
Wormhole: a novel big data platform for 100 Gbit/s
network monitoring and beyond

Rafael Leira∗†, Lluı́s Gifre∗, Iván González∗†, Jorge E. López de Vergara∗†, Javier Aracil∗†
∗Universidad Autónoma de Madrid, Spain.

†Naudit High Performance Computing and Networking, S.L., Spain.
{rafael.leira, lluis.gifre, ivan.gonzalez, jorge.lopez vergara, javier.aracil}@uam.es

Abstract—Internet measurement and analysis is increasingly
challenging as the Internet evolves, primarily due to changing-
trends, speed increments or new protocols and ciphers. As
such, ad-hoc monitoring equipment comes in handy, albeit cost-
effectiveness impedes deployment at a very large scale. As an
alternative, big data-based distributed architectures are being
proposed for network monitoring and analysis. However, in light
of the high throughput currently offered by 100 Gbit/s links,
it turns out that state-of-the-art big data solutions fall short
of capacity, unless a huge amount of computers are used. In
order to effectively tackle that issue, we have created Worm-
hole: a streaming engine that circumvents existing limitations
by distributing the input messages/packets coherently among
different off-the-shelf analysis equipment, thus reducing costs
and equipment. Should the incoming data rate be larger than
the system throughput, a distributed file system can be used
for temporary data storage, for subsequent filtering and in-
depth analysis. The proposed solution provides on-line real-
time monitoring metrics with the ability to gain further insights
when required. The prototyped architecture is able to deal with
100 Gbit/s networks and can be easily scaled up to higher rates by
just adding more computing nodes and/or by trimming encrypted
packet payloads.

I. INTRODUCTION

In the recent years, the share of services being deployed in
large cloud data centers is increasingly growing. To convey
such amounts of traffic at reasonable costs in terms of energy
consumption and packet loss, high bandwidth networks are of
paramount importance both to provide connectivity from the
cloud data centers to the rest of the Internet and also for the
internet data center high-speed network itself, e.g. 100 Gbit/s.1

To ensure business continuity it is essential to tackle a number
of issues such as “Is the data center network safe?”, “Are
there performance problems?”, “Which is the next step to
scale up the equipment?”, or “What really happened during an
intrusion incident?”. To this end, network traffic monitoring
capabilities are cornerstone.2

Two types of traffic monitoring techniques are usually
considered: passive monitoring, which consists of capturing
the traffic that is conveyed through the network; and active
monitoring, which injects specific packets into the network
with the aim of accounting some concrete metrics. In this
paper, we are focused on passive monitoring techniques that,
in turn, can be divided into two different data collection
techniques: packet sampling, which consists of capturing and
accounting some periodically and randomly selected packets
to infer the traffic models and conditions; and full packet
capture, where all the traffic is analyzed in a packet-per-packet

1https://www.geekwire.com/2017/amazon-web-services-secret-weapon-
custom-made-hardware-network/ [15 Dec. 2018]

2http://www.datacenterknowledge.com/archives/2016/12/08/
network-monitoring-first-line-defense [15 Dec. 2018]

fashion [1]. Clearly, a full capture analysis requires much
more processing and storage capacity than a sampling-based
solution.

In some network scenarios, like video distribution, on-
line gaming or social networks, sampling techniques could
be enough to detect attacks such as a Distributed Denial
of Service (DDoS), where huge amounts of similar packets
are received in short time periods. However, sampling is not
always desirable [2], and the monitoring system should be able
to capture every packet traversing the network. For example,
in critical scenarios such as banking or govern applications, all
packets entering the data center must be analyzed to prevent
low-speed DDoS [3] among others.

The abovementioned requirement, in turn, poses an ad-
ditional problem: the increase in data traffic, now reaching
aggregated 100 Gbit/s in modern data centers, also requires
processing the traffic at that line rates for real-time monitoring.
However, such traffic processing is very hard to achieve in
practice as in the worst-case scenario in a 100 Gigabit Ethernet
(GbE) link, we can expect nearly 150 million of 64-byte
packets per second, resulting in a processing time of less than
7 ns per packet. As a reference value, a single L2 cache hit
requires near 5 ns to be resolved in a new-generation CPU3.
Despite we can split the analysis in different cores, current
memory bandwidth still limits the analysis speed. Moreover,
high-end equipment is needed with this purpose, and resiliency
aspects must also be taken into account. Actually, the whole
data center monitoring is put at stake if a single monitoring
node is employed and a hardware failure happens. In summary,
the system should be dimensioned to support traffic peaks, to
prevent attacks that could affect the monitoring system.Thus,
the following problems have been identified in these 100 Gbit/s
networks: (i) high monitoring cost, (ii) lack of scalability, and
(iii) analysis complexity.

