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ABSTRACT Near-lossless compression is a generalization of lossless compression, where the codec user
is able to set the maximum absolute difference (the error tolerance) between the values of an original pixel
and the decoded one. This enables higher compression ratios, while still allowing the control of the bounds
of the quantization errors in the space domain. This feature makes them attractive for applications where a
high degree of certainty is required. The JPEG-LS lossless and near-lossless image compression standard
combines a good compression ratio with a low computational complexity, which makes it very suitable for
scenarios with strong restrictions, common in embedded systems. However, our analysis shows great coding
efficiency improvement potential, especially for lower entropy distributions, more common in near-lossless.
In this work, we propose enhancements to the JPEG-LS standard, aimed at improving its coding efficiency
at a low computational overhead, particularly for hardware implementations. The main contribution is a
low complexity and efficient coder, based on Tabled Asymmetric Numeral Systems (tANS), well suited
for a wide range of entropy sources and with simple hardware implementation. This coder enables further
optimizations, resulting in great compression ratio improvements. When targeting photographic images,
the proposed system is capable of achieving, in mean, 1.6%, 6%, and 37.6% better compression for error
tolerances of 0, 1, and 10, respectively. Additional improvements are achieved increasing the context size
and image tiling, obtaining 2.3% lower bpp for lossless compression. Our results also show that our proposal
compares favorably against state-of-the-art codecs like JPEG-XL and WebP, particularly in near-lossless,
where it achieves higher compression ratios with a faster coding speed.

INDEX TERMS image codec, near-lossless compression, JPEG-LS, Asymmetric Numeral Systems, low
complexity, two-sized geometric distribution

I. INTRODUCTION

THERE are scenarios in which, traditionally, lossless
image codecs are used, among other reasons, due to the

value of the information in the images (e.g. hard to obtain).
Additionally, it may be required for legal reasons or to
ensure system robustness, given that the level of uncertainty
introduced by the quantization noise may not be admissible.
However, within these scenarios, there are cases that allow
for a coarser precision (depth of each pixel channel) with
respect to the precision delivered by the sensor. In these
cases, near-lossless codecs can be used to obtain higher
compression ratios. This category of codecs is defined as a
those that compress an image while allowing the user to set
limits to the peak errors introduced in the decoded image,
generally supporting lossless as the particular case where the

error tolerance is set to 0.
There are many areas of applications that require this type

of bounds on image quantization errors as in the case of im-
age capturing satellites [1], [2] and medical imaging [3]–[5].
Within these applications, it is not uncommon to find exam-
ples that, additionally, have strong limitations on resources,
energy consumption (sometimes indirectly because of lim-
ited dissipation capacity), latency and/or throughput [1], [4]–
[6]. For this reason, low complexity is sought, understanding
it as the capacity of a system to run comparatively fast using
limited resources.

Given the restrictions they face, many of these scenarios
would benefit from or require compressing the images using
custom hardware. This is the reason why an amenable hard-
ware implementation is also a desired feature. Particularly,
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FPGAs are considered as an appropriate target, since the
production volumes of most applications would not justify
an ASIC. In addition, reconfigurability is a desired char-
acteristic, allowing to update deployed systems. Moreover,
image sensors can be connected directly to the FPGA, further
improving the overall system performance.

Although in the state of the art it is possible to find codecs
that have higher compression ratios, JPEG-LS is very well
suited for these applications, given that it provides a com-
petitive compression [7], [8] and, at the same time, permits
high performance and low resource implementations, given
their simple compute requirements and memory footprint.
Because of this, several hardware implementations proposals
have been published [1], [9]–[15], and it has even been used
in NASA’s Mars Exploration Rover mission [16].

Motivated by the existence of many applications that
would benefit from low complexity lossless and near-lossless
codecs, the observation of JPEG-LS optimization potential
and the appearance of a new efficient and low complexity
compression scheme, Asymmetric Numeral Systems (ANS),
a series of modifications to the standard were developed,
resulting in LOCO-ANS. At the cost of a low computational
overhead, the proposed system achieves great compression
ratio improvements.

The main contributions of this work are:
• An efficient and low complexity adaptive coder for

sources with a geometrical distribution, which uses
Tabled Asymmetric Numeral Systems (tANS) as the un-
derlying technology [17], with an expected complexity
similar to a Huffman coder but with efficiencies that
closely approach to the model entropy [18], [19]. This
coder is used as part of an adaptive system to code
sources with a two-sided geometrical distribution.

• JPEG-LS codec is adapted to work with the proposed
coder allowing a better compression, particularly, for
lower entropy distributions, more common in near-
lossless operation. The resulting system is capable of
diverse trade-offs between resources and compression.

• From their conception, the proposed coder and modifi-
cations are hardware implementation oriented.

• The system prototype plus auxiliary code to create
tables and run experiments are open sourced to the
community [20].

The rest of this article is structured as follows: In section
II a brief review of JPEG-LS and an introduction of ANS are
presented. This is followed by an analysis of the optimization
potential of JPEG-LS in section III and an overview of
LOCO-ANS image encoder in section IV. Then, the coder
and distribution parameters estimation details can be found
in sections V and VI, while a methodology to select the
coder configurations is provided in section VII. Next, the
results of the experiments using the implemented prototype
are presented in section VIII. Finally, in section IX the
conclusions of this work are summarized. In appendix A, a
table with the notation used is provided to make the equations
easier to follow.

II. BACKGROUND
A. JPEG-LS
1) JPEG-LS baseline algorithm
JPEG-LS was designed mainly for lossless compression with
low complexity in mind and the objective to supersede the
previous algorithms like the lossless mode of JPEG [21] and
PNG [22]. Fig. 1 shows a high-level block diagram of the
JPEG-LS encoder algorithm, which is based in LOCO-I [8],
[23].

FIGURE 1. High-level JPEG-LS encoder block diagram. Source: Adapted
from figure 1 of [23]).

It can be appreciated that it processes image samples using
one of two modes, the regular and the run mode. In the reg-
ular mode, a prediction is computed and then corrected with
an adaptive mechanism, resulting in a prediction error. This
error is then quantized using a uniform mid-tread quantizer
with a bin size δ = 2 ∗ NEAR + 1, where NEAR is a
parameter chosen by the user, which is equal to the maximum
possible error of a pixel value in the decoded image. The
quantized error is then coded by a low complexity adaptive
block coder based on Golomb codes [24], which the authors
call Golomb-power-of-2 (GPO2) codes.

As the GPO2 coder does not perform well when symbols
come from a low entropy source, an adaptive run-length
coder is used when smooth surfaces are detected by the gradi-
ents surrounding the current image sample. In the run mode,
the run-length count is incremented when |a−x| ≤ NEAR,
where a is the pixel value when the count started and x is
the new pixel. It is easy to see that, in both modes, lossless
compression is obtained when NEAR is set to 0.

To adapt the codes, contexts are used to keep prediction
error statistics, which select coder parameters. These contexts
are gradient defined. Gradients surrounding the new image
sample are computed and then quantized separately, obtain-
ing a vector of integers. The resulting vector is mapped to an
identifier, which is used to access and update context statis-
tics. In [23] a detailed description of the codec procedures
can be found.

2) JPEG-LS extension
An extension of the standard [25] was proposed, based on
LOCO-A (presented in [8]), changing the GPO2 and run-
length coder used in LOCO-I by a single arithmetic coder
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and adapting the error distribution estimation procedures.
These modifications closed most of the existing gap with
CALIC [26], [27] at the cost of increasing the complexity of
the system. This extension comes from the authors’ recogni-
tion of the limitations of the original coder when dealing with
low entropy distributions, as those that occur in near-lossless
operation. In general, the higher error tolerance (parameter
NEAR in JPEG-LS), the lower the entropy of the resulting
quantized error distributions.

3) JPEG-LS hardware implementations

Several hardware architectures for JPEG-LS have been pub-
lished [1], [9]–[15], however only a few are standard com-
pliant. One of the main reasons for the lack of compliance is
not supporting the run mode (which many deem as optional,
although it is not [28]). In general, this is done to further
simplify the hardware implementation. In [11] it was found
complex to implement, while others noted the run mode
is rarely used when losslessly compressing images coming
from sensors, so decided not to implement it. Although this
is generally true for lossless coding, long runs can arise, for
example, when sensor saturation occurs. In satellite images,
clouds tend to produce this effect. In the case of near-lossless
operation, not supporting the run mode greatly impacts com-
pression rates, as this mode is particularly important to com-
plement the main weakness of prefix codes used in JPEG-
LS when it comes to low entropy distributions (not able to
produce an average code length below 1 bit for any symbol).

Another reason why the implementations did not adhere to
the standard was the introduction of algorithm modifications
to increase system throughput. Hardware implementations
face mainly two bottlenecks: the context update, and the pixel
quantization (and reconstruction) procedures. The latter only
applies to near-lossless compression. Most implementations
try to cope with these limitations by modifying the original
algorithm and/or not supporting near-lossless compression
(and thus avoiding the second bottleneck). In many cases,
these modifications reduce the compression ratio.

Only two of the mentioned implementations support near-
lossless compression [1], [9], but neither is standard compli-
ant. In [1], several modifications are presented to the decorre-
lation and entropy coding stages, chiefly, the error tolerance
(NEAR parameter) is modified within an image according
to custom logic and only the GPO2 coder is employed, using
a new adaptation algorithm. A close to standard compliant
implementation is presented in [9], but it does not support
the run-length coder. Although the performance of these two
implementations cannot be directly compared, given the great
difference in the technologies used in the experiments (0.22
µm process Xilinx XQR4062 in the former versus 40 nm
process Xilinx Virtex 6 in the latter), the highest performing
implementation supporting near lossless in the literature is
the latter (51.68 Mpixels/second).

B. ASYMMETRIC NUMERAL SYSTEMS
Several years after the standardization of JPEG-LS and its
extension, a new series of low complexity alternatives to
arithmetic coding were proposed, Asymmetric numeral sys-
tems (ANS), initially introduced in [17], and later extended
and compared to state-of-the-art compression algorithms,
such as Huffman and arithmetic coding, in [18], [19].

ANS provides several possible algorithmic alternatives to
implement coders. Particularly, tabled ANS (tANS) has the
following properties:
• Suitability for high cardinality symbol sources.
• Capable of being used in adaptive coding settings.
• Able to match arithmetic coder [29] coding efficiencies

(having an efficiency-memory resources trade-off).
• Moderate memory resource requirements.
• Has high-throughput implementations. For Field Pro-

grammable Gate Arrays (FPGA), encoder architectures
were studied in [30] and decoder in [31], which can
outperform Huffman decoding [32].

