

Figure 1 summarizes the conceptual structure of

our work: we link typical network management tasks

to FDA methods that fulfill the previously mentioned

conditions. In this manner, we show how to cope with

network data preprocessing and analysis in the func-

tional scope and highlight the main advantages of this

approach. To do so, the rest of this paper is organized

as follows. In Section 2 we describe several FDA tech-

niques, and we frame them throughout all the network

analysis stages —we describe some formal aspects and

point to network management applications that can
benefit from them. Next, Section 3 compiles several real

case studies that reveal the improvements of the ap-

plication of functional techniques in network analysis.

After presenting the case studies, in Section 4 we dis-

cuss the key findings and their applicability to existing

network management developments. Finally, Section 5

presents the conclusions and other research lines that

can be addressed in the future.

2 A review of some FDA techniques

In this section, we introduce how a functional approach

can be used for the analysis of network measurements.

To do so, we describe several techniques that will be

empirically evaluated later in Section 3. We follow a

usual data-flow, considering data preprocessing tech-

niques in the functional environment first, and then,

some methods that can help to better understand net-

work dynamics.

https://www.sandvine.com/trends/encryption.html
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Our review of FDA focuses on techniques that ac-

complish the objectives highlighted in Section 1. Hence,

it is not intended to extensively cover all the current re-

sults in the FDA field but to synthesize a set of methods

that are later evaluated in the network management

scope. For the sake of brevity, our description omits

some formal aspects of those methods. For further in-

formation about formal aspects beyond the scope of our

present work, we refer to [9,24], which are two recent

FDA surveys with a broad scope, including theoreti-

cal and applied results, and to [34,35], which include

further mathematical aspects of FDA and information

about implementations in R and MatLab.

2.1 Functional representation

Functional data present high-dimension, since they are

related to the trajectories of continuous-time stochastic

processes. To cope with such data, two main approaches

have been used in the FDA literature. Some works and

techniques consider functional sampled data that can

be directly obtained from measurements, whereas some

others require functional representations using expan-

sions with respect to a functional basis. We note that

following the latter approach entails a first data pre-

processing step, which will be described here adapted

to the particular case of network measurements.

During network monitoring, measurements are ob-

tained as a discrete set of values with a certain granu-

larity. Consequently, the first step is to interpolate ob-

servations with a technique that globally minimizes a

suitable error function, in terms of projections onto a

certain functional basis —which can be either inferred

from the observations or fixed to be any well-known

family, such as B-Splines or Fourier basis. In general,

we represent the family of functions in the selected func-

tional basis as {Bk(t)}t∈T,k∈Z, with T an interval in R.

The projections obtained from functional observations

with respect to the selected functional basis are denoted

as {βk}k∈Z. Then, if we consider a certain observation

{X(t)}t∈T, its functional representation in terms of the

selected functional basis is given by the expression in

Eq. 1:

{X(t)} =
∑
j∈Z

βjBj(t), t ∈ T (1)

Nonetheless, it is not possible to computationally con-

sider all the elements in this expression, so it is neces-

sary to truncate the series. A certain error term cor-

responds to this truncation so that the final functional

representation of the observation is given by Eq. 2:

{X(t)} = [
∑
j∈J

βjBj(t)] + ε(J, {Bj}), t ∈ T (2)

where J is the finite index set and ε is the error term,

which is dependent on both the selected index set and

the specific functional basis.

This representation presents several advantages. On

the one hand, it is possible to drastically reduce the

needed data to represent a certain process. By ade-

quately adjusting the cardinal of J, we can compress

data with some losses related to the term ε(J, {Bj}).
On the other hand, this representation makes it pos-

sible to robustly obtain the derivatives of the process

trajectories. As observations are represented via a lin-

ear combination of functions, we can explicitly obtain

their derivatives as shown in Eq. 3:

d

dt
{X(t)} =

∑
j∈Z

βj
d

dt
Bj(t), t ∈ T (3)

This process is of particular interest in certain analy-

sis (e.g., network anomaly detection or clustering, as

shown in Section 3.3) that considers not only the mag-

nitude value but also its variation rate. Additionally,

the joint analysis of a function and its derivatives is re-

lated to the study of the stability of dynamical systems,

which is of evident applicability in network modeling

and characterization.