In order to overcome these problems, this paper contributes
with the first, to the best of our knowledge, big data-based
architecture designed to capture and analyze passively moni-
tored traffic in 100 Gbit/s networks. The rest of this article
is organized as follows. In Section II, we briefly discuss
current solutions using passive full-packet capture monitoring
techniques. Next, in Section III, we compare existing stream-
ing engines and present our own solution, together with our
distributed monitoring architecture, while in Section IV we
present our preliminary results. Finally, in Section V, we draw
the main conclusions and future work.

3https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf [15 Dec. 2018]

https://www.geekwire.com/2017/amazon-web-services-secret-weapon-custom-made-hardware-network/
https://www.geekwire.com/2017/amazon-web-services-secret-weapon-custom-made-hardware-network/
http://www.datacenterknowledge.com/archives/2016/12/08/network-monitoring-first-line-defense
http://www.datacenterknowledge.com/archives/2016/12/08/network-monitoring-first-line-defense
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/ 64-ia-32-architectures-optimization-manual.pdf


II. RELATED WORK

High-speed network monitoring is not a recent problem,
and it has been dealt with from different viewpoints along the
years. If we focus on 100 Gbit/s network monitoring, the first
monitoring prototype was designed in 2012 [4], where the
authors proposed to split the traffic into different 10 Gbit/s
links, which could be analyzed at that time by IDS working
with PF RING [5]. Although functional, this architecture
needed one physical equipment for every effective 10 Gbit/s
stream to be analyzed. This seemed to be the only way to
monitor network equipment, until the arrival of Flowscope [6]
and Cento [7]. Flowscope can only analyze the traffic looking
for preconfigured events and store small fragments of traffic
around that event. On the other hand, Cento has much more
capabilities: It allows real-time flow generation, IPFIX exports,
DPI with selective packets stored to disk, and Cassandra
database insertions. Cento needs many high frequency cores
in the same NUMA node to work and may have a 20%-40%
packet loss when all its functionality is activated.

In other words, it is difficult to monitor and analyze a
100 Gbit/s network using a single probe without informa-
tion loss. Consequently, a divide and conquer design pattern
has been used to build many scalable architectures, being
Lambda [8] the most popular one. This architecture poses
that data path can be forked in two ways: on-line streaming
and off-line batch processing. In this way, light and critical
processing can be done in real or near-real time, whereas
detailed in-depth analysis is performed in programmed batches
or on demand. An example of Lambda architecture applied
to Netflow processing is presented in [9], where authors
using a 10 node cluster can compute up to 315 Kflows/s in
stream processing and 2.6 million flows/s in off-line analy-
sis. In [10] and [11], authors proposed a big data off-line
and multi-computer analysis system over previously captured
traces. Both papers provide solutions to process PCAP files
using Hadoop MapReduce and Hive SQL-like queries. Finally,
Crail [12] appears to be a possible solution for 100 Gbit/s
processing, but it is based on RDMA technology and thus
focused exclusively on storage.

III. PROPOSED SOLUTION

The design of a big-data systems based monitoring system
is rather involved, which implies that an adequate choice of
the design principles largely conditions the final outcome.
Given that the final objective is to capture and monitor traffic
at very high speed and our minimal data entity is a packet
conceptually encapsulated in a message, our system has to
sustain high rates through all its components. Then, the initial
filtering and the decision of what packets and data have to
be stored is a prerequisite to ensure feasibility in terms of
hardware and costs. As it turns out, it is sensible to use
a derivate of the Lambda architecture, where a streaming
flow performs a pre-filtering before data is stored for off-line
processing.

