NETWORK-13-00198.R1. IEEE NETWORK SPECIAL ISSUE ON “OPEN SOURCE FOR NETWORKING: DEVELOPMENT AND EXPERIMENTATION” 1

Bridging the Gap Between Hardware and
Software Open-Source Network Developments

Marco Forconesi, Gustavo Sutter, Sergio Lopez-Buedo, Jorge E. Lopez de Vergara, Javier Aracil
High Performance Computing and Networking Research Group,
Department of Electronics and Communication Technologies,
Escuela Politécnica Superior, Universidad Autobnoma de Madrid
Campus de Cantoblanco, 28049 Madrid, Spain
{marco.forconesi, gustavo.sutter, sergio.lopez-buedo, jorge.lopez_vergara, javier.aracil}@uam.es

<+

Abstract—The rise of network speeds to tens of Gigabit per second poses a challenge to develop packet processing applications that can cope with
such bit rates. Therefore, the need for a suitable open-source system that can be used as a prototype platform to test new network functionality while
assuring line-rate processing, accurate timestamping, or reduced power consumption, becomes evident. All these requirements cannot be achieved
by using software-only solutions but rather with hardware-based platforms such as NetFPGA. The main obstacle when using this type of open-
source FPGA-based solution is the cost of development, both in time and hardware development skills required. The spread of new circuit synthesis
tools using High-Level Languages opens the door for the development of hardware-based networking applications with reasonable development
effort, compared to the use of traditional Hardware Description Languages. In this paper, we describe how existing open-source hardware-based
platforms for networking applications will be fueled with the change in the programming model of FPGAs, provided by the modern High-Level
Synthesis tools. For this, we implemented a network flow monitor using High-Level Languages and compared the effort spent with respect to a
traditional hardware development cycle. Preliminary results are very promising, given that the development time is reduced from months to weeks.

Index Terms—NetFPGA, High-Level Language, Hardware Description Language, Packet Processing, High-Speed Networks, High-Level Synthesis,

Network Flow Monitor.

1 INTRODUCTION

ATA LINK technologies are providing an ever-
D growing capacity in communication networks. Cur-
rent deployments include 10 Gbps interfaces, whereas
40 and even 100 Gbps speeds are also starting to be
available in the marketplace. Inside such high-speed
networks, it is necessary to deploy packet processing
applications for many network tasks. For instance, secu-
rity (firewalls, intrusion detection/protection systems, or
lawful interception) or network performance (to analyze
delay, jitter, loss, or throughput). The processing systems
must be flexible enough to allow the modification of
the applications within a reasonable period of time.
Software running on standard x86 processors is currently
the most convenient approach because of the number
of available software engineers, the ease of use, the re-
duced development cycles, and the inherent flexibility of
software. Unfortunately, software-only solutions cannot
achieve the performance requirements imposed by the
latest network bit rates.

Open-source software solutions for high-speed net-
works come from the use of high performance network
drivers (e.g. PacketShader, PFRing, or Intel DPDK). They

This work has been partially supported by the Spanish Ministry of Economy
and Competitiveness under the project PackTrack (TEC2012-33754).
Manuscript received August 15, 2013. Received in revised form January 31,
2014. Accepted April 14, 2014.

work well on current high-end off-the-shelf hardware
at 10 Gbps. However, the access speed between appli-
cations and network devices is currently limited, so it
is very difficult to achieve throughputs above 10 Gbps
steadily without packet losses. Due to the different layers
the packets have to pass through, latency could be
high and unpredictable, making it unsuitable for cer-
tain applications such as high frequency trading. Lastly,
timestamping performed by software drivers is done in
a packet batch basis, introducing inaccuracy and jitter.
Thus, these drivers cannot assure line-rate low-latency
processing for higher speeds nor accurately timestamp
the packets when needed [1].

When software-based solutions do not achieve the
desired performance, it is necessary to use a specific
hardware solution in order to offload part or all of
the packet processing application down to the network
device. Observing the history of network equipment,
it is easy to see that it has been common practice to
use custom hardware in high-end packet processing
devices. In fact, many network interface controllers al-
ready offload protocol tasks (e.g. TCP, IPSec) to reduce
the work that is usually done by software, improving
the overall performance of the system. Unfortunately
these systems are closed platforms that have almost no
flexibility to modify its behaviour. NetFPGA [2] offers
the possibility to develop open-source high-performance

2 NETWORK-13-00198.R1. IEEE NETWORK SPECIAL ISSUE ON “OPEN SOURCE FOR NETWORKING: DEVELOPMENT AND EXPERIMENTATION”

hardware, leaving the non-critical tasks to the software
running on an x86 processor.

