
Server Load Estimation by Burr Distribution Mixture Analysis of
TCP SYN Response Time

Luis de Pedroa,b,∗, Adrian Mihai Rosub, Jorge E. López de Vergaraa,b

aDepartment of Electronic and Communication Technologies, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Spain
bNaudit High Performance Computing and Networking, S.L., Spain

Abstract

Server load estimation is key in balancing traffic between servers when optimizing data center resources. Intrusive methods are
sometimes difficult or impossible to implement. Therefore, non-intrusive estimation methods are the best alternative in these cases.
The objective of this paper is to present a server load estimation method based on external network traffic measurements obtained
in a vantage point close to the server. Statistical distributions of TCP SYN response time, that is, the time from SYN to SYN+ACK
segments at the server side, are used to fit Burr Type XII heavy tail distribution mixtures. The fitting algorithm, based on maximum
likelihood estimation, is developed in detail in this paper. Experimental data shows that the median of the fitted distribution
correlates within the 95% confidence interval of the server load figures and, thus, it can be used as a non-intrusive and accurate
method to measure it. This new method can be applied to almost any existing load balancing algorithm, as it does not make any
assumption about the server, which is considered a black box.

Keywords: non-intrusive measurement, server load, Burr Type XII distribution, MLE, mixture analysis, traffic analysis.

1. Introduction

Server load can be defined as the percentage of use of avail-
able computational resources in that system. Usually, it is di-
rectly measured with software tools inside the server (e.g., with
mpstat or with an SNMP agent). However, there are circum-
stances in which the load cannot be measured this way. For
instance, when the access to the operating system is not avail-
able to the user (as in a Platform-as-a-Service deployment). In
fact, server load estimation is a common issue in many Data
Centers [1], as it is convenient to balance jobs between differ-
ent systems. Occasionally, it is mandatory to fix bottlenecks in
performance. Moreover, server load can also be useful to ad-
dress other problems that have appeared in distributed systems
recently, such as cloud computing infrastructures. In these en-
vironments, physical server load is not always available from
the Cloud services provider, providing virtual server load in-
stead [2]. Commercially available servers usually provide tools
to estimate server load, but they need access to administration
capabilities and may worsen an excessive load problem. More-
over, a local tool may provide wrong results if the server is a
virtual machine hosted in a cloud infrastructure [3].

Server load estimation is a topic frequently addressed in the
literature in the context of load balancing. There are compre-
hensive surveys [4, 5, 6] and comparisons [7]. Many of them

∗Corresponding author
Email addresses: luis.depedro@uam.es (Luis de Pedro),

adrian.rosu@naudit.es (Adrian Mihai Rosu),
jorge.lopez_vergara@uam.es (Jorge E. López de Vergara)

Received: 6th June 2022. Revised: 28th November 2022. Revised: 27th

February 2023. Accepted 28th June 2023.

are based on non-intrusive estimations of server availability [8]
or, more often, in server load measurements [7, 9, 10]. There-
fore, server load data availability has crucial importance to op-
erate clusters efficiently. On the other hand, server load is the
input to a number of proposed scheduling algorithms [11, 12]
and key to distinguish if a problem is caused by the network
or by the server. This helps to reduce the time to identify its
root causes, or, at least, the so-called mean time to innocence
(MTTI) [13]. Even mobile services efficiency algorithms rely
on server load data to avoid systems saturation [14]. Besides
that, IT energy consumption is one of the few ones that can
be moved from one Data Center to another in some other re-
gion. This helps to optimize energy consumption for reducing
the carbon footprint [15, 16]. In that sense, this work may be a
modest contribution to climate change fighting.

As shown, server load estimation without actual system ac-
cess is desirable in several scenarios, although we should look
out of the server. We can guess that response time to network
protocols may be related to system load. If so, when network
traffic is available for analysis, the goal of server load estima-
tion can be achieved, as we will show in this paper.

Network traffic has been widely monitored and analyzed to
study the network behavior, with many research papers [17, 18],
as well as several patents about this topic [19, 20]. Use of
statistics has been proposed to estimate parameters like band-
width availability [21]. Moreover, it can also be useful to study
end systems behavior. For instance, several zero-window an-
nouncements in a TCP session show that an application is re-
ceiving data at a higher rate than the one it can process. Such a
type of information can be very useful to identify the root cause

Preprint submitted to Journal of Network and Computer Applications June 28, 2023

Client Server
Vantage
point

SYN
Response
Time
(SRT)

t

Network
TAP

Measured SRT

Server
switch

Fig. 1. SYN Response Time in the TCP handshake and its measurement at a
vantage point close to the server.

of problems [22] in distributed systems, which are usually dif-
ficult to fix.

Thus, to estimate server load without measuring it inter-
nally, we propose a passive approach using traffic analysis. Our
starting point is traffic capture using a non-intrusive probe (a
network TAP, for instance) close to a server. By “close” we
mean there is no active communications equipment (switches
or routers) between the probe and the target system that could
contaminate the measurement, due to interfering traffic or queu-
ing delays.

Our previous work [23] has shown a strong correlation be-
tween the response time to a SYN segment (SRT, SYN Re-
sponse Time) and the load on a given server. There, we pre-
sented how an SRT distribution is modified when server load
increases. Moreover, it has also been proved that heavy-tailed
α-stable distributions can be used to fit experimental data with
promising accuracy.

In this paper, those previous results are further refined. We
confirm the strong correlation between the measured SRT and
the server load. Furthermore, we analyze the actual SRT dis-
tribution and derive a distribution mixture fit whose statistics
have proven useful to estimate server load. One of the prob-
lems found in our previous work is the complexity of the SRT
statistic distributions. We noticed that a single mode distribu-
tion is not accurate enough. Instead, a mixture of distributions
is much more precise. However, α-stable distribution mixture
fitting is quite computing intensive. Several attempts to address
the calculation issues in real environments are available [24, 25]
but the main problem stands: α-stable distribution probability
density function (PDF) does not have a closed expression [26].
This point makes it very cumbersome to estimate the parame-
ters. On the other hand, Burr Type XII distributions have an
explicit expression and have been used to model different en-
vironments [27, 28, 29]. We have verified that, using Burr dis-
tributions mixtures, the SRT data can be modeled. Here, we
present a method to estimate the parameters. In this case, the

calculations are much easier and the accuracy is better than in
our previous α-stable approach [23].

The main contribution of this paper is a novel method to
estimate the server load using a network-traffic-based, non-
intrusive approach by analyzing the SRT distribution mixture
characteristics. Moreover, other relevant contributions also fol-
low:

1. It is demonstrated that the SRT distribution can be accu-
rately modeled by using a Burr Type XII distribution mix-
ture to fit the multimodal heavy-tailed nature of the SRT.
In contrast, other typical distributions do not fit well or are
difficult to calculate.

2. A generalized method is presented to fit experimental data
with a Burr Type XII mixture. It is independent of the
number of distributions that compose the mixture. Previ-
ous works could only calculate a mixture of two or three
Burr Type XII distributions [30, 31].

3. The relation between distribution statistics and the server
load is analyzed. Based on this relation, we obtain a curve
by regression that predicts the server load from the median
of the SRT distribution.

4. Finally, this new method can be applied to almost any ex-
isting load balancing or scheduling algorithm, as it does
not take any assumption about the server, which is consid-
ered a black box.

The rest of the paper is organized as follows. First, related
work is presented. Next, the SRT concept is reviewed to fo-
cus on the network analysis framework. Then, the methodol-
ogy based on Burr Type XII mixture PDF fit to measurements
is presented. Next, the mathematical model is developed, de-
scribing the generalized method to fit a Burr Type XII mixture.
Next, the proposed algorithm is used to predict server load with
actual data. Later, results and limitations are discussed. Finally,
conclusions are provided.