Furthermore, this representation allows us to eval-

uate and select linear combinations of the functional

components that provide the most representative model

information. Using such an approach, we can further

reduce the data volume necessary to persist the obser-

vations by keeping a reduced functional basis that op-

timally represents them in terms of the explained vari-

ance. This functional consideration of measurements re-

duces the necessary volume of data to persist the net-

work behavior as it will be shown in Section 3.2. Func-

tional representation can be used to define highly de-

tailed baselines [15], as we can obtain with it continuous-

time robust estimations of the network typical behavior.

Additionally, FDA can also be applied to handle other

types of data (e.g., Empirical Cumulative Distribution

Functions (ECDFs) of network flow characteristics [27])

and not only time series.

FDA techniques are also valuable for the study of

multivariate functions —that is, functions taking val-

ues in Rm. Interestingly, that means that we can rep-

resent the network state by using f : R → Rm, which

links sets of variables in the form of multivariate curves.

Such multivariate analysis can ease the detection of cer-

tain events that require the consideration of several net-

work performance parameters —e.g., Denial of Service

attacks as presented in [26].
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2.2 Functional Principal Component Analysis

Functional Principal Component Analysis (FPCA) [35]

is a transformation of the functional basis that is used

to represent the observations. FPCA selects combina-

tions of the original functional basis with variance-based

criteria, which allows for an optimal representation of

data. It is performed by projecting the original basis

on a different space to maximize the explained variance

while minimizing the correlation between the compo-

nents. This provides good visualization despite of the

information losses derived from the selection of only a

subset of the components.

FPCA is conceptually equivalent to Principal Com-

ponent Analysis (PCA) in finite dimension spaces.

Nonetheless, as we are using a previous representation

in terms of a certain functional basis, there is not any

semantic obfuscation of the resulting components; on

the contrary, an optimal basis to represent the obser-

vations is obtained. We recall that in the FDA context,

instead of multivariate variable values we have func-

tion values Xi(t). That is, the discrete index of each

dimension of the multivariate variable is changed by a

“continuous index” t. Additionally, the inner products

that appear in the PCA definition for finite dimension

vectors must be replaced by L2 inner products, so if we

denote the FPCA weights with ξ we get:∫
ξx =

∫
ξ(t)X(t)dt

Hence, the weights ξ are now functions with values

ξj(t). The scores corresponding to each principal com-

ponent are given by Eq. 4:

fi =

∫
ξxi =

∫
ξ(s)xi(t)dt (4)

In the first FPCA step, the weight function ξ1(s) is

chosen to maximize the quantity in Eq. 5:∑
i f

2
i1

N
=

∑
i

∫
(ξ1xi)

2

N
, (5)

where N is the sample size and we are assuming data

x1, . . . , xn are centered. Additionally, all the weight func-

tions are orthonormal, that is, they must satisfy the

restrictions in Eq. 6:
∫
ξj(t)

2dt = 1,∀ j∫
ξkξm = 0, ∀ k < m

(6)

In this manner, each function ξj define the most impor-

tant mode of variation. Note that the weight functions

are defined only up to sign change.

This is the adaptation of the usual derivation of

PCA to the functional context. Nevertheless, in the

functional environment we can see the principal compo-

nents as the basis functions that approximate the curve

as closely as possible.

Some additional restrictions must be imposed when

solving the optimization problem. Otherwise, results

could be degenerated, as the maximization of the ex-

plained variance could not perform well with noisy data.

To prevent this situation, FPCA usually (i) includes

some penalties in the optimization problem, or (ii) con-

siders smoothed versions of data.

The principal components can be interpreted as de-

tails of the original observations linked to certain vari-

ance levels. As a result, they represent different modes

of variation of the sample, which is a richer decompo-

sition when compared to other data reduction methods

that provide only filtered or reduced outputs. Further-

more, as we will illustrate in Section 3, the study of

the observations’ coefficients can help to detect clus-

ters in the sample, which proves the advantages of this

decomposition.

To complete the FPCA description, we further pin-

point the opportunities that it offers for network analy-

sis. The relation between principal components and cer-

tain variance levels is also useful to detect anomalous

events and anomalous observations —as usually they

are characterized by abrupt changes in certain statisti-

cal parameters, such as departures from mean. FPCA

paves the way for a novel categorization of anomalies

that takes into account the behavior of several prin-

cipal components. Additionally, the reduction of vari-

ance improves capacity planning solutions in scenarios

where dynamic resource allocation procedures appear

—we will take advantage of this fact in sections 3.4

and 3.5. With this technique, it is possible to control the

proportion of the variance that is taken into account,

providing a continuous-time methodology to define re-

source consumption baselines.