1) tANS operation
From a black box perspective, tANS works as a Finite state
machine (FSM) where the symbol to encode is the input and
the current state is an integer, the ANS state, where ANS
stores fractional bits of information. The output of the FSM
ROM has the next state and the number of bits to take from
the least significant part of the current state, which are then
stored in the output bit file. From its design, tANS is meant
to be implemented as a microcoded FSM (at least partially),
and the FSM ROM is referred to as the tANS table. After a
block of symbols is finished, the final state needs to be stored
in the output bit file.

For the decodification, the binary bits are appended to the
ANS state (state← (state << 1) |new_bit), until it is in
a certain range (determined by the configuration of ANS).
Then, this state is used to address the decoding table, obtain-
ing the encoded symbol and the previous state. As implied by
the decodification process, an ANS state is directly matched
with a source symbol. Modifying the assignment of states to
symbols changes the average number of bits ANS is going to
generate for each of the source symbols.

tANS can be used to implement an adaptive coder given
that switching to a different table changes the distribution
ANS is tuned to. Using a particular table is referred to as an
ANS mode. Of course, the decoder has to have the means to
choose the same ANS mode that the encoder chose for each
symbol. However, more attention has to be paid when using
ANS in an adaptive manner, given that symbols are decoded
in the opposite order they were coded (the last symbol coded
is the first symbol that is decoded).

For more in depth explanation of the ANS algorithm and
hardware implementations, refer to [18], [30], [31].

2) Coding efficiency
In general, the more bits used for the state, the more precisely
the coder can be tuned to the desired distribution, which
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leads to a more efficient compression. Fig. 11 of [18] shows
simulation results to understand the relationship between the
number of ANS states used, the symbol alphabet size and
the Kullback–Leibler divergence (KLD), also presenting the
approximation KLD ≈ 0.5/(k)2 with k = |S|/|A| , where
S is the set of states (in this work, it is generally assumed to
be 2state_bits), A is the set of symbols and | · | denotes the
cardinality of the set. Eq. 1 summarizes our experience using
the simple non-fine-tuning heuristic algorithm provided in
the original work to create the tANS tables.

0.05/k2 / KLDtANS / 0.5/k2 (1)

3) State size and memory requirement
Increasing precision comes at the cost of increasing memory
requirements for the FSM ROM. However, the impact of
this increment depends on the actual implementation and,
as shown in [30], efficient architectures exist for large state
configurations.

4) ANS state size and small symbol probabilities
In general, the tANS tables can be fine-tuned to obtain better
results than the heuristic algorithm. However, there is a
minimum symbol probability below which the table cannot
be tuned to. In the case of 2-symbol sources, these tables are
constructed by assigning to the higher probability symbol the
first 2state_bits−1 states and the last state to the other symbol.
These tables are referred to as minimum entropy tables.
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FIGURE 2. KL Divergence of 2-symbol tANS tuned to the minimum symbol
probability as a function of the P (0) = p probability for several ANS state bits.

Figure 2 shows the KLD achieved by 2-symbol minimum
entropy tables as a function of the p Bernoulli distribution
parameter for different ANS state sizes. Notice that 2-symbol
sources would maximize the KLD for a given state size.
From these curves, table 1 was obtained, which shows the
minimum KLD achieved and at which p symbol probability.

This has to be taken into account when sizing the state size
of the coder. For example, in an adaptive codification of a
Bernoulli source, trying to tune tables to a p parameter equal
or below the minimum probability observed in table 1 will
always result in the minimum entropy table. Then, adding
these tables would not improve the coding efficiency, thus
wasting resources.

TABLE 1. Performance of 2-symbol tANS tuned to the minimum symbol
probability as a function of ANS state bits.

Address size min KLD argminpKLD min prob/(1/|S|)
2 5.7273e-03 2.0750e-01 0.8300
3 2.9764e-03 9.2050e-02 0.7364
4 1.3537e-03 4.3425e-02 0.6948
5 6.2724e-04 2.1112e-02 0.6756
6 2.9950e-04 1.0406e-02 0.6660
7 1.4602e-04 5.1631e-03 0.6609
8 7.2063e-05 2.5766e-03 0.6596
9 3.5799e-05 1.2883e-03 0.6596
10 1.7833e-05 6.4114e-04 0.6565

C. TEST IMAGE DATASET
Throughout this work, the 8-bit gray image dataset main-
tained by Rawzor [33] was used to test the algorithms. A
description of the images of the dataset can be found in table
2, where the entropy was computed using a slightly modified
version of the JPEG-LS baseline model (described in section
III).

TABLE 2. Rawzor 8-bit gray dataset [33] description. Entropy estimation
based on a modified version of the JPEG-LS baseline model (described in
section III)

Image Height x Width Entropy Type
artificial.pgm 2048 x 3072 0.7625 Synthetic

big_building.pgm 5412 x 7216 3.5437 Photographic
big_tree.pgm 4550 x 6088 3.6886 Photographic
bridge.pgm 4049 x 2749 4.1222 Photographic

cathedral.pgm 3008 x 2000 3.5343 Photographic
deer.pgm 2641 x 4043 4.6033 Photographic

fireworks.pgm 2352 x 3136 1.4218 Photographic
flower_foveon.pgm 1512 x 2268 1.9737 Photographic

hdr.pgm 2048 x 3072 2.1015 Photographic
leaves_iso_1600.pgm 2000 x 3008 4.4505 Photographic
leaves_iso_200.pgm 2000 x 3008 3.7648 Photographic

nightshot_iso_100.pgm 2352 x 3136 2.0217 Photographic
nightshot_iso_1600.pgm 2352 x 3136 3.9333 Photographic

spider_web.pgm 2848 x 4256 1.6722 Photographic
zone_plate.pgm 2000 x 3000 7.3368 Synthetic

III. JPEG-LS OPTIMIZATION POTENTIAL
The aim of this section is to establish a theoretical limit on
improved compression due to the optimization of the predic-
tion error coder for JPEG-LS given its statistical model.

A. THEORETICAL LIMIT OF CODER OPTIMIZATION
In order to understand the impact that a new coder could
have, the average bits per pixel, bpp, obtained by JPEG-LS
coder (using the implementation in [34], linked by jpeg.org
web) was compared against the average symbol entropy
using the statistical model employed in the standard to esti-
mate the prediction error probabilities (coder symbols). As no
implementations of the standard extension were found, only
the baseline codec was included in the analysis.

Although the average symbol entropy would not take into
account the effect of the compressed image header file size,
this does not have noticeable impact, particularly for the im-
age sizes of the used dataset. In JPEG-LS, the all 0 quantized
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gradients context, {0}, is handled differently as it is coded
using the run-length coder, but in this analysis, given that the
same statistical model is used for all contexts, it is treated as
the rest.

In the standard, the error, ε, probabilities are estimated
using a two-sided geometric distribution (TSG) as follows:

P (θ, s)(ε) = C(θ, s)θ|ε−s|, ε = 0,±1,±2, ..., (2)

where θ and s are the distribution parameters and C(θ, s) =
(1 − θ)/(θ1+s + θ−s) is a normalization factor. θ ∈ (0, 1)
controls the rate of decay of the probabilities and s ∈ (−1, 0]
is the fractional bias (the sign of s is inverted compared
to [23]).

In JPEG-LS baseline, s was decided to be in (−1, 0] given
that it was beneficial for their coding procedures. However,
when computing the average symbol entropy, the bias can-
cellation procedure was configured so that s ∈ (−0.5, 0.5],
like in the standard extension. For this reason, the error sign
flip applied when s > 0 was introduced, also employed in
the standard extension. Additionally, the alternative model
and estimators for the TSG proposed in [35] were used.
This change does not imply a modification in the distribution
but just a re-parametrization that simplifies the sequential
parameter estimation. In this alternative model, each integer
ε is mapped to a tuple (y, z), where:

y = y(ε) ,

{
0, ε ≥ 0

1, ε < 0
(3)

and
z = z(ε) , |ε| − y(ε) (4)

Then, if ε ∼ TSG(θ, s), the variable y ∼ Bernulli(p)
(where p = (θ1+s)/(θ1−|s| + θ|s|)) and the variable z ∼
Geometric(θ) with the same θ as ε. For sample t + 1, p is
estimated (using Beta(1/2, 1/2) as a prior) as follows:

p̂ =
Nt + 1/2

t+ 1
, where Nt =

t∑
i=1

yi (5)

In [35] an optimal estimator of the probabilities of zt+1 is
provided, however, the following estimator was used:

θ̂ =
St + α

St + t+ α+ β
(6)

where α and β are the parameters of theBeta(α, β) function
used as a prior probability distribution. This last estimator,
as noted by the authors of the model, is sub-optimal, but, in
our experiments, it performed almost as well as the optimal
one when using the same priors, with the advantage of being
computationally simpler. To reflect the fact that as NEAR
increases, θ decreases, Beta(.5/(1+NEAR/2), .5) was the
prior used in the experiments.

The results can be seen in table 3, where the column
labeled as "Entropy_orig_ctx" was obtained using this model.

It can be seen that the larger the error tolerance, the
less efficient JPEG-LS tends to be, having an inefficiency

TABLE 3. JPEG-LS bpp vs TSG models estimated entropy.

Error JPEG-LS Entropy_orig_ctx Entropy_fix_ctx
0 3.32 3.26 (1.7%) 3.26 (1.7%)
1 2.12 2.09 (1.1%) 2.01 (5.1%)
2 1.65 1.63 (1.4%) 1.51 (8.1%)
3 1.40 1.35 (3.2%) 1.24 (11.1%)
4 1.23 1.16 (5.4%) 1.06 (14.3%)
5 1.11 1.03 (6.8%) 0.92 (17.1%)
6 1.01 0.93 (7.9%) 0.81 (19.4%)
7 0.92 0.84 (8.5%) 0.72 (21.1%)
8 0.84 0.77 (8.3%) 0.65 (22.2%)
9 0.79 0.72 (8.4%) 0.6 (24%)
10 0.73 0.67 (9%) 0.55 (25.6%)

ranging from 1.7% for lossless compression to 9% for an
error tolerance of 10.