2. Related Work

From the best of our knowledge, apart from our previous
work at [23], there is no other work that uses the SRT to es-
timate the server load. In this section, we mention other related
works that have estimated server load. As stated before, it can
be difficult to measure server load without interfering signifi-
cantly with the applications running on it. Therefore, several
non-intrusive approaches have been proposed.

Indirect estimation using Autoregressive Integrated Moving
Average Model (ARIMA) is proposed in on-demand resources
provision algorithms [9] to optimize data migration in a cluster
of servers. The load estimation figure is then used to schedule
resource provision and data migration between clouds. This
method avoids late reaction when resources are being over-
whelmed. Early data migration is crucial to reduce services ex-
penditure and load balancing in a cloud. That method is based

2

Sep 28 Sep 29 Sep 30 Oct 01 Oct 02 Oct 03 Oct 04 Oct 05

Sample time in days 2015

0

50

100

150

200

250

300

350

400
S

R
T
 d

e
la

y
 i
n
 m

ill
is

e
co

n
d

s

Fig. 2. SYN Response Time in milliseconds (one week, from Monday to Sunday) of a main server in a large company.

on historical load data, which is fed to an ARIMA model to es-
timate future load figures. In contrast, our approach uses actual
data instead of previous load records.

Parameters such as the number of active connections in a
given instant are used as an input to other load balancing sys-
tems [32]. This approach addresses the optimization of traffic
distribution in a cluster of web servers. A method to balance
traffic between servers is proposed, based on CPU load estima-
tion. The load balancer algorithm uses two parameters from
every server: the amount of exchanged traffic and the number
of active connections. The CPU load is estimated as the ratio
of the amount of the exchanged traffic over the server capacity.
The rate at which those calculations and corresponding actions
are made is optimized. Simulations show this rate is reduced
almost three times. In our approach, we address accurate load
measurement instead of a rough estimation, and using only the
SRT of the connections. Note also that other approaches [33]
are based on the number of SYN segments (actually, number
of TCP connections vs. total capacity) received by the server.
They do not provide an accurate measure of the server load be-
cause the load depends both on this arrival rate and on the ser-
vice rate. This is usually unknown, and not necessarily related
to the transmitted data.

Virtual Machine state transitions have also been used as a
non-intrusive estimation of VM Load to classify huge amounts
of VM instances when dealing with performance issues in a
cloud [34]. An agentless technique for VM feature extraction is
proposed. Hypervisor trace mining is used to extract static trace
points. The states of every virtual CPU and virtual interrupt in-
jection rate are used. Resource contention due to other VM
and VM exit reasons are also included in the method. There-
fore, without access to the VM itself, both coarse and fine grain
workload data estimations are obtained. Once the workload is
available, K-means clustering is used to isolate the VM that
might have issues. Experimental data shows that, for instance,
VM with CPU contention may be rapidly identified. Our ap-
proach avoids accessing the hypervisor and therefore is less in-
trusive.

In summary, those previous approaches lack generality and
detail, and are highly suited to specific environments.

3. TCP SYN Response Time

In this section, we explain how the SRT is measured and its
correlation with server load.

3.1. SRT measurement
The TCP protocol, requires a connection set-up before trans-

mitting or receiving any useful application-layer data. The
complete connection set-up involves three segments: SYN,
from client to server, SYN+ACK, from server to client, and
ACK, once again from client to server. The TCP protocol does
not consider the connection established until all of them have
been successfully received. This 3-way handshake, shown in
Fig. 1, can be measured by using traffic probes [35] placed at a
vantage point. In this way, this measurement is independent of
where the client is located.

Any of the delays in the phases can be used as an estimation
for Round Trip Time (RTT) [36], which in turn has been used to
estimate network infrastructure issues [37]. However, it should
be noted that in contrast to these previous works, we are not
going to measure neither the RTT nor the network status. What
it is presented here is an innovative approach that uses the SRT
as an estimator of the server load. In this case, it is impor-
tant to place the vantage point close to the server (e.g., between
the server switch and the server itself), so network influence on
measured the SRT is minimized.

3.2. SRT versus load correlation
As mentioned above, our previous work has shown that there

is a strong correlation between distribution parameters and
server load [23]. In Fig. 2 we can see the evolution in one week
of the average SRT of a main server in a large company. The
shape of the graphics suggests our guessing that the SRT and
server load are related, at least at a daily level, given that the
SRT follows the usual daily traffic pattern [38]. In different
time scales, this relationship can be found even when using a

3

Load
Measurement

vs.
SYN/SYN,ACK

Filter

SRT

Load

srt.awk

load.awk

Ksdensity
Clusterization

Burr XII
mixture fit

Parameters
extraction

Accuracy check

cpuload.sh

DataCorrelation

Load
Measurement

vs.
SYN/SYN,ACK

Filter

SRT

Load

srt.awk
cpuload.sh

load.awk

Load
prediction

filters.sh

filters.sh

Fig. 3. Methodology used in this work. Data acquisition tasks are in green, server load estimation tasks in blue, and model validation in wheat.

single distribution to fit the SRT data. However, we show in
this paper that better results can be achieved if Burr Type XII
mixture is used.

4. Methodology

To find the proper correlation between the SRT and server
load, we have defined the following methodology. With it, we
can validate our approach, where actual data is used to feed
the mathematical model, and results are compared to measured
load. In this way, we can check that this method can be used in
real premises.

Fig. 3 depicts the methodology workflow used in the present
work. We can highlight three main phases:

1. Data acquisition. It is the starting point and the source
to tune the load estimation algorithm. Enough mea-
surements in a controlled environment (essentially known
server load) allow a correlation fitting between the SRT
statistics and load figures.

2. Server load estimation model setup. Once the correlation
is established (model calibration), the model is fed with
actual the SRT figures and estimate server load previously
imposed on the target system.

3. Model validation. Estimations are finally compared to the
actual loads to test the accuracy of the method.

In Fig. 3, data acquisition components are depicted in green,
server load estimation model setup in blue and model valida-
tion in wheat. Icons in the figure are used to document the tools

used in every step. We have implemented all these phases, mak-
ing the code available in GitHub1 for reproducibility. The next
subsections describe in detail each phase.

4.1. Data acquisition

The data set used has been obtained by a custom environment
meant to measure the SRT related to several loads on a server.
Two computers composed this environment: one of them had
the client role whilst the other one had the server role, and it
worked as follows. The client was running on a Kali Linux vir-
tual machine, while the server was running on an Ubuntu Linux
operating system. Both of them directly connected through a
physical Ethernet wire with IP address manually configured.

To measure the SRT times, TCP connection requests
must be sent from one point to the other. A script
located on the server called “cpuload.sh” (Fig. 3)
has automatized this operation. It uses two differ-
ent Python scripts “Python-Server 200OK.py” and
“Python-PoissonClient.py”, each one located on the
server and the client, respectively, as their names indicate.

The function of the script “Python-Server 200OK.py” is
to open a network port and keep it listening for upcoming TCP
connections. Once a TCP connection arrives, the script accepts
the connection request and sends back a “200 OK” answer.
On the other hand, the script “Python-PoissonClient.py”
keeps sending TCP connections with “GET” messages, through
the same port used by the server, with a rate of 5 connections per

1https://github.com/ARosu21/Load_estimation_by_SRT

4

https://github.com/ARosu21/Load_estimation_by_SRT

second, following a Poisson process. Note, however, that the
SRT is independent of the application-level messages, which
are only used to add some content to the connections.

