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 

Abstract—The automation of Network Services (NS) consisting 

of virtual functions connected through a multilayer packet-over-

optical network requires predictable Quality of Service (QoS) 

performance, measured in terms of throughput and latency, to 

allow making proactive decisions. QoS is typically guaranteed by 

overprovisioning capacity dedicated to the NS, which increases 

costs for customers and network operators, especially when the 

traffic generated by the users and/or the virtual functions highly 

varies over the time. This paper presents the PILOT methodology 

for modeling the performance of connectivity services during 

commissioning testing in terms of throughput and latency. 

Benefits are double: first, an accurate per-connection model allows 

operators to better operate their networks and reduce the need for 

overprovisioning; and second, customers can tune their 

applications to the performance characteristics of the connectivity. 

PILOT runs in a sandbox domain and constructs a scenario where 

an efficient traffic flow simulation environment, based on the 

CURSA-SQ model, is used to generate large amounts of data for 

Machine Learning (ML) model training and validation. The 

simulation scenario is tuned using real measurements of the 

connection (including throughput and latency) obtained from a set 

of active probes in the operator network. PILOT has been 

experimentally validated on a distributed testbed connecting UPC 

and Telefónica premises. 
 

Index Terms—Sandbox domain, Network Automation, 

Performance Modeling. 

I. INTRODUCTION 

ORE and more connectivity services are requiring not 

only stringent, but also more predictable Quality of 

Service (QoS) performance, measured in terms of key 

performance indicators (KPI) such as throughput and latency 

(delay). Accelerated by such requirements, new solutions for 

the control and orchestration of the optical transport network 

are being proposed (see e.g. [1]). Such services are supported 

by a packet layer on top of an optical network, where the latter 

covers core and metro segments and provides high capacity 

with low latency and high reliability [2]. Solutions currently 

under research to guarantee the requested performance are 

Network Function Virtualization (NFV) and network slicing, 

where NFV Network Services (NS) consist of interconnected 

Virtual Network Functions (VNFs) placed in different Central 

Offices (CO). Note that, as specific network resources are 
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reserved to every NFV NS, the performance is guaranteed at the 

cost of high overprovisioning unless dimensioning is carefully 

carried out. Even though the performance is bounded, it cannot 

be precisely estimated as a function of the input traffic, which 

might be of interest for both network operators to reduce 

overprovisioning, and for customers to implement autonomic 

NFV services (see, e.g., [3]-[5]). 

The performance of a layer 2 (L2) / layer 3 (L3) packet 

connection can be assessed during the commissioning phase 

through active monitoring, as we demonstrated in our previous 

paper in [6], using a 100 Gb/s active probe. The methodology 

is different from that proposed by the IP Performance 

Measurement (IPPM) Working Group [7] that uses dissimilar 

measurements for each performance indicator. We measure a 

packet connection by using an active probe at the source to 

inject a train of numbered and timestamped packets; when the 

train arrives to the other end of the connection, another active 

probe measures throughput, by using the reception times of 

every packet, and latency, by comparing the transmission 

timestamp with the reception time of each packet. Note that this 

latency measurement requires a common reference clock for the 

active probes, which is provided by a Global Positioning 

System (GPS) receiver to achieve the needed accuracy [8]. In 

the case that the connectivity is implemented by a point-to-

multipoint (p2mp) multicast connection [9], instead of a point-

to-point (p2p) one, every probe in a destination will measure 

the performance. Following this procedure, packet connection 

performance, i.e., one-way packet delay, delay variation (jitter), 

packet loss, and throughput, can be measured (see [10], [11] for 

details). However, as the length of each measurement train and 

the packet separation are constant, the obtained measurements 

can be considered as a bound, since they are not related to the 

specific traffic that the connection will support. 

Machine Learning (ML) [12] can help to improve the 

predictability, as well as to assess the performance of 

connectivity services; ML models (e.g., Artificial Neural 

Networks -ANN) can be trained and used to estimate the 

performance of end-to-end packet connections. Note that by 

considering ML models for such estimation, the details of the 

network are abstracted and thus, they can be shared with the 
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final customers. However, to obtain accurate models, training 

and validation procedures need to be carried out, which entails 

the availability of a large amount of data. To this end, the 

control and orchestration of the interconnection network [13] 

can be augmented with a Monitoring and Data Analytics 

(MDA) controller [14] running besides the Software-Defined 

Networking (SDN) controller, to collate measurements from 

the packet nodes, which must be also labeled with the traffic 

measured at the input of the connection. In that regard, many 

works can be found in the literature regarding the use of 

collected data for network automation. In these works, data 

analytics algorithms running in the MDA controller are able to 

discover knowledge to automate the network operation [15], as 

well as to detect anomalies and degradations during 

commissioning testing and operation at both the optical and the 

packet layers (see, e.g., [16]-[18]). Such detection triggers the 

notification to the SDN controller for network reconfiguration 

and maintenance [19].  