2.3 Functional depth and depth-based analysis

Functional depth measures provide ways to determine

the relative position of observations into the sample,

from the center outwards. They are useful to extend

concepts such as centrality measures and order statis-

tics to functional data. Recently, the FDA community

has proposed a huge variety of functional depth defini-

tions, each of them taking into account different obser-

vations’ centrality aspects [22,42]. Additionally, some

depth measures have been proposed to cope with mul-

tivariate functional data [8,10], which opens the gate

to multi-factorial centrality considerations of network
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measurements —e.g. multiple network flow character-

istics.

A complete review of the different functional depth

alternatives is beyond the scope of this work. Therefore,

for the sake of brevity and with illustrative purposes, we

consider one of the half-region depth measures in [23],

defined with the expression in Eq. 7:

MSn,H(x) = min{SLn(x), ILn(x)} (7)

where

SLn(x) = 1
nλ(T)

n∑
i=1

λ{t ∈ T : x(t) ≤ xi(t)}

ILn(x) = 1
nλ(T)

n∑
i=1

λ{t ∈ T : x(t) ≥ xi(t)} (8)

and λ is the Lebesgue measure on R. This definition is

quite popular, as it has a low computational cost and

an intuitive interpretation. It makes the observations

to be ordered using the minimum of the proportion of

time that they are in the hypograph (SLn(x)) or epi-

graph (ILn(x)) of other observations, which ranks their

centrality.

Depth-based analysis is a robust alternative for net-

work data analysis. As it will be shown in Section 3, the

isolation of anomalous observations constitutes a suit-

able methodology for improving results when outliers

or high variance are present in the data under analy-

sis. Regarding network measurement time series, cur-

rent directions in network dynamic resources allocation

(e.g., bandwidth) and the flexibility of novel network in-

frastructures (e.g. Software-Defined Networking (SDN),

Application-Based Network Operations (ABNO) [1] or

5G cellular networks [2]) can be optimized if we consider

a finer grain or even continuous time baselines. Depth

measures can help to robustly define such baselines as

they define regions that cover a certain proportion of

the observations. Furthermore, this approach character-

izes the network behavior during a whole period (e.g., a

day) instead of using statistical summaries or windowed

analysis —as it does not require to test the stationarity

of stochastic processes.

Other functions, such as Cumulative Distribution

Functions (CDFs) can be robustly estimated and ana-

lyzed by using a depth-based methodology [27]. More-

over, the definition of bands based on the extension

of the concepts of centiles to the functional environ-

ment can enrich certain analysis, as we exemplify in

sections 3.4 and 3.5. On the other hand, multivariate

depth measures can evaluate centrality of observations

in terms of several dimensions (e.g. bandwidth and flow

concurrence), which is absolutely necessary to detect

some events such as SYN flooding attacks [26].

2.4 Shape outlier detection

Outlier detection is a key activity during data min-

ing processes, as inference results can suffer from im-

portant deviations if anomalous observations are con-

sidered during those processes. In the functional en-

vironment, different attributes can lead to mark cer-

tain observation as atypical —e.g., amplitude, variance

or frequency. As in the case of functional depth, out-

lier detection has recently attracted much attention in

the FDA community, but there is not a well-established

methodology to cope with this matter yet. For exam-

ple, some recent works regarding this field make use

of different functional depth notions to sort out ob-

servations which differ from the usual pattern of the

sample. This is the case of [11], where authors evalu-

ate several functional depths and define an algorithm to

exclude atypical observations. Additionally, such meth-

ods have also been extended to cope with multivari-

ate functions [16]. While these alternatives seem to be

promising for network analysis tasks, in what follows

we focus on shape outliers. Such outliers are particu-

larly interesting to detect and extract anomalous net-

work events from measurements which are commonly

difficult to detect otherwise —e.g., detection of daily

observations with atypical throughput patterns that do

not change the maximum nor minimum values.

