Training LLMs to Speak Network

Ivdn Gonzilez'©, Jorge E. L6pez de Vergara'/®, Javier Aday Delgado-Soto?®,
Daniel Perdices!®, and Luis de Pedro!

! Department of Electronic and Communication Technologies, School of Engineering,
Universidad Auténoma de Madrid, Spain
{ivan.gonzalez, jorge.lopez_vergara,daniel.perdices, luis.depedro}@uam.es
2 Secretary of State for Digitalization and Artificial Intelligence,
Ministry for Digital Transformation and Public Administration, Spain
javieraday.delgado@digital.gob.es

Abstract. The synthesis of realistic network traffic is essential for the evaluation
of communication infrastructures, particularly in contexts such as performance
benchmarking, security validation, and scalability testing. Traditional method-
ologies, such as traffic replay systems and statistical traffic models, often fall
short in replicating the intricate and dynamic characteristics of real-world net-
work behavior. In this study, we propose an innovative approach that leverages
the fine-tuning of Large Language Models (LLMs) to generate synthetic network
conversations that closely mirror authentic traffic patterns. Our methodology sup-
ports the structured generation of protocol-specific traffic, including ARP, ICMP,
DNS and HTTP. Experimental results reveal that the proposed method achieves
high accuracy and behavioral fidelity, with performance largely dependent on
the capabilities of the underlying language model. These outcomes highlight the
promise of LLM-based traffic generation as a versatile and effective tool for ad-
vancing research in network simulation, protocol behavior analysis, and cyberse-
curity experimentation.

Keywords: Network traffic generation - Generative Al - LLM - Fine-tuning.

1 Introduction

The integration of Machine Learning (ML) into network and service management is
transforming the landscape of cybersecurity and operational efficiency. These mod-
ern approaches offer significant advantages over traditional systems; however, they are
heavily reliant on large-scale datasets, particularly in the case of Deep Learning (DL)
models. In this context, data quality becomes a critical factor in enhancing model per-
formance, yet the volume of data must also be sufficient to capture and generalize un-
derlying patterns. Unfortunately, high-quality datasets suitable for training are often
limited and scarce, which poses a challenge to the generalization capabilities of these
models.

To address the challenge of limited and outdated network traffic datasets, the genera-
tion of realistic synthetic traffic emerges as a promising solution. This approach not only
augments existing datasets but also ensures high-quality data that can simulate diverse
network scenarios. Furthermore, synthetic traffic generation mitigates key limitations of

https://orcid.org/0000-0002-5886-240X
https://orcid.org/0000-0002-4057-4688
https://orcid.org/0009-0001-9453-9351
https://orcid.org/0000-0002-3421-7633
https://orcid.org/0000-0002-4595-7370

2 Ivan Gonzalez et al.

current datasets, such as class imbalance, poor feature quality, and obsolescence [2615]].
By expanding the volume of available traffic, researchers can create novel test scenarios
that improve network management strategies. This capability is particularly beneficial
for applications such as packet classification [[1], traffic policing [2.8], and cybersecu-
rity [9/4]. Without the cohesive integration of realistic traffic generation techniques, the
full potential of Al-driven cybersecurity solutions cannot be realized.

In this work, we propose a novel methodology for generating realistic network traf-
fic by fine-tuning LLMs on Scapy-based packet generation scripts. In this case, fine-
tuning is the process of deriving a new model from an existing one adapted to a partic-
ular problem or dataset, in our case, network traffic generation. Training an LLM from
scratch is a massive task that requires hundreds to thousands of GPUs, while fine-tuning
involves a set of more delicate procedures that try to get the most out of the model while
modifying a rather small number of parameters. Scapy [6] is a powerful Python library
that allows for the creation, manipulation, and analysis of network packets. By training
LLMs on curated Scapy code that represents diverse protocol-specific conversations,
we enable the model to learn the syntax, semantics, and sequence of protocol interac-
tions. This approach allows the model to generate with small prompts new Scapy scripts
that simulate realistic network traffic across various protocols.

The remainder of this paper is organized as follows: Section 2]reviews related work
and emphasizes the novelty of our approach. Section[3|presents the proposed methodol-
ogy for packet generation, including dataset construction and the evaluation framework.
The experimental results are provided in Section [} Finally, Section [5] summarizes the
main contributions and outlines potential directions for future work.