However, obtaining specific data to model a given 

connection takes a long time to collect those data and as NFV 

NSs might be highly dynamic, a different approach is required 

to reduce the time to create the training and testing datasets. For 

this reason, the use of a sandbox domain, where ML models can 

be trained with data from the network and from simulation, is 

required in [20]. In this regard, the behavior of the queues in 

packet nodes along a connection can be studied using realistic 

and accurate G/G/1 queues [21] in combination with realistic 

input traffic. Aiming at providing fast and scalable approaches, 

continuous queue models can be used to simulate G/G/1 queue 

systems. Among different models, the Vickrey's point-queue 

model [22] allows formulating an uncapacitated queue system 

as a differential equation that depends on input and output 

traffic flows. Concerning this, in our previous work in [23], we 

proposed a methodology named CURSA-SQ to analyze traffic 

flows by modeling both service traffic and the behavior of the 

queues. The CURSA-SQ methodology is based on: i) modeling 

the input traffic related to a given service s; and ii) a continuous 

capacitated G/G/1/k queue model with a First-In-First-Out 

(FIFO) discipline based on the logistic function. 

As CURSA-SQ is able to reproduce the characteristics of a 

packet connection, it can be used to generate the large dataset 

needed for ML training and validation, thus reducing the 

amount of real measurements that would otherwise be obtained 

by the active probes, as well as helping to obtain end-to-end ML 

models of packet connections. In CURSA-SQ, a packet 

connection is modeled as a path (p2p) or a tree (p2mp), where 

every output interface is represented by a queue that includes 

the transmission delay introduced by the links. We also assume 

that the client defines the expected traffic characteristics at NS 

set-up time, which can be obtained from ad-hoc or available 

studies (see, e.g., [24], [25]). 

As in our previous paper in [6], we also assume that active 

probes are equipped in the COs. However, in this work the 

probes can be programmed to measure the performance of the 

connection as measured at the destination(s) for specific 

configurations of packet trains that follow the expected traffic. 

In this regard, the authors in [26] used specific packet trains to 

measure different scenarios like network congestion and daily 

variations. However, those configurations are not related to real 

traffic conditions. In particular, such measurements help to 

calibrate the scenario in CURSA-SQ. Specifically, the 

contributions of this work are: 

 Section II presents the PILOT methodology for modeling 

connectivity services in a typical infrastructure in a 

sandbox domain. COs are interconnected by a multilayer 

packet-over-optical network. PILOT uses active probes 

deployed in the COs to obtain real measurements that will 

be used to tune a CURSA-SQ-based simulation scenario 

reproducing the real deployment with high accuracy. 

Eventually, the CURSA-SQ-based simulator is used to 

generate large amounts of realistic synthetic data for ML 

training and validation. 

 The key PILOT components are detailed in Section III, 

including: i) how the customers need to specify the traffic 

mix that every connection will support; ii) how to sample 

such traffic mix to minimize the amount of real 

measurements that need to be performed; and iii) how the 

real measurements are used to tune the CURSA-SQ-based 

simulation scenario. 

 A workflow is proposed in Section IV to integrate the 

PILOT methodology, which includes the active probes for 

real measurements, in the provisioning of NSs. The 

hardware implementation of the active probe is also 

summarized, including how measurements are performed 

and results are reported. 

The discussion is supported by the experiments in Section V, 

where the active probes are firstly validated and then, the 

proposed workflow and the PILOT methodology are 

experimentally assessed. 

II. MODELING AND ASSESSING CONNECTION KPIS 

In this section, we detail our proposal for modeling and 

assessing connection performance, based on one-way active 

network measurements. Fig. 1 presents an infrastructure where 

a multilayer network interconnects three COs. In the control, 

orchestration, and management (COM) plane, an NFV 
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Fig. 1. Reference architecture of control and data planes.  
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orchestrator (NFVO) deals with the deployment of NFV NSs. 

The multilayer interconnection network is controlled by a 

hierarchical SDN architecture, where a Parent controller is on 

top of per-layer SDN controllers, one for the packet and another 

for the optical layer. Finally, an MDA controller collects 

monitoring data from the underlying infrastructure, trains ML 

models in the sandbox domain, and applies data analytics 

techniques on these data. 

Given that one of the main aspects of network automation is 

to guarantee that provisioned connections actually meet the 

requested performance, active probes are equipped at the packet 

layer to measure the performance of packet connections. The 

active probes are installed in every CO and connected through 

a 100GbE interface of a L2 switch in the internal CO network. 

Being the active probes connected to interfaces configured in 

trunk mode, the probes can tag the generated Ethernet frames 

with the desired VLAN ID, selecting the VLAN to be 

measured. The active probes have been developed to be 

integrated in the above described COM system. To that end, 

they expose a REST-API-based northbound interface (NBI) 

through which the MDA controller can configure them and 

initiate a measurement session on a specific packet connection. 

In line with the ETSI NFV architecture [27], an NFV 

Infrastructure (NFVI) is deployed across multiple points of 

presence (NFVI-PoP) for supporting the instantiation of VNFs. 

In the example in Fig. 1, a simple NS that consists of two VNFs 

in CO#1 and CO#3 interconnected by a unidirectional packet 

connection is shown. The packet circuit has resources reserved 

in Nodes A, B and C, and its performance is measured by the 

active probe in CO#1 that acts as a sender and that in CO#3 that 

acts as a receiver. Although the active probes provide really 

accurate measurements between them, note that because they 

are connected to the packet node that provides the external 

connectivity to the CO (Node A and C), those measurements do 

not include parts of the network, like the internal PoPs’ 

networks. For these very reasons, as well as to generate the 

large training and validation dataset, we propose to use 

CURSA-SQ to emulate the complete connectivity set-up and to 

generate useful models for the customers. However, real 

measurements are strictly needed to tune the CURSA-SQ 

scenario, which includes additional delays (e.g., transmission 

and other processing-related delays, see [30] for a complete 

delay model) and fine tune of the queues. 