There are several advantages when using a Field
Programmable Gate Array (FPGA) based hardware plat-
form such as the NetFPGA: (i) the line-rate processing
capability can analytically be assured, due to a finite state
machine with a fixed frequency, which allows determin-
ing the cycles it takes to perform a given task; (ii) the
hardware modules can be replicated for each network
interface without a loss in performance, since they use
different hardware resources that run in parallel; (iii)
packets can be accurately timestamped directly in the
hardware when received, avoiding the inaccuracies of
software-based solutions; (iv) finally, FPGA solutions
reduce the power consumption compared with a general
purpose computer, being more environmentally friendly.
Nevertheless, as stated before, there are also some draw-
backs: it is tipycally necessary to develop the application
with a Hardware Description Language (HDL), usually
VHDL or Verilog [3]. HDLs describe the circuits in a
precise and formal way that allow automated analysis,
simulation, and translation to a lower level specification
(i.e. synthesis) able to program an FPGA. Thus, it is more
difficult and costly to develop an application for such
platforms.

Several strategies may be introduced to reduce the cost
of development. The first is to send only the components
of the network application which require more com-
putational power to the hardware. Another possibility
is to develop the whole application with High-Level
Languages (HLL) and then translate it into hardware
with the aid of a High-Level Synthesis (HLS) tool. This
possibility is gaining momentum, as it allows using well-
known programming languages such as C/C++ instead
of an HDL. This last solution reduces the development
cost, given that there are more skilled C programmers
already trained [4].

In this paper we address the implementation of
packet processing applications on hardware using HLL,
and compare it to the traditional HDL approach. HLL
presents the advantage of a reduced codification time
while retaining the assured line-rate speed, low-latency,
and timestamping precision of hardware architectures.
In order to demonstrate a specific example, we have
developed the same packet processing application for
the NetFPGA 10G platform, using the two mentioned
approaches. Our results show that the development time
can be reduced by roughly one order of magnitude
when using an HLL design methodology. Based on our
experience, we will also provide hints on what has to be
improved for this to be a realistic solution.

The rest of the paper is structured as follows. First
of all, we describe the classical HDL development
flow of packet processing applications, targeted for the
NetFPGA-10G platform. Then, HLL designs are intro-
duced as a way to reduce the complexity of firmware
development. Next, a comparison of both development
approaches to implement a network flow monitor is

provided. Finally, conclusions are made and potential
prospects discussed.

2 DEVELOPMENT ON NETFPGA-10G

The interest of FPGA-based platforms for networking
packet processing applications becomes evident with
the development of the open-source NetFPGA project.
Despite the long duration of design cycles of hardware
prototypes, the NetFPGA project was conceived as a re-
search and teaching tool and was rapidly adopted by the
academia for prototyping new ideas for future networks.
NetFPGA is a community contributed project developed
by Stanford University and Xilinx Research Labs [2].
NetFPGA-10G [5] is the second generation release and it
consists of a PCI Express board populated with a Xilinx
Virtex-5 FPGA and four full-duplex 10 Gbps Ethernet
interfaces, as the main components. Besides the FPGA
internal memory (known as Block RAMs, with 18 Kbits
each block), the platform also includes two types of
memory banks in order to support a large number of
network applications. The first type provides 27 Mbytes
of high-speed static RAM, targeted for fast lookup tables,
whereas the second type has 288 Mbytes of low-latency
dynamic RAM, which is aimed for packet buffering.
The board has a PCI Express Gen 1 communication
channel to connect with a host computer. However, the
NetFPGA 10G platform can run completely standalone
(i.e. not connected to any PCI Express socket) since it
only needs a 12 V power supply; this possibility may be
the best choice to run line-rate applications at a very low
power consumption. Fig. 1 outlines the structure of the
hardware platform.

Researchers willing to develop FPGA-based network
applications can benefit from using the NetFPGA-10G
platform due to its open-source nature. There exists
a public repository for the community of developers
where they can share specific hardware modules, soft-
ware drivers, and development tools.

NetFPGA-10G projects are developed using the Xilinx
Embedded Development Kit (EDK). EDK projects are
divided into a) development of the hardware platform
that is implemented on the FPGA and b) development of
the software that is executed by an embedded processor
on the FPGA. The hardware platform is composed by
cores such as: Ethernet MAC, PCI Express interface
(PCle), embedded soft processor (MicroBlaze), direct
memory access (DMA) and user custom modules. The
designer chooses which hardware cores will be part of
the platform that is going be implemented on the FPGA.
The software part of an EDK project is executed by the
embedded processor; on the NetFPGA-10G it plays an
important role since this processor sets up the Ethernet
interfaces.