In [4], authors present the outliergram, a method
to detect shape outliers in terms of two centrality mea-

sures —that is, indicators of the position of a particular

observation in the sample. They consider the modified

band depth (MBDn) [22] and the modified epigraph

index —which we have denoted as SLn in Eq. 8. They

prove that there exists a relation between the values of

SLn and MBDn given by a quadratic equation which

can be explicitly calculated. This relation allows pro-

jecting the observations in a two dimensional space us-

ing the value provided by each centrality measure —

that is, each observation is represented by the point

defined by (MDBn, SLn) in R2. As a second stage to

detect the shape outliers, the algorithm uses the dis-

tribution of the distance between (MDBn, SLn) and

the exact parabola defined by the quadratic relation

of both measures. Hence, observations with a typical

shape have projections which lay in the proximity of

the parabola, while the corresponding to shape outliers

are relatively far from it —which allows defining a confi-

dence interval to discriminate the atypical observations.
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3 Use cases: functional analysis of network time

series

After reviewing FDA concepts, in this section we present

different uses cases that show the applicability of FDA

techniques on real data obtained from the Spanish Aca-

demic network. These use cases are representative in the

typical agenda of a network manager. Namely, we con-

sider the reduction and clustering of measurements, the

characterization of the usual network behavior, band-

width and capacity planning in non-stationary scenar-

ios and the detection of atypical days. Throughout this

section, we compare the results of some well-known

management methods with the corresponding ones ob-

tained by applying a functional approach, showing the

advantages of the use of FDA.

To evaluate the latter, we have used a set of net-

work throughput measurements corresponding to 546

consecutive days in a node of the Academic Spanish

network. Each day comprises 288 equally spaced obser-

vations —that is, one sample every 300 s. To obtain our

results, we have used the R implementations included in

packages fda [36] and fda.usc [12]. We have used those

implementations, as our evaluation is not focused on

computational performance nor resource consumption,

but on usefulness and validity of a functional network

data analysis.

3.1 Network data processing

Once we have obtained network measurements from a

certain point of presence, the first data preprocessing

step in the functional environment is to obtain a repre-

sentation in terms of a certain basis. In our case, the se-

lected representation features a number of terms equal

to the number of observations of each element (that

is, 288 samples corresponding to the 5-minutes inter-

vals in a day) of second grade B-Splines without penal-

ization nor data (pre)smoothing—this corresponds to

the tested setup with the best behavior in our data us-

ing the the fda package for R. Furthermore, when using

this functional representation we have also explicitly

obtained the first order derivatives by applying the ex-

pression in Eq. 3, to explore the information that can

be retrieved from them during throughput time series

mining.

Next, we have applied FPCA (both to the original

data functional representation and its derivatives) to

obtain an optimal representation of observations with

a reduced basis. Note that in the previous step, we have

considered a huge amount of terms to evaluate the error

term that FPCA generates. Nonetheless, the compres-

sion factor of the first functional representation may
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Fig. 2 Coefficient density for each Principal Component

be increased in case a higher error term is acceptable.

The explained variance analysis leads to a representa-

tion with 30 principal components —as it explains more

than a 99% of variance.

After selecting the basis with the first 30 princi-

pal components, we have obtained the coefficients for

each observation. The behavior of such coefficients is

shown in Figure 2, where we distinguish the estimated

coefficient density for each principal component. Inter-

estingly, if we consider the density associated with the

first principal component, we can discriminate two well-

differentiated clusters (labeled in the figure), which cor-

respond to working and non-working days, respectively.

This method reduces the available information and

introduces some error in the punctual values of the re-

constructed time series. To assess the FPCA perfor-

mance, we have analyzed the residuals (that is, the

differences between observations and estimations) and

obtained the punctual relative error values. Figure 3

presents the survival functions of such a metric for each

observed point along a day, which illustrates the statis-

tical behavior of the punctual error for all the daily ob-

servations. In this figure, we highlight the median sur-

vival function, and the ones covering the 5% and 95% of

observations. We note that this functional evaluation of

the relative error provides a complete characterization

of the FPCA residuals.

We now focus on the characterization of central and

extreme observations in terms of depth-based rankings.

In what follows, we consider a functional representa-

tion with only 15 functional principal components. This

restriction introduces a stronger data regularization,

and hence minimizes random and atypical perturba-

tions which are not desirable when characterizing cen-

trality in network throughput measurements. Figure 4

summarizes the main results of our depth-based analy-

sis, and highlights several noticeable curves with differ-

ent depth values. We note that the two previously de-

tected clusters may compromise the half-region depth
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behavior —as it is an overall depth measure. However,

the obtained results suit the case studies presented be-

low, so for the sake of simplicity we omit finer pro-

cessing —e.g., alternative depth measures or factorial

analysis.

To visually compare the behaviors of such notice-

able curves and of the sample set, we have included

the entire original observations in the figure in light or-

ange without markers. To compare depth-based results

with other centrality measures, we have also included

the sample mean function —in black without markers.