As it has been said before, to automatize this procedure,
the first thing done in the script “cpuload.sh” is loading
the CPU of the server from 0% to 100% in 5% intervals us-
ing the following command: “stress-ng -c 4 -l %load ”;
the “-c” option allows selecting the number of cores to be
loaded with the percentage of load selected with the “-l” op-
tion. Thereafter, the script “Python-Server 200OK.py” is
launched, listening on the port number 2004. Once the server
is running, the network traffic is captured by the program
tshark using the next capture filter: “tcp port 2004 and

(tcp[tcpflags]&(tcp-syn)!=0)”. With this filter, only
TCP segments that go through the port number 2004 with any
of the flags “SYN” or “SYN+ACK” are captured.

The next step is to launch the script located in the client.
“Python-PoissonClient.py”. To do so, the server uses the
SSH protocol to have access to the client and run the script. The
final part is the measurement of the real load on the server. To
obtain these measurements, the command “mpstat 2” is used,
which measures several stats of the CPU such as “%idle” that
indicates the amount of free CPU at that moment. In this case,
it is measured every 2 seconds, so the current load can be deter-
mined by the subtraction: load = 100 −%idle.

All this procedure is done for every percentage of load in the
mentioned set, so it is repeated with all the 21 different percent-
ages of load. Doing this for 15 minutes long and 5 times for
every measure, the calibration data set is obtained, and after the
calibration is concluded, the test data set is done in the same
way but from 1 to 5 minutes long instead, and only once, to be
later used for validation (see sect. 4.3).

Having captured the traffic and saved it in traces, it was time
to filter it to get the SRT. The script called “filters.sh”
(Fig. 3) does this process. To calculate the SRT, it is neces-
sary to measure the time between “SYN” and “SYN+ACK”
segments, previously sorted by arrival sequence, avoiding
retransmissions or out-of-order segments. This is done
with the following display filter in tshark that takes
only “SYN+ACK” segments: “tcp.flags==0x00000012
and not tcp.analysis.retransmission and not

tcp.analysis.out of order”, and taking the time since
the previous frame in the TCP stream, “tcp.time delta”.
This filtered data is saved in a text file, which will be used to
calculate the SRT with an AWK script “srt.awk (Fig. 3). In
relation to the load, it is calculated with another AWK script
“load.awk (Fig. 3) that does what has been said before. The
subtraction of the %idle column and calculates the mean load
for every load percentage setup.

4.2. Server load estimation model set up
We have tried, as a first approximation, the SRT distribu-

tion statistics like mean, median, etc. to predict the load, but
the accuracy of the prediction is not accurate enough with such
method. Bearing in mind the actual distributions of the exper-
imental data (see Fig. 4), we concluded that better results may
be obtained by fitting a distribution mixture. Statistics can be

derived from the fitting, so more accurate estimations might be
obtained. As per the Glivenko-Cantelli theorem, the more sam-
ples, the better results. However, there is a tradeoff between
accuracy and estimation speed. Mixture fit can estimate the
actual distribution, so not that many samples are needed to es-
timate distribution parameters. Therefore, we proceeded to fit a
distribution mixture, so the measurement errors can be fixed (at
least, partially). Experimental results support this assumption.

We used fifteen minutes of data as a good trade-off between
accuracy and time to react to load changes. Data are shown in
Fig. 3 as “Load Measurement vs. SYN/ACK”. Once we have
the data, we cluster it using the K-density algorithm (Fig. 3),
and then proceed with the Burr Type XII mixture fitting (details
follow in section 5). Then, we calculate relevant statistics to
predict the load. Once we find one of such statistics, we get
the correlation fit, so we finally have a theoretical expression,
which relates the SRT to server load. The result is depicted in
Fig. 3 as “Load prediction” box. The output of this phase is a
curve relating the SRT and load in a well-known environment,
so it is actually a calibration process of the model. We were
able to use many more samples than in an actual measurement,
so fitting is excellent (see following sections).

4.3. Model validation

To validate the model, the SRT validation samples (different
from calibration samples) are used to simulate a real data center
environment. Depending on the actual setup and variability, the
number of these new samples may vary significantly, but it is
for sure much less than in the calibration phase. In our case,
as stated before, we use 1-minute and 5-minutes timeframes
to get the validation samples, vs. the 15-minutes timeframe
used in the calibration phase. We have tested the validity of this
approach in this way: We used the SRT data as an input to the
“Load prediction” function (fitting curve) and then checked the
result versus the actual server load. The result indicated that the
estimation error when using the fitting curve was less than 5%.

The scripts used in this phase are the same as in data acqui-
sition phase, as can be seen in Fig. 3.

4.4. Server Load Estimation Method

Based on the methodology provided above, this approach can
be actually used in a data center to estimate the server load. The
3-step proposed method is as follows:

1. First, given the dependence of this estimation on the used
hardware and software, it is necessary to obtain the corre-
lation curves of the Burr Type XII mixture statistics with
the load for the servers. This training phase would be simi-
lar to what has been shown previously, obtaining as a result
a regression curve (second order seems enough) useful to
estimate the server load.

2. After the training phase, the SRT samples have to be col-
lected at the vantage point. This collection can be done
non-intrusively by capturing with a probe the SYN and
SYN+ACK segments of real TCP connections arriving to
the server. Active SYN attempts may be used as explained,

5

or passively collect SYN segments from actual TCP con-
nections.

3. Once the SRT samples have been collected, we can fit
them to a Burr Type XII distribution mixture and obtain
its statistics. Based on those values and on the regression
curve obtained in the first step, we can finally estimate the
server load.

5. Server Load Distribution Model

In this section, the mathematical model to fit the SRT data
distribution is detailed. Although a single distribution might
do the work, as shown in [23], we have observed that exper-
imental data actually leads to a mixture. Using several loads
in a server and measuring the SRT produces the histograms
in Fig. 4, where it can be seen by inspection that the better
approach is to consider it as a PDF mixture of heavy-tailed
PDFs because, for all server loads from 0% to 100%, a heavy-
tailed multimodal distribution is observed. Given this fact, we
have developed a new mathematical approach to get the mixture
components. The next subsections are organized as follows:

1. Distribution Mixtures. Distribution mixture notation and
problem statement are defined.

2. Burr Type XII Distributions. The Burr Type XII distri-
bution explicit expression is presented as an input for the
following subsections.

3. Mixture estimation using MLE. Maximum Likelihood Es-
timation (MLE) has been used to estimate mixtures of
Gaussian random variables successfully. Here the general
approach is explained in detail, and its application to Burr
Type XII distributions. The technique used to solve MLE
in this approach is expectation maximization (EM) which
is also presented in this subsection.

4. Burr Mixture EM Second Term Optimization. As a dif-
ference with the Gaussian approach, one of the EM terms
should be maximized by using numerical analysis. This
subsection presents the method to get that maximum.

5. Burr mixture fitting algorithm. Finally, the whole algo-
rithm is summarized, and mathematical details are dis-
cussed.

5.1. Distribution Mixtures

A mixture can be defined as a linear combination of a finite or
infinite number of PDFs, called components. In the case that all
the PDFs are of the same type and the number of components
is finite, the general expression is shown in Eq. 1:p

(
x
∣∣∣θ̄) =

∑M
l=1 αl pl (x|θl)∑M

l=1 αl = 1
(1)

where αl are the relative weights of every component of the
mixture and θ̄ is the set of parameters that define each PDF. The

objective is to find both sets of parameters to estimate the mix-
ture PDF. Several techniques have been proposed to achieve this
goal. The machine learning community often uses clustering to
separate the data into clusters, then fit the PDF to every cluster
and combine them to get the overall mixture [39]. This method
works quite well when the mixture components are separated
enough one from another, but if the components are “wedged”,
extra process is needed to improve accuracy. Another method
is based on the Bayes approach, which can be seen in [40], but
we have decided to use MLE, which has proven very efficient
when dealing with Gaussian distributions [41].