Fig. 2 illustrates the above concepts, where the active probes 

measure the performance of the circuit between Node A and 

Node C. The proposed PILOT methodology runs inside a 

sandbox domain in the MDA controller, and it includes a 

module to configure the probes to perform the required 

measurements based on the characteristics of the services 

provided by the customer using two random variables (inter-

arrival burst rate -IBR- and the burst size -BS) (step A in Fig. 

2); the resulting measurements are collected and used to tune a 

network simulator based on CURSA-SQ (B). Once enough data 

is generated (C), ML models are trained and validated (D) and 

they can be shared to the connection’s customer (E), which will 

use them to estimate performance metrics based on the load (F). 

Note that the produced ML models provide a way to reproduce 

the behavior of the connection without revealing the internal 

routing or other network details, which facilitates being shared 

to end customers. An alternative to ML models would be 

providing abstracted end-to-end performance data, at the cost 

of moving large volumes of data. 

To illustrate the network simulation process, Fig. 3a shows 

an example of a slightly more complex p2mp connection 

defined between a source VNF and a set of destinations, i.e., 

<src, {dest1, dest2, dest3}>. Let us assume that the customer 

has specified that such p2mp connection will be used to convey 

a set of services S (in the example S={s1, s2, s3}). Using the 

details of the p2mp connection received from the Parent SDN 

controller, which include the route of the tree, the resources 

actually reserved, the traffic specifications, and the QoS 

constraints. In the sandbox domain, the PILOT algorithm 

defines the scenario for CURSA-SQ-based simulation (Fig. 3b). 

The CURSA-SQ scenario includes a traffic generator (G) in the 

source VNF for each of the services specified, a sink node (Sk) 

for each VNF destination, dimensioned queues for each output 

interfaces in the route of the tree, and delay nodes (d) emulating 

the delay introduced by the links. 

Next, PILOT configures the active probes to measure the 

performance at every destination CO in the packet connection 

that will be used to tune the CURSA-SQ scenario, e.g., to 

ensure that any additional delay is included in the real set-up. 

src dest

CO#1 CO#3

CO#2

Node B Node CNode A

Active Monitoring

Estimated e2e performance

ML Models

Load
(Following Service 

Characteristics)

Performance metrics 
(throughput, delay)

Capture the behavior of the end-to-end 
connections while abstracting from physical 

details (e.g., the actual routing)

CURSA-SQ ML TrainingActive Probe Config. dataset

Sandbox domain

Client application

Data plane

A
B

C D

E

F

 
Fig. 2. Sandbox domain proposed in this paper. 

Performance 
estimation

CURSA-SQ

s1
s2

s3

G

G

G

Sk

Sk

Sk

dest2

dest3

dest1

src

Node C

Node BNode A

(b)

Queue State 

and Traffic

src

dest1 dest2

dest3

CO#1 CO#3CO#2

Node A Node B Node C

(a)

M

M
M

d d

Tuning
Active MonitoringB

C

G

d

Sk

M

Generator

Sink

Delay

Monitoring

Combiner

Distributor

Queue

 
Fig. 3. Example of p2mp connection (a) and CURSA-SQ-based simulation (b). 



 4 

Furthermore, in the case of p2mp connections, the probes join 

a multicast group created by the Parent SDN controller 

specifically for the commissioning tests; the source probe uses 

the multicast group as destination IP address for the generated 

packets. Once the probes are configured, PILOT generates 

measurements configurations that include the definition of 

bursts mimicking the specified mix of services at meaningful 

values of IBR and BS random variables. Once the results are 

received from the destination probes (step B), PILOT uses them 

to tune the simulation scenario and runs CURSA-SQ to 

generate a large amount of labeled data for ML training and 

validation (C). The next section describes the PILOT 

methodology in depth.  

III. COMBINING MEASUREMENTS AND SYNTHETIC DATA 

The general scheme of the PILOT methodology is sketched 

in Fig. 4. PILOT entails three sequential stages to be carried out 

to produce accurate ML models for each packet connection. 

PILOT relies on the specification of the traffic mix that the 

connection will support. Specifically, the mix of traffic is 

defined in terms of services characterized by, at least, IBR and 

BS random variables, and a scaling factor. Such specification 

of the traffic mix is used to generate meaningful active probe 

configurations in terms of packet trains that are generated by 

the active probes and which measurements are used to tune the 

CURSA-SQ scenario. Once experimentally assessed, synthetic 

data that reproduces the real connection is generated, and 

accurate ML models can be trained and validated. The 

following sub-sections elaborate on key PILOT methodology 

components. 

A. Traffic mix specification 

As introduced in the previous section, we assume that a 

traffic specification is received for each connectivity request. 

Such specification includes the characterization of the set 

services S that the connection will support. Service 

characterization must include, at least, the statistical 

distribution and associated parameters of the IBR and BS burst-

level random variables plus the scaling. The characterization 

can be provided by the customer or the network operator, and 

can be based on specific measurements or on studies available 

in the literature (see [23]). 