B. OPTIMIZATION BY FIXING GRADIENT
QUANTIZATION
In JPEG-LS, gradient quantization is a function of the NEAR
parameter. As a result, the central quantization bin is ex-
panded and the rest are scaled proportionally. Probably, the
quantizer was designed in this manner to be able to use the
run-length coder in this lower entropy scenario, but it was
not considered necessary for a coder capable of handling
low entropy distributions. For this reason, the quantization
thresholds were fixed to those computed using NEAR = 0. As
a result, the column labeled as "Entropy_fix_ctx" in table 3
was obtained. As it can be seen in the table, this change would
allow getting better compression ratios as the error tolerance
increases. As expected, although this change reduced the
estimated symbol entropy, it worsens the performance of
JPEG-LS.

Additionally, a hardware implementation of the codec
that supports multiple values of NEAR is slightly simplified
resulting in smaller and faster logic for the gradient quantiza-
tion.

It is worth noting that the changes introduced to the model,
particularly to the gradient quantization, did not always result
in an improvement in the estimated entropy. For example, the
fixed gradient quantization worsens the entropy estimation of
the synthetic image "zone plate" for all NEAR > 0. How-
ever, the changes resulted in reduced entropy estimations in
most cases, particularly for the photographic images, which
are more relevant given the applications of low complexity
lossless and near-lossless compression.

IV. LOCO-ANS OVERVIEW
LOCO-ANS block diagram can be seen in fig. 3. It can be ap-
preciated that the system has a single mode of operation and
the coder was replaced with a new one (explained in section
V). Additionally, some other modifications were introduced.

As it can be observed in the diagram, the alternative
TSG model is used, then, z and y are computed and θ
and p estimated (explained in section VI). Given the results
obtained in section III, gradient quantization uses a fixed
quantizer function (thresholds computed usingNEAR = 0).
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FIGURE 3. LOCO-ANS block diagram.

Also, as in the standard extension, the prediction correction
is configured so that the fractional bias, s, tends to stay in
(−0.5, 0.5] and the sign of the prediction error is inverted
when s > 0.

A. ENCODING ALGORITHM SUMMARY

The encoder algorithm can be summarized as follows, where
(*) denotes a new procedure and (†) one taken from the
standard extension.

Scanning the image (with an ibits pixel depth) sequen-
tially from left to right and from top to bottom:

1) Read the first pixel and store it directly, also updating
the row buffer (*).

2) Read a new pixel.
3) Compute the gradients, quantize them (*) and obtain

the pixel context.
4) Compute the fixed prediction.
5) Get the prediction bias and the TSG quantized param-

eters estimations, p̂q and θ̂q for the context (*).
6) Correct the prediction using the bias and compute the

prediction error.
7) Invert the sign of the prediction error if the context is

negative and if s > 0 (†).
8) Obtain the quantized error using the NEAR parameter

and reduce it modulo α, where α = 2ibits ifNEAR =
0 else α = (2ibits−1+2∗NEAR)/(2∗NEAR+1).

9) Compute z and y and store it in the coder input buffer
with their distribution parameters (*).

10) Check if the symbol block is complete, and if so, use
the coder presented in section V to process the whole
block and append the resulting binary stack to output
bit stream (*).

11) Reconstruct the pixel and store it in the row buffer.
12) Update the prediction bias (†) and the TSG parameters

estimations (*).
13) If there are more pixels in the image, return to step 2.

Although presented as an ordered list, notice that some of
these steps can be done completely or partially in parallel.

V. AN ANS-BASED CODER FOR TSG SOURCES
To use tANS in an adaptive setting, in general, one table
per symbol distribution is required, so there is a trade-off
between table resources and KLD. Additionally, more tables
can also imply a reduction in the coder throughput.

Given the simplicity of the parameter estimation proce-
dures and the coding efficiency of ANS, the proposed system
encodes the (y, z) tuple components separately, instead of
the TSG distributed error. Notice that choosing to code the
(y, z) tuple components independently, allows having tables
tuned to the distributions of each component instead of tuned
to the tuple join distributions, which is needed if using the
TSG model described by eq. 2. In this way, the number
of required tables is equal to |{θ̂q}| + |{p̂q}| instead of
|{θ̂q}|∗|{p̂q}| tables, where |{θ̂q}| and |{p̂q}| are the number
of reconstruction values supported for θ and p, respectively.

In this section, the codification procedures for y and z
variables are presented. To simplify the explanation, as most
algorithms do not strictly depend on ANS, it is first assumed
that the encode and decode order are the same (which is not
true for ANS), addressing the codification order required by
ANS in section V-C;

A. ADAPTIVE BERNOULLI CODER

Coding the y binary variable with tANS is simple. Given a
quantized estimation of the Bernoulli parameter p̂q = Qp(p̂),
where Qp is the chosen quantization function for the p
parameter, a unique index is assigned to it, which is used to
select the ANS table tuned to p̂q .

To half the number of required tables, if p̂q > 0.5, then y
is inverted and p̂q is set to 1− p̂q . On the decoder side, when
p̂q > 0.5, then p̂q ← 1− p̂q is used to select the decode table,
and the obtained symbol is inverted.

Note that assuming the TSG distribution hypothesis holds
and that the bias cancellation procedure works well, and
given that p = (θ1+s)/(θ1−|s| + θ|s|) and s ∈ (−0.5, 0.5]
then p ∈ [θ/2, 0.5]. In practice, using the Rawzor dataset,
limiting the p̂ to that range does not increase the bpp, except
for the "zone plate" artificial image.
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B. BASIC GEOMETRIC CODER
Given a symbol z coming from an infinite alphabet source
with a geometric distribution and a quantized parameter
estimation θ̂q = Qθ(θ̂), where Qθ is the chosen quantization
for the θ parameter, the probabilities of z are computed as:

P(θ̂q)(z) = (1− θ̂q) · θ̂q
z

(7)

To code this type of symbol source using tANS, one
main challenge had to be overcome. Taking into account the
maximum possible value of z for the image compressing
application, the cardinality of the symbol source is very large,
which leads to high resource requirements for the tANS
tables. Additionally, eq. 7 shows that the probabilities of z
can decrease very fast. So, as seen in section II-B4, ANS
would require an impossibly large state to cover the whole
z range, which, in turn, exponentially increases the memory
requirements. This could be addressed with binarization, but
there is an alternative enabled by the memoryless property of
geometric distribution, which allows a simpler, scalable and
generally higher throughput system.

Both the large cardinality and high probability precision
problems can be addressed by using conditional probabilities
when the symbol z is larger than an implementation defined
threshold. Symbols in the range [0..(C − 1)] are coded
directly, choosing the ANS mode (ANS table computed for
a certain distribution) according to the provided θ̂q , which
also determines the C constant. For larger symbols, the
coder inserts C, which stands for "z ≥ C". Applying the
memoryless property, it can be seen that the distribution of
(z − C) given that z ≥ C is the same as z. For this to
be strictly true, z should come from an infinite set not a
constrained one, as in the case of error residuals, but the set
is large enough, so there is no significant difference, at least,
for the θ̂ seen in practice. Then, using the same ANS mode
(as they have the same distribution), the system tries to code
(z − C) and, again, if it is greater or equal to C, it inserts
C. This process is repeated until a symbol different that C is
coded.

Notice that in this way, without the need of deriving
probabilities for the decomposed symbols or any additional
statistics gathering process, and using a stateless coder with
C+1 symbols, any number originated from an infinite alpha-
bet source with the memoryless property can be optimally
encoded. In this way, for each supported θ̂q , just one tANS
table tuned to a C + 1 symbol source is required.

C. CODIFICATION ORDER FOR ANS
If ANS is used to code the symbols, then for the bitstream to
be decodable, the codification order must be inverted.

1) Symbol block codification order
As mentioned before, the ANS output binary acts as a Last In,
First Out (LIFO) memory, so prior to coding, the symbols are
stored with the necessary adaptation parameters and coded
in reverse order, as proposed in [18]. In this case, θ̂q and

p̂q parameters should be stored alongside the (y, z) tuple. In
some cases, it is not possible or desirable (added latency) to
store these variables for the whole image, so smaller blocks
can be used at the cost of some additional bits (the final ANS
state needs to be sent after each block and small inefficiencies
can arise due to word alignment) effecting slightly the overall
coding efficiency. The decoder needs to know the block size,
which can be included in the compressed image header.

In general, the additional bits per symbol due to the need
of transmitting the final ANS state at the end of each block
and the requirement of aligning a new block to a certain word
size is going to be, on average:

KLD = (state_bits+(word_bits−1)/2)/block_size (8)

For example, for a 6 bit ANS state, aligning binary blocks
to bytes and using a block size of 2048 pixels, KLD = (6 +
(8− 1)/2)/2048 = 0.0046 bits/pixel.

As suggested in [18], the initial state of the ANS coder can
be used to carry information, but, in the system prototypes,
the initial ANS state is used as a sanity check of each block.
That is, the encoder always sets the initial state to 0 (actually
to 2state_bits), and the decoder checks after each block that
the final ANS state is 0 (corresponding to the first in the
encoder side).

In hardware implementations, to avoid stalls, a ping-pong
buffer should be used. In this manner, a block can be pro-
cessed, while the next one is being generated.

2) Subsymbol codification order
If y is coded before z, then z is decoded before y. Addition-
ally, for each symbol z, the order of operations described in
section V-B is as the decoder would see them. The encoder
should proceed in the reverse order, inserting first the last
subsymbol the decoder should see. It is not hard to see
that the value of that subsymbol is z mod C (trivial to
implement if C is chosen to be a power of 2). After, if
required, it inserts a sequence of n C sub-symbols, where
n = (z − (z mod C))/C.

Finally, the codification of a single z symbol could be
implemented as seen in fig. 4. There, store_in_binary_stack
function call deals directly with the output binary and its
arguments are an integer variable with the bits to store and
the number of bits to take starting from the least significant
bits. The ANS tables are stored in the array ANS_table,
which is addressed by the quantized distribution parameter
id, the current state of the ANS coder and the new symbol
to encode. Each element of the table is a structure with the
number of bits that should be sent to the output and the next
ANS state. Note that ANS operation can be implemented
differently [19], [30].

3) Binary store order
As the decoder reads the binary bits in the inverse order, the
encoder generates them and to avoid the need of appending
a header to each binary block, bits should be stored in
the reverse order as they are produced. This can be easily
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Require: z
Require: param

1: c← get_cardinality(param)
2: remaining_sym← z
3: subsym← z mod c
4: repeat
5: remaining_sym← remaining_sym− subsym

{tANS coding}
6: obits← ANS_table[param][state][subsym].bits
7: store_in_binary_stack(state, obits)
8: state← ANS_table[param][state][subsym].nx_st
9: subsym← c

10: until remaining_sym = 0

FIGURE 4. Codification procedure for a single geometrically distributed
symbol using tANS.

implemented storing coder output bits in a stack, and then
copying the whole binary block below the previous binary
block.