5.2. Burr Type XII distributions
It makes sense that fitting quality is key to estimating server

load accurately. One alternative is to use MLE techniques to
improve the fitting. As we will see, MLE applications are far
more efficient when PDF expressions are available, which is not
possible when using, for instance, α-stable distributions, which
do not have a closed expression for the PDF or CDF. As an
alternative, Burr Type XII distributions [27] have an explicit
expression for both PDF and CDF functions, as shown in Eq. 2: f (x|a, c, k) = c k

a

(
x
a

)c−1 [
1 +

(
x
a

)c]−(k+1)

F (x|a, c, k) = 1 −
[
1 +

(
x
a

)c]−k (2)

where a is the scale parameter and c and k are the shape param-
eters. Furthermore, Burr Type XII distribution has been used to
successfully model several experimental data sets like house in-
come in the US or loss expectation [28]. They are suitable to fit
heavy-tailed distributions and can be manipulated explicitly, so
they have proven applicable to a number of heavy-tailed mod-
els [29]. In this paper, we will take advantage of the explicit
PDF expression to apply MLE to find out the mixture compo-
nents of an SRT experimental histogram.

5.3. Mixture estimation using MLE
As it has been previously mentioned, MLE has been applied

to Gaussian mixture estimation successfully due to the explicit
PDF expression [42]. The idea is to use the explicit expressions
of the PDF functions and then, use the partial derivatives to
find the maximum (EM). Other proposed methods for a defined
number of components are based on Weibull distribution prop-
erties [43] or on Bayes’ rule [44, 45]. Actually, MLE has been
used successfully to estimate the three Burr Type XII param-
eters for a single component [46]. We will follow the method
explained in [41] for Gaussian distribution, but using Burr Type
XII instead, which in our experience provides a better fit. Us-
ing the mixture definition in Eq. 1, the incomplete-data log-
likelihood expression for this density for the data X is given in
Eq. 3:

log
(
L

(
θ̄
∣∣∣X))

= log
N∏

i=1

p
(
xi

∣∣∣θ̄)
=

N∑
i=1

log

 M∑
l=1

αl pl (xi|θl)

(3)

6

Fig. 4. SYN Response Time histogram for different CPU loads, ranging from 0% (top left) to 100% (bottom right).

7

To optimize the log-likelihood expression, we post the exis-
tence of a dataset Y = {yi}

N
i=1, which indicates for every sample

which component it belongs to. That is, yi ∈ 1, ...,M and yi = k
if the ith sample is generated by the k mixture component.

If we consider the Y set as a random vector of unobserved
data items, we can apply MLE. Likelihood expression becomes
now as shown in Eq. 4:

log
(
L

(
θ̄
∣∣∣X,Y))

= log
(
P(X,Y |θ̄)

)
=

N∑
i=1

log (P(xi|yi) P(y))

=

N∑
i=1

log
(
αyi pyi (xi|θyi)

) (4)

We need to start with an initial guess at the mixture parame-
ters θ̄g = (αg

1, ..., α
g
M , θ

g
1, ..., θ

g
M). With this guess, we can com-

pute every mixture component pl(xi, θ
g
l). To obtain the unob-

served data distribution, we can use Bayes’ rule as shown in
Eq. 5:

p(yi|xi, θ̄
g) =

α
g
yi pyi (xi|θ

g
yi)

p(xi|θ̄g)

=
α

g
yi pyi (xi|θ

g
yi)∑M

k=1 α
g
k pk(xi|θ

g
k)

(5)

Therefore, the probability of an instance of the unobserved
data ȳ is p(ȳ|X, θ̄g) =

∏N
1=1 p(yi|xi, θ̄

g). To maximize the
likelihood, we may use the expectation maximization (EM) al-
gorithm. We define the Q function in Eq. 6, which is the first
step (called E) where we calculate the expectation:

Q(θ̄, θ̄(i−1)) = E
[
log p(X,Y |θ̄)| X, θ̄(i−1)

]
=

∫
y∈Υ

log p(X, ȳ|θ̄(i)) f (ȳ|X, θ̄(i−1))dȳ
(6)

where X and θ̄(i) are constants (data and previous parameter es-
timation) and ȳ is an instance of the unobserved data.

The second step in the EM algorithm (called M) is to maxi-
mize Q :

θ̄(i−1) = arg max
θ̄

Q
(
θ̄, θ̄(i−1)

)
(7)

In the mixture fitting case, the Q function is as in Eq. 8:

Q(θ̄, θ̄(i−1)) =
∑
ȳ∈Υ

N∑
i=1

log
(
αyi pyi (xi|θyi)

) N∏
j=1

p(y j|x j, θ̄
g) (8)

This expression can be transformed into a sum of two sepa-
rate expressions, which can be independently optimized as seen
in Eq. 9:

Q(θ̄, θ̄(i−1)) =

M∑
l=1

N∑
i=1

log
(
αl)p(l|xi, θ̄

g)
)
+

M∑
l=1

N∑
i=1

log
(
pl(xi|θyi)

)
p(l|xi, θ̄

g)

(9)

The first term can be optimized using Lagrange multipliers.
Eq. 10 shows the expression for αl, l = 1...M.

αl =
1
N

N∑
i=1

p(l|xi, θ̄
g) (10)

In the case of Gaussian mixtures, the second term in Eq. 9 can
be optimized, finding values for the partial derivatives to vanish.
However, when dealing with Burr Type XII distributions, we
have used a numerical approach.

5.4. Burr Mixture EM Second Term Optimization
If we include the Burr Type XII PDF definition into the EM

second term, we get the function to be maximized shown in
Eq. 11:

M∑
l=1

N∑
i=1

log
(
pl(xi|θyi)

)
p(l|xi, θ̄

g) =

M∑
l=1

N∑
i=1

log

cl kl

al

(
xi

al

)cl−1 [
1 +

(
xi

al

)cl
]−(kl+1).

p(l|xi, θ̄
g) =

M∑
l=1

N∑
i=1

{log cl + log kl − log al + (cl − 1)
[
log xi − log al

]
− (kl + 1) log

[
1 +

(
xi

al

)cl
]
}p

(
l
∣∣∣xi, θ̄

g
)

(11)

As every mixture component is independent of the rest, we
can optimize every function fl with l = 1...M described in
Eq. 12:

fl(al, cl, kl) =

N∑
i=1

{log cl + log kl − log al+

(cl − 1)
[
log xi − log al

]
− (kl + 1) log

[
1 +

(
xi

al

)cl
]
}p

(
l
∣∣∣xi, θ̄

g
) (12)

The partial derivatives of fl are shown in Eq. 13:

∂ fl
∂al

=
∑N

i=1

− cl
al

+ (kl + 1) clxi
cl

a(cl+1)
l

1+

(
xi
al

)cl

· p

(
l
∣∣∣xi, θ̄

g
)

∂ fl
∂cl

=
∑N

i=1

 1
cl

+ log
(

xi
al

)
− (kl + 1)

log
(

xi
al

)(
xi
al

)cl

1+

(
xi
al

)cl

· p

(
l
∣∣∣xi, θ̄

g
)

∂ fl
∂kl

=
∑N

i=1

[
1
kl
− log

(
1 +

[
xi
al

]cl
)]
· p

(
l
∣∣∣xi, θ̄

g
)

(13)

To find the maximum of fl, we can numerically find the
(al, cl, kl) values where Eq. 13 vanishes. Actually, we can find
an expression of kl when ∂ fl

∂kl
= 0 as a function of (al, cl) values.