Although the hardware and software targeted to the
FPGA are developed by means of an EDK project, a
NetFPGA-10G project is more than that and also includes
software code (e.g. drivers and user applications) to be

FORCONESI et al.: BRIDGING THE GAP BETWEEN HARDWARE AND SOFTWARE OPEN-SOURCE NETWORK DEVELOPMENTS 3

FPGA
Ethernet 10 Gbps| | Micro- || Block
10 Gb (—)
Interface D MAC Blaze RAMs Static RAM
10 Gb S Ethernet | 10 GbpS | { } QDR'II 27 MB
P Interface C 3 MAC User 12V
POWER
Ethernet <> 10Gbps| | Modules Dynamic SYSTEM
Interface B MAC RAM
10 Gb s Ethernet ‘ , | [10 Gbps PCle DMA RLDRAM-II
p Interface A MAC 288 MB
4x
transmission
lines NetFPGA-10G Platform

PCI Express
Interface

Fig. 1: NetFPGA-10G structure.

executed on a x86 processor. The interaction between
the processes running on the FPGA and the ones on
a x86 host computer is provided by the PCI Express
communication channel. All these components make up
the necessary framework to develop high performance
hardware-based open-source network applications.

As shown in Fig. 2, a typical design cycle of network
applications on the NetFPGA-10G starts with the down-
load of the latest releases of the available projects from
the public repository (task 1). The developers have to
select the one that suits them best as the basis for the new
design. The main idea is to reuse all the functionality
provided in order to spend most of the development
time on the implementation of the new project. First, one
has to choose which software runs in the host computer
(if any) and in the FPGA, respectively. Such a choice
is a trade-off between the development time and the
certainty in the performance (number of clock cyles it
takes to execute) of each task. Then, the developers will
create their own hardware modules (task 2.a), if they
are not already available on the repository, following
an HDL design flow that comprises Verilog or VHDL
codification and validation; we note that this is the most
time-consuming step in the design flow. These hardware
modules can be replicated as much as needed to handle
each Ethernet interface. Once all the modules have been
designed and/or adapted, the integration process takes
place (task 2.b) by interconnecting the modules using
on-chip communication protocols. The final step in the
FPGA embedded system design is to modify the pro-
gram that the embedded processor executes, if needed
(task 2.c). The next design phase, after the hardware and
embedded software are ready to run on the FPGA, con-
sists of the development of the host computer processes
that are not time critical (task 3). It is also possible to
use or modify a Linux PCI Express driver available on
the NetFPGA-10G repository. Besides, applications at the
user level can run in conjunction with the mentioned

driver to solve relatively low-speed tasks, employing the
classical C/C++ software development cycle. By the time
the design functionality has been verified and tested,
developers are free to upload the project to the public
repository for the sake of the community (task 4).

(1) Choose a base project
~hours

Y

(2) Design the FPGA
embedded system
~months

Y

(3) Develop the x86
applications (optional)
~weeks

specific hardware

.......................

i (2.b) Integrate
! into the base project

......................................

Develop the embedded

v i(2.c) software (optional)
(4) Upload and share :
your project with

the community (optional)
~hours

Fig. 2: Typical design flow in the NetFPGA platform.

The development time is broken down as follows: the
most time-consuming task is task 2.a which typically
takes several months (70%-90% of the total development
time). Then, task 2.c, which, depending on the appli-
cation, requires a few days’ effort, followed by task 3,
which, when used, will require a few weeks” work. The
rest of the tasks demand just a few hours worth of
work of a skilled engineer. Then, the cost in person-
months is much higher with respect to software-based
developments. The reason why the specific hardware
modules creation (task 2.a) is the most time-consuming
step is because of the FPGA programming model. HDLs
are used for designing the circuit with a model which
contains information about the flow data and timing,
the so-called Register Transfer Level (RTL). The designer
benefits from the fact that HDLs provide a higher level of

4 NETWORK-13-00198.R1. IEEE NETWORK SPECIAL ISSUE ON “OPEN SOURCE FOR NETWORKING: DEVELOPMENT AND EXPERIMENTATION”

abstraction than the circuit that finally runs on the FPGA.
Synthesis tools for HDLs translate the transfer functions
between registers of the RTL model to logic gates, but
the hardware registers keep a one-to-one correspondence
with those of the HDL RTL model. For this reason, HDL
codification implies fixing a-priori the architecture of
the hardware being implemented, and the development
time of HDL designs is well beyond that needed for
software solutions. This is the reason why FPGAs are
not so popular for networking applications. In order to
bridge the gap between software and hardware network
developments and have the best of both worlds, the
development time spent on task 2.a must be reduced.