Current streaming engines, such as Storm, Spark Streaming
or Flink [13], have several advantages, such as standardization,

a relative ease of use and, overall, proven stability and scala-
bility. Nevertheless, to meet these objectives, such approaches
have partially obliterated the way in which they use network
resources, preventing from using all available bandwidth in an
Ethernet link. Authors in [13] presented a comparison among
the above-mentioned streaming engines, but, even though the
paper provides useful insights regarding latency and internal
batch management, it does not give any details on their
effective bandwidth usage. In a previous paper [14], authors
did a performance comparison, where they proved that the
number of nodes incremented linearly the cluster performance
and the stream processing capacity. However, they needed 60
nodes to ingest data at a line rate of 20 Gbit/s. This effect
was also observed in [15], where an alternative to current
streaming engines was proposed, taking advantage of the SDN
technology. This prototype showed several improvements in
the effective bandwidth and latency with respect to basic
solutions. Nevertheless, its applicability is limited to SDN
environments, and the rate in number of messages (tuples)
per second (about 140 thousands) is far away from the number
of messages to be processed in a 100 Gbit/s network As an
example, for an average packet size of 900 Bytes, 13.3 Million
of packets would be transmitted per second. After assessing
some of the most popular streaming engines and verifying that
the state of the art works reflects the actual performance of
those frameworks, we decided to implement our own stream
engine, which we have named Wormhole.

A. Wormhole design and dynamic behavior compilation

In this section, we briefly introduce the Wormhole archi-
tecture. It is composed of four differentiated elements, which
functions are similar to other streaming systems:

1) Holes: We refer by hole to a thread or process that
uses the Wormhole library. A physical element can run
an arbitrary number of holes, independently of their
interconnection. It would be equivalent to a Bolt or a
Spout if we use Storm terminology.

2) Worm: It is the term used for every messages, because
they travel between different holes in the Universe.

3) Universe: Is the term used to define the hole topology,
and how holes interact among them. It would be similar
to the term Topology using Storm terminology.

4) Zeus: It is the master in charge of coordinating and
deploying the holes defined in the universe in the cor-
responding nodes. It is equivalent to Nimbus in Storm.

Creating Wormhole faces a complex scenario, because we
had to identify the problems in prior solutions and sacrifice
part of their functionality to achieve a better performance. The
first key point in the development is the programming language
and the network stack. Works like [16] show that using Java
and its network stack have a significant overhead, worsening
the performance. Thus, it is crucial to use a low-level language
(such as C). With respect to the operating system network
stack, a context switch between the user and kernel spaces
is needed to send a message. To minimize this overhead, we
mimic the Spark Streaming batching approach, i.e., packing



the received messages and periodically processing them [13].
The last point to take into account is the decision about sending
a message. Although this can seem trivial, it is necessary to
let every computing node choose on demand which other node
data will be sent to, and, potentially, do it several million times
per second. Right now, state-of-the-art systems must check
their transmission rules for every message to send, or even
worse, send the message to a hub node. The ideal option is
that each computing node software is compiled just in time and
programmed minimizing their number of instructions. In that
regard, each Hole thread compiles its own path as a native
dynamic library, and links them in runtime. This decision
permits to change the path in real time, while maintaining
the less possible computational cost per message. In the best
case, e.g., when the destination is always the same, the code
will be notably minimized and optimized by the compiler.
B. Monitoring Architecture

Once we have presented Wormhole as a streaming engine,
we can define our monitoring architecture. It is shown in
Figure 1 and it is divided in 6 steps:

1) Link aggregation: The first step consists of extracting the
packets conveyed through the data center’s input/output links.
This step is highly dependent on the interconnection topology
used by the data center to reach external networks. It is clear
that different interconnection topologies will motivate differ-
ent traffic collection procedures. However, to have coherent
monitored traffic, it is mandatory to aggregate traffic, at least,
at a per-flow granularity, whereby a separate flow is a set of
packets sharing a specific meaning, such as the same tuple
<origin, destination, protocol>, the same target service, the
same subnetwork, etc. This step is presented for completeness,
but for simplicity, in this paper we will focus on the most
complex scenario: a single capture point at 100 Gbit/s that
aggregates the traffic of a core switch/router in a data center.
However, thanks to the proposed architecture, several vantage
points and aggregation processes could also be considered. We
plan to study advanced aggregation processes in future works.