2 State of the Art

The generation of realistic network traffic is a longstanding objective in the domains
of network security and performance evaluation. Traditional methods, including traf-
fic replay systems [12] and statistical modeling, have been widely used to simulate
network behavior. These approaches can be categorized by their level of abstraction:
metadata-based [27]], flow-based [25]], and packet-based generation [20]. While effec-
tive in specific contexts, such methods often lack adaptability and fail to capture the
complexity of evolving network conditions.

Recent advances in deep learning have significantly enhanced synthetic traffic gen-
eration [3l28]]. Generative models such as Generative Adversarial Networks
(GANS) [10420429] and LLMs [7]] have introduced dynamic, context-aware capabilities.
In metadata-based generation, deep models replicate statistical distributions of traffic
features. Flow-based approaches leverage RNNs, such as LSTMs [19], to model tem-
poral dependencies, while packet-based methods employ CNNs and RNNs to emulate
protocol-specific behaviors [19].

GAN variants like PAC-GAN [10] and WGAN-GP [25] have been used to generate
labeled traffic for intrusion detection. Diffusion and state-space models [16/11] have
shown promise in reducing statistical divergence from real data, although challenges in
protocol conformance remain open.

Training LLMs to Speak Network 3

Transformer-based models, particularly GPT variants, have emerged as powerful
tools for traffic generation. PAC-GPT [17] demonstrated GPT-3 ability to generate
ICMP and DNS packets, albeit with limitations in request-response modeling. GPT
on the wire [[13], based on a few-shot learning approach, offers a cost-effective alter-
native for traffic synthesis, making it ideal for rapid prototyping and experimentation.
TrafficGPT [22], in contrast, adapts the model architecture to enable a deeper under-
standing of traffic data.

Building on these developments in LLM-driven traffic generation, our work in-
troduces a methodology that bridges the gap between prompt-based generation and
architecture-level adaptations. Our method leverages fine-tuning of existing LLMs on
curated Scapy datasets to provide a practical and extensible solution to generate realistic
network traffic, supporting both research and evaluation efforts.

3 Methodology

The proposed methodology for traffic generation consists of four key stages:

1. Dataset Generation: A curated dataset of Scapy scripts is constructed to represent
a diverse set of network interactions, including ARP, DNS (over UDP), ICMP, and
HTTP (over TCP). Each script is paired with a natural language summary that de-
scribes the parameters of the conversation (e.g., IP addresses, ports, domain names),
along with the corresponding Scapy code used to generate the packet sequence.

2. LLM Fine-Tuning: A pre-trained LLM is fine-tuned on the dataset using super-
vised learning. The model learns to translate natural language descriptions of net-
work conversations into valid Scapy code, capturing both protocol logic and Python
syntax. Unlike few-shot approaches [[13], this method enables the model to inter-
nalize protocol semantics and generate complete executable scripts.

3. Code Execution and Traffic Generation: The generated Scapy code is executed
to synthesize real network traffic, which is then stored in . pcap format for further
analysis.

4. Validation and Analysis: This stage involves both static and dynamic validation.
It includes syntax checking of the generated code and protocol compliance verifi-
cation using Wireshark dissectors.

The next subsections detail each step of the methodology.

3.1 Dataset Generation

The dataset consists of plain-text instruction—output pairs, designed to train the model
to generate Scapy-based network scripts from natural language descriptions. Each entry
includes:

— Instruction: A natural language prompt describing the task: the generation of a
Scapy script for a specific network interaction. It includes a concise summary of
the communication scenario, specifying protocol details, IP addresses, ports, and
other relevant parameters.

4 Ivan Gonzalez et al.

— Output: A complete Python script utilizing the Scapy library that fulfills the in-
struction and adheres to the expected protocol behavior.

This format enables the model to learn how to interpret natural language descrip-
tions of network behavior and translate them into executable code. It emphasizes lin-
guistic generalization and aligns with the pretraining objectives of LLMs, facilitating
effective fine-tuning for code generation tasks.

An example entry from the dataset is shown below:

Below is an instruction that describes a task. Write a response
that appropriately completes the request.

Instruction:

Generate Python code to create packets with the scapy framework
based on the following summary of a DNS conversation:

Source: IP= "37.24.70.161" // Destination: IP= "37.25.117.164"
// Others: id=0x1017 , resource= "www.company23.io"

response = "151.48.69.115"

Don’t explain the code, just generate the code block itself.

The last code line of your code must be ’pkt_list = [pkt_1,
pkt_2, ...]7; If not, make the appropriate corrections to
the code.