From the received service characterization, we define the 

traffic specification χs for service s, as follows: 

𝜒𝑠 = {𝐼𝐵𝑅𝑠~𝑓(𝜃𝑠), 𝐵𝑆𝑠~𝑔(𝜗𝑠)}, ∀𝑠 ∈ 𝑆 (1) 

where f and g denote probability distribution functions with 

their respective parameters. In line with [23], we consider that 

IBR and BS can be treated as independent variables; indeed, f 

and g can belong to distinct families of probability distributions. 

In addition, the characterization of the services at packet-level 

can lead to a more precise configuration of active probe 

measurements. In that regard, packet size (PS) is an additional 

random variable that could be included in χs. 

The expected demand needs also to be included for scaling 

of each service. We denote this input as us(t), where the scaling 

(e.g., number of individual users) of each service s is defined as 

a function of time. The specific time range is defined by the 

customers according to their interests, and it can cover from 

hours/days/weeks (e.g., a typical tidal profile that periodically 

repeats on time) to months (e.g., the expected user evolution 

during connection lifetime). Note that this flexible definition of 

the expected load opens the possibility to carry out several 

analysis leading to different KPI modelling for short, medium, 

and long-term applications. For the sake of simplicity, we 

assume the same time range for all the services in a connection. 

The statistical properties of the services and their expected 

demand in time are key to understand and define the traffic flow 

x(t) (bitrate, defined in b/s) injected into the connection. For 

modelling and simulation purposes (mainly for generation), we 

consider to model services separately, and therefore, the 

expectation (E) and variance (V) of each service in the flow can 

be computed as follows: 

𝐸(𝑥𝑠(𝑡)) = 𝑢𝑠(𝑡) · 𝐸(𝐵𝑆𝑆) · 𝐸(𝐼𝐵𝑅𝑆) (2) 

𝑉(𝑥𝑠(𝑡)) = 𝑢𝑠(𝑡) · 𝑉(𝐵𝑆𝑆 · 𝐼𝐵𝑅𝑆) (3) 

where the variance of the product of BS and IBR can be 

estimated from well-known approximations of the variance of 

the product of two independent variables [28]. Note that the 

connection traffic flow x(t) is the aggregation of all xs(t). 

B. Traffic Sampling and Measurements Configurations 

Let us now detail the procedure for sampling the traffic flows 

xs(t) to obtain real measurements for those traffic samples using 

the active probes under realistic traffic conditions (see Fig. 4). 

We have redefined the synthetic packet generation in the active 

probes for this purpose (see Section IV.A), where a 

measurement request is defined by a number of packet bursts, 

each containing packets of a given size. The definition of the 

bursts and the delay between two consecutive ones can be 

defined to reproduce a desired traffic pattern. The objective is 

then to define how measurement configurations are created to 

follow the main statistical characteristics of the specified traffic 

mix for the connection. 

Fig. 5 summarizes the concept behind the generation of 

measurement configurations. Service characteristics are 

processed by a sample generator module that generates a set of 
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samples of a given duration of bursty traffic; the duration, e.g., 

5 ms, is defined by the capacity of the connection. The sample 

generator module firstly computes the expectation and variance 

of IBR and BS random variables based on their probability 

distributions. Then, several time values conveniently spaced in 

the time range of us(t) are selected, thus covering relevant traffic 

mixes for low, medium, and high loads. For each selected time 

and mix, samples are generated according the expectation and 

variance references. In particular, three classes of samples are 

considered: i) unbiased samples, where E(IBR) and E(BS) are 

used for all the services; ii) biased low, where both E(IBR) and 

E(BS) are decreased by their respective variance values V(IBR) 

and V(BS), and iii) biased high, where both E(IBR) and E(BS) 

are increased by their respective variance values V(IBR) and 

V(BS). Regardless of the class, a sample is generated as a 

sequence of BS and IBR values (mixing services) around their 

expectation with some additional random variation defined 

within their variance magnitude. Note that unbiased samples 

allow measuring KPIs in average cases, which is intended for 

computing throughput and average latency. On the contrary, 

biased samples are designed either for measuring additional 

delays in the absence of queued traffic (low) or stressing the 

connection capacity to compute maximum latency and packet 

losses (high). 

It is important to analyze the generated samples at different 

time resolutions. Assuming self-similarity, at coarse resolution 

(ms scale) traffic can be seen as a sequence of on/off periods of 

mixed services, whereas, at a finer resolution (µs scale), the 

sequence of on/off periods can be seen between bursts of 

differentiated services. This degree of detail is required to 

generate precise active probe configuration. 

From the generated samples, a procedure to adjust and 

configure bursts of trains of packets in the active probe is 

required. Thus, a burst in a measurement configuration 

corresponds to a total (or partial) burst in a sample. Note that, 

to regularize the length of the bursts of packet trains, a 

minimum and maximum number of packets can be setup.  

C. CURSA-SQ tuning and ML model training 

The real measurements for the set of meaningful 

configurations obtained are used to tune and validate the 

CURSA-SQ scenario that will be eventually used to generate 

synthetic data for model training and validation purposes. 

CURSA-SQ requires configuring a set of traffic generators 

and this can be done according to equations (2) and (3), as 

proposed in [23]. However, to reproduce by simulation exactly 

the same sampled scenarios measured by the active probe, 

CURSA-SQ traffic generation needs to be altered with the 

deviation introduced in unbiased measurements. 