3 HIGH-LEVEL LANGUAGES TO THE RESCUE

Modern High-Level Synthesis (HLS) can be used to
reduce hardware development time. HLS tools change
the programming model of the FPGAs, making it pos-
sible to use High-Level Languages (HLL) in the design
capture phase. Therefore, they dilute the difference in
the programming model between a processor and an
FPGA [6]. High-Level Languages range from graphical
descriptions to ad hoc languages using extensions to
traditional languages.

The concept of HLS has been evolved over several
decades [7], but only in the last few years new promis-
ing and successful tools have appeared. The electronic
industry is moving fast in the adoption of these tools
based on HLS. Most of them support synthesis from a
set of ANSI-C, C++ or SystemC, producing HDL code
as a result.

The success of using C/C++ as a design entry has
many driving forces. Firstly, almost all computer and
electrical engineers are familiar with them, with a great
deal of code already available. C/C++ is the de facto
language for prototyping and developing in many ap-
plication fields including networking. Additionally, it is
a natural way for Hardware/Software co-design, starting
with a software application and moving to the hardware
those pieces that need more performance, but using the
same language.

The most popular tools include C-to-Silicon from Ca-
dence, Synphony C Compiler from Synopsys, Catapult C
from Calypto, CoDeveloper from Impulse, Vivado-HLS
from Xilinx, BSC (Bluespec Compiler) from Bluespec and
ROCCC 2.0 (Riverside Optimizing Compiler for Config-
urable Computing) from Jacquard computing, being this
last one an open-source project.

3.1 Why HLL help on the hardware design process

The use of HLL makes the initial implementation steps
go much faster and allows the exploration of a broader
design space in less time. As suggested by Fig. 3, soft-
ware simulation is fast and it suffices to quickly jump
to the next design process iteration. Accordingly, the
cumbersome and slow HDL simulation phase is avoided.

—>| HLL description |

| Software simulation |

v

| HLL to HDL transformation |

v

| Transformation verification |

-

| Hardware implementation |

v

I Hardware verification |

Fig. 3: Hardware design flow using High-Level Lan-
guages.

+ Number of iterations

+ Development time

Similarly, the HLL-to-HDL translation (also known as
C-to-hardware) is very efficient and provides additional
performance information about the hardware (number of
cycles spent in the execution, maximum frequency, area
usage, etc.). Such methodology allows for a fast evalua-
tion of the proposed solution and allows the designer to
try several design options or add extra features which
are indeed more costly with HDLs.

An archetypal claim against HLS tools is that the
reduction of design time comes at the expense of a
loss of performance, since these tools prevent designers
from optimizing low-level details of the architecture. As
suggested by [6], [8], these claims are arguable thanks
to the expressivity of HLL and the faster development
time. The designers can effectively explore a much larger
design space in comparison to the HDL approach. Even
though HDLs can also offer such optimizations, it turns
out that the programming model, which is centered
on RTL description, involves the implementation of a
fixed architecture and prevents further optimizations
without re-writting the code. Furthermore, HLLs hide all
non-critical implementation details (e.g. optimizing state
machines, timing closure issues, resource allocation and
scheduling, etc.); instead, they allow the designer to fo-
cus on performance critical problems at the system level
(processes intercommunication, storage issues, etc.), that
have more impact in the overall performance.

3.2 How to create hardware for networking applica-
tions using HLL

The C/C++ language itself does not provide the neces-
sary parallelism, communication, timing restrictions or
other hardware features to develop NetFPGA applica-
tions. The inclusion of these extra features complicates
matters. Regrettably, the way the HLS tools deal with
these issues is far from being standardized. Up to date,
a successful hardware implementation does not come
from a generic C/C++ code, but from a code that has
specifically been tailored towards a given architecture.

FORCONESI et al.: BRIDGING THE GAP BETWEEN HARDWARE AND SOFTWARE OPEN-SOURCE NETWORK DEVELOPMENTS 5

In this work we have used the Xilinx Vivado-HLS
tool [9]. Such tool takes a standard C/C++ code that
models the algorithm and synthesizes it in an HDL
description that can be used in Xilinx FPGAs (such as the
one present on the NetFPGA-10G). Besides, the Vivado-
HLS tool generates suitable hardware cores that can be
integrated in an EDK project without modifying a single
line of HDL code.