D. GEOMETRIC CODER ITERATIONS
Although this algorithm may appear to be slow for its it-
erative nature, even with small C ∈ [1, 16] and for the θ
observed in 8-bit images, it is not. This can be appreciated
in fig. 5, where the expected iterations per symbol (i) were
plotted, which is computed as follows:

i =
1

1− θC
(9)

Note that the equation can be approximated with i ≈ St/C+
1 for high St/C, where St =

∑
zi/t = θ/(1− θ).
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FIGURE 5. Geometric coder mean iterations as a function of St compared to
number of iterations resulting from a Rice-based binarization strategy. The
approximations are shown with dashed lines

As a reference, fig. 6 shows the distribution of St for
different values of NEAR for the Rawzor dataset.

Notice that the larger St, the smaller rate at which P (z)
decreases. Additionally, C can be a function of θ̂q . So, in

general, although i increases almost linearly with St, the
maximum C value for a given an ANS state size tends to
increase with St. Of course, the state size has to be large
enough to be able to code θ and (1 − θ) (the two symbols
for C = 1).

An alternative strategy to the one presented in fig. 4 would
be to binarize the symbol and then proceed with a binary
coder. Instead of a trivial binarization, this procedure could
consist in using Rice-codes [36] for the symbol, which is a
similar method to the one employed in the JPEG-LS standard
extension. Fig. 5 allows to compare the iterations required
by the proposed method with the average number of bits
(and thus iterations of the binary coder) resulting from a
Rice coding binarization strategy. There, the k rice parameter
was chosen as the closest integer to −log2(−log2(θ)). It can
be seen that in range of interest, with small values of C,
the proposed method requires fewer iterations. Moreover, no
binarization or bit probability modeling is required.

Although the coder can be configured so that i stays within
some desired bounds, the maximum possible iterations are
higher, which can lead to data loss if buffers are not correctly
sized. Given that there are many situations in which buffer
sizes and/or latency are highly constrained, this issue is
addressed in the next section.

E. LIMITATION TO CODER ITERATIONS AND SYMBOL
EXPANSION
One of the concerns that arises when analyzing the proposed
coding algorithm is the possibility of bursts of symbols
requiring many cycles to code them and, particularly for the
smaller θ, the possibility of local expansion. Both burst of
long iterations and expansions have to be considered when
sizing buffers before and after the coder, respectively. For this
reason, it would be desirable to have a direct mechanism to
limit them.

A way of limiting both the expansion and the number of
iterations would be the following: The maximum number
of iterations (NI) is chosen. Then, NI consecutive sub-
symbols C will act as an escape mechanism, after which z
is stored directly using z_bits = dlog2(max(z)+1)e. Given
the modulo reduction applied to the prediction error in JPEG-
LS, z can be coded with (ibits − 1) bits, where ibits is the
pixel depth of the input image.

Alternatively, the residual (z − NI · C) could be stored,
which in some configurations might require fewer bits to
code. What is more, the GPO2 coder could be used to code
this residual, selecting k from a small array indexed by the
distribution parameter. These codes are more efficient for
high θ geometric distributions, which at the same time are
the most likely to require this mechanism for a given C.

For an ANS implementation of the coder, the order is
reversed. If z ≥ NI×C, then z (or the residual) is coded and,
after that, NI consecutive C sub-symbols are coded using
the ANS encoder as usual. On the receiver side, upon seeing
NI C sub-symbols, it will get out of the loop and proceed to
get z directly (or through the Golomb decoder). Note that,
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FIGURE 6. St Histogram for Rawzor dataset using different NEAR parameters. Bins bounds are placed at (2x, 2x+1) with 2x representing the bin.

Require: z
Require: param
Require: z_bits

1: c← get_cardinality(param)
2: remaining_sym← z
3: subsym← mod(z, c)
4: if z ≥ NI ∗ c then
5: store_in_binary(z, z_bits)
6: remaining_sym← NI ∗ c
7: subsym← c
8: end if

{code z or escape symbol with tANS}
9: repeat

10: remaining_sym← remaining_sym− subsym
{tANS coding}

11: obits← ANS_table[param][state][subsym].bits
12: store_in_binary_stack(state, obits)
13: state← ANS_table[param][state][subsym].nx_st
14: subsym← c
15: until remaining_sym = 0

FIGURE 7. Codification of single z limiting the iterations.

as before, if C is chosen to be a power of 2, NI × C is
just a binary shift. Alternatively, those values can be stored,
and then, retrieved using the parameter distribution identifier.
Finally, for the simpler case where the GPO2 coder is not
used to code the residual, the algorithm can be expressed as
in fig. 7, where a new input is required, z_bits.

1) Implications on coding efficiency
The implementation of this iteration limitation mechanism
will tend to decrease the coding efficiency of the coder. In its
simpler version, it forces all symbols equal or above NI ×C
to be coded using a fixed amount of bits (z_bits). The KLD
can be obtained as:

KLD(L, θ) =

θL ·
(
z_bits− Entropy(z|z ≤ max(residual)

) (10)

where L = NI · C.
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FIGURE 8. Coding inefficiency (KLD/Entropy) caused by the iteration
limitation mechanism using the direct z codification after the escape
mechanism. Curves for NI = 7

The code inefficiency (KLD/Entropy) due to the use of
the simple coding of z or its residual can be observed in fig. 8,
setting NI to 7 and using small values of C, for St in the
range observed in dataset. As it can be seen, KLD can be
relatively small even for the simplest codification and using
small numbers of C.

2) Upper bound on the code length
As mentioned before, apart from limiting the iterations, it
would be useful to obtain an upper limit on the code length.
For each θ̂q , if Max(z) ≥ NI × C, there are two symbols
that could have the maximum code length. These are either
z ≥ NI ×C (all symbols in this set are coded with the same
length) or z = NI ×C − 1. Then, if NI > 0, an upper limit
for a single symbol and a given θ̂q would be:

Max code length ≤ max
state

(tANSθ̂q [C]) · (NI − 1)+

max
(
max
state

(tANSθ̂q [C]) + z_bits, max
state

(tANSθ̂q [C − 1])
)

≤ ANS_state_bits ·NI + z_bits
(11)
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Here, tANSθ̂q is the ANS table for θ̂q storing the number
of bits to send to the output, which is addressed by the symbol
and ANS state (omitted in the equation). This is an upper
bound as, after an ANS symbol is coded, only a subset of
the state domain is possible. To have the exact maximum
code length for a given θ̂q , the sub-symbol sequences used
in eq. 11 can be coded, iterating over the state domain to set
the initial state.

However, upper bounds on long sequences of symbols
(like the coder block size) are more useful to size the output
buffer. Then, if the ANS tables are already generated, using
a simulation, the buffer could be computed such that there
is no possibility of exceeding its size. A complete block of
the symbol that produces the maximum code length should
be coded for each θ̂q , taking the largest binary block to size
the output buffer. Compared to eq. 11, this procedure would
produce tighter upper bounds.

If the ANS tables are not yet generated, the worst case
could be assumed, in which all the max functions applied
over tableANS in eq. 11 are equal to the ANS state number
of bits. This would be accurate if the entropy of the C
subsymbol, is close to the state bits. If that is not the case,
entropy values plus safety margins (see section II-B) could
be used instead of the max

state
(tANSθ̂q [ ][ ]) functions to do the

estimation.

3) Interactions between the coder and the rest of the system

Something that should be noticed is that there is a negative
feedback loop in place. Code expansion and long iterations
are due to a large z given the estimated θ̂q for the context
and C = f(θ̂q). If this situation persists, the large errors are
going to drive θ̂q up, and subsequent large z that belong to
this context would produce fewer bits, and fewer iterations as,
in general, C can be increased with θ̂q for a given ANS state
size. If C is not increased, as it might be limited for resource
requirement reasons, the number of iterations would remain
the same, but maximum code length will tend to decrease
with increasing θ̂q estimations, as the number of bits used to
code the sub-symbol C decreases.

For this reason, the actual largest binary output depends
on the relative values of the block size, context domain
size (number of context defined by surrounding quantized
gradients), context θ̂q parameter estimation inertia, NI , C
for each θ̂q . The smaller the block size, the bigger context
domain size, and the higher θ̂q parameter estimation inertia,
the closer it gets to the limit established by eq. 11.

VI. DISTRIBUTION PARAMETERS ESTIMATION
To integrate the presented coder with JPEG-LS, the param-
eter estimation procedures to obtain θ̂q and p̂q need to be
introduced. These procedures not only estimate the distri-
bution parameters, but also define the Qp and Qθ parameter
quantization functions.

A. P PARAMETER ESTIMATION
An approximation of eq. 5 can be used to obtain p̂q . For
this, the Nt sum is kept for each context and the bias
cancellation procedure with some minor modifications can
be employed, implementing a quantizer with uniform bin
sizes. The reconstruction values can be chosen to minimize
the KLD within each bin.

Require: y, Nt, N , pid
1: N ← N + 1
2: Nt ← Nt − pid + (y << Ntp)
3: Li← fi(N)
4: Ls← fs(N)
5: if (Li > Nt) then
6: pid ← pid − 1
7: Nt ← Nt +N
8: else if (Nt >= Ls) then
9: pid ← pid + 1

10: Nt ← Nt −N
11: end if

FIGURE 9. Update procedure the estimation of p Bernoulli parameter after
accessing the context.

In fig. 9, N is the context counter also used for the bias
cancellation and pid is p̂q id number, which is also kept for
each context. The parameters of this algorithm are Ntp and
the bound functions, fi(N) and fs(N). Ntp determines the
number of fractional bits stored in the Nt register and, as a
consequence, the size of each quantization bin is 2−Ntp and
Ls − Li = fs(N)− fi(N) = N .

There are several ways (Li, Ls) can be set. The extreme
cases are analyzed, that is, the case (−N/2, N/2) (where
pid/2

Ntp is centered within bin bounds) and (0, N) (where
pid/2

Ntp is not centered, but equal to the lower bound).
Fig. 10 shows the KLD for each of these cases for p ∈ [0, 0.5]
and Ntp = 4. Here, the reconstruction values were chosen to
be in the center of the bin, except for bin 0 of the centered
case, where the reconstruction is computed taking p = 0 as
the lower bound.