Eq. 14 shows the expression for kl(al, cl)

kl (al, cl) =

∑N
i=1 p

(
l
∣∣∣xi, θ̄

g
)

∑N
i=1 log

[
1 +

(
xi
al

)cl
]

p
(
l
∣∣∣xi, θ̄g

) (14)

8

We can use this result to reduce the three dimensions search
of the maximum to two dimensions, as kl can be considered
a function of the other two parameters. The function gl to be
maximized is shown in Eq. 15:

gl(al, cl) = fl(al, cl, kl(al, cl)) =

M∑
l=1

N∑
i=1

{log cl

+ log

∑N

i=1 p
(
l
∣∣∣xi, θ̄

g
)

∑N
i=1 log

[
1 +

(
xi
al

)cl
]

p
(
l
∣∣∣xi, θ̄g

) −
log al + (cl − 1)

(
log

xi

al

)

∑N
i=1 p

(
l
∣∣∣xi, θ̄

g
)

∑N
i=1 log

[
1 +

(
xi
al

)cl
]

p
(
l
∣∣∣xi, θ̄g

) + 1

log

[
1 +

(
xi

al

)cl
]
}·

p
(
l
∣∣∣xi, θ̄

g
)

(15)

To find the maximum using the Monte Carlo method, we can
proceed as follows for every random sample. We use al and cl in
θ̄g values as the previous guess. The Monte Carlo maximization
algorithm follows these steps:

• Generate (al, cl) random values within interval around pre-
vious guess values.

• Calculate gl(al, cl) using Eq. 15.

• Follow maximum slope using (∂ fl
∂al
, ∂ fl
∂cl

) direction with
Eq. 13 and calculate gl(al, cl) again using Eq. 15 in every
step.

• Repeat until there is not increasing in the value of gl(al, cl).

• Make (al, cl) part of θ̄g as guess values for the next EM
iteration.

We can remark several points regarding the Monte Carlo
method:

• The interval for the random values depends on the accu-
racy of the initial estimations. Hopefully, we start with a
pretty good estimation, so we may use a small interval for
the (al, cl) values.

• The gradient we are using is the fl gradient, not the gl one.
As we are imposing ∂ fl

∂kl
= 0, this is not a big concern. We

will see that results support this assumption.

• The Monte Carlo Method requires going through the de-
scribed steps several times, depending on the actual prob-
lem. We have found that the required number of samples
is in the order of tenths.

5.5. Burr mixture fitting algorithm

Once we have the method to optimize the second term
of Q(θ̄, θ̄(i−1)) in Eq. 9 and the αl values with Eq. 10, we
can iterate EM until fit the distribution. The overall EM
mixture-fitting method with Burr Type XII distributions is as
follows:

• Find mixture maxima as initial cluster centroids.

• Use k-means with Euclidean distance to define clusters of
samples.

• Fit Burr Type XII distributions to every cluster of samples.
These fits are the initial components of the mixture.

• Estimate αl for every component.

• Define initial θ̄g using Burr Type XII parameters and αl

values.

• Iterate:

– Using Monte Carlo, estimate new {(al, cl, kl)}, l =

1...M.

– Calculate αl using Eq. 10.

– Update θ̄g for next iteration.

As previously, some discussion on the presented method is
worth:

• EM guarantees that with every iteration expectation the
result is improved, even if the absolute maximum is not
found. This allows us to define a stop criterion for the iter-
ations, like a distance measure (Kolmogorov-Smirnoff for
instance [47]) minimum threshold.

• In every iteration, the two terms of Eq. 9 are optimized. It
may improve the convergence of the algorithm if we use
one of the optimizations as input for the other. However,
we have chosen not to update θ̄g until the end of the itera-
tion, as not significant speed improvement is obtained.

• Obviously, the closer the initial estimation to the solution,
the better for the algorithm to converge to the solution. We
have noted that maxima estimation is probably the most
critical step to estimate the initial components. Using in-
formation from the problem can help us. As we have seen
in Fig. 4, there are four components in the mixture, and
the third one is by far the most important. We first find
the absolute maximum of the mixture, and then impose
two maxima to the left and one to the right. We try to
get the maxima the most possible equispaced. This pattern
depends on the server architecture and should be defined
case by case.

• Once the samples are classified in clusters, we need to es-
timate initial αl values. We use the maxima from the initial
estimation and take advantage of the Burr Type XII distri-
bution. For every component, we calculate the PDF peak

9

Fig. 5. SRT histogram maxima locations.

and calculate the ratio to the corresponding maxima. Then,
we normalize those ratios and use them for the αl values
to make sure the sum of all of them is one to comply with
the second axiom of probability.

By using the presented method, we have been able to fit the
mixture using Burr Type XII distributions in a much better way
than with α-stables [23], which do not have a closed form to
deal with. Results are presented in the following section.

6. Experimental results

Once we have described the mathematical model, we have
applied it to the experimental data, to obtain the distribution
mixture. The objective is later to find the curve that better mod-
els the relation between the SRT and the server load.

6.1. Burr Type XII fit
To test the presented algorithm, we have used as a target

server to measure an Intel i5 430M, 2 cores, frequency 2.26
- 2.53 GHz, 3 MB cache 4 GB RAM DDR3 at 1067 MHz
with HDD disk of 500 GB. The operating system is Ubuntu
16.04 LTS, which reports four cores (two physical and two log-
ical). Data has been acquired using the methods described in
section 4.1.

Once we have the SRT and load data, the first step is to lo-
calize mixture maxima. As mentioned, we use the usual cri-
terion for the number of bins (square root of the number of
samples) and then apply the maxima finding procedure already
explained, bearing in mind the width of the bins. In Fig. 5 we
can see the result of a problematic case. This is especially in-
teresting because every so often, we do not have an “isolated”
maximum for the main mixture component. This implies that
using a blind approach to extract just the maxima does not work
because we would get two quite close maxima in this case and

miss some other maximum either on the right or on the left.
In fact, any of the two maxima in the center of the figure could
work because we have MLE to improve the fit. Then, we choose
any of them and forget the other, while finding maxima sepa-
rated enough from the one already chosen. We have checked
that this approach using separated maxima gets far better re-
sults than just a maxima naive finding.

The next step is to use maxima locations as initial locations
for the k-means clustering. In Fig. 6 we can see the four clus-
ters of samples, the corresponding histograms without normal-
ization (each one is a PDF itself) and the initial Burr Type XII
distribution fit for every component.

We should make a remark here regarding Burr Type XII fit
to every cluster histogram. Sometimes (very few, actually) the
best fitting PDF is a limiting case of Burr Type XII like Weibull
distribution [46]. In this case, some parameters have infinite
values, the Burr Type XII PDF expression cannot be used di-
rectly. We have decided to estimate a “standard” Burr Type
XII PDF with c = 3 and k = 1 parameters as it has “bell shape”
like the components. To approach the “not fittable” distribution,
the Burr Type XII a parameter is assigned to the correspond-
ing cluster centroid location. Sometimes, resampling of fitting
curves is necessary. This heuristic approach has proven to be a
valid assumption for the case of study. Once the αl parameters
are estimated as described, we can see in Fig. 7 the initial Burr
Type XII mixture estimation. The final step is to iterate EM
to improve the fitting. In this case, we have used 100 random
samples for the Monte Carlo algorithm and 20 iterations. The
random variable interval is [−30%,+30%] of the guessed val-
ues (θ̄g) decreasing with every iteration. In Fig. 8, the resulting
Burr Type XII mixture estimation is depicted.