Since the tool is aware of the targeted device and
the clock frequency, it generates circuits that meet the
timing requirements. It reports the amount of clock cy-
cles each task consumes and thus, the latency involved.
As a consequence, likewise HDL-designed hardware,
there is no jitter per task at all (for example, when
timestamping packets). In case the processing require-
ments are not satisfied by the initial code, the so-called
directives (#pragma statements) can also be used in order
to exploit parallelism, pipelines, control latency, define
interfaces and other hardware features.

In presence of multiple clock domains, even though
the tool generates a module for each clock domain, it
is possible to use dual-clock FIFOs at the EDK level
to glue the generated cores for each domain. As a re-
sult, the development of the processing logic performed
on each packet (i.e. the most complex, time-consuming
step) is simplified by the use of HLL. For instance, if
an application must process all the Ethernet packets
it receives and must send aggregated information to a
software layer on the x86 computer, a dual-clock FIFO
could be used to interface the 10G-MAC clock domain to
the DMA domain. All of the user-added intelligence (i.e.
processing and communication) will be designed and
validated using an HLL model capture.

4 EXPERIMENTAL COMPARISON OF DEVEL-
OPMENTS

Once the NetFPGA and HLL advantages have been
shown, we present a comparison to HDLs with a use
case packet processing application.

4.1 The application: “A simplified 10 Gbps network
flow monitor without packet sampling”

Flow-based monitoring is common practice to analyze
network traffic. High-end routers and switches provide
this functionality (e.g. NetFlow in Cisco or Jflow in
Juniper) with packet sampling, because they cannot op-
erate at line-rate, thus compromising accuracy [10].

Using both development approaches (HDL and HLL)
we have implemented a flow monitor for the NetFPGA-
10G with the following design characteristics:

1) It works at a 10 Gbps line-rate even with the
smallest packet sizes (14.88 Mpps - Millions of
packets per second).

2) It uses internal FPGA memory only (Block RAMs),
which allows for a 4K concurrent flows cache.

3) Flows are removed from memory and exported
either when an inactivity timeout (15 seconds), or

an activity timeout (30 minutes) expire, or the TCP
connection ends.

The designs are open and available for downloading
at [11]. Additionally, a more complete and functional
design including the use of external memories (to handle
up to /4 million concurrent flows), is described in [12].
Fig. 4 presents the block diagram of the implemented
circuit into the FPGA. A brief explanation of the func-
tionality of each block is provided below:

8 cycles 1 cycle 3 cycles Latency=12

g e N N
& . Create
5M mput | Packet Hashing| U datg 0
= Packets | parger Module P >
g Flows)

Time A /\ Flow Table
, Counter ~ L ~ (BlockRAMs)
£ Output Export Timeout s
EU" FlowRecords | Module Monitor @
2 _ RN J

Fig. 4: Block diagram of the implemented design.

Packet Parser. Analyzes the bytes within each Ethernet
frame and extracts its 5-tuple (source and destination IP
addresses and ports as well as the protocol) plus the
information needed to create a new flow or update an
existing one: timestamp, TCP flags, and the number of
bytes within the packet.

Hashing Module. Calculates a hash code from the 5-
tuple, which is used as the memory address where the
flow will be stored.

Create/Update Flows. Updates the flow table accord-
ing to the previous hash code. If the flow was previously
active in the memory it will be updated, otherwise a new
flow will be created.

Flow Table. Stores the active network flows on the
monitored link. As Fig. 4 shows, the flow table is
accessed by two processes. The first one creates and
updates the active flows; the second one removes the
expired flows and exports them according to the inactiv-
ity and activity timeouts. The flow table is implemented
with FPGA double-ported Block RAMs.

Timeout Monitor. Checks whether the active flows in
the flow table do not exceed the activity and inactivity
timeouts. Namely, a flow will be removed from memory
either if it has been on the flow table for too long or if
no more packets that belong to that flow are received.

Export Module. Receives the flow records that were
purged from the flow table and sends them out of the
board through one of the 10 Gbps Ethernet ports. This
block could also be connected to the PCI Express DMA
engine in order to send expired flows directly to the
host computer.

4.2 Development of solutions

Implementing the packet processing application de-
scribed above using the HDL design cycle implies two

6 NETWORK-13-00198.R1. IEEE NETWORK SPECIAL ISSUE ON “OPEN SOURCE FOR NETWORKING: DEVELOPMENT AND EXPERIMENTATION”

major steps: firstly, the architecture and interface of each
module is coded and validated separately; secondly, all
the modules are interconnected and the overall perfor-
mance evaluation is carried out. With HLL, one has to
code each module in a separate C/C++ function. The
communication between the functions is performed by
argument passing and the complexity of some hardware
modules is completely hidden. For example, the flow table
module is reduced to the declaration of a C/C++ global
variable. An example of such simplicity is provided in
Fig. 5, which shows, the create/update flows function in
HLL.