2) Useless Payload Reduction: Part of the passive moni-
toring process consist of identifying the traffic and obtaining
relevant information about it. Currently, most part of the net-
work traffic is encrypted, providing useless information above
its network and transport headers. Then, to scale the system
without adding analysis nodes, we have considered adding
an optional bandwidth thinner implemented in an FPGA, as
proposed in [17]. This approach allows a reduction in the
monitored bandwidth from 100 Gbit/s to less than 10 Gbit/s
by truncating the packet payload. Thus, it would potentially
reach 1 Tbit/s monitoring if we aggregate the output of 10
traffic thinners, which is planned as future work.

3) Distribution: The third step is divided in two parts:
(i) Traffic capture, and (ii) Distribution and balancing. The
most efficient way to implement them is to use DPDK [18]
for the capture and use the Receive Side Scaling (RSS) queues
to distribute the captured traffic as efficiently as possible [19].
This distribution is used to encapsulate the traffic into different
TCP streams. In this way, we need a single Wormhole+DPDK

100Gbit/s

n·100Gb/s

 
Monitored 
Network FPGA 

Payload Cut 

D
PD

K 

Packet
Processor

Packet
Processor 

Wormhole 
Divider 

n·10Gb/s 
HDFS

Elastic

Link
agregation

Useless Payload
Reduction

Distribution Analysis Store & Index Visualization

Figure 1: 100 Gbit/s monitoring architecture
application, with as much threads and queues as analysis
systems we have in the analysis step, where each thread reads
a packet with DPDK and sends it through the corresponding
Hole. Because the traffic capture and balancing have to be
executed by the same process, this step could be a bottleneck
if balancing is performed suboptimally.

4) Analysis: The fourth step is the packet-per-packet real
time analysis. This step receives the worms sent by the prior
step in different holes, whose tasks are: (i) to reduce packets
to a more compact element (for instance, a flow) that is stored
for further detailed analysis by an on-demand/off-line tool, and
(ii) to extract useful information for a real time in-line analysis.
To validate our architecture we have used a flow analysis
software (Naudit DetectPro4) with an estimated processing
capacity of 15 Gbit/s per instance. Anyways, this analysis can
be replaced by any application that a network manager needs,
provided that it can be integrated in the Wormhole message
passing system.

5) Storage and Indexing: The fifth step is the storage and
indexing of preprocessed data. It is the starting point of a
Lambda architecture, where real-time data (in our case flows
statistics) are indexed by ElasticSearch, InfluxDB or a similar
indexing engine, for subsequent visualization in real time.5

On the contrary, bulk data (in our case flows and packets) is
stored in Hadoop File System (HDFS) or similar distributed
file system5 for later execution of more time consuming tasks,
like database queries, machine learning algorithms, etc.

6) Visualization: The final step is data visualization,
namely displaying indexed data using Grafana or similar visu-
alization suites5, whereas HDFS data is readily available for
future processing and visualization, e.g., using Hive5 queries.

IV. EXPERIMENTAL EVALUATION

One of the requirements to evaluate and analyze a 100 Gbit/s
network is to have access to such infrastructure, not only to
test the proposed architecture, but also to be able to capture
real traffic. Unfortunately, without access to real 100 Gbit/s
traffic, our approach was to use traffic from a lower speed
network, for example CAIDA 2016 trace [20], and transmit it
at 100 Gbit/s. In addition, we have also generated synthetic
traffic with perfectly balanced IP flows and different packet
sizes, in order to measure the performance of the proposed
architecture in realistic (CAIDA traffic) and extreme (synthetic
traffic) cases.