The generated traffic flows are then propagated through a 

system of continuous queues Q that models the connection, as 

represented in Fig. 3. Let us assume that every queue q∈Q is 

characterized by a unique and common buffer with capacity k 

(in bytes) and a server rate µ (in b/s). Moreover, q(t) represents 

the queue state, i.e., the number of bytes in the queue at time t. 

From such state, partial KPIs are computed for each individual 

queue. Then, computing connection KPIs, i.e., throughput and 

latency measurements between the source and all the 

destinations, is simply the aggregation of partial KPIs computed 

in queues, as well as in delay nodes. 

Despite of the fidelity of the CURSA-SQ-based simulation 

setup to represent a real connection, there are two main 

unknowns that need to be discovered after analyzing real 

measurements. First, the magnitude of the additional delay to 

be introduced by delay nodes can be easily computed after 

analyzing the mean latency obtained for biased low 

measurements. Second, as measurements are correlated to some 

traffic behavior at the burst-level, but they are actually 

propagated packet-by-packet during measurements, a mismatch 

between theoretical and measured traffic behavior can exist. To 

solve this issue, a correction factor (multiplier) can be applied 

to both expectation and variance configured in the generators in 

order to fit the characteristics of the expectation and variance 

measured. A good reference for this purpose is to compare the 

difference between minimum and maximum latency in the 

simulation and in the experiments for the case of the biased high 

monitoring samples. The multiplication factors can be easily 

obtained to correct the deviation between simulation and 

experimental values. After this tuning operation, unbiased 

measurements can be used to validate the accuracy of the 

simulation environment. 

Once CURSA-SQ is tuned and the KPIs obtained by 

simulation match the experimental ones for the measured 

samples, a large set of synthetic KPI measurements for a wide 

range of connection loads along the whole time period can be 

easily obtained. The data is eventually used for producing ML 

models that allow the customer to estimate KPIs for each 

connection destination point as a function of the expected traffic 

mix. In particular, we use ANNs that, given the aforementioned 

input, return an output vector with estimation of average 

throughput, average latency, maximum latency, and packet loss 

(if any). 
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IV. ACTIVE MEASUREMENTS 

In this section, we first describe the main characteristics of 

the packet generation and measurements process, and then, we 

present the proposed workflow to be carried out when a new 

packet connection is requested. 

A. Synthetic Packet Generation and Measurements 

We have extended the functionality of the implementation in 

[6] to send a configurable number of bursts of packet trains, 

each with different characteristics, as defined in Section III. The 

format of the generated packets is compatible with iPerf, a well-

known active measurement tool [29]. Measurements are 

identified by an ID that is included in every packet, transmitted 

as an UDP datagram. Every generated packet is also labeled 

with two IDs: one to identify the burst it belongs to and another 

for the sequence number. In addition, each packet includes a 

transmission timestamp with nanosecond resolution (precision 

of 3.1ns). Finally, the rest of the payload of the UDP datagrams 

is defined by a pattern selected according to a concrete Bit Error 

Rate Test (BERT), such as pseudorandom (PRBS), all zeros, all 

ones, alternated, etc. The generated Ethernet frames are tagged 

with the desired VLAN ID. To send the packets 

deterministically following the bursts specifications, the 

transmitter is implemented as a Finite State Machine. Packets 

are spaced to perform measurements on packet connections 

with throughput up to 100 Gb/s in the most demanding scenario. 

At the receiver side, UDP datagrams are timestamped and 

then checked and correlated to the measurement. After that, 

they are parsed to retrieve the information needed to compute 

the performance metrics. For statistical reasons, the specified 

bursts can be generated several times, named repetitions. Then, 

performance metrics are computed individually for every 

received packet and accumulated into two different sets of 

counters to compute measurement-wise and repetition-wise 

performance indicators, which are then summarized with 

maximum, arithmetic mean, and minimum values. 

B. Proposed Workflow 

The proposed workflow is shown in Fig. 6. It starts when an 

operator requests the deployment of a new NS through the 

NFVO’s Graphical User Interface (GUI), which defines the 

interconnected VNFs, as well as the specification of the traffic 

that can be expected and the QoS constraints in terms of 

throughput and latency (message 0 in Fig. 6). That request 

triggers the set-up of a number of packet connections, which the 

NFVO requests through the Parent controller’s NBI and 

includes the traffic specification and the QoS constraints (1). 

Once the requested connectivity is set-up, the Parent controller 

updates the MDA controller with the connection ID and its 

attributes (2). Next, the Parent controller creates an IP multicast 

group that will be used exclusively for running the 

commissioning tests, and requests the MDA controller to assess 

whether the configuration of the connection meets the QoS 

constraints and to model its performance under the specified 

traffic (3). Upon the reception of that request in the MDA 

controller, the PILOT application is triggered. PILOT first 

determines the probes that will be involved in the tests and 

requests them to join the IP multicast group (4). In addition, 

PILOT determines the set of tests to be executed, and for every 

test, it requests the active probe in the source of the connection 

to run them specifying the composition of the packet trains that 

the probe needs to generate. The request includes the VLAN ID 

that has been configured so the active probe can use it for 

tagging the generated Ethernet frames (5).  