Although slightly more complex, choosing the (−N/2,
N/2) bounds allows a lower KLD for a given precision as
it has a smaller bin (half the size) in the lower end of p range,
where the KLD is more sensitive. This comes at the cost
of an additional bin in the p ∈ [0, 0.5] range (resulting in
2Ntp−1+1 bins). However, the optimal reconstruction value
of the upper bin (bin 2Ntp−1) is p = 0.5, so the tANS coder
can be bypassed as y does not need to be coded (entropy = 1).
Then, the number of tables required for both configurations
is 2Ntp−1. It has to be noticed that low p̂ ranges are used
for low θ, so the impact of choosing one or the other would
be appreciated for lower entropy cases (high NEAR and/or
images that are accurately predicted, like smooth surfaces).

For photographic images, as forcing p̂q <= 0.5 does
not increase the bpp, the condition pid < (2Ntp−1 − 1)
can be added to the else if (fig. 9), avoiding the need
to implement the logic to code y for the rare cases when
p̂q > 0.5 (as indicated in section V-A).
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FIGURE 10. KL Divergence result of the quantization of the p̂ parameter
estimation for "centered" bin bounds ((id− 1/2)/2N tp, (id+ 1/2)/2N tp)
and "not centered" bounds (id/2Ntp , (id+ 1)/2Ntp ) using Ntp = 4
(accumulator precision). The average KLD, in bits, are shown between
parentheses

B. θ PARAMETER ESTIMATION
Unlike the GPO2 coder used in LOCO-I, where the quanti-
zation of the TSG distribution parameters has to be adapted,
particularly, to the k Rice parameter, with the proposed coder
any quantization can be chosen. However, it is necessary to
find a good trade-off between coding efficiency and coder
resources.

An approximation of equation 6 is used to estimate θ. To
implement it, a St sum register is stored for each context.
Then, St needs to be computed and quantized, obtaining
indexes which can be directly mapped to θ using eq. 6 with α
and β set to 0. Given this direct relationship between St and
θ, these two terms are used interchangeably.

1) Constant ratio quantizer
The constant ratio quantizer, CRQ, is defined here as hav-
ing the lower and upper bounds of each bin computed as
(Li, Ls) = (Stx ∗ r, Stx/r), where Stx is the reconstruction
value of the bin x and r ∈ (0, 1) is a constant the regulates
the size of the bins. This quantizer tends to keep the average
KLD per bin constant when it is applied to St . Once St0
and r are set, all bins bounds and reconstruction values can
be determined. The bin bounds can be placed at 2i, i ∈ Z,
to obtain the quantization function used in LOCO-I for the
average absolute error. However, as the presented coder is
able to handle lower entropy distributions, the precision of
the St register can be increased (as it was done for the Nt
register) in order to support the quantization of St < 1, which
has more impact as NEAR increases.

The inefficiency (KLD/Entropy) due to the quantization
of St can be observed in fig. 11, where θ is computed as
St/(St + 1) and reconstruction values are computed using
the rule stated above. Although those are not the optimal
reconstruction values, they are close to them. Assuming a
uniform distribution of St in the observed range, this simple
quantization has on average inefficiency of 0.48%.
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FIGURE 11. Coding inefficiency due to the quantization of St for two simple
quantizers

The division and quantization procedure can be carried out
in several ways. LOCO-I presents an iterative method, imple-
mented with a one-line for loop. Alternatively, the procedure
in fig. 9 can be adapted to accomplish the same quantization.
To do this, Li is set to 0, Li = N << f(θid, Stp) (where
Stp is the precision of the St register) and in line 2, instead
of subtracting θid, the bin lower bound needs to be computed
based on θid and Stp.

These two procedures will not always output the same
result, as the latter can only produce a decrement/increment
of θid of 1 with respect to the previous id (this can be
extended at the cost of more logic). In addition, this method
requires storing θid in the context, although the size of the
St register will be small as it will contain only the division
residual.

In a software implementation, particularly a single thread
one, this procedure will tend to be faster compared to the it-
erative one. However, from the hardware perspective, despite
its iterative nature, the first alternative is appealing as it can be
carried out outside the error quantization loop, and then the
system throughput will tend to be higher. In this case, St and
N are sent to the next stage where a possibly highly pipelined
module obtains θid, while the context is being updated and a
new sample is processed by the image quantizer. Whereas for
the second alternative, the quantization procedure and update
of the St index in the context needs to be completed in order
to continue with next image sample.

2) Finer grain average quantizers
If higher coding efficiency is required, maintaining a simple
quantization logic, the previously obtained quantization bins
can be uniformly divided. This can be implemented in several
ways, for example, see fig. 12. This algorithm halves each
bin, generating the inefficiency curve labeled "Half constant
ratio" in fig. 11 when using optimal reconstruction values.
It achieves an average inefficiency of 0.12% at the cost of
doubling the number of required tables for a given St range.
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Require: St
Require: N
Ensure: θid

1: St ← St + (z << Stp) {In the update phase}
2: θid ← 0
3: l← N
4: while St > l do
5: θid ← θid + 2
6: l← l << 1
7: end while
8: if St > l − ((l + 2) >> 2) then
9: θid ← θid + 1

10: end if

FIGURE 12. Procedure to obtain the quantized estimation parameter of the
geometric distribution, θ̂q , using the halved constant ratio quantizer.

C. RESETS
As done in JPEG-LS, the context count N and accumulators
(in this case St and Nt) are halved when N reaches N0 =
2i, i ∈ N to limit the size of the registers and better adapt to
changes in the context statistics.

VII. SELECTION OF CODER PARAMETERS
Different scenarios might need different trade-offs between
resources, code efficiency, throughput and latency, and re-
quiring support for a variable set of NEAR settings and
types of images. However, it is not an easy task to establish
the best configuration because of the strong coupling between
the parameters of the coder.

These parameters are:
• The ANS state size, which sets limits to the ranges of

possible θ̂q and p̂q values, as well as, the maximum C
for a given θ̂q .

• The precision of the St accumulator, Stp, which sets
a lower bound to the θ̂q values. If Stp is such that the
lower bound it sets is equal or below the one set by the
ANS state size, increasing Stp has almost not impact.
The only effect it would have is that the accumulator
will have an additional memory of past errors.

• The maximum θ̂q value.
• The Qθ quantization function
• The precision of the Nt accumulator, Ntp, which sets

a lower bound on the p̂q range. If only considering the
centered uniform quantizer presented in section VI-A,
Ntp also determines the Qp quantization function.

• The ANS table cardinality, C, for each θ̂q .
• The code block size.
• The geometric coder maximum number of iterations,
NI .

All system performance measurements are effected by all or
most of the above parameters.

A. SELECTION METHODOLOGY
1) Preliminary considerations
A design methodology was derived from the mentioned
relationships between coder parameters and the experience
obtained when creating the prototype configurations for the
experiments. For them, given an ANS state size, the main
objective was to obtain configurations for a wide range of
prediction error entropies. That is, to aim at a wide range of
images and NEAR values. Additionally, for each ANS state
size, a good trade-off between code efficiency and resources
was sought. Then, the methodology intends to support the
widest range of θ̂ and p̂ for a given state size.

In addition, Ntp is set so that it does not limit the range
of p̂, but not increasing it beyond that point as the impact
on efficiency tends to be minimal while the number of tables
doubles for each additional bit of precision (if the quantizer
is configured to obtain the maximum number of quantization
bins given the selected precision). Also, by default, the con-
stant ratio quantizer is used for St and the centered uniform
quantizer for p.

The maximum θ̂ that has practical implications to code
efficiency is affected by the minimumNEAR supported, the
pixel depth and the type of images to encode (classifying
them according to their entropy, given the chosen model).
Assuming that the actual z distribution as a geometric condi-
tioned with the maximum possible value (2ibits−1 − 1), then
as θ tends to 1, then St will tend to (2ibits−1 − 1)/2 (half of
the range). Fig. 6 shows that for the 8-bit gray images of the
dataset some pixels reach this maximum (less than 0.4% of
them). However, if only photographic images are considered,
just 0.16% of the pixels reach a St > 16. Then, to achieve
high coding efficiency, the maximum θ̂q should correspond
to a quantization bin that covers or is above St = 32, in the
general case, and St = 16 for photographic images. If the
minimumNEAR > 0, these values would be approximately
scaled down by δ = (2 ·minNEAR) + 1.

To create the ANS tables a slightly modified version of
the heuristic algorithm (mentioned in section II-B) was used.
The goal of this modification is to ensure that the resulting
table is a valid one, given the cardinality of the symbol
source. This is done detecting if the original algorithm fails
to assign at least 1 state to each symbol and then forcing
it. In these cases, the KLD is expected to be higher than
what eq. 1 states given that the tuning of the table to the
set of symbols probabilities would tend to be worst. These
tables are referred to as suboptimal tables. Note that this table
generation algorithm can be improved.

2) Methodology
The methodology is as follows:

1) Choose the ANS state bits.
2) Set Stp and Ntp such that they do not increase the

lower bound on the range of the distribution param-
eter estimations they affect (θ̂ and p̂, resp.), given
the selected ANS state size. For this, start with small
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precision, for example, set both Stp and Ntp to 0.
Then, using C = 1, try to generate the ANS tables for
the first bin of each quantizer (smallest θ̂q and p̂q). If
it succeeds, increment the corresponding accumulator
precision. If it returns a suboptimal table, stop.

3) Set the maximum θ̂q . Choose the minimum θ̂q between
the maximum one that has practical implications to
compression and the maximum supported by the ANS
state size. To check this latter maximum, proceed
similarly to step 2, iterating over the order set of θ̂q
until a suboptimal table is returned. Particularly for
hardware implementations where ANS tables would
be stored in on-chip memory, using a number of St
quantization bins different to a power of 2 will result
in unused resources. Then, if the ANS state size allows
it, increasing the number of St quantization bins up to a
power of 2 might provide some additional compression
without requiring more resources.

4) For each θ̂q , choose the maximum allowed C. For this,
proceed similarly to step 2, but in this case, start with
C = 1 and iterate over power of 2. In the experiments,
the maximum allowed C (8) was not big enough to
have a significant intrinsic ANS KLD (see eq. 1). How-
ever, depending on the implementation, the maximum
used C can significantly affect memory resources and,
particularly in the case of hardware implementations,
coder throughput. For this reason, an upper limit to C
may be set using the ANS state bits and the number of
required ANS tables to do resource and performance
estimations.