##4# Output:

import random
from scapy.all import =
import time

RANDOM_MAC1="02:00:00:%02x:%02x:%02x" % (random.randint (0, 255),
random.randint (0, 255), random.randint (0, 255))

RANDOM_MAC2="02:00:00:%02x:%02x:%02x" % (random.randint (0, 255),
random.randint (0, 255), random.randint (0, 255))

RANDOM_PORT = random.randint (4097, 65530)

pkt_1 = Ether (src=RANDOM_MAC1, dst=RANDOM_MAC2) /IP (src
="37.24.70.161", dst="37.25.117.164", proto=17) / UDP (sport=
RANDOM_PORT, dport=53) / DNS(id=0x1017, qr=0, rd=1, opcode
=0, gdcount=1, ancount=0, nscount=0, arcount=0, gd=DNSOR (
gname="www.company23.io0", qgtype="A", gclass="IN"))

time.sleep (abs (random.gauss (0, 0.03)))

pkt_2 = Ether (src=RANDOM_MAC2, dst=RANDOM_MAC1) /IP (src
="37.25.117.164", dst="37.24.70.161", proto=17) / UDP (sport
=53, dport=RANDOM_PORT) / DNS(id=0x1017, gr=1, opcode=0, ra
=1, rcode=0, gdcount=1, ancount=1, nscount=0, arcount=0, qgd=
DNSOQOR (gname="www.company23.io", gtype="A", gclass="IN"), an=
DNSRR (rrname="www.company23.1io", type="A", rclass="IN", ttl
=255, rdata="151.48.69.115"))

pkt_list = [pkt_1, pkt_2]

The dataset was constructed using a semi-synthetic methodology. A subset of real
network packets was initially captured to ensure alignment with authentic protocol be-

Training LLMs to Speak Network 5

havior and converted to Scapy code. Then, more samples were added by generating new
conversations through controlled modifications of network parameters, tailored to the
characteristics of each protocol. To simulate realistic traffic dynamics, temporal features
such as randomized inter-packet delays (e.g., t ime . sleep (abs (random.gauss (0,
0.03)))) were incorporated, introducing variability that mimics natural network tim-
ing.

3.2 LLM Fine-Tuning

The next stage involves selecting one or more language models for fine-tuning, based on
three primary criteria: (i) their performance on Python code generation
benchmarks [14123121]]; (ii) their compatibility with the available hardware, specifi-
cally a 40 GB NVIDIA A100 GPU; and (iii) our prior experience working with these
models [[13].

Given the memory constraints of the Nvidia A100 GPU, we evaluated whether each
model could be fine-tuned with or without the use of advanced optimization techniques
such as quantization and Low-Rank Adaptation (LoRA). Quantization reduces memory
usage and accelerates computation by lowering the precision of model weights, while
LoRA enables efficient fine-tuning by injecting small trainable matrices into the atten-
tion layers, typically less than 1-10% of the original size.

The fine-tuning process is conducted using supervised learning, where a pre-trained
LLM is trained on a dataset of instruction—output pairs. Each instruction, as shown in
subsection [3.1} is a natural language description of a network communication scenario,
and the corresponding output is a complete Scapy script that implements the described
behavior. Through this process, the model learns to translate natural language prompts
into valid Python code that complies with protocol specifications.

Based on the selection criteria, we chose two models: Codestral by Mistral and
Deepseek-Coder by DeepSeek, both available via the Hugging Face platform (Codestral-
22B-v0.1 and deepseek-coder-1.3b-instruct, respectively) [[13)]. Codestral-22B-v0.1 is a
state-of-the-art 22B parameter model specifically designed for code generation tasks. Its
high capacity offers strong reasoning and code synthesis capabilities, making it a suit-
able candidate for advanced fine-tuning and downstream applications. However, due to
its large size, it requires optimization techniques such as 4-bit quantization and Low-
Rank Adaptation (LoRA) to fit within available hardware resources, specifically the
A100 GPU memory limits. On the other hand, deepseek-coder-1.3b-instruct is a sig-
nificantly smaller model (1.3B parameters) that strikes a balance between efficiency
and performance. It is lightweight enough to be fine-tuned directly without the need for
aggressive memory optimizations. This makes it particularly suitable for rapid proto-
typing and experimentation, especially in environments where computational resources
are limited.