/ *
* This function process the received packet,
* registering it in the flow table and
* exporting the flow when appropriate
void create_update_flow (
flow_info_t flow_table[4096],
pkt_info_t pkt_info,
ap_uint<10> hash_code,
flow_info_t xexported_flow) {
#pragma HLS LATENCY max=3

//read the flow from BRAM memory
flow_info_t cur_flow = flow_table[hash_code];

if (cur_flow.location_busy){//location in use
if (match_xtuples(&pkt_info,&cur_flow)){
//the flow has been previously created
cur_flow .byte_counter +=
pkt_info.byte_counter;
cur_flow . pkt_counter++;
cur_flow . tcp_flags|=pkt_info.tcp_flags;
flow_table[hash_code] = cur_flow;
} else xcollision_cntr++; //a collision
} else{//location available. 1st packet in flow
cur_flow.byte_cntr = pkt_info.byte_counter;
cur_flow . pkt_counter = 1;
cur_flow. tcp_flags = pkt_info.tcp_flags;
flow_table[hash_code] = current_flow;

}
//check fin or reset TCP flags
if ((pkt_info.tcp_flags & 0x01) ||
(pkt_info.tcp_flags & 0x04)){
xexported_flow = current_flow;}
flow_table [hash_code].location_busy = 0;}

}

Fig. 5: An HLL code that implements create/update flows
module.

To operate at 10 Gbps line-rate, knowledge of the
processing time per packet, from its arrival to the flow
table update, is required. The smallest packet size, in-
cluding the interframe gap is 616-bits long, i.e. 61.6 ns at
10 Gbps is the minimum period of time between packets.
The user side of the MAC core in the NetFPGA-10G
is a 64-bits wide interface running at 200 MHz. This
means that a total of 12 clock cycles are available to
process every packet in the worst-case scenario. In an
HDL design, the latency and the total processing time

per packet is determined by the number of intermediate
registers in the flow data of the RTL model. Changes
in these properties imply the manual re-codification of
the model which can lead to unwanted changes in the
semantic of the algorithm. On the other hand, the latency
can be controlled with the LATENCY pragma statement
in HLL, as shown in Fig. 5, which does not change the
model semantics.

The total number of clock cycles per algorithm is
reported by the HLS tool when synthesis is executed. For
optimizations, some #pragma statements can be applied
to allow the HLS synthesizer to use more hardware
resources and reduce the processing time. Once again
the algorithm semantics remains unchanged.

4.3 Comparison of results

HDL and HLL designs were both coded by the same
developer (electronic engineer, PhD student). His back-
ground includes 3 years of experience in HDL (VHDL)
and FPGA design, good knowledge of FPGA design
tools, basic knowledge of the NetFPGA-10G platform,
and some background in HLL design flow. The designer
has had full support of experts in FPGA design, net-
working applications and HLL design.

First, the HDL design was coded in VHDL whereas
the HLL was implemented later on in plain C using
#pragma statements for Vivado-HLS.

In order to compare the design effort, the number of
files, code lines, size of files, and development time of
both approaches are presented in Table 1a. The number
of files include header and code files; the number of code
lines does not take into account neither comments nor
blank spaces; and the development time includes test-
ing and validation design times. The rows “HDL” and
“HLL” report the results of each design flow, whereas
the row “Synth_HLL” stands for the resulting HDL code
obtained after the C code was synthesized with Vivado-
HLS.

Regarding the resource usage, Table 1b shows the final
hardware utilization of both approaches. The number
of Flip-Flops (FF), Lookup-Tables (LUT), internal 18
Kbits Block RAMs (BR), as well as the percentage of
FPGA resource usage (%use) and maximum frequency
are reported. The rows HDL and HLL report the results
for the implemented core (modules that outfit the Net-
flow) using the respective methodology. Meanwhile, the
rows “System_HDL” and “System_HLL” describe the
resources used by the whole system, which includes all
the necessary modules to operate.

4.4 Discussion of results

Clearly, the use of HLL reduces the development time
of the module by roughly one order of magnitude. The
corresponding area is significantly larger in comparison
to the HDL counterpart, but it only represents less
than 2% of the total available area of the target FPGA.
The reported maximum frequency of both HDL and

FORCONESI et al.: BRIDGING THE GAP BETWEEN HARDWARE AND SOFTWARE OPEN-SOURCE NETWORK DEVELOPMENTS 7

TABLE 1: Implementation results
(a) Number of code lines using HDL and HLL design flow.