Outliers and the previously identified clusters cause a

bad representation of the network typical behavior —as

we have considered the estimation using all the obser-

vations, and the mean is not a robust centrality mea-

sure. We have also included the deepest observation of

our sample as an alternative centrality measure —it is

equivalent to the sample median. To compare the basis

restriction effect (which improves the representation of

the centrality measures) we show both the original ob-

servation and the estimation —red with diamonds, and

blue with squares, respectively. Both of them represent

the network usual behavior better than the mean func-

tion as they suffer from lower distortions by non-usual

patterns.

Moreover, we have considered the depth-based rank-

ing of observations to define thresholds for extreme val-

ues. We have included in Figure 4 the behavior of the

time series with the minimum depth value both in the

epigraph (green with asterisks) and in the hypograph

(green with crosses) of the deepest function. Addition-

ally, we have constructed curves that punctually mini-

mize the depth value. Specifically, in Figure 4 we repre-

sent curves that leave out the 5% of the most extreme

values of the observations.

3.2 Network data reduction

There are some previous works that have addressed

the reduction of data requirements in the scope of net-

work monitoring. For example, some data preprocess-

ing techniques that can be understood as FDA pre-

cursors are those included in [13,18]. Authors in both

works use multi-resolution analysis based on wavelets

to compress network measurement. They provide a sta-

tistical evaluation of the properties of such compression

method, obtaining interesting results. Formally, multi-

resolution analysis provides a functional representation

of data, making use of a specific functional basis. As

we explained in Section 2, this is usually the first step

when using FDA techniques. As a consequence, we are

proposing a general setup that includes the results in

those works. In [19] authors apply Principal Compo-

nent Analysis (PCA) on throughput records to obtain

eigenflows that represent different variance levels of the

observations. The idea is similar to that of FPCA we

introduced in Section 2, but it makes no use of a previ-

ous data representation in terms of a functional basis.

This aspect makes it difficult to interpret the meaning

of each eigenflow, as this method does not provide a se-

mantic intuition of the information structure which is

being used. Remarkably, that proposal points towards

the advantages of the consideration of some network

measurements as functional data.

Our results prove that FPCA is feasible as a data

reduction technique during network measurements time

series analysis. By selecting only the first 30 functional

principal components, the number of data elements re-

quired to reconstruct the original observations is less

than a 16% of the original data. This data reduction

provides good global estimations of data (the median

and 95th percentile of the mean absolute percentage er-

ror (MAPE) is less than 7.5% and 15%, respectively)

and punctual error is below 10% in most cases —this

is the median of the 95th percentile punctual relative

error, as shown in Figure 3.

When compared to the previously mentioned meth-

ods (i.e., PCA and wavelets), these error values are very

promising. In the same experimental setup, FPCA out-

performs PCA for extreme values (that is, it keeps the

95th percentile of MAPE lower than PCA) and provides

estimations with similar errors in the rest of the cases.

Furthermore, it obtains better results than the other

methods when the data volume is drastically reduced

to 1% of the original data (which is in the order of the

recommendation in RFC 1857 [20] for data lasting more

than a year) reducing the MAPE values in a range from

7 to 54%.
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Fig. 4 Summary of our depth-based analysis results.

3.3 Network data clustering
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Fig. 5 Comparison of observation clustering using original
data, and the first functional principal components of both
the throughput time series functional representation and their
derivatives. The representation is obtained using the CLUS-
PLOT tool and includes the clusters’ spanning ellipses.

Following with the FPCA representation, we have

studied the two clusters that we detected when using

the coefficient with respect to the first functional princi-

pal component. The analysis of such problem indicates

that the difference in the behavior of each cluster makes

the problem easily separable, and that the average value

of each curve is determinant when assigning it to one

of the clusters. Remarkably, using only that single pro-

jection we have been able to obtain the same assign-

ment that the one provided by K-means algorithm when

fed with all the values of the daily throughput curves

—which illustrates the potential of this functional ap-

proach in feature selection. For the sake of brevity, we

omit further performance comparisons between other

clustering algorithms in this work: for those interested

in this matter, we point to [17], where authors have sur-

veyed several functional clustering algorithms on well-

known problems.

We have also included the information we have re-

trieved from the curves’ derivatives. To do so, we have

also considered their coefficient with respect to their

first functional principal component. While the addi-

tion of this information does not change the assignment

of each curve to a cluster, it improves the inter-group

separation: Figure 5 includes the representation pro-

vided by CLUSPLOT [33] for the clusters defined from

the original data and from the coefficients with respect

to the first functional principal components of both the

throughput time series functional representation and

their derivatives. This representation shows the better

differentiation of classes when using a suitable FPCA-

based reduced set of features from the observations and

their derivatives.