3.3 Code Execution and Traffic Generation

In this stage, the fine-tuned LLM receives a natural language prompt similar in struc-
ture to those used during training, that requests network packets based on a protocol
and a summary that describes the parameters of the conversation. The model responds

6 Ivan Gonzalez et al.

by generating Scapy code that constructs the corresponding packet sequence as a list
of packets, stored in a variable named pkt_1ist. This list encapsulates the entire
sequence of packets representing the described interaction (see Subsection [3.1)).

The code is executed using exec () Python function, which dynamically runs the
generated script and populates the pkt__ 11 st variable with Scapy packet objects. Once
the packet list is constructed, it is serialized and saved to a . pcap file using wrpcap ()
Scapy function.

The resulting . pcap file can then be analyzed using tools such as Wireshark to in-
spect packet structures, protocol fields, and sequence logic. This approach ensures safe,
reproducible traffic generation and supports detailed offline analysis of the generated
network behavior.

3.4 Validation and Analysis

To assess the quality and reliability of the generated Scapy scripts, we adopt a com-
prehensive evaluation strategy that combines textual similarity metrics with functional
traffic validation. This methodology ensures that the outputs are both syntactically ac-
curate and semantically valid from a network protocol perspective.

Textual Similarity Metrics. We evaluated the similarity between generated scripts and
reference implementations using two complementary metrics:

— ROUGE-1 [18]: Measures unigram (word-level) overlap between the generated
and reference code. It provides precision, recall, and F1-score, capturing surface-
level lexical similarity.

— CodeBLEU [24]: A code-specific metric that extends BLEU by incorporating pro-
gramming language structure. It combines n-gram matching, abstract syntax tree
(AST) similarity, data flow consistency, and semantic embeddings. CodeBLEU is
particularly useful for evaluating whether the generated code preserves the logic
and structure of the reference implementation.

Packet-Level Validation with Wireshark. To verify the functional validity of the
generated scripts, the generated packets are saved in . pcap format. We then analyzed
the packets using Wireshark to detect protocol-level issues (see Figure[T). We extract:

— Warnings and errors: Reported by Wireshark protocol dissectors, including mal-
formed headers, checksum errors, and unexpected field values.

— Protocol compliance: Whether the packets conform to the expected structure and
behavior of the specified protocols (e.g., valid DNS query/response pairs, correct
TCP handshakes).

Training LLMs to Speak Network 7

Wireshark 50 ¢
File Edit View Go Capture Analyze statistics Telephony Wireless Tools Help

AWM @ BPBIRE @< I --EEQAQQE

|(WTApply a display filter ... <Ctrl 23 -
No. Time Source Destination Protocol Length Time delta from previous di
127 1607.872649 65.55.44.108 198.51.100.233 TCP 0
128 1007.903759 198.51.100.233 65.55.44.108 TCP 40
[+ 129 1067.944233 198.51.100.233 65.55.44.168 HTTP 80 —
130 1007.956727 65.55.44.108 198.51.100.233 TCP 46 —
131 1008.025534 65.55.44.108 198.51.100.233 Tcp 75 —
132 1008.043361 198.51.100.233 65.55.44.108 Tcp 40 —
133 1008.067757 198.51.100.233 65.55.44.108 Tcp 40 —
134 1008.068193 65.55.44.108 198.51.100.233 Tcp 40 —
135 1008.094067 65.55.44.108 198.51.100.233 HTTP 40 —_]
136 1008.097211 198.51.100.233 65.55.44.108 TCp 40 —]
137 1086.858826 87.248.98.7 69.171.250.35 TCp 40 —
138 1086.880176 69.171.250.35 87.248.98.7 Tcp 40 —
139 1086.895801 87.248.98.7 69.171.250.35 Tcp 40 —
140 1086.914030 87.248.98.7 69.171.250.35 HTTP 80 —
141 1086.936670 69.171.250.35 87.248.98.7 Tcp 40 —]
142 1086.943914 69.171.250.35 87.248.98.7 TCp 66 —
143 1086.961824 87.248.98.7 69.171.250.35 TCp 20 —
144 1086.985303 87.248.98.7 69.171.250.35 Tcp 40 —
T D
|» Frame 129: 86 bytes on wire (646 bits), 80 bytes captured (646 bits)
45 00 00 50 00 01 00 00 40 06 el e7 c6 33 64 €9 E- P @ - -3d
41 37 2c 6c 04 af @0 50 00 00 00 51 00 00 00 57 A7,1.--P ---Q W
0020 50 18 20 00 45 e® 00 00 47 45 54 20 2f 20 [P P E- - GET /[
0030 od Ga 48 6f 73 74 3a 20 77 77 Host: ww
77 2e 67 69 74 6c 61 62 2e 63 6 6d 0d @a 0d Ga w.gitlab .com
@ 7 Preparado para cargar o capturar Packets: 666 - Displayed: 666 (100.0%) Profile: Default

Fig. 1. Packet-Level analysis with Wireshark.