The transmission from pcap files at high-speed is another
challenging task: storage bandwidth, memory bandwidth and
computing capabilities could be a limitation. For this reason,
we have developed a custom traffic generator, that is freely

4http://www.naudit.es/en/detectpro/ [15 Dec. 2018]
5http://bigdata.andreamostosi.name/ [15 Dec. 2018]

http://www.naudit.es/en/detectpro/
http://bigdata.andreamostosi.name/


100 GbE Switch Analysis Nodes

Load
Balancer

Visualization node

Net. Manager 100GbE

100GbE

4x2x25GbE

10GbE 

Big Data 
Cluster 

Figure 2: Experimental architecture

available6. The key point of the generator, at hardware level, is
the use of six 800 GB Intel P3600 NVMe drives configured as
software RAID 0 together with an XFS file system optimized
for managing large files. Based on the data sheet, each NVMe
drive should be capable of reading at 20.8 Gbit/s, although in
our experiments the bandwidth was around 20.6 Gbit/s. Using
a software RAID 0, the total achieved bandwidth is 110 Gbit/s,
i.e., which is enough for our purposes. The traffic generator is
our equivalent of the Link aggregation (step 1) in the proposed
architecture. The complete hardware equipment used for the
design and evaluation of the proposed architecture is shown in
Figure 2. All computing systems, except the Big Data Cluster,
are running a Gentoo OS with Kernel Linux 4.14.7.

The Useless Payload Reduction step (step 2) is omitted in
our tests, because the selected traffic, CAIDA and synthetic,
does not include real payload. Anyway, we have implemented
this functionality in a Xilinx VCU118 card with two 100 Gbit/s
interfaces, and it is able to reduce CAIDA bandwidth from
100 Gbit/s to 8 Gbit/s, because the FPGA cuts all the packets
due to the binary content of the payload (all 0’s). For this
reason, none of the measurements presented below makes use
of the FPGA in step 2.

The Load Balancer node is in charge of all tasks related to
step 3, and it includes two Intel Xeon Gold 6126 @2.60GHz
processors and two Mellanox Connect-X 5 network interface
cards (NICs), one of them for reception of the 100 Gbit/s
traffic and the other to balance and send the data to Analysis
nodes using Wormhole. Due to the use of one interface to send
all data to the Analysis nodes, a switch is required to manage
the connectivity between all nodes. The model we are using
is a Huawei CE8800, capable of processing up to 1 Tbit/s.
The switch includes eight 25 Gbit/s ports connected to four
Analysis nodes in charge of executing the analysis explained
in step 4 of the proposed architecture. The reasons why we
are using 2 interfaces per node are the following: (i) Wormhole
inserts the data in a simple and custom packet format, which
is transmitted using TCP. Therefore, the transmission and
reception bandwidth is increased. (ii) The load balancing
mechanism is not ideal and it depends on the input data, in this
case, network packets. Then, executing at least two monitoring
tasks per node helps reducing the problem. (iii) To transmit
data back to the visualization node in real time.

6https://github.com/hpcn-uam/iDPDK-PcapSender [15 Dec. 2018]

Figure 3: Wormhole performance with CAIDA traces

Analysis nodes include a double port 25 GbE Mellanox
Connect-X4 NIC, two Intel Xeon E5-2623 v4 @2.60GHz
processors and four 800 GB Intel P3600 NVMe drives. The
NVMe drives are used as local storage and they are also
part of the HDFS storage system of the Big Data Cluster,
to store the bulk data, as explained in step 5 of the proposed
architecture. Notwithstanding, real-time data are transmitted
using Wormhole to the Visualization node for the real-time
indexing and visualization of the data (step 5 and 6). Given that
the computing task of this node is not heavy, the Visualization
node includes only one Intel Xeon E5-1620 v2 @3.70GHz
processor, and one 10 GbE Intel 82599 NIC for receiving data
from the Analysis nodes. It also includes a hardware RAID 0
of four 4TB hard drives to store both the real-time data and
indexed data.

Once the hardware equipment has been presented, the
next step is to evaluate the performance of the architecture.
Although there are several network bandwidth measurement
points, we are considering the output of step 3 as effective
bandwidth. This is due to the fact that all previous commu-
nication tasks have been performed correctly because they
make use of the TCP protocol or other reliable upper-layer
protocol, which ensures that no data loss happens. Therefore,
the performance of this architecture is limited by that of the
slowest component (or step).

Figure 3 shows performance results for a number of re-
ceivers with synthetic traces made of single-sized packets: 60
Bytes (minimum Ethernet frame size excluding CRC), 900
Bytes (mean packet size in CAIDA trace), the real CAIDA
trace, and 1514 Bytes (maximum Ethernet frame size without
VLAN nor CRC). The number of receivers in this test is the
number of analysis instances distributed among the 4 nodes
using a simple round-robin. This is, with 2 instances only 2
nodes are receiving; with 4 instances all nodes are receiving;
with 6 instances 2 nodes are receiving in 2 interfaces, and
the other 2 in only 1; finally, with 8 instances, all nodes are
receiving in both interfaces.