To measure the performance of a connection, the active probe 

in the source CO injects trains of Ethernet frames that are 

received by the active probe in each remote CO. Once the 

performance of the connection in every destination CO is 

measured, the obtained results are notified to the MDA 

controller (6). With such measurements, the PILOT application 

configures the scenario and runs CURSA-SQ with specific 

parameters to generate a training dataset that is subsequently 

used to generate a ML model for every destination of the 

connection, as detailed in Section III. New tests are afterwards 

executed to validate the connection model. Once a ML model 

for the connection is produced, the MDA controller replies the 

Parent controller (7), which in turn replies the NFVO (8) and 

tears down the IP multicast group. 

The proposed PILOT methodology, the active probes and the 

workflow are experimentally assessed in the next section. 

V. EXPERIMENTAL ASSESSMENT 

A. Packet Connectivity Performance Measurements 

The active probes were firstly evaluated locally in a setup in 

UAM-Naudit premises in Madrid, Spain, (Fig. 7a) where the 

active probes were used to evaluate the performance of the 

connectivity between two L2 Ethernet switches connected 

through a L3 router with two 1 GbE interfaces. 

The active probe functionality is implemented using a mix of 

Verilog and High-Level Synthesis, in a Field Programmable 

Gate Array (FPGA). We base our development on the Alpha 

Data ADM-PCIE-9V3 High-Performance Network Accelerator 

card, which features a Xilinx’s Virtex Ultrascale+ FPGA 

(XCVU3P-2-FFVC1517), as well as 8 GB of DDR RAM  and  

two  100 Gb/s  Ethernet  QSFP28  cages  (Fig. 7b). 
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Fig. 6. Proposed workflow for a p2mp connection. 
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These network interfaces are directly mapped to the FPGA, 

which is in charge of generating and receiving packets. To this 

end, a 512-bit width bus working at 322 MHz is implemented, 

so it is possible to work at 100 Gb/s even with the smallest 

packets and send and timestamp them accurately. 

Fig. 8 shows the JSON messages used for measurement 

configuration and results, which correspond to messages 5 and 

6 in the workflow. Message 5 includes the following fields (see 

Fig. 8): i) dst-ip specifies the IP address of the remote probe 

(unicast IP address) or probes (the multicast address group 

created by the Parent controller); ii) measurement-id uniquely 

identifies the measurement for correlation purposes; iii) vlan-

id specifies the VLAN tag to be used; iv) allocated-

bandwidth-mbps defines the bandwidth allocated for the 

connection and is used to define the inter-packet time; v) 

repetitions defines the number of times that the list of bursts 

needs to be sequentially repeated; vi) bursts specifies a list of 

bursts, where each burst is specified by: a) num-packets 

defines the number of IP packet to be sent in the burst; b) 

packet-size defines the size of each packet in octets; the used 

BERT type is PRBS by default; c) delay-till-next-ns 

defines the delay in nanoseconds until the next burst after the 

end of last packet in the current burst. 

With these specifications, the source probe generates the 

packets for the measurement. Fig. 9a shows the generated 

packets, where one can easily identify the packets trains 

belonging to the first bursts and the correspondence with the 

specifications in message 5 in Fig. 8. In addition, to graphically 

illustrate the measurement configured, as well as the effects of 

the intermediate router, Fig. 9b shows the sequence of bursts 

measured at the output of the source active probe and at the 

input of the destination one, where some delay and jitter can be 

observed. 

Every probe participating in the measurement returns the 

results to the MDA controller (6). The message includes (Fig. 

8): i) dst-ip is the IP of the probe that reports the results; ii) 

measurement-id for correlation purposes; iii) mean-packet-

size is the average size of the packets received; iv) mean-num-

packets is the average number of packets received in every 

repetition; v) throughput-mbps specifies the maximum, 

average and minimum throughput measured for the 

measurement; and vi) repetitions contains a list with the 

results for each repetition of bursts sent, where each repetition 

include: a) repetition-id for correlation purposes; b) 

packet-loss reports the packet loss in percentage; c) 

latency-us, jitter-us and throughput-mbps report a list 

with the maximum, average and minimum latency, jitter, and 

throughput, respectively, measured during the burst, i.e., 

excluding inter-burst time, for each repetition independently. 

B. Workflow 

Once the active probes have been assessed, they were 

deployed in Telefónica premises in Madrid, Spain together with 

other commercial equipment and the Parent controller. 

Telefónica premises are connected to UPC ones in Barcelona, 

Spain, where the MDA controller is deployed. Such distributed 

testbed is used to carry out the complete experimental 

assessment and validate the proposed workflow. The setup is 

shown in Fig. 7c, where two active probes were deployed in 

Telefónica premises and connected to two Alcatel-Lucent 

routers through 100 Gb/s optical interfaces; the routers are 

2x QSFP28 
100GbE 

ADM-PCIE-9V3 HPN accelerator card, 
based on a Xilinx’s Virtex Ultrascale FPGA

(a)

Huawei CloudEngine
8860-4C

(Buffer: 16 MB)

100GbE

1GbE1GbE
100GbE

Router SOHO
TP-Link Archer C7

(128 MB RAM)

10GbE

100GbE

100GbE

Alcatel-Lucent
7750-SR7

(Buffer: 268 MB)

10GbE

(c)

(b)

Huawei CloudEngine
8860-4C

(Buffer: 16 MB)

 
Fig. 7. Testbed scenarios and active probes. 