4 Results

4.1 Dataset Composition

The dataset generated for this study comprises network traffic conversations catego-
rized into four protocol types: ARP, DNS, HTTP, and ICMP. It is divided into training,
validation, and test subsets. Each protocol is represented with a similar number of con-
versations across these subsets, making the dataset relatively balanced. This balance is
crucial for ensuring fair and unbiased model training and evaluation. Out of a total of
2595 samples, 2 333 were used for training, 262 for testing, of which 50 have been cho-
sen for validation. Although modest in size compared to large-scale pretraining corpora,
the dataset is sufficiently rich and diverse to enable the model to learn the structure and
behavior of the targeted protocols effectively. The distribution of conversation types and
the dataset splits are shown in Table [T}

Table 1. Summary of the number of conversations per protocol in the training, test, and validation
datasets.

Protocol Training Test(Validation)| Total

ARP 687 77(15) 764
DNS 648 73(14) 721
HTTP 393 44(8) 437
ICMP 605 63(13) 673
Total 2333 262(50) |2595

8 Ivan Gonzalez et al.

4.2 Fine-tuning

The training configuration was kept consistent across both models, with the hyperpa-
rameters detailed in Table[2] The models were fine-tuned using Supervised Fine-Tuning
(SFT) on the training subset with a batch size of 4, ensuring a fair comparison while
maximizing GPU memory utilization for each configuration. Evaluation was conducted
using batches of size 1 on 50 samples from the test set, which were designated as a
validation subset during training to monitor performance and mitigate overfitting. Both
models were trained for 8 epochs, maintaining consistency in training duration and al-
lowing for a direct comparison of learning dynamics under equivalent conditions.

The distinction between the two training setups lies in the use of LoRA and quan-
tization. Codestral was trained using 4-bit quantization and LoRA adapters, which sig-
nificantly reduced memory usage and training time. In contrast, DeepSeek-Coder was
trained in full precision without parameter-efficient fine-tuning techniques, resulting in
higher memory consumption but potentially more direct gradient updates across the full
model. This difference in training strategy likely contributed to the observed variations
in training dynamics and final loss, rather than differences in model scale or pretraining
exposure.

Table 2. Comparison of Training Configurations and Results

Parameter Codestral Deepseek-Coder
Batch Size (Train / Eval) 4/1 4/1
Gradient Accumulation Steps 1 1
Epochs 8 8
Optimizer adamw_8bit adamw_8bit
LR Scheduler Linear Linear
Learning Rate 2e-5 2e-5
Warmup Steps 5 5
Precision bf16 bf16
Weight Decay 0.001 0.001
Peak Reserved Memory (GB) 19.104 32.932
LoRA/Quantization Yes / 4-bit No / Full
Training Runtime (s) 19 121.67 9120.04
Final Training Loss 0.055700 0.014000

4.3 Evaluation

The evaluation phase is designed to assess the models ability to generalize from the
training data and accurately generate Scapy scripts based on natural language instruc-
tions. This is performed using a dedicated test subset of the dataset, which consists of
262 samples. The evaluation is conducted in batches, allowing for efficient processing
while maintaining consistency across model comparisons. During evaluation, the model

Training LLMs to Speak Network 9

output is compared against the ground truth Scapy script, and the generated packets are
analyzed using Wireshark to identify protocol-level issues, as described in Section 3]
Both Codestral and DeepSeek-Coder demonstrate strong capabilities in generating
network protocol Scapy code, though their strengths vary by protocol. Codestral consis-
tently achieves a 100% success rate across all protocols, indicating robust and reliable
performance. In contrast, DeepSeek-Coder shows notably lower success on ARP.

Table 3. Average generation time (seconds) of conversations per protocol on GPU

Protocol Codestral DeepSeek-Coder

ICMP 26.09 6.61
DNS 40.63 10.20
ARP 24.34 6.16
HTTP 119.55 30.67
Mean 52.65 13.41

Table 3] reveals that DeepSeek-Coder significantly outperforms Codestral in gener-
ation time across all evaluated network protocols, averaging approximately 13.41 sec-
onds compared to Codestral 52.65 seconds. A key factor contributing to this disparity
is the difference in model size. Smaller models like deepseek-coder-1.3b-instruct typi-
cally require fewer computations and can fully utilize GPU memory, resulting in faster
and more efficient inference. In contrast, larger models such as Codestral may offer
greater contextual understanding or higher accuracy, but at the cost of increased latency
due to their computational demands.