Thus, Figure 3 shows the performance in the worst, middle
and best cases,when using our available hardware. It is worth
noting the trend. When we reach effective 94 Gbit/s, system
TCP overload and Wormhole encapsulation limit the overall
performance, even if we increase the number of receivers and
analysis threads. On the other hand, until this point, the raise in
the processing speed is linear with the number of consumers.
This behavior indicates that, with a larger number of NICs

https://github.com/hpcn-uam/iDPDK-PcapSender


the system could grow up to 200 Gbit/s or more, even using
the same analysis equipment, because many of their cores
were idle. In the CAIDA trace case, we can see that up to
4 analysis threads, their behavior is very similar compared
to the synthetic ones. However, the analysis throughput of
the CAIDA trace reaches stationarity at 70 Gbit/s, where the
system does not improve its performance although we increase
the number of analysis threads.

Identifying the root cause for this behavior is rather com-
plex, due to the interplay of the many elements involved.
However, we have some hints that are currently in our research
agenda for further assessment and possible mitigation. As a
first approximation, we believe that micro-batches of packets
with a same destination node may be responsible for such
behavior. This can be a problem, because if a node is saturated,
it can have a harmful effect in the TCP state machine at
the emitter and the receivers, producing small TCP pauses
and finally stalls in the complete system. However, other
options can also be possible, such as the very nature of
the CAIDA trace, or the effects in the packet size variation
when processing them in memory. Therefore, we note that
several research avenues may be pursued at this point, which
constitute the focus of our current research.

V. CONCLUSIONS AND FUTURE WORK

In this article, we have presented two novel elements:
(i) Wormhole streaming framework and (ii) a complete network
monitoring Big Data Architecture for 100 Gbit/s. Wormhole
library has been released open source under a MIT License
for both academic and industrial use7. As we have shown in
Figure 3, the framework scales linearly with the processing
nodes involved, until it reaches almost 100 Gbit/s, which is
a clear limitation due to the load balancer in the 100 Gbit/s
NIC as well as TCP and Wormhole overheads. Anyway, we
believe this is a great result that promises performance above
100 Gbit/s and paves the way for breaking the Terabit/s
analysis frontiers.

In addition, the performance of Wormhole clearly outper-
forms state of the art streaming frameworks, as it provided
as much as 130 million messages per second in the 60 Bytes
per message test, with 8 receiving threads. We are currently
working on exploring and analyzing in detail the Wormhole
architecture, to assess its performance in comparison to other
solutions in the state of the art, but focusing on other metrics
apart from bandwidth, such as latency, messages per thread
and per core. Generally, speaking, we seek to push the limits
of the Wormhole architecture in the quest for umprecedented
performance in high-speed traffic analysis.

In terms of the monitoring architecture, we believe that our
proposal is the first one considering a full path from a network
aggregation point to the network manager eyes at 100 Gbit/s.
However, we are still working on identifying the root causes of
the performance degradation observed with real traffic.As of
today, our preliminary investigations show promising results,
even in case of flow misbalancing, that will be reported in the
sequel.

7https://github.com/hpcn-uam/wormhole [15 Dec. 2018]

ACKNOWLEDGMENT

This work has been partially supported by the projects
TRÁFICA (MINECO/FEDER TEC2015-69417-C2-1-R), and
H2020 METRO-HAUL (EC Project ID: 761727).

REFERENCES

[1] A. Pescapé, D. Rossi, D. Tammaro, and S. Valenti, “On the impact
of sampling on traffic monitoring and analysis,” in Teletraffic Congress
(ITC), 2010 22nd International. IEEE, 2010, pp. 1–8.

[2] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina,
“Impact of packet sampling on anomaly detection metrics,” in Proceed-
ings of the 6th ACM SIGCOMM Conference on Internet Measurement,
ser. IMC ’06. New York, NY, USA: ACM, 2006, pp. 159–164.