6.2. Server Load correlation with the SRT
We have repeated the previous method for mixture fitting for

several loads, between 5% and 100%. After several attempts us-

10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
SRT Delay in Milliseconds

0

100

200

300

400

500

600

700

800

900

SR
T

Pr
ob

ab
ili

ty
D

en
si

ty
Fu

nc
tio

n

Fig. 6. Clustering without normalization. Different color lines identify the fitting of each mixture component.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
SRT Delay in Milliseconds

0

20

40

60

80

100

120

140

160

180

SR
T

Pr
ob

ab
ili

ty
D

en
si

ty
Fu

nc
tio

n

Fig. 7. Initial Burr Type XII measured data (blue line) and fitting (red line).

11

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
SRT Delay in Milliseconds

0

20

40

60

80

100

120

140

160
SR

T
Pr

ob
ab

ili
ty

D
en

si
ty

Fu
nc

tio
n

Fig. 8. Burr Type XII mixture measurement (blue bars) and fitting after EM (red line).

ing mean, mode and other statistics, we finally decided that the
best correlation between server load and the SRT statistic is the
50th percentile (actually, the median) of the estimated mixture,
but far from satisfactory. Experimental results are presented in
Fig. 9

Median captures somehow the location of the data (es-
sentially, delays) which hopefully has to do with the server
load. The median is generally considered more efficient than
the mean when addressing heavy-tailed distributions or mix-
tures [48]. However, although other statistics are even worse,
empirical median does not provide the accuracy obtained with
Burr Type XII mixtures.

In Fig. 10 we can see a correlation between the percentile
and the server load. Markers represent measurements and
the continuous line is the second order polynomial adjust,
y = 3.6x2 + 27.6x + 44.1. Dash lines indicate the 95% confi-
dence interval. For the polynomial fit, we have µ = 0.039286
and σ = 0.001161. This is an excellent correlation and that is
why we propose it as the right method to estimate server load
without intrusion into the system.

To assess how the method performs, we estimate the error of
the estimated load. For this, as proposed in [9], we use the Mean
Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE), defined below in equations 16 and 17, respectively.

MAE =
1
n

n∑
i=1

|e(i)| (16)

MAPE =
1
n

n∑
i=1

|e(i)|
x(i)
· 100% (17)

where e(i) = x̂(i) − x(i), x̂(i) is the estimated load value of the
ith measurement based on the SRT, and x(i) is the actual mean
load value provided by mpstat as ground truth. Note that, in
this case, we provide the loads as percentages, so MAE will be

a percentage as well. Anyway, we also use MAPE to identify
if there are large errors when the load is low, which could be
hidden in MAE. Additionally, apart from MAE and MAPE, we
obtain the maximum absolute and percentage errors to know
the error upper bound. Based on the values shown in Fig. 10,
we have obtained the following results for our experiment:
• Average absolute error: 0.72%.
• Maximum absolute error: 2.01%.
• Average absolute percentage error: 2.01%.
• Maximum absolute percentage error: 5.89%.
As shown, our results outperform other load estimation meth-

ods [9]. There, MAPE was between 4.31% and 7.22% for
ClarkNet, and between 3.09% and 5.16% for NASA. Thus, our
approach provides a lower MAE and MAPE, proving its use-
fulness regarding leading related techniques.

7. Discussion

The described method supposes that the TCP SYN responses
are generated by the operating system in the server to cor-
rectly estimate the server load. However, there are many net-
work cards with TCP offloading features, which could make
this method unfeasible. Nevertheless, most TCP offloading im-
plementations only do partial offloading. They take the TCP
control once the connection has been established by the operat-
ing system, for tasks such as checksum calculation or segmen-
tation/reassembly [49]. In these cases, the proposed method is
still valid. The operating system is affected by the server load
during the TCP handshake, which is when the measurements
are taken. Thus, other connection-oriented protocols with an
initial handshake (e.g., SCTP or QUIC) could also be used to
estimate the server load.

The proposed method requires calibration before actual esti-
mations. This can be done before the server is moved to pro-
duction as a previous task for every system to be controlled.

12

Fig. 9. Experimental statistic parameters vs. server load.

For already moved to production servers, low usage periods
like non-labor hours or bank holidays can be used for calibra-
tions. In case none of these alternatives is feasible, an actual
twin system fully installed with all the hardware and software
in production can be used for calibration. In cluster environ-
ments with many identical systems in production, it should not
be an issue to calibrate the method one way or another.

The presented results are based on measurements at a van-
tage point close to the server whose load is to be measured.
This helps to avoid other traffic that could interfere with the
measurements, as shown in Fig. 1. In this way, a load balancer
in front of a server cluster can do these measurements during
its common operation. The farther the vantage point is from
the server, the worse the estimation of the SRT, so it is impor-
tant to deal with the vantage point location. However, it might
be impossible to directly connect the probe to the system to be
measured. It is not obvious what the effect of network equip-
ment in between both systems is. Preliminary data shows that
the mixture components may “compress” due to the network
electronics queuing (mainly switches and routers) and a single
distribution may be enough. In that case, accuracy is a concern,
as in-the-middle equipment may jeopardize measurements be-
cause head-of-line blocking and buffering introduce noise to the
measurement.

Regarding the complexity of the measurement method, it re-
quires capturing TCP SYN segment times, fitting the Burr Type
XII mixture distribution and taking its median value to translate
it to the estimated load with the obtained curve in the calibra-

tion process. Measuring the SRT can be done with a script that
captures the traffic with a capture filter to take only those seg-
ments with the SYN flag activated. There is no need to store
the network traffic, just the SRT values for each connection.
Once the distribution fitting is calculated, the actual load esti-
mation calculation is straightforward. For instance, estimations
in an Intel® Core™ i7-8565U CPU @ 1.80GHz, CPU with
four cores and 8.0 GB of RAM, provide the following average
figures:
• Maxima finding time: 140.63 ms.
• Clustering time: 375.00 ms.
• Initial fit time: 11.17 s.
• EM time per iteration: 13.74 s.
• Quadratic function evaluation: 8.75 µs.

Consider that those figures are obtained using an ordinary per-
sonal computer. The algorithm is tested in Matlab version 2020.
Therefore, no optimization has been done so far. Even so, the
elapsed time for the load estimation is about one minute (four
EM iterations are usually enough). As per the SRT measure-
ment period is five minutes, even in current implementation,
the algorithm is suitable for actual measurement. Thus, these
computing times strengthen the applicability of our approach.

Finally, it is also important to deal with the security implica-
tions of these results. Cybercriminals could use this technique
to know when the servers are more loaded and attack them
at that time, using fewer requests to cause a denial of service
(DoS). In this case, attackers are usually far from the server.
Consequently, the SRT estimation will be worse than the es-

13

0.037 0.0375 0.038 0.0385 0.039 0.0395 0.04 0.0405 0.041

SRT Delay in Milliseconds

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

e
r

L
o
a
d
 P

e
rc

e
n
ta

g
e

Fig. 10. SRT median in ms vs. server load with 95% confidence interval (dashed lines).

timation from our vantage point, next to the server. Here, to
reduce the distance effect, network RTT may also be measured
(e.g., with a ping). Then, the corrected SRT can be derived by
subtracting the network RTT from the “raw” SRT measure. A
similar approach has been proposed for different hops in [37].
This research idea will be further investigated.

8. Conclusions

In this paper, a novel approach has been presented, based on
the SRT time, to estimate server load without measuring it in-
ternally. This approach is very valuable to identify bottlenecks
causing problems in distributed systems, as well as to balance
the load in server clusters or in the cloud.