These results provide a new approach for Network

Behavior Analysis (NBA). For example, the proposals

in [37,40], can be considered from the point of view

of FDA as the analysis of a set of functions that de-

scribes the network state. Those proposals are based

on pattern detection to discriminate anomalous behav-

iors that could indicate intrusions or other malicious

actions. Hence, the application of functional feature se-

lection and clustering can improve, as shown in our ex-

ample, the discrimination among different behavioral

groups —therefore, providing a more complete and for-

mally consistent framework to face this type of studies.
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3.4 Network modeling and characterization

So far, depth-based analysis provides a set of central

and extreme curves that are suitable to characterize the

network behavior. Such curves provide a high-dimensional

definition of the usual network patterns, beside of the

consideration of marginal traffic distributions —hence

cutting out the hypothesis about such distributions re-

quired in other state-of-the-art approaches. Further-

more, most of the existent methods also assume that

the underlying stochastic processes are stationary dur-

ing certain periods of observation (e.g., during 15 min-

utes [25]), while the results derived from functional meth-

ods allow to study measurements during more complex

and meaningful periods —e.g., a whole day as in our

case. In what follows, we qualitative compare the char-

acteristics of the results in some previous works de-

voted to univariate or multivariate network modeling

and characterization, with those obtained with a depth-

based functional approach.

In [38], α-stable distributions are proposed to study

network throughput in low aggregation points. Addi-

tionally, authors study the perturbations in the distri-

bution parameters to link them to certain anomalous

events. On the other hand, other previous works such

as [14,25] consider Gaussian processes to model net-

work behavior. Specifically, [14] is devoted to capac-

ity planning based on the characterization of the busy

hour, and in [25], authors describe a methodology to

detect sustained changes in network load. Both works

require a Gaussian fit of traffic load, which is a hypoth-

esis that sometimes is not met —e.g., [30,38] include

some situations where Gaussian models do not fit in

the observations.

Nonetheless, the previous approaches do not match

the three key points that we have depicted for network

monitoring and analysis methods. First, they require

the marginal traffic distributions to follow some specific

distributions (namely, α-stable and Gaussian), which is

a strong hypothesis that prevents from extending this

method to environments where this hypothesis is not

met. Second, authors indicate that the computation of

some of the parameters of such models is computation-

ally expensive, which can limit the definition of flexible

management policies —as the application of such meth-

ods to the study of time series requires considering sta-

tionary intervals, which can limit flexible deployments

of such approaches if we take into account the claims

in [41]. Finally, these methods provide either difficult to

interpret or extremely simple outputs for network man-

agers —as the interpretation of their results are related

to statistical tests or to the meaning of non-intuitive

statistical summaries. As shown, the results of depth-

Table 1 Results of the bandwidth allocation experiments.

Training set (%) Underestimations (%)
1 17.74 ± 0.85
5 4.08 ± 0.21
10 2.23 ± 0.11
15 1.87 ± 0.08
20 1.58 ± 0.06
25 1.57 ± 0.06
30 1.56 ± 0.05
35 1.46 ± 0.04
40 1.46 ± 0.04

based analysis alleviate these flaws by fulfilling those

three principles.

3.5 Network bandwidth and capacity planning

Bandwidth and capacity planning is a capital matter

in virtualized environments such as Virtual Networks

and Virtual CPDs [6], and it is also considered as a

distinguishing feature of the future 5G networks [2].

To evaluate the advantages of functional approaches

during bandwidth and capacity planning, we follow a

methodology similar to the one exposed in [29]. In that

work, the authors discussed several methods to dynami-

cally allocate bandwidth for tenants in a common phys-

ical network architecture. Some differences arise be-

tween that work and the analysis we have leaded: in

our case, we have used time series of throughput with a

5-minute aggregation interval, whereas they used finer-

grained measurements. Interestingly, they only consid-

ered traces lasting for 15 minutes, as their method re-

quired the throughput time series to be stationary. In

our case, we have defined a bandwidth allocation limit

based on the previously presented depth-bands for a

period lasting a whole day.

To conduct our evaluation, we have split our mea-

surements set in two groups —one of them to train the

depth-based threshold and the other one to evaluate the

bandwidth requirement prediction. We have accounted

the number of points above the defined threshold, thus

providing an estimation of the underestimations impact

—in this case, we consider a depth band leaving outside

the 2% of the most extreme observed values. Table 1

shows the mean results with a corresponding 95% con-

fidence interval for 500 repetitions of such experiments

considering different percentages of observations for the

training phase.