Initially, to choose the ANS state bits, it can be assessed
the number of bits that can be afforded given the memory re-
sources and performance requirements. This should be done
assuming that 16-64 ANS tables would be employed. For
FPGA implementations, the results in [30] can be used as a
guide to understand the impact of resources on performance.

3) Setting the code block size and NI

The code block size is relatively decoupled from the rest
of parameters. The larger it is set, the better compression
ratio achieved. However, if the binary is aligned to bytes and
the ANS state bits is below 10, no significant improvement
will result increasing the code block size above the tens
of thousands of symbols. Increasing its size comes at the
cost of more memory resources and some impact on latency,
although, in practical scenarios, this does not represent a
major problem to achieve high efficiency and low latency.
For most of the experiments, presented in section VIII, the
block size was set to 2048 as it results, on average, in a
KLD of 0.005 bits or less when binary blocks are aligned
to bytes (ANS state bits ∈ [4..7]). Moreover, for an FPGA
implementation processing 8-bit images and using 32 p̂q
tables and 32 θ̂q tables, one block of symbols with their
distribution parameter estimations can be stored in 1 Xilinx
36K BRAM or 2 Intel M20K.

Regarding NI , a larger value tends to reduce the bpp.
However, as in the case of the code block size, increasing
NI has diminishing returns. Also, the worst-case throughput
worsens linearly (initially) with NI . Most test were run with
NI set to 7, the number of bits required to represent z
variable for 8-bit images. Then, the worst case throughput is
the same as the resulting from a coder using trivial binariza-
tion. Using this value, little negative impact on compression
is seen in general, and almost no impact for photographic
images.

B. TUNING THE CODER PARAMETERS
If the application needs to support a limited number of
NEAR values and/or type of images, then better trade-offs
between code efficiency and resources could be obtained.

Using the halved constant ratio quantizer for St (doubling
the number of bins covering the same range) can have a
greater impact on code efficiency than increasing the ANS
state bits, while in former equal or less memory resources
are required. This effect can be observed in the experimental
results shown in the following section.

Similarly, for p̂, changing the centered uniform quantizer
with the non-centered one and incrementing Ntp in one,
would result in the same minimum p̂q , but the rest of the p̂
range would have bins that are half the size, resulting in a
smaller KLD.

If performance models and resource restrictions are avail-
able, the optimization task could be handled algorithmically.

VIII. EXPERIMENTAL RESULTS
A prototype of LOCO-ANS was implemented using C++,
which was tested with a set of different configurations with
the goal of exploring the design space. The tested configura-
tions can be seen in table 4. The name of the configurations
indicates the most relevant parameter settings, following the
format:

Nt{Ntp}_St{Qθ}{Stp}_ANS{State bits}
, where Qθ is "cg" for the (coarse grain) constant ratio

quantizer or "fg" for the (finer grain) halved constant ratio
quantizer described in section VI-B. In all cases, N0 was set
to 64 (JPEG-LS default), the centered uniform quantizer was
used to quantize the distribution parameter estimation p̂ and
the maximum C was set to 8.

Apart from the configuration parameters, table 4 shows the
total number of rows (total number of tables by the number
of states), which provides a measure of the memory resources
required by each configuration (the actual memory utilization
depends on the implementation).

A. ANALYSIS OF LOCO-ANS CONFIGURATIONS
PERFORMANCE
The average compression results (over the whole dataset) can
be seen in table 5 and plotted in fig. 13. Additionally, the
entropy estimation (according to the model) is shown in the
figure to appreciate the efficiency of the configurations.
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TABLE 4. Prototype configurations used in the experiments

.

Conf. name State bits Stp Max Stq(θ̂q) Qθ Ntp C range # of θ tables # of p tables total # of rows
Nt4_Stcg5_ANS4 4 5 22.63 (0.958) CG 4 1-8 11 8 304
Nt5_Stcg6_ANS5 5 6 90.51 (0.989) CG 5 1-8 14 16 960
Nt5_Stfg6_ANS5 5 6 55.62 (0.982) FG 5 1-8 26 16 1344
Nt6_Stcg7_ANS6 6 7 90.51 (0.989) CG 6 1-8 15 32 3008
Nt6_Stcg8_ANS7 7 8 90.51 (0.989) CG 6 1-8 16 32 6144
Nt6_Stfg8_ANS7 7 8 111.24 (0.991) FG 6 1-8 32 32 8192

TABLE 5. Mean bpp and iterations obtained using the prototype configurations with NI=7.

Nt4_Stcg5_ANS4 Nt5_Stcg6_ANS5 Nt5_Stfg6_ANS5 Nt6_Stcg7_ANS6 Nt6_Stcg8_ANS7 Nt6_Stfg8_ANS7
Error bpp 1 i bpp 1 i bpp 1 i bpp 1 i bpp 1 i bpp 1 i

0 3.41 (-2.8%) 1.3 3.31 (0.4%) 1.3 3.3 (0.7%) 1.3 3.29 (0.9%) 1.3 3.29 (0.9%) 1.3 3.28 (1.2%) 1.3
1 2.04 (3.5%) 1.2 2.03 (4.2%) 1.2 2.02 (4.5%) 1.1 2.02 (4.4%) 1.1 2.02 (4.5%) 1.1 2.01 (4.8%) 1.1
2 1.55 (5.9%) 1.1 1.53 (7%) 1.1 1.53 (7.2%) 1.1 1.53 (7.3%) 1.1 1.53 (7.4%) 1.1 1.52 (7.7%) 1.1
3 1.28 (8.4%) 1.1 1.26 (9.9%) 1.1 1.26 (10.1%) 1.1 1.25 (10.4%) 1.1 1.25 (10.4%) 1.1 1.25 (10.7%) 1.0
4 1.1 (10.9%) 1.1 1.07 (12.8%) 1.1 1.07 (13%) 1.1 1.07 (13.5%) 1.0 1.06 (13.5%) 1.0 1.06 (13.8%) 1.0
5 0.96 (13.2%) 1.1 0.94 (15.4%) 1.1 0.94 (15.6%) 1.1 0.93 (16.3%) 1.0 0.93 (16.4%) 1.0 0.92 (16.6%) 1.0
6 0.86 (14.8%) 1.1 0.83 (17.4%) 1.1 0.83 (17.6%) 1.1 0.82 (18.4%) 1.0 0.82 (18.6%) 1.0 0.82 (18.9%) 1.0
7 0.77 (15.9%) 1.0 0.75 (18.9%) 1.0 0.74 (19.1%) 1.0 0.73 (20.1%) 1.0 0.73 (20.3%) 1.0 0.73 (20.5%) 1.0
8 0.7 (16.6%) 1.0 0.67 (19.7%) 1.0 0.67 (20%) 1.0 0.66 (21.1%) 1.0 0.66 (21.4%) 1.0 0.66 (21.7%) 1.0
9 0.65 (17.5%) 1.0 0.62 (21.3%) 1.0 0.62 (21.6%) 1.0 0.61 (22.9%) 1.0 0.6 (23.2%) 1.0 0.6 (23.4%) 1.0

10 0.6 (18.2%) 1.0 0.57 (22.7%) 1.0 0.56 (23.1%) 1.0 0.55 (24.5%) 1.0 0.55 (24.8%) 1.0 0.55 (25%) 1.0

The results presented here were obtained averaging the bpp computed for each image, so that all images have the same weight in the average.
Code block size set to 2048 symbols.

1 The improvement percentage compared to JPEG-LS is shown between parentheses.
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FIGURE 13. Mean bpp obtained using the prototype configurations with NI=7 vs. JPEG-LS.

For these experiments, the code block size was set to
2048 and NI to 7. All configurations surpass JPEG-LS
mean compression ratios for all the tested NEAR settings,
except for the Nt4_Stcg5_ANS4 configuration for lossless.
The highest performing configuration, Nt6_Stfg8_ANS7,
achieves a 1.2% mean bpp improvement for lossless, which
increases with NEAR. Interestingly, even the lighter ver-
sion, Nt4_Stcg5_ANS4, is able to obtain remarkable reduc-
tions of bpp for near-lossless compression, with improve-
ments ranging from 3.5% for NEAR = 1 to 18.2% for
NEAR = 10. However, for NEAR > 10 the improvement
percentage for this particular configuration starts to decrease,
as the lower entropy distributions require larger ANS state
sizes and higher precision estimations.

1) Compression of photographic images
It is worth noting that when only considering the photo-
graphic images of the dataset, the bpp improvements are
greater. In this case, as observed in table 6, even the configu-
ration using 4 bits for the ANS state size outperforms JPEG-
LS for all the tested NEAR values, including lossless.

2) Effect of iterations limitation
The results in table 5 and 6 correspond to configurations with
NI = 7. When the number of iterations of the geometric
coder are not limited, the compression ratio slightly increases
for lossless compression of the complete dataset, allowing
the Nt6_Stfg8_ANS7 configuration to reach a 1.3% improve-
ment over JPEG-LS. However, for near-lossless compression
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TABLE 6. Mean bpp for photographic images of the dataset obtained using a
selection of the prototype configurations with NI=7.

Error JPEG_LS Nt4_Stcg5_ANS4 Nt6_Stfg8_ANS7
0 3.20 3.18 (0.5%) 3.15 (1.4%)
1 1.95 1.86 (4.9%) 1.84 (5.8%)
2 1.48 1.36 (8.0%) 1.33 (9.7%)
3 1.22 1.08 (11.5%) 1.05 (13.9%)
4 1.06 0.89 (15.5%) 0.86 (18.6%)
5 0.94 0.76 (18.9%) 0.73 (22.7%)
6 0.84 0.66 (21.6%) 0.62 (26.1%)
7 0.76 0.58 (23.9%) 0.54 (29.1%)
8 0.69 0.51 (25.6%) 0.47 (31.7%)
9 0.63 0.46 (26.9%) 0.41 (34.1%)

10 0.58 0.41 (28.2%) 0.36 (36.8%)

The improvement percentage compared to JPEG-LS is shown
between parentheses

or for the photographic images (including lossless), there
is not a practical difference in compression when setting
NI = 7 compared to not limiting the iterations.

3) Analysis at the image level
A comparison at the image level is presented in table 7,
which shows the number of images of the dataset (and of the
photographic image subset in parentheses) JPEG-LS obtains
better compression ratios for different error tolerances. The
numbers observed for NEAR = 5 repeat exactly up to
NEAR = 12. From that point, configurations with smaller
ANS states start to struggle with lower entropy images, which
can also be appreciated in fig. 13.