#Files #Code #KBytes Develop.
lines of code time
HDL 10 1055 83.2 3-4 months
HLL 2 324 11.0 2-3 weeks
Synth_HLL 15 4712 2266 -

(b) FPGA resources utilization and maximum frequency.

#FF #LUTs #BR %wuse Max. Freq.
HDL 1716 1137 27 11% >200 MHz
HLL 2796 2632 28 19% >200 MHz
System_HDL 24624 22457 46 16.5% >200 MHz
System_HLL 25712 22965 47 172% >200 MHz

HLL meet the timing specifications that allow line-rate
operation.

The skills and effort necessary to design with HLL
are simpler than those required in the HDL develop-
ment flow, but current state-of-the-art demands hard-
ware design knowledge to integrate the whole system.
A framework and/or automatic tools are still needed to
hide the complexity behind the reconfigurable hardware
development and finally bridge the gap for a networking
engineer.

Such a framework should also provide applications
with interfaces commonly used for packet processing
(e.g. pcap), and take into account timing issues as well.
It is also necessary to manage external memory and to
facilitate access to a host computer (using PCI Express)
in order to directly flush packets to disk, for example.
All these features are still missing from High-Level
Languages in order to bring the hardware development
closer to a network engineer.

5 CONCLUSION

The development of packet processing applications in
FPGA offers undeniable advantages in terms of per-
formance and response time predictability compared to
solutions based on commodity x86 hardware. However,
time and development costs make it unattractive for
most network engineers. Interestingly, new tools for
High-Level Synthesis are a promising way to tackle these
development difficulties.

In this work we have presented how state-of-the-
art HLS tools can boost the development of packet
processing applications with existing FPGA-based plat-
forms, such as the open-source NetFPGA-10G. We have
also outlined the main limitations that impede the
widespread adoption of High-Level Languages. Overall,
the programming model of the FPGAs has changed in
a way that allows capturing the designs with HLL, and
the reduction of the development time of the applica-
tions from months to weeks, compared to a traditional
hardware development flow based on HDLs.

By way of a practical example, i.e. generation of flow
records at 10 Gbps line-rate, this paper shows how to
develop hardware-based network applications without
previous knowledge of HDLs. Additionally, using a
high-level design methodology proved to be acceptable
in terms of performance and hardware resource utiliza-
tion. This paves the way for a packet processing applica-
tion framework based on HLL (typically C/C++). Such
a framework would further abstract hardware details,
therefore allowing to bridge the historic gap between
software and hardware development in networking ap-
plications.

REFERENCES

[1] V. Moreno, P. Santiago del Rio, J. Ramos, J. Garnica, and J. Garcia-
Dorado, “Batch to the Future: Analyzing Timestamp Accuracy of
High-Performance Packet I/O Engines,” Communications Letters,
IEEE, vol. 16, no. 11, pp. 1888 —-1891, november 2012.

[2] M. Blott, J. Ellithorpe, N. McKeown, K. Vissers, and H. Zeng,
“FPGA Research Design Platform Fuels Network Advances,”
Xcell Journal, pp. 24-29, 2012.

[3] J.-P. Deschamps, G. Sutter, and E. Cant, Guide to FPGA
Implementation of Arithmetic Functions, ser. Lecture Notes in
Electrical Engineering. Springer, 2012, vol. 149. [Online].
Available: http://dx.doi.org/10.1007 /978-94-007-2987-2

[4] J. Schonwélder, A. Pras, and J.-P. Martin-Flatin, “On the future
of Internet management technologies,” Communications Magazine,
IEEE, vol. 41, pp. 90-97, Oct 2003.

[5] “NetFPGA-10G board description,” 2012. [Online]. Available:
http:/ /netfpga.org/10G_specs.html

[6] Xilinx Inc., Introduction to FPGA Design with Vivado High-
Level ~ Synthesis. UG998, July 2013. [Online]. Available:
http:/ /www.xilinx.com/support/

[7]1 G. Martin and G. Smith, “High-level synthesis: Past, present, and
future,” IEEE Design & Test of Computers, vol. 26, no. 4, pp. 18-25,
2009.