Using our approach, the percentages of underesti-

mations are comparable to those reported in [29]. We

recall that the focus of that work is different to ours

—they obtain bandwidth requirement estimations for

short time intervals. Nonetheless, with our approach,
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we can decide tenants that can coexist in the same phys-

ical architecture in terms of their usual activity among

a whole period. Additionally, we relax the hypothesis

of the methods which are considered in [29], as we do

not require the throughput values to be Gaussian nor

stationary.

3.6 Outlier detection in network time series

Let us now show the results of outliergram tool applica-

tion to our throughput observations. This tool produces

representations like that in Figure 6, which illustrates

the relation between the two depth measures that it

considers for each observation. With such tool, we can

easily detect shape outliers, as anomalous observations

lay out the confidence interval inferred from the sam-

ple. The outliers are represented in Figure 7, and we

can visually assess that they do present anomalous be-

haviors.
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Fig. 6 Outliergram visualization of the projected observa-
tions. Black triangles correspond to shape outliers, while or-
ange circles represent typical observations.

In this representation, we have highlighted through-

put time series that are marked as shape outliers, but

outliergram is also able to detect certain observations

with atypical extreme values. There are several types of

outliers that can be detected when using this approach:

– Observations which lay in the borders of the clusters

we have previously detected, although they may not

have extreme values in absolute terms.

– Observations which fluctuate from high values in

some parts of the temporal domain to low values in

other ones.

– Observations which abruptly fall during a certain

period of time.

It is worth remarking that all of these types cause de-

partures of centrality measures during inference pro-

cesses if other techniques not as robust as those we

have selected are applied. Hence, this FDA-based tech-

nique can improve results in later network data analy-

sis; particularly with the two first types we have differ-

entiated —given that to detect them it is necessary to

consider the behavior of the whole observation and not

only punctual values.

4 Discussion and application

According to the previous comparison of FDA and other

well-known methods, the most remarkable findings and

advantages follow:

– FDA techniques relax the hypothesis of network anal-

ysis state-of-the-art methods, thus providing more

adaptable tools to cope with heterogeneous and chang-

ing environments.

– They allow considering network time series as a whole,

which provides means to statistically study mea-

surements taking into account their overall behav-

ior.

– Additionally, they provide comprehensive and easy-

to-understand data representations for network man-

agers. That is, functional methods lead to straight-

forward visual outputs that highlight problems and

trends without requiring further analysis.

Nonetheless, these advantages may be worthless if

functional methods cannot be included in existent mon-

itoring and management solutions. Fortunately, current

tools follow some common design principles that sim-

plify the introduction of these methods and provide sev-

eral data sources that can be studied as functional data.

In what follows, we briefly comment some recent ap-

proaches that highlight those principles —for further

information and details about current trends, we refer

to [5,21].

Scap [32] is a stream-oriented system able to cope

with high throughput rates. Taking into account their

authors’ claims, that system could be extended to use

functional methods to improve its functionality and an-

alytic capabilities. —e.g., traffic capture online selec-

tion in terms of functional baselines. Scap is an ex-

ample of the growing importance of aggregated data

summaries (e.g., values provided by SNMP, NetFlow

records, etc.) to cope with the analysis of multi-Gb/s

networks, as they reduce network analysis systems’ com-

putational demands.

BlockMon [39] is another interesting example of novel

monitoring tools. It is conceived as a modular and dis-

tributed system, providing users with a flexible and

customizable framework to develop monitoring archi-

tectures that suit each particular scenario. Given its
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Fig. 7 Representation of the daily observations that outliergram identifies as shape outliers.

modular structure, BlockMon could be extended with

FDA-based modules to provide advanced capabilities.

For example, as we illustrate in Section 3, BlockMon
could be complemented with functional data prepro-

cessing techniques to produce enriched analysis and vi-

sualization outputs.

To end with, we mention M3Omon, which is pre-

sented in [26]. M3Omon is a monitoring framework that

provides users with multi-granular data —specifically,

aggregated time series, flow records, and raw network

packets. Authors show the importance of simultaneous

analysis of several data sources with different aggre-

gation levels to effectively detect and completely un-

derstand network phenomena in high performance net-

works. With such data sources, we can make the best of

functional-based methods to create a complete ecosys-

tem of analytical applications. For instance, a capac-

ity planning module can be easily implemented using

the aggregated time series outputs. At the same time,

FPCA-based data reduction can help to optimize stor-

age requirements when using this framework.