{

"dst-ip" : "10.10.0.24",

"measurement-id": 324,

"mean-packet-size": 1500.0,

"mean-num-packets": 22.0,

"throughput-mbps": [41.953, 42.249, 42.545],

"repetitions": [{

"repetition-id": 0,

"packet-loss": 0.000,

"latency-us": [177.414, 147.634, 110.570],

"jitter-us": [10.855, 10.027, 8.652],

"throughput-mbps": [771.57, 740.05, 680.29]

},{

"repetition-id": 1,

"packet-loss": 0.000,

"latency-us": [162.384, 153.536, 142.635],

"jitter-us": [11.999, 10.962, 9.222],

"throughput-mbps": [798.94, 782.18, 775.23]

}]

}

5 6
{

"dst-ip" : "239.10.0.6",

"measurement-id": 324,

"vlan-id": 410,

"allocated-bandwidth-mbps": 1000.0,

"repetitions": 2,

"bursts": [{

"num-packets": 4,

"packet-size": 1500,

"delay-till-next-ns": 2000000

},{

"num-packets": 6,

"packet-size": 1500,

"delay-till-next-ns": 2000000    

},{

"num-packets": 5,

"packet-size": 1500,

"delay-till-next-ns": 2000000

},{

:

}]}  
Fig. 8. JSON messages for measurement configuration and results. 
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Fig. 9. Packets generated for a configured measurement (a) and aggregated generated and received packets (b). 
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connected through a 10 Gb/s optical link thus creating a virtual 

link at the packet layer.  

The exchanged messages during the set-up of a packet 

connection are presented in Fig. 10, where the messages are 

identified as in the workflow in Fig. 6 for the sake of clarity. 

When an operator in the NFVO needs to deploy a new NS, it 

specifies the traffic as well and the QoS constraints relevant for 

every connectivity service. The NFVO requests then to the 

Parent controller the creation of a new connection that is replied 

with a unique identifier for the connection. Next, the NFVO 

issues a second request defining the configuration attributes for 

the service to the Parent controller (messages 1). 

Upon reception of the configuration request, the Parent 

controller creates the p2p or p2mp packet connection. Once the 

connection is set-up, it issues a notification to the MDA 

controller (2) through an interface named M-COM [17], which 

updates its operational databases; the attributes of the 

connection include: the connection ID, the ingress and egress 

connection point(s) of the connection, the path/tree topology, 

its bandwidth and the VLAN ID. Then, the Parent controller 

creates a multicast group that will be used for the 

commissioning testing and issues a request to the MDA 

controller to model the new packet connection (3); that request 

contains the connection ID, the multicast group IP address, the 

traffic specifications and the QoS constraints for this service.  

Upon the reception of the request, the MDA controller first 

configures the active probes (4). Next, the MDA issues a 

request (5) to the sender probe to start the measurement process 

by generating the sequence of bursts that emulate the service to 

be implemented according to the traffic specifications. When a 

measurement is completed, the receiving probes issue requests 

to the MDA controller with the results of the measurements (6). 

At this point, new measurements can be requested by the 

PILOT algorithm in the MDA controller. After finishing the 

sequence of measurements, PILOT computes the model for the 

connectivity service and sends the computed model to the 

Parent controller (7), which in turn sends it to the NFVO (8) 

and removes the multicast group used for the tests. Eventually, 

the NFVO replies the operator with the NS creation and reports 

the computed models for the NS. 

C. Methodology validation 

The collected measurements were used to generate a relevant 

set of experimental measurements to tune a CURSA-SQ 

scenario emulating the real setup. Biased and unbiased samples 

were generated in the range of normalized load [0.1, 0.95], 

defined as the average traffic volume over the connection 

capacity (i.e., 10 Gb/s). We used the statistical service 

characterization and demand profiles in [23] for generating a 

mix of different services including Video-On-Demand, Online 

Gaming, and Internet services. 

The results in Fig. 11 show the experimental measurements 

and the simulation data for two different configurations of the 

CURSA-SQ scenario, focusing on throughput and latency (both 

average and maximum) KPIs analysis. Precisely, Fig. 11a and 

Fig. 11b show the results obtained from unbiased samples for 

average analysis, whereas Fig. 11c focuses on biased high ones, 

which are relevant to illustrate the real behavior of maximum 

latency. In the first CURSA-SQ configuration, simulations have 

been conducted before tuning CURSA-SQ with the real 

measurements. The results show a slight reduction of 

throughput estimation, whereas latency is clearly 

underestimated due to: i) the lack of additional delays 

consideration, and ii) a different latency slope for high loads 

(clearly visible at loads 0.85 and 0.9). In the second CURSA-

SQ configuration, simulations were conducted after tuning 

CURSA-SQ (according to Section III) using biased low 

monitoring samples at normalized load 0.1 and biased high ones 

at normalized load 0.9, for additional delay computation and 

generators corrections, respectively. As it can be observed, the 

evolution of all three KPIs as a function of the load closely 

matches with the experimental measurements. 

Let us to illustrate the need to tune CURSA-SQ with 

measurements over packet trains that follow the expected traffic 

(as detailed in Section III) instead of over packet trains 

generically configured, i.e., independent to the expected traffic. 