[8] A. Cornu, S. Derrien, and D. Lavenier, “HLS tools for FPGA:
Faster development with better performance,” in Reconfigurable
Computing: Architectures, Tools and Applications. ~ Springer, 2011,

pp. 67-78.
[9] Xilinx Inc, Vivado Design Suite User Guide. High-
Level ~ Synthesis. UG902, July 2012. [Online]. Available:

http:/ /www.xilinx.com/support/

[10] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
NetFlow,” in ACM SIGCOMM Computer Communication Review,
vol. 34, no. 4. ACM, 2004, pp. 245-256.

[11] M. Forconesi, G. Sutter, and S. Lopez-Buedo, “Open source
code of nf bram and nf qdr,” 2013. [Online]. Available:
https:/ /github.com/hpcn-uam /HW-Flow-Based-Monitoring

[12] M. Forconesi, G. Sutter, S. Lopez-Buedo, and J. Aracil, “Accurate
and flexible flow-based monitoring for high-speed networks,”
Field Programmable Logic and Applications, 2013.

Marco Forconesi (marco.forconesi@uam.es) is currently a research
assistant in the Networks and Operating Systems Group in the Com-
puter Laboratory at University of Cambridge. He received his Electronic
Engineering degree from Universidad Nacional de San Juan (Argentina)
in 2012 and finished his MSc degree in ICT Research and Innovation
at Universidad Auténoma de Madrid (Spain) in 2013, where he held a
research grant. He is currently a member of both Network as a Service
Project (NaaS) and NetFPGA team. His current research topics include
FPGA hardware design for high-speed PCle and Ethernet networking.

8 NETWORK-13-00198.R1. IEEE NETWORK SPECIAL ISSUE ON “OPEN SOURCE FOR NETWORKING: DEVELOPMENT AND EXPERIMENTATION”

Gustavo Sutter (gustavo.sutter@uam.es) received an MS degree in
Computer Science from State University UNCPBA of Tandil (Buenos
Aires) Argentina, in 1997, and a PhD degree from Universidad
Auténoma de Madrid, Spain, in 2005. He has been assistant professor at
the UNCPBA Argentina and is currently an associate professor at Uni-
versidad Auténoma de Madrid, Spain. His research interests includes
algorithms and networking in reconfigurable computing (FPGA), digital
arithmetic, development of embedded systems and High Performance
Computing. He is the author of three books and more than hundred
international papers and communications.

Sergio Lopez-Buedo (sergio.lopez-buedo@uam.es) received in 2003
his Ph.D. in Computer Engineering from Universidad Auténoma de
Madrid (Spain), where he currently serves as associate professor in
the area of Computer Architecture. He was a visiting researcher at
University of British Columbia (2005) and at The George Washington
University (2006, 2007), and he has also collaborated in the doctor-
ate program of Universita degli Studi di Trento (2007-2009). FPGA
technology is his main research interest, especially high-performance
reconfigurable computing and communication applications. Dr. Lopez-
Buedo holds more than 50 publications, including journals, conferences
and books as editor, and he is also co-founder of Naudit HPCN,
a company dedicated to providing high-performance computing and
networking solutions.

Jorge E. Lopez de Vergara (jorge.lopez_vergara@uam.es) is currently
an associate professor in the Electronics and Communication Tech-
nologies Department of the Universidad Autnoma de Madrid (Spain).
He received his MSc degree in telecommunications from Universidad
Politcnica de Madrid (Spain) in 1998 and finished his PhD in telematics
engineering at the same university in 2003, where he held a 4-year
research grant funded by the Spanish Ministry of Education. In 2000
he was a visiting researcher at Hewlett-Packard labs for 6 months. He
has participated in several Spanish and EU research projects. In 2009,
together with other university professors, he founded Naudit High Perfor-
mance Computing and Networking, a spin-off company devoted to traffic
monitoring and analysis. His current research topics include network,
service, and distributed application management and monitoring. He
has co-authored more than 100 papers in scientific conferences and
journals.

Javier Aracil (javier.aracil@uam.es) Javier Aracil received the M.Sc.
and Ph.D. degrees (Honors) from Technical University of Madrid in 1993
and 1995, both in Telecommunications Engineering and the Licenciatura
(five-years degree) in Mathematics from UNED in 2009. In 1995 he
was awarded with a Fulbright scholarship and was appointed as a
Postdoctoral Researcher of the Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley. In 1998 he
was a research scholar at the Center for Advanced Telecommunications,
Systems and Services of The University of Texas at Dallas. He has been
an associate professor for University of Cantabria and Public University
of Navarra and he is currently a full professor at Universidad Autnoma
de Madrid, Madrid, Spain. He is also a co-founder of Naudit HPCN. His
research interest are in traffic analysis and performance evaluation of
communication networks. He has authored more than 100 papers in
international conferences and journals.