For this, we measured the time from the SYN to the
SYN+ACK TCP segments at the server side. We have iden-
tified that the SRT varies along the day in servers, following
their workload. the SRT is distributed with a heavy tail, which
is well modeled by a Burr Type XII mixture. Finally, we have
found that server load is correlated with 50th percentile of the
mixture, but this is not useful at all. Better results are obtained
by Burr Type XII mixture fitting.

Based on these results, an estimation method has been de-
fined, which follows an initial training phase, where the server
load is characterized. Then, a monitoring phase where the SRT
samples are taken to find the load distribution of the server,
based on the obtained Burr Type XII mixture statistics. Apart
from the TCP connections, this new method does not take any
assumptions about the server, which is considered a black box.
Thus, it can be applied to almost any existing load balancing or
scheduling algorithm.

This approach opens new research lines to be addressed. For
instance, it is interesting to study how accurate the model is

when there is network equipment between the server and the
vantage point. This may be quite complex, as network topol-
ogy may cancel the server load information reflected in the SRT
distribution. On the other hand, it is also important to develop
automatic ways for server calibration, based, for instance, on
its operating system and hardware specifications, to ease the
adoption of this load estimation method.

Acknowledgment

This work was supported in part by the Spanish Re-
search Agency under the project AgileMon (AEI PID2019-
104451RB-C21).

References

[1] R. Alshahrani, H. Peyravi, “Cluster Load Estimation for Stateless Sched-
ulers,” in Proc. IEEE 17th International Symposium on Network Comput-
ing and Applications (NCA), November 2018.

[2] Fouzi Semchedine, Louiza Bouallouche-Medjkoune, Djamil Aı̈ssani,
“Task assignment policies in distributed server systems: A survey,” Jour-
nal of Network and Computer Applications, Volume 34, Issue 4, 2011,
Pages 1123-1130.

[3] Ulrich Lampe, Markus Kieselmann, André Miede, Sebastian Zöller, Ralf
Steinmetz, “On the Accuracy of Time Measurements in Virtual Ma-
chines,” In: Rong Chang, Ephraim Feig, Alan Sussman, Liana L. Fong:
Proceedings of the 6th International Conference on Cloud Computing
(CLOUD 2013), Pages 103-104, Institute of Electrical and Electronics
Engineers (IEEE), June 2013. ISBN 978-0-7685-5028-2.

[4] Avnish Thakur, Major Singh Goraya, “A taxonomic survey on load bal-
ancing in cloud,” Journal of Network and Computer Applications, Volume
98, 2017, Pages 43-57, ISSN 1084-8045.

[5] Mosab Hamdan, Entisar Hassan, Ahmed Abdelaziz, Abdallah Elhigazi,
Bushra Mohammed, Suleman Khan, Athanasios V. Vasilakos, M.N. Mar-
sono, “A comprehensive survey of load balancing techniques in software-
defined network,” Journal of Network and Computer Applications, Vol-
ume 174, 2021, Article 102856, ISSN 1084-8045.

14

[6] Sumair Khan, Babar Nazir, Iftikhar Ahmed Khan, Shahaboddin
Shamshirband, Anthony T. Chronopoulos, “Load balancing in grid com-
puting: Taxonomy, trends and opportunities,” Journal of Network and
Computer Applications, Volume 88, 2017, Pages 99-111, ISSN 1084-
8045.

[7] Xiao Qin, “Performance comparisons of load balancing algorithms for
I/O-intensive workloads on clusters,” Journal of Network and Computer
Applications, Volume 31, Issue 1, 2008, Pages 32-46, ISSN 1084-8045.

[8] Veerabhadra R. Chandakanna, Valli K. Vatsavayi, “A sliding window
based Self-Learning and Adaptive Load Balancer,” Journal of Network
and Computer Applications, Volume 56, 2015, Pages 188-205, ISSN
1084-8045.

[9] Jingjing Guo, Chunlin Li, Yi Chen, Youlong Luo, “On-demand resource
provision based on load estimation and service expenditure in edge cloud
environment,” Journal of Network and Computer Applications, Volume
151, 2020, Article 102506, ISSN 1084-8045.

[10] Deepak Kumar Patel, Devashree Tripathy, C.R. Tripathy, “Survey of load
balancing techniques for Grid,” Journal of Network and Computer Appli-
cations, Volume 65, 2016, Pages 103-119, ISSN 1084-8045.

[11] Y. M. Teo, R. Ayani, “Comparison of Load Balancing Strategies on
Cluster-based Web Servers,” SIMULATION, Vol. 77, No. 5-6, Pages 185-
195, 2001.

[12] K. Shen, T. Yang, L. Chu, “Cluster load balancing for fine-grain network
services,” in Proc. 16th International Parallel and Distributed Processing
Symposium, Ft. Lauderdale, FL, 2002.

[13] S. Taylor, J. Metzler, “Eliminating the mean time to innocence,” Network
World, Mar 10, 2009.

[14] Vı́ctor Fernández, Juan Manuel Orduña, Pedro Morillo, “Server imple-
mentations for improving the performance of CAR systems based on mo-
bile phones,” Journal of Network and Computer Applications, Volume 44,
2014, Pages 72-82, ISSN 1084-8045.

[15] Ashish Nadkarni, Eric Sheppard, Brad Casemore “Data Center Energy
and Carbon Emission Reductions Through Compute, Storage, and Net-
working Virtualization,” IDC Executive Summary, September 2017.

[16] Raja Wasim Ahmad, Abdullah Gani, Siti Hafizah Ab. Hamid, Muham-
mad Shiraz, Abdullah Yousafzai, Feng Xia, “A survey on virtual machine
migration and server consolidation frameworks for cloud data centers,”
Journal of Network and Computer Applications Volume 52, 2015, Pages
11-25.

[17] M. Conti, Q. Q. Li, A. Maragno, R. Spolaor, “The dark side (-channel) of
mobile devices: A survey on network traffic analysis,” IEEE Communi-
cations Surveys & Tutorials, Vol. 20, no. 4, Jun 2018, Pages 2658-713.

[18] C. So-In, “A survey of network traffic monitoring and analysis tools,”
Cse 576m computer system analysis project, Washington University in
St. Louis, 2009.

[19] A. Adhikari, S.V. Bianco, L. Denby, L., C.L Mallows, J. Meloche, B. Rao,
S.M. Sullivan, Y. Vardi, “Distributed monitoring and analysis system for
network traffic,” U.S. Patent 7,031,264, 2006.

[20] P. Malloy, A. Cohen, R. Gehl, J. Strohm, R. Elsner, “Interactive network
monitoring and analysis,” U.S. Patent Application 11/639,863, 2007.

[21] Xiaojun Hei, D. H. K. Tsang and B. Bensaou, “Available bandwidth mea-
surement using Poisson probing on the Internet,” IEEE International Con-
ference on Performance, Computing, and Communications, 2004, 2004,
Pages 207-214.

[22] J. Liu, C. Zheng, L. Guo, X. Liu, Q. Lu, “Understanding the Network
Traffic Constraints for Deep Packet Inspection by Passive Measurement,”
in Proc. 3rd International Conference on Information Systems Engineer-
ing. 2018.

[23] L. de Pedro, M. Martı́nez Redondo, C. Mancha and J. E. López de Ver-
gara, “Estimating Server Load Based on its Correlation with TCP SYN
Response Time”, 2020 IFIP Networking Conference (Networking), 2020,
Pages 379-385.

[24] D. Salas-González, E.E. Kuruoglu, D.P. Ruiz, “Finite mixture of α-stable
distributions,” Digital Signal Processing 19, Pages 250-264, 2009.