[3] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Information
metrics for low-rate ddos attack detection: A comparative evaluation,”
in 2014 Seventh International Conference on Contemporary Computing
(IC3), Aug 2014, pp. 80–84.

[4] S. Campbell and J. Lee, “Prototyping a 100g monitoring system,” in
2012 20th Euromicro International Conference on Parallel, Distributed
and Network-based Processing, Feb, 2012, pp. 293–297.

[5] L. Deri, “ncap: Wire-speed packet capture and transmission,” in End-to-
End Monitoring Techniques and Services, 2005. Workshop on. IEEE,
2005, pp. 47–55.

[6] P. Emmerich, M. Pudelko, S. Gallenmüller, and G. Carle, “Flowscope:
Efficient packet capture and storage in 100 gbit/s networks,” in Proc.
16th International IFIP TC6 Networking Conference, IEEE, 2017.

[7] L. Deri and A. Cardigliano, “Towards 100 gbit flow-based network
monitoring,” in FloCon 2016, Jan. 2016.

[8] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, “Lambda
architecture for cost-effective batch and speed big data processing,” in
2015 IEEE Int. Conf. on Big Data (Big Data), Oct 2015, pp. 2785–2792.

[9] V. K. Bumgardner and V. W. Marek, “Scalable hybrid stream and
hadoop network analysis system,” in Proceedings of the 5th ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’14.
New York, NY, USA: ACM, 2014, pp. 219–224.

[10] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with hadoop,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 1, pp. 5–13, 2013.

[11] W. Nagele, “Large-scale PCAP Data Analysis Using Apache
Hadoop,” 2011. [Online]. Available: https://labs.ripe.net/Members/
wnagele/large-scale-pcap-data-analysis-using-apache-hadoop

[12] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou, and
I. Koltsidas, “Crail: A high-performance i/o architecture for distributed
data processing.” IEEE Data Eng. Bull., vol. 40, no. 1, pp. 38–49, 2017.

[13] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky,
“Benchmarking streaming computation engines: Storm, flink and spark
streaming,” in 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), May 2016, pp. 1789–1792.

[14] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: An efficient and fault-tolerant model for stream processing on
large clusters.” HotCloud, vol. 12, pp. 10–10, 2012.

[15] J. Cho, H. Chang, S. Mukherjee, T. V. Lakshman, and J. Van der Merwe,
“Typhoon: An sdn enhanced real-time big data streaming framework,”
in Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’17. New
York, NY, USA: ACM, 2017, pp. 310–322.

[16] Y. Wang, C. Xu, X. Li, and W. Yu, “Jvm-bypass for efficient hadoop
shuffling,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, May 2013, pp. 569–578.

[17] M. Ruiz, G. Sutter, S. López-Buedo, and J. E. López de Vergara, “Fpga-
based encrypted network traffic identification at 100 gbit/s,” in 2016
International Conference on ReConFigurable Computing and FPGAs
(ReConFig), Nov 2016, pp. 1–6.

[18] DPDK: Programmer’s Guide, Apr. 2018, https://fast.dpdk.org/doc/
pdf-guides-18.05/.

[19] S. Woo and K. Park, “Scalable tcp session monitoring with symmetric
receive-side scaling,” KAIST, Daejeon, Korea, Tech. Rep, 2012.

[20] C. Walsworth, E. Aben, k. Claffy, and D. Andersen, “The CAIDA
anonymized Internet traces 2016 dataset,” http://www.caida.org/data/
passive/passive 2016 dataset.xml, [06 April 2016].

https://github.com/hpcn-uam/wormhole
https://labs.ripe.net/Members/wnagele/large-scale-pcap-data-analysis-using-apache-hadoop
https://labs.ripe.net/Members/wnagele/large-scale-pcap-data-analysis-using-apache-hadoop
https://fast.dpdk.org/doc/pdf-guides-18.05/
https://fast.dpdk.org/doc/pdf-guides-18.05/
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml

	Introduction
	Related work
	Proposed Solution
	Wormhole design and dynamic behavior compilation
	Monitoring Architecture
	Link aggregation
	Useless Payload Reduction
	Distribution
	Analysis
	Storage and Indexing
	Visualization


	Experimental Evaluation
	Conclusions and Future Work
	References