We analyze each LLM results in detail below.

Codestral. Codestral generated 262 conversations from a total of 262 entries in the test
dataset, all of which successfully passed the Textual Similarity evaluation and resulted
in valid packet generation (Table). The similarity metric results reveal distinct per-
formance patterns across protocols. The ICMP protocol achieved perfect scores in both
ROUGE (1.000) and CodeBLEU (1.000), indicating exceptional lexical fidelity and
structural accuracy. ARP followed closely with a ROUGE score of 0.996 and a strong
CodeBLEU score of 0.991, suggesting highly faithful and well-structured code genera-
tion. HTTP also performed well, with a ROUGE score of 0.935 and a CodeBLEU score
of 0.922, reflecting consistent quality. DNS demonstrated balanced performance with a
ROUGE score of 0.908 and a CodeBLEU score of 0.900, making it a reliable protocol
for code generation. Overall, Codestral exhibits robust capabilities in generating ac-
curate and semantically rich code across multiple network protocols, with particularly
outstanding results for ICMP and ARP.

DeepSeek-Coder. DeepSeek-Coder generated 262 conversations from the test dataset,
all of which successfully passed the Textual Similarity evaluation and resulted in valid

10 Ivan Gonzalez et al.

Table 4. Codestral: Average Textual Similarity Metrics

Protocol\#Conversations Success Rate ROUGE CodeBLEU

ARP 71 100% 0.996 0.991
DNS 73 100% 0.908 0.900
HTTP 44 100% 0.935 0.922
ICMP 68 100% 1.000 1.000

packet generation (Table [5)). When compared to Codestral, which also achieved a per-
fect success rate across all protocols, DeepSeek-Coder demonstrates nearly identical
performance in terms of ROUGE and CodeBLEU scores.

Table 5. DeepSeek-Coder: Average Textual Similarity Metrics

Protocol‘#Conversations Success Rate ROUGE CodeBLEU

ARP 77 100% 0.995 0.991
DNS 73 100% 0.908 0.900
HTTP 44 100% 0.935 0.922
ICMP 68 100% 1.000 1.000

4.4 Analysis with Wireshark

To complement the textual evaluation of generated network conversations, we con-
ducted a packet-level validation to assess the functional correctness and protocol com-
pliance of the generated traffic. This analysis is critical for verifying that the gener-
ated scripts not only resemble real network interactions textually but also produce valid
packets. Using Wireshark, we examined .pcap files generated from the models out-
puts. The validation focused on identifying malformed packets, protocol-specific warn-
ings, and deviations from expected communication patterns. This process provides a
deeper understanding of the model ability to generate operationally valid network traf-
fic across different protocols.

Codestral. The packet-level analysis of Codestral confirmed a high degree of structural
and semantic fidelity across all supported protocols, with no observed errors. The only
warnings arose from the use of non-standard MAC addresses, specifically those with
first-byte values that violate IEEE-assigned organizationally unique identifier (OUI)
conventions. This non-compliance results from the data augmentation strategy em-
ployed to increase MAC address diversity during dataset generation. Although such
addresses may trigger heuristic warnings in strict validation environments, they do not
impact protocol correctness or traffic interpretability. Overall, the results demonstrate
that Codestral generates high-quality, protocol-compliant network traffic.

Training LLMs to Speak Network 11

Deepseek-Coder. The packet-level analysis of DeepSeek-Coder confirmed a high de-
gree of structural and semantic fidelity across all supported protocols, consistent with
the results observed for Codestral. As with Codestral, no protocol-specific errors were
flagged by Wireshark, and all generated traffic was considered valid and interpretable.
Additionally, DeepSeek-Coder exhibited the same issue related to non-standard MAC
addresses, which stems from the data augmentation strategy used during dataset gener-
ation.