5 Conclusions

This work constitutes a novel study of the FDA appli-

cation in the network data analysis scope. Specifically,

we have reviewed several FDA techniques that can

be used to extract knowledge from network measure-

ments. We have illustrated how FDA can be applied

to different common network management tasks, com-

paring it with other state-of-the-art methods. In this

light, we have considered several use cases with real

network measurements (particularly, throughput times

series), showing the opportunities that FDA-based

techniques bring in network data analysis. The main

advantages of FDA pave the way for the evolution of

current techniques.

Regarding network data reduction, the functional

representation and feature selection that we have ap-

plied provides good compression ratios with controlled

information losses. Specifically, our evaluation has shown

that FPCA estimations fairly represent the original ob-

servations using less than a 16% of the total amount of

data. Using such a reduction, MAPE presented median

and 95th percentile values below 7.5% and 16% respec-

tively. Additionally, the median of the 95th percentile

punctual relative error is below 10%. Concerning the

clustering problem, we have compared the results of K-

means algorithm with either the original observations

or the FPCA projections of the data and its derivatives.

The latter improves the group differentiation while re-

ducing as well the input for the clustering method.

The evaluation of depth-based analysis has shown

that it provides robust estimations of central and ex-

treme network measurements behavior and it relaxes

the hypothesis on marginal distributions of network

time series. Furthermore, such estimations serve to de-

fine a continuous-time functional threshold for capacity

planning. The obtained results are similar to those of

other state-of-the-art methods, but without requiring

the network time series to be stationary. Hence, depth-

based analysis has proven useful for these tasks, espe-

cially when considering emerging network technologies

that allow flexible resource allocations —such as SDNs,

ABNO, SON, and 5G.

Finally, we have shown that some atypical time se-

ries might not present changes in their extreme values

while still exhibit odd behavioral patterns. Therefore,



12 D. Muelas, J.E. López de Vergara, J. R. Berrendero, J. Ramos, J. Aracil

shape outlier detection helps excluding such observa-

tions during inference in network analysis, which auto-

mates costly processes of data cleaning.

To sum up, FDA is a branch of statistics which can

ease management tasks in emerging network infrastruc-

tures that are otherwise constrained by the application

of classic statistics. Thus, we have presented to the Net-

working and Telematics community a methodology, as-

sessing its usefulness and the opportunities it offers for

network analysis. This work has focused on the foun-

dations of the applicability of FDA to time series but

it has not addressed other promising FDA techniques

(e.g., FDA-based forecasting and classification, func-

tional homogeneity) that may also be applicable to a

wide variety of network data and may unleash the true

potential of FDA.
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de Vergara, J.E., López-Buedo, S.: Characterization of
the busy-hour traffic of IP networks based on their in-
trinsic features. Computer Networks 55(9), 2111 – 2125
(2011)

15. Gibeli, L.H., Breda, G.D., Miani, R.S., Zarpelão, B.B.,
de Souza Mendes, L.: Construction of baselines for VoIP
traffic management on open MANs. International Jour-
nal of Network Management 23(2), 137–153 (2013)

16. Hubert, M., Rousseeuw, P.J., Segaert, P.: Multivariate
functional outlier detection. Statistical Methods & Ap-
plications 24(2), 177–202 (2015)

17. Jacques, J., Preda, C.: Functional data clustering: a sur-
vey. Advances in Data Analysis and Classification 8(3),
231–255 (2013)

18. Kyriakopoulos, K., Parish, D.: A live system for wavelet
compression of high speed computer network measure-
ments. In: S. Uhlig, K. Papagiannaki, O. Bonaventure
(eds.) Passive and Active Network Measurement, Lec-
ture Notes in Computer Science, vol. 4427, pp. 241–244.
Springer Berlin Heidelberg (2007)

19. Lakhina, A., Papagiannaki, K., Crovella, M., Diot, C.,
Kolaczyk, E.D., Taft, N.: Structural analysis of network
traffic flows. SIGMETRICS Perform. Eval. Rev. 32(1),
61–72 (2004)

20. Lambert, M.: RFC 1857: A Model for Common Opera-
tional Statistics (1995)

21. Li, B., Springer, J., Bebis, G., Gunes, M.H.: A survey
of network flow applications. Journal of Network and
Computer Applications 36(2), 567–581 (2013)
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