The synthetic image "zone plate" is the hardest to com-
press (according to the model) and the one where JPEG-
LS tends to outperform LOCO-ANS. As mentioned in sec-
tion III, because of the change in the gradient quantization
function, the entropy estimation for all NEAR > 0 worsens
for this particular synthetic image. This results in JPEG-
LS obtaining a bpp below the estimated entropy, according
to the modified model for most NEAR > 0. For the
best performing LOCO-ANS configuration in table 7, this
situation occurs for all the cases in which JPEG-LS obtained
a better compression ratio, except for one case where the
average estimated entropy is 0.0001 bits lower that JPEG-LS
bpp. Then, in these cases, the problem lies in the statistical
model (which is better suited for photographic images) and
not in the coder.

The best performing configuration introduced in table 7
has an increased block size of 16384 symbols. This reduces
the KLD due to the need of sending the final ANS state
at the end of a code block and aligning each new block
to a word, in this case, to bytes (eq. 8). For this reason,
the configuration achieves a 1.5%, 5% and 25.7% mean bpp
improvement for NEAR set to 0, 1 and 10, respectively,
when compressing the complete dataset. These improve-
ments increase to 1.6%, 6% and 37.6% when only taking into
account photographic images.

TABLE 7. Number of images of the dataset that JPEG-LS achieves a lower
bpp. Dataset size: 14 images.

Error 0 1 1 2 3 4 5
Nt4_Stcg5_ANS4 8(6) 3(1) 3(1) 3(1) 3(1) 3(1)
Nt4_Stcg5_ANS4 2 8(6) 3(1) 3(1) 3(1) 3(1) 3(1)
Nt5_Stcg6_ANS5 4(3) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt5_Stcg6_ANS5 2 5(3) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt5_Stfg6_ANS5 1(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt5_Stfg6_ANS5 2 2(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg7_ANS6 1(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg7_ANS6 2 0(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg8_ANS7 1(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stcg8_ANS7 2 0(0) 2(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stfg8_ANS7 1(0) 1(1) 1(0) 2(1) 1(0) 1(0)
Nt6_Stfg8_ANS7 2 0(0) 1(1) 1(0) 2(1) 1(0) 1(0)

Nt6_Stfg8_ANS7 2 3 0(0) 1(1) 1(0) 1(0) 1(0) 1(0)

By default, NI is set to 7 and block size to 2048.
1 The number of images, considering only photographic ones, is shown
between parentheses (total of photographic images is 12).
2 Configuration with unlimited iterations.
3 The configuration has a block size of 16384.

B. EXPERIMENTAL SYSTEM EFFICIENCY
To evaluate experimentally the sources of inefficiencies,
given the chosen model, the KLD resulting from parameter
estimation procedures and from the coder were decoupled.
To do this, for each image sample, a second average entropy
computation was performed, denoted as H(TSG(θ̂q, p̂q)),
which estimates the bpps assuming an ideal coder. This
entropy was computed using the quantized estimations of
the distribution parameters (obtained with the procedures
described in section VI), instead of using the optimal esti-
mators θ̂ and p̂ (computed using eq. 5 and 6). Then, the KLD
due to the distribution parameters estimation procedures was
computed as H(TSG(θ̂q), p̂q)) − H(TSG(θ̂, p̂)) and the
KLD due to the coder as bpp−H(TSG(θ̂q), p̂q)).

The resulting KLD, for all images and for NEAR ∈
[0..20] is shown in figs. 14 and 15. These were plotted as
a function of H(TSG(θ̂, p̂)). A logarithmic scale is used for
the KLD axis, given that values in this axis range over 5 or-
ders of magnitude. The entropies and bpp resulting from the
experiments were stored using 4 fractional digits, as it was
considered that increasing it would not provide any useful
information. Because of this, 10−4 is the smallest difference
that can be appreciated in the log scale, smaller values (zero
or negative) are plotted with a KLD = 6 · 10−5. In addition,
this explains the patterns in the 10−4 ≤ KLD ≤ 10−3 range.

1) Parameter estimation efficiency
In fig. 14, in general, it can be observed that high effi-
ciencies are achieved by the distribution parameter estima-
tion procedures. For an image average entropy greater than
1, the quantization of θ̂ (indirectly as St is quantizated)
dominates observed inefficiency. Here, a clear separation
between prototypes using the coarse grain and the fine grain
quantizer for St can be seen. As a consequence of this
effect, Nt5_Stfg6_ANS5 configuration is capable of match-
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FIGURE 14. KL Divergence as a function of the estimated entropy due to
distribution parameter estimation inefficiencies for all images in the dataset for
NEAR ∈ [0..20]. The divergence results from using the quantized
estimations of the distribution parameters (computed as described in section
VI) instead of the estimations obtained using eq. 5 and 6

ing, and in some cases improving, the compression ratios
achieved by the Nt6_Stcg7_ANS6 configuration, whereas the
latter requires about twice the memory resources. The finer
St quantization allows the former to be more efficient for
medium entropies.

However, when the average entropy diminishes below 1,
the effect of having a minimum θ̂q and a minimum p̂q
starts to be noticeable (the entropy diminishes as θ → 0
and p moves away from .5). Here, the main parameter that
separates the points of the plot is the ANS state size, which
determines these minimums. Additionally, the quantization
of p̂ contributes to the increase of the KLD as it is less
efficient in this zone (observed in fig. 10).

On the other end of the range, for high entropies, the effect
of having a maximum θ̂q would also increase the KLD. This
can only be observed for the prototype using a 4-bit ANS
state when losslessly coding the greatest entropy image (zone
plate).

2) Coder efficiency
In the case of the coder KLD, seen in fig. 15, the relevant
parameters are the ANS state size, the code block size and
NI . For an entropy in the (1, 5) range, the KLD is basically
flat, with a small positive slope, and it would mainly come
from ANS intrinsic KLD (eq. 1) and the code block size
(eq. 8). The magnitude of the KLD due to the latter can be
appreciated comparing the Nt6_Stfg8_ANS7 prototype with
block sizes of 2048 and 16384 symbols (both with unlimited
iterations). Note, however, that these differences are not as
big as the plot might suggest, given that the KLD is plotted
on a logarithmic scale. Additionally, notice that with a block
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FIGURE 15. KL Divergence as a function of the estimated entropy due to
coder inefficiencies for all images in the dataset for NEAR ∈ [0..20].
Computed as the average bits produced by the coder minus the average
entropy assuming the quantized estimations of the distribution parameters are
optimal.
Default configuration: NI=7 and code block size = 2048 symbols.
1 configuration with unlimited iterations
2 configuration with unlimited iterations and code block size = 16384 symbols

size of 16384 symbols the coder of this prototype achieves a
practically null KLD.

The increase in the KLD observed for the lower entropies
is due to the use of the suboptimal tables for the smaller θ̂q
and p̂q (see the selection methodology in section VII). The
lower the average entropy, the more probable is to use these
tables, then the KLD increases. Although the use of these
suboptimal tables increases the coder KLD, including these
smaller distribution parameters more than compensates, then,
the final effect is a reduction in the overall KLD.

As the entropy increases, the KLD can increase for several
reasons: the limitation of the geometrical coder iterations
(eq. 10), the increase of C as θ̂q increases (which in turn
increases the intrinsic ANS KLD as indicated by eq. 1)
and the increased average iterations (which make the coder
incur in the ANS intrinsic KLD several times). The effect
of NI can be observed comparing the points corresponding
to the Nt6_Stfg8_ANS7 prototype with NI = 7 and with
unlimited iterations. For low and medium entropies, the two
configurations result in approximately the same KLD, while
for higher ones the KLD due to the escape mechanism can
be appreciated. To understand the magnitude of the effect of
increasing C as θ̂q increases, the highest entropy cases were
compressed with a modified Nt6_Stfg8_ANS7 prototype,
setting max(C) = 4. The resulting KLD (not shown in
the figure) went back to the (0.001- 0.008) range when the
iterations were not limited. For this modified configuration,
the average iterations increased (nearly doubled).
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C. SOFTWARE PERFORMANCE COMPARISON

In this section, we compare LOCO-ANS in terms of com-
pression ratio and encoder/decoder speed against well-known
and recently developed lossless and near-lossless codecs:

• JPEG-LS (implementation: [37]).
• CALIC (implementation: [38]).
• JPEG2000 Part 1 [39] (implementation: [40]) and

JPEG2000 Part 15 High-throughput JPEG2000
(HTJ2K) [41] (implementation: [42]) (none of them
provide near-lossless compression).

• WebP [43] (implementation: [44]).
• WebP2, currently under development (implementa-

tion: [45]).
• JPEG-XL [46], [47] (although not yet a standard, it is

currently under evaluation and the reference software is
available [48]).

The tests were carried out in a Raspberry Pi 3 Model B
with 1 GB of RAM. This platform was chosen because it bet-
ter resembles, compared to an x86_64 system, the memory
and compute limitations that embedded systems tend to face,
which is our target. In addition, it is a widespread platform,
facilitating the reproducibility of the results here presented.

All tests were run using a single thread, given that most
codec implementations do not have multi-threading capabil-
ities, although they could support it. For example, images
could be divided in tiles, like JPEG-XL or JPEG2000, which
are able to do. In the case of JPEG-LS, although this is not
part of the standard, this could be easily implemented, like
in the hardware implementation presented in [9]. This tiling,
when performed dividing the image vertically, not only al-
lows for a higher level of parallelism but also tends to benefit
JPEG-LS statistical modeling, thus increasing compression
(demonstrated by the tests).

Additionally, to show other possible speed-compression
trade-offs, a version of LOCO-ANS using four gradients to
define the context, as in the original LOCO-I and the standard
extension, was also included. Finally, the configurations used
for the codecs can be seen in table 8.

TABLE 8. Codec configurations used in the tests

Codec configurations
LOCO-ANS (conf. 1) Nt6_Stcg8_ANS7, 3 grad 1

LOCO-ANS (conf. 2) Nt6_Stfg8_ANS7, 4 grad 1

CALIC Arithmetic coder
JPEG2000 lossless

HTJ2K lossless
WebP effort level(-z) =[1,2] 2

WebP2 effort level(-effort)=[1] 2

JPEG-XL num_threads=0, modular, speed(-s)=[2..5] 2

1 NI was set to 7, tables for p ∈ [0, 0.5] and a block size of 16384
2 Other effort modes were supported, however they do not compare
favorably against the presented configurations of the same codec or
encoder times were well over an order of magnitude slower than LOCO-
ANS

1) Dataset
Given the large memory requirements of JPEG-XL (even for
the lower effort setting "-s0"), it was not possible to process
the largest images of the Rawzor dataset using this codec
in the chosen platform. For this reason and to obtain more
robust results, these tests were run using gray versions of
a subset of the Challenge on Learned Image Compression
(CLIC) [49] training dataset (this subset was used in the eval-
uation of JPEG-XL lossless compression, and it is available
in [50]). It contains 303 2048x1320 photographic images and
was not used during the development of LOCO-ANS, so it is
also good for validation purposes.