5 Conclusions and future work

This study demonstrates the effectiveness of the proposed methodology for generating
network packets using LLMs fine-tuned on protocol-specific conversations synthesized
with Scapy. The proposed approach enables network packets to be represented and
generated as structured code, making them more accessible to LLMs. By representing
packets as structured code, the approach leverages the strengths of LLMs in learning
syntactic and behavioral patterns across diverse network protocols. The strong perfor-
mance of both Codestral and DeepSeek-Coder in the textual similarity assessment high-
lights the viability of this representation for producing coherent and protocol-compliant
outputs. The subsequent packet-level validation, conducted using Wireshark, confirmed
the structural integrity of the generated traffic, with all packets conforming to protocol
specifications, reinforcing the broader applicability of LLMs in network traffic genera-
tion tasks. The only minor deviation involved the use of non-standard MAC addresses,
which did not affect protocol correctness or traffic interpretability.

In summary, the integration of Scapy-based protocol modeling with LLM fine-
tuning represents a promising methodology for generating realistic and operationally
meaningful network traffic. While the effectiveness of this approach depends on the ca-
pabilities of the underlying language model, our results demonstrate that, when paired
with a sufficiently capable model, it can achieve high structural fidelity and protocol
compliance. This methodology shows strong potential for applications in network sim-
ulation, automated testing, and cybersecurity research.

Future work should focus on expanding protocol coverage and increasing the com-
plexity of generated network interactions. In particular, we aim to explore the use
of reasoning-capable LLMs to enable the hierarchical learning of complex protocols
from foundational ones. This direction opens the possibility of compositional proto-
col synthesis, where models generalize from basic primitives to more sophisticated,
stateful behaviors. Additionally, extending the approach to encompass more complex
and dynamic network scenarios, including video streaming, file sharing, and large-scale
downloads, would provide a robust testbed for evaluating the models capacity to man-
age multi-protocol flows, session persistence, and real-time data exchange. Integrating
this methodology with full-featured network simulation environments could also enable
the development of interactive, LLM-driven tools for cybersecurity training, automated
protocol analysis, and intelligent traffic generation in realistic settings, thereby advanc-
ing both research and practical applications in network systems.

Acknowledgements. This work was supported in part by the R&D activity program
with reference TEC-2024/COM-504 and acronym RAMONES-CM, granted by the Co-

12

Ivan Gonzalez et al.

munidad de Madrid through the Directorate General for Research and Technological
Innovation via Order 5696/2024, and by the Comunidad de Madrid under the project
LINO (SI4/PJ1/2024-00221) through the direct grant agreement for the promotion of
research and technology transfer at Universidad Auténoma de Madrid.

References

10.

11.

12.

13.

14.

15.

. Aceto, G., Ciuonzo, D., Montieri, A., Persico, V., Pescapé, A.: Al-powered internet traffic

classification: Past, present, and future. IEEE Communications Magazine 62(9), 168-175
(2024)

. Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Mobile encrypted traffic classification

using deep learning: Experimental evaluation, lessons learned, and challenges. IEEE Trans-
actions on Network and Service Management 16(2), 445458 (2019)

. Adeleke, O.A., Bastin, N., Gurkan, D.: Network traffic generation: A survey and methodol-

ogy. ACM Comput. Surv. 55(2) (jan 2022)

. Agrawal, G., Kaur, A., Myneni, S.: A review of generative models in generating synthetic

attack data for cybersecurity. Electronics 13(2) (2024)

. Ahmed, L.A.H., Hamad, Y.A.M., Abdalla, A.A.M.A.: Network-based intrusion detection

datasets: A survey. In: 2022 International Arab Conference on Information Technology
(ACIT). pp. 1-7 (2022)

. Biondi, P.: Scapy: A python library for packet manipulation. https://scapy.net/

(2025)

. Bovenzi, G., Cerasuolo, F., Ciuonzo, D., Di Monda, D., Guarino, I., Montieri, A., Persico, V.,

Pescape, A.: Mapping the landscape of generative ai in network monitoring and management.
arXiv preprint arXiv:2502.08576 (2025)

. Bovenzi, G., Cerasuolo, F., Montieri, A., Nascita, A., Persico, V., Pescapé, A.: A compar-

ison of machine and deep learning models for detection and classification of android mal-
ware traffic. In: 2022 IEEE Symposium on Computers and Communications (ISCC). pp. 1-6
(2022)

. Bovenzi, G., Di Monda, D., Montieri, A., Persico, V., Pescape, A.: Classifying attack traffic

in iot environments via few-shot learning. Journal of Information Security and Applications
83, 103762 (2024)

Cheng, A.: PAC-GAN: Packet generation of network traffic using generative adversarial net-
works. In: 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Com-
munication Conference (IEMCON). pp. 0728-0734 (2019)