In the latter, the active probes can generate two types of trains: 

i) with small packets and large inter-packet time to measure 

minimum latency; and ii) with large packets and small inter-

packet time to measure maximum throughput [10]. Fig. 12 

compares the performance at the highest loads of tuning 

CURSA-SQ based on real measurements over both active 

probes configurations, for throughput (a), average delay (b) and 

maximum delay (c). The results show a sub-estimation of the 

delay as large as 70%. In view of the results, we can conclude 

that the proposed packet trains configuration results in precise 

measurements and thus better CURSA-SQ tuning. 

An additional analysis of the gain introduced by the proposed 

tuning methodology is depicted in Fig. 13, where the relative 

errors between simulated and real KPIs are computed for both 

CURSA-SQ configurations. It is worth noting that the 

remarkable reduction of error achieved by the tuning procedure. 

In fact, error below 3% for estimated average and 9% for 

maximum latency are obtained, which validates the simulation 

environment as accurate synthetic monitoring data generator for 

KPI model training purposes. 
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Fig. 10. Exchanged messages in the workflow. 
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Fig. 11. Experimental and simulation results for KPI estimation: a) throughput, b) average, and c) maximum latency. 

Th
ro

u
gh

p
u

t

8.5

9

9.5

10

0

100

200

300

400

500

0

200

400

600

800

1000

0.8 0.9 1

Specified Traffic

Traffic independent

Normalized Load

1000
0

500
8.5

D
e

la
y 

A
vg

D
e

la
y 

m
ax

(a)

(b)

(c)

-71%

-2%

-64%

 
Fig. 12. CURSA-SQ tuning as a function of 

the injected packet trains. 
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Fig. 14. Prediction error of ML models vs # 

of real measurements. 
 

D. Real vs Synthetic data for ML training 

Once the simulation environment has been validated, let us 

study the benefits of using PILOT with CURSA-SQ tuned with 

real measurements sampling the specified traffic mix, as 

compared to using just real measurements to generate labeled 

data for ML training and validation. To this end, we conducted 

a simulation-based study in a more complex scenario, according 

to the scheme represented in Fig. 3, where the delay nodes (d) 

implement a non-linear function that follows the behavior 

found in the previous subsection. 

Fig. 14 shows the prediction error (normalized between the 

minimum and maximum) of the trained ML models as a 

function of the number of real measurements conducted. Note 

that the approach based on synthetic samples has been 

configured to perform ML training using 10,000 training data 

samples regardless of the number of real measurements used for 

the initial tuning. On the contrary, in the approach of ML 

training with real data, the number of training data samples 

equals that of real measurements. In both cases, an ANN with a 

single input for the normalized NS load and one output for each 

KPI was trained (Section III.C). A single hidden layer 

consisting in 10 hidden neurons with the logistic activation 

function was configured. The training procedure converged to 

accurate ANNs in less than one minute in a conventional 

desktop computer, which points out a negligible computational 

burden. The results clearly show the benefits of using the 

proposed PILOT methodology: the minimum model error is 

achieved with less than 100 times of experimental 

measurements as compared with the training with real data. In 

fact, note that the minimum error with the PILOT methodology 

is achieved when the approach based on real measurements has 

not yet enough data to initiate ANN training. Therefore, we can 

conclude that using CURSA-SQ tightened with relevant active 

measurements allows obtaining accurate KPI models for packet 

connections during commissioning testing. 

VI. CONCLUDING REMARKS 

A methodology named PILOT has been proposed and 

experimentally demonstrated to provide predictable 

connectivity services. The PILOT methodology facilitates 

reducing the cost of overprovisioning at both, the packet and 

the optical layer. PILOT is based on three main pillars that 

allow the generation of accurate ML models to estimate the 

QoS, in terms of throughput and latency, during commissioning 

testing: i) an efficient traffic flow simulation environment, 

named CURSA-SQ, to produce large amounts of labeled data 

for ML training and validation purposes; ii) real measurements 

to tune the CURSA-SQ scenario by discovering additional 

delay and throughput bottlenecks, which are usually not 

constant but related to the actual traffic load; and iii) 

specification of the estimated traffic mix that the connection 

will support are used in the process of data generation, which 

includes real measurements and traffic generation for the 

simulation scenario. 

PILOT is carried out during the provisioning phase of NSs as 

part of commissioning testing. In this regard, a workflow has 

been proposed that executes PILOT for every connection 

related to the NS being provisioned. As a result, a ML model is 

produced for every connection and the set of models are 

returned to the client at the end of the provisioning phase. 

The active probes were first experimentally validated in a 

local setup and then integrated in a distributed testbed 

connecting UPC and Telefónica premises, respectively, in 

Barcelona and Madrid, Spain, where the PILOT methodology 
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and the proposed workflow were experimentally assessed. The 

results show noticeable accuracy of the produced ML models 

after the scenario in CURSA-SQ was tuned with real 

measurements. Last but not least, the benefits of using PILOT 

with CURSA-SQ were compared to using just real 

measurements to generate labeled data for ML training and 

validation in terms of number of real measurements needed to 

train accurate ML models. The results show that PILOT 

requires around 20 real measurements, which is 100 times less 

than performing ML training directly with real measurements. 
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