2) Analysis
The results for encoder and decoder procedures are presented
in figs. 16 and 17, respectively. In addition, table 9 summa-
rizes the results for lossless compression, where entries are
sorted by bpp. As expected for software implementations,
the increased compression obtained by LOCO-ANS comes
at the cost of a reduction in the encoder and decoder speeds
compared to JPEG-LS. Specifically, the tests show a 32% and
46% encoder speed reduction and a 42% and 54% decoder
speed reduction for lossless compression. As the peak error
increases, both implementations run-times tend to decrease,
although the relative comparison favors JPEG-LS, which can
be explained by the incremented use of the run-length coder.

Despite this decrease in performance, given the codecs
utilized in this comparison, both of the LOCO-ANS configu-
rations presented are on the Pareto frontier [51] of encoder
speed versus bpp and decoder speed versus bpp. When it
comes to near-lossless compression, most codecs do not
perform so well. Particularly, in the case of JPEG-XL, the
near-lossless quantization is done as a preprocessing step that
reduces the cardinality of the prediction errors, not the range
of these errors, and then, it is up to the entropy encoder to
detect and exploit the reduced error set cardinality. For this
reason, the faster compression modes not only fail to increase
compression, but they decrease it. Conversely, LOCO-ANS

TABLE 9. Encoder/Decoder speed comparison for lossless compression

Codec bpp Enc. BW (MiP/s) Dec. BW (MiP/s)
JPEG-XL (s5) 3.62 0.20 1 1.58 2

JPEG-XL (s4) 3.62 0.25 1 1.58 2

CALIC 3.63 1.65 1 1.58
LOCO-ANS (2) 3.65 4.96 1 4.81 2

JPEG-XL (s3) 3.68 1.87 2.10
LOCO-ANS (1) 3.69 6.26 1 5.94 2

JPEG-LS 3.73 9.21 1 10.66 2

WebP2 (effort 1) 3.79 0.11 1.44
WebP (z2) 3.81 0.46 13.48 2

JPEG2000 3.82 1.76 2.13
WebP (z1) 3.88 0.65 13.59 2

JPEG-XL (s2) 3.98 3.22 4.00
HTJ2K 4.08 8.40 14.52 2

1 No other codec simultaneously encodes faster and achieves a lower
bpp (in Pareto frontier).
2 No other codec simultaneously decodes faster and achieves a lower
bpp (in Pareto frontier).
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excels in this type of compression achieving the highest
compression ratios for a given peak error, in the presented
order of magnitude of encoder speed, and it is only surpassed
in encoder speed by JPEG-LS and in decoder speed by JPEG-
LS and WebP.

Lastly, to show that tilling does not worsen LOCO-ANS
performance and given that the prototype supports it, tests
were also run dividing the images in 4 columns (number of
cores available in the Raspberry Pi platform). As a result,
3.67 and 3.64 bpp (2.3% improvement compared to JPEG-
LS) were obtained for configurations 1 and 2, respectively,
compared to 3.69 and 3.65 bpp without tilling.

3) Comparison with other ANS-based approaches

Although JPEG-XL entropy encoder is also based on ANS
and the implementation used in the tests is highly optimized,
it runs slower (in general several times) than LOCO-ANS,
even using low-effort modes. Moreover, CALIC compares
favorably against it.

JPEG-XL uses a modified version of Range ANS (rANS)

to encode symbols given clustered histograms. To perform
this operation, all prediction residuals are computed (that is,
for the complete image) and then histograms for each context
are generated. In general, these contexts are dynamically
determined (obtained at run-time). After that, histograms can
be clustered (context merging) and the final histograms are
signaled to the decoder. LUTs (Look-up Tables) to speed
up rANS (with a not trivial initialization) are generated for
each of these histograms (these LUTS are called Alias Tables,
not to be confused with tANS tables). Finally, residuals (or
more generally, tokens), after going through other numerical
manipulations, are coded with rANS using a 32bit state. ANS
code blocks coincide with a tile (256x256 pixels).

To our understanding, JPEG-XL aims to be a general-
purpose codec, although oriented to web image delivery [52].
In this scenario, it is reasonable to allow higher complex-
ity (higher computation time and/or computation/memory
resources), particularly on the encoder side. This encoder
vs decoder speed trade-off is also observed in WebP and
WebP2. However, the aim of our work was to improve im-
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age compression in situations with stronger constraints (low
resources, low energy budget, high throughput). It is easy to
observe that, given their resource requirements, many of the
sub-processes that JPEG-XL performs to code the generated
tokens are not well suited for high-performance hardware nor
embedded software implementation. This is also the case for
other procedures that are part of the JPEG-XL codec, for
example, those that require full image scanning.

In contrast, LOCO-ANS approach, based on static tANS
using parametric distributions (instead of rANS using clus-
tered histograms) leads to higher throughput (illustrated by
figs. 16 and 17). Additionally, it is more suitable for a hard-
ware implementation, given that buffering is limited, simple
arithmetic is used and tables are generated at compile time,
which allows both software and hardware optimizations,
particularly in the latter case.

D. EXPECTED HARDWARE IMPLEMENTATION
THROUGHPUT
The software performance results do not translate directly to
hardware implementations, given that encoders are normally
implemented as pipelines, where pixel decorrelation and
coding run in parallel, providing lower latency and higher
speed in the compression. These features are very suitable
for real-time applications [53].

The coder symbol rate is going to be directly affected by
the mean number of iterations required to encode z, but, as
it can be seen in table 5, these tend to be very small for
all configurations. Even considering lossless compression,
including artificial images and using the worst performing
configuration, 1.34 iterations/pixel is achieved. If a single
ANS state is shared between both y and z coders (as in
the experiments), the coder symbol rate is dependent on
the mean number of accesses to the ANS tables per image
sample, which adds one access to code y. Alternatively, two
independent ANS coders could be used for y and z variables,
decoupling their ANS state. This would allow to code y and
z in parallel and to tune the state size for each of them
separately. However, both final states should be sent at the
end of the block, which can result in an increased KLD. If
enough memory resources are available, this can be mitigated
using a larger code block size.

As studied in [30], the memory resources required by the
tables impact on the system throughput, as they correlate
with the maximum operating frequency. Given the through-
put obtained by these hardware implementations of ANS
coders and the average cycles required by the coder, it is
expected that the throughput of an FPGA implementation of
the proposed TSG coder will outperform the best reported
JPEG-LS implementation supporting near-lossless [9]. The
throughput obtained by the JPEG-LS and the ANS encoder
implementations are considered comparable as they targeted
the same technology (Xilinx Virtex-6). Then, the utilization
of this coder will increase compression, while the throughput
bottleneck would remain in the context update and the pixel
quantization (and reconstruction) procedures.

E. DISCUSSION

Given the obtained results, it is observed that the proposed
TSG ANS coder is particularly well suited for sources with
an entropy in the (.15, 4) range, approximately. Even, the
4-bit ANS state configuration achieves a great efficiency
with low memory resources and capable of high-throughput
operation. Taking into account the strengths of the GPO2
and the run-length coders, it would be interesting to combine
these with the proposed coder. The resulting system may
achieve the best complexity-efficiency trade-off for a very
wide range of applications.

Additionally, it is worth noting that the TSG coder (or just
the geometrical coder) could also be used in other applica-
tions, such as audio compression. For example, in the case
of MPEG-4 ALS [54] or FLAC [55], the prediction error
distribution could be modeled as a two-sided geometric.

IX. CONCLUSION

In this work, improved lossless and near-lossless compres-
sion was achieved through a series of modifications of the
JPEG-LS standard. Particularly, the development of an ANS
based coder for two-sided geometric sources provides highly
efficient and low complexity coding. Additionally, this coder
enabled the introduction of more precise distribution param-
eter procedures and to quantize more effectively the gradient
defined context space.

The system as a whole admits a wide range of configura-
tions, providing the capability to obtain different trade-offs
between coding efficiency, resources and throughput, which
allows it to be used in a variety of applications. A prototype
available to the community was implemented and a set of
experiments were run with different configurations to explore
the design space. These configurations range from a very low
resource instance that outperforms JPEG-LS in near-lossless
compression to an instance using 64 tables with a 7-bit ANS
state that closely approaches the estimated entropy.

When compared to JPEG-LS baseline compressing pho-
tographic images, LOCO-ANS, using the same context size,
is able to achieve up to a 1.6%, 6% and 37.6% mean bpp
improvement for an error tolerance set to 0, 1 and 10, respec-
tively. Allowing an increase of the context size and image
tiling, a 2.3% lower bpp is obtained for lossless compres-
sion. Moreover, LOCO-ANS approaches lossless compres-
sion rates of more complex encoders, even surpassing them
in near-lossless compression, and obtaining a much faster
encoder speed.

Given that many applications would benefit from a hard-
ware implementation, future work will focus on developing
and evaluating a prototype implemented in an FPGA, with
higher throughput and lower latency, which can be used for
real-time purposes.

.
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APPENDIX A NOTATION TABLE

TABLE 10. Notation used in this work.

Notation Description

NEAR
Codec input that determines maximum absolute difference
between the original pixel and the decoded one.

ε Two-sided geometrically distributed variable
z Geometrically distributed variable
y Bernoulli distributed variable
s Two-sided geometrically fractional bias
θ Geometric and Two-sided geometrically shape parameter
p Bernuolli distribution parameter
θ̂q Quantized estimation of θ
p̂q Quantized estimation of p
Qθ θ quantization function
Qp p quantization function
C Symbol alphabet cardinality of an ANS table, given a θ̂q
St Accumulator storing

∑t
i=1 zi

St Mean of the z geometric variable (
∑t
i=1 zi/t)

Nt Accumulator storing
∑t
i=1 yi

Stp Number of fractional bits used by St
Ntp Number of fractional bits used by Nt
NI Geometric coder maximum number of iterations
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