Chu, A., Jiang, X., Liu, S., Bhagoji, A., Bronzino, F., Schmitt, P., Feamster, N.: Feasibility
of state space models for network traffic generation. In: Proceedings of the 2024 SIGCOMM
Workshop on Networks for AI Computing. pp. 9-17 (2024)

Chu, W., Guan, X., Cai, Z., Gao, L.: Real-time volume control for interactive network traffic
replay. Computer Networks 57(7), 1611-1629 (2013)

Delgado-Soto, J.A., Lopez de Vergara, J.E., Gonzdlez, 1., Perdices, D., de Pedro, L.: Gpt
on the wire: Towards realistic network traffic conversations generated with large language
models. Computer Networks 265, 111308 (2025)

Du, X, Liu, M., Wang, K., Wang, H., Liu, J., Chen, Y., Feng, J., Sha, C., Peng, X., Lou, Y.:
Classeval: A manually-crafted benchmark for evaluating llms on class-level code generation
(2023), https://arxiv.org/abs/2308.01861

Hugging Face: Hugging face — the ai community building the future. https://
huggingface.co/(2024)

https://scapy.net/
https://arxiv.org/abs/2308.01861
https://huggingface.co/
https://huggingface.co/

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Training LLMs to Speak Network 13

Jiang, X., Liu, S., Gember-Jacobson, A., Bhagoji, A.N., Schmitt, P.,, Bronzino, F., Feamster,
N.: Netdiffusion: Network data augmentation through protocol-constrained traffic genera-
tion. Proceedings of the ACM on Measurement and Analysis of Computing Systems 8(1),
1-32 (2024)

Kholgh, D.K., Kostakos, P.: PAC-GPT: A novel approach to generating synthetic network
traffic with gpt-3. IEEE Access 11, 114936114951 (2023)

Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop. pp. 74-81. Association for Computa-
tional Linguistics (2004)

Meslet-Millet, E., Mouysset, S., Chaput, E.: Necstgen: An approach for realistic network
traffic generation using deep learning. In: GLOBECOM 2022 - 2022 IEEE Global Commu-
nications Conference. pp. 3108-3113 (2022)

Nukavarapu, S.K., Ayyat, M., Nadeem, T.: Miragenet - towards a gan-based framework for
synthetic network traffic generation. In: GLOBECOM 2022 - 2022 IEEE Global Communi-
cations Conference. pp. 30893095 (2022)

Papers with Code: State-of-the-art code generation on humaneval. https:
//paperswithcode.com/sota/code—generation—on—humaneval|(2024)
Qu, J., Ma, X., Li, J.: TrafficGPT: Breaking the token barrier for efficient long traffic analysis
and generation (2024)

Ravkine, M.: Can AI code? - results. lhttps://huggingface.co/spaces/
mike-ravkine/can—ai-code-results|(2023)

Ren, S., Tu, Z., Feng, S., Lou, J., Yin, D.G., Zhang, S., Svyatkovskiy, A., Fu, S., Xu, M.,
Zhang, D., et al.: Codebleu: a method for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297 (2020)

Ring, M., Schlér, D., Landes, D., Hotho, A.: Flow-based network traffic generation using
generative adversarial networks. Computers & Security 82, 156-172 (2019)

Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based
intrusion detection data sets. Computers & Security 86, 147-167 (2019)

Ruiz, M., Ruiz, M., Tabatabaeimehr, F., Gifre, L., Lopez-Buedo, S., Lépez de Vergara, J.E.,
Gonzélez, 0., Velasco, L.: Modeling and assessing connectivity services performance in a
sandbox domain. Journal of Lightwave Technology 38(12), 3180-3189 (2020)

Xuying Meng, Chungang Lin, Y.W., Zhang, Y.: NetGPT: Generative pretrained transformer
for network traffic. arXiv (2023),https://arxiv.org/pdf/2304.09513

Yin, Y., Lin, Z., Jin, M., Fanti, G., Sekar, V.: Practical gan-based synthetic ip header trace
generation using netshare. In: Proceedings of the ACM SIGCOMM 2022 Conference. pp.
458-472 (2022)

https://paperswithcode.com/sota/code-generation-on-humaneval
https://paperswithcode.com/sota/code-generation-on-humaneval
https://huggingface.co/spaces/mike-ravkine/can-ai-code-results
https://huggingface.co/spaces/mike-ravkine/can-ai-code-results
https://arxiv.org/pdf/2304.09513

	Training LLMs to Speak Network