[25] S.A.Broda, M. Hass, J. Krause, M.S. Paolella, S.C. Steude “Stable mix-
ture GARCH models,” Journal of Econometrics 172, Pages 292-306,
2013.

[26] J. P. Nolan, Stable Distributions – Models for Heavy Tailed Data, chap 1.
Birkhauser, 2018.

[27] R. N. Rodriguez, “A Guide to Burr Type XII Distributions,” Institute of
Statistics Mimeo Series No. 1064.

[28] S.A. Abu Bakar, S. Nadarajah, & Z.A.A.K. Adzhar, “Loss modelling us-
ing Burr mixtures,” Empir Econ 54, 1503–1516, 2018.

[29] X.Y. Zhao, M. Fujii, Y. Suganuma, X. Zhao, & Z. Jiang, “Applying the
Burr Type XII distribution to decompose remanent magnetization curves,”
Journal of Geophysical Research: Solid Earth, 123, 8298– 8311, 2018.

[30] Nor Hidayah Binti Ismail and Zarina Binti Mohd Khalid, “EM algorithm
in estimating the 2- and 3-parameter Burr Type III distributions,” AIP
Conference Proceedings 1605, 881, 2014.

[31] M. Tahir, M. Aslam, Z. Hussain, “Bayesian estimation of finite3-
component mixture of Burr Type-XII distributions assuming Type-I right
censoring scheme,” Alexandria Engineering Journal, Volume 55, Issue 4,
2016, Pages 3277-3295, ISSN 1110-0168.

[32] I. Enesi, E. Zanaj, S. Kokonozi and B. Zanaj, “Performance evaluation of
stateful load balancing in predicted time intervals and CPU load,” IEEE
EUROCON 2017 -17th International Conference on Smart Technologies,
2017, Pages 89-94.

[33] Chandra Kopparapu, Load Balancing Servers, Firewalls, and Caches,
chap 5: Global Server load balancing, Page 73, John Wiley & Sons, Inc.
2002.

[34] H. Nemati, S. V. Azhari and M. R. Dagenais, “Host Hypervisor Trace
Mining for Virtual Machine Workload Characterization,” 2019 IEEE In-
ternational Conference on Cloud Engineering (IC2E), 2019, Pages 102-
112.

[35] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, A. Brunstrom, “Measuring
Latency Variation in the Internet,” in Proc. 12th International on Confer-
ence on emerging Networking Experiments and Technologies (CoNEXT
’16). ACM, New York, NY, USA, Pages 473-480, 2016.

[36] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay, “Variability in TCP round-
trip times,” in Proc. 3rd ACM SIGCOMM conference on Internet mea-
surement. ACM, 2003.

[37] D. Perdices, D. Muelas, I. Prieto, L. de Pedro, J. E. López de Vergara, “On
the Modeling of Multi-Point RTT Passive Measurements for Network De-
lay Monitoring,” IEEE Trans. Network and Service Management, Vol. 16,
No. 3, Pages 1157-1169, September 2019.

[38] D. Muelas, J.L. Garcı́a-Dorado, S. Albandea, J.E. López de Vergara,
Javier Aracil, “On the dynamics of valley times and its application to
bulk-transfer scheduling,” Computer Communications, Vol. 164, 2020,
Pages 124-137, ISSN 0140-3664.

[39] Avrim Blum, John Hopcroft, & Kannan, Ravi. Foundations of Data Sci-
ence, 2020.

[40] Diego Salas-Gonzalez, Ercan E. Kuruoglu, and Diego P. Ruiz. 2009. “Fi-
nite mixture of α-stable distributions,” Digit. Signal Process. 19, 2, March
2009, Pages 250–264.

[41] Jeff Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application
to Parameter Estimation for Gaussian Mixture and Hidden Markov Mod-
els,” Technical Report ICSI-TR-97-021, University of Berkeley, 2000.

[42] C. Tomasi, “Estimating Gaussian Mixture Densities with EM – A Tuto-
rial,” 2004.

[43] Alan J. Watkins, “An algorithm for maximum likelihood estimation in the
three parameter Burr XII distribution,” Computational Statistics & Data
Analysis, Volume 32, Issue 1, 1999, Pages 19-27.

[44] Muhammad Tahir, Ibrahim M. Almanjahie, Muhammad Abid, Ishfaq Ah-
mad, “On Estimation of Three-Component Mixture of Distributions via
Bayesian and Classical Approaches,” Mathematical Problems in Engi-
neering, vol. 2021, Article ID 9944008, 19 pages, 2021.

[45] M. Tahir, M. Aslam, Z. Hussain, “Bayesian estimation of finite3-
component mixture of Burr Type-XII distributions assuming Type-I right
censoring scheme,” Alexandria Engineering Journal, Volume 55, Issue 4,
2016, Pages 3277-3295.

[46] Quanxi Shao, “Notes on maximum likelihood estimation for the three-
parameter Burr XII distribution,” Computational Statistics & Data Anal-
ysis, Volume 45, Issue 3, 2004, Pages 675-687, ISSN 0167-9473.

[47] F.J. Massey Jr, “The Kolmogorov-Smirnov test for goodness of fit,” Jour-
nal of the American Statistical Association, Vol. 46, No. 253, Pages 68-78,
1951.

[48] D. Williams, “Weighing the odds: a course in probability and statistics,”
American Mathematical Monthly 110, 2001, Pages 964-967.

[49] Eduardo Freitas, Assis T. de Oliveira Filho, Pedro R.X. do Carmo, Djamel
Sadok, Judith Kelner, “A survey on accelerating technologies for fast net-
work packet processing in Linux environments,” Computer Communica-
tions, 196, 2002, Pages 148-166.

15

Luis DE PEDRO SÁNCHEZ is an associate pro-
fessor at Universidad Autónoma de Madrid (Spain),
and president of Naudit HPCN, a company dedicated
to high-performance traffic monitoring and analy-
sis. He has been an executive at Hewlett-Packard
for more than thirty years. He received his M.Sc.
and Ph.D. degrees in Telecommunication Engineer-
ing from Universidad Politécnica de Madrid (Spain)
in 1987 and 1992, respectively. He currently re-
searches on statistical models for network traffic.

Adrian Mihai ROSU BARBANDEAL is an engi-
neer at Naudit HPCN (Spain). He received his B.Sc.
and M.Sc. degrees in Telecommunication Engineer-
ing from Universidad Autónoma de Madrid (Spain)
in 2019 and 2021, respectively. His research topics
are network traffic measurement and network and ser-
vice monitoring.

Jorge E. LÓPEZ DE VERGARA MÉNDEZ is
an associate professor at Universidad Autónoma de
Madrid (Spain) since 2007 and is a partner of Nau-
dit HPCN, which is a spin-off company that was
founded in 2009 and is devoted to high-performance
traffic monitoring and analysis. He received his M.Sc.
and Ph.D. degrees in Telecommunication Engineer-
ing from Universidad Politécnica de Madrid (Spain)
in 1998 and 2003, respectively, where he also held
an FPU-MEC research grant. During his Ph.D., he
stayed for 6 months in 2000 at HP Labs in Bristol. He

studies network and service management and monitoring, and has coauthored
more than 100 scientific papers on topics related to this field.

16

	Introduction
	Related Work
	TCP SYN Response Time
	SRT measurement
	SRT versus load correlation

	Methodology
	Data acquisition
	Server load estimation model set up
	Model validation
	Server Load Estimation Method

	Server Load Distribution Model
	Distribution Mixtures
	Burr Type XII distributions
	Mixture estimation using MLE
	Burr Mixture EM Second Term Optimization
	Burr mixture fitting algorithm

	Experimental results
	Burr Type XII fit
	Server Load correlation with the SRT

	Discussion
	Conclusions

