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Network Quality-Aware Architecture for Adaptive 
Video Streaming from Drones 

Jesús Molina, David Muelas, Jorge E. López de Vergara, José Javier García-Aranda 

Abstract— Video streaming over IP networks presents several challenges for remote drone piloting. To achieve a high Quality of Experience, 

minimal latency is mandatory. However, wireless links usually impose dynamic changes to Quality of Service conditions. Moreover, bandwidth 

limitations can increase both the final perceived latency and packet loss during video streaming. These circumstances require an architecture 

capable of estimating network performance and applying corrective actions in a timely manner to optimize application-level quality. In this paper, 

we present such an architecture, and discuss the results of its application in video streaming for remote drone piloting. Our proposal offers a 

framework with low coupling between its functional blocks and high adaptability to dynamic scenarios. Accordingly, we aim to pave the way for 

reactive applications that leverage edge-computing elements and adapt to network conditions. 
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INTRODUCTION 

HE development of both computational and network 

performance is fostering the deployment of ambitious, real-

time applications that serve content from the network edge [1]. 

These applications are intended for diverse use cases, such as 

connected homes, health monitoring, connected cars, industry 

4.0, and smart cities. However, the assurance of adequate Quality 

of Service (QoS) levels for such applications is posing significant 

challenges in network and performance monitoring. Specifically, 

low latency levels and high bandwidths are common application 

requirements [2] that can compromise service quality as they vary 

over time. 

These challenges—particularly amidst the increased 

connectivity provided by the Internet of Things (IoT)—are fueling 

novel solutions that alleviate the burden of variable network 

conditions. As devices are transmitting more multimedia 

content—i.e., the Internet of Multimedia Things (IoMT) [3]—this 

matter is becoming increasingly urgent because users’ Quality of 

Experience suffers when network performance is insufficient. This 

deteriorates because IoT devices usually have modest capabilities, 

which calls for solutions that are both fitted to such devices and 

capable of timely service degradation detection. 

 In this work, we present a framework to improve adaptive 

video streaming from drones over IP networks. Its design is 

intended to provide the highest-achievable QoE with respect to 

network performance indicators. For this, our solution integrates 

monitoring elements to assess network performance between 

application endpoints; modules to define data-driven adaptive 

policies that maximize users’ QoE with respect to network QoS; 

and agents that adapt the application to actual network conditions 

in real-time. 

Two main contributions stand out in this paper: First, policy 

learning is conducted in a separate phase (prior to the application 

setup) via the maximization of a QoE metric when network 

performance indicators are known, which reduces the 

computational requirements during operation. Second, 

decoupling among functions provides a flexible and cost-effective 

approach, adjusting services to the actual end-to-end 

performance. To highlight the usefulness of this approach, we 

present a use case in which video is streamed in real time from an 

IoT node aboard a drone to a remote receiver. Subsequently, we 

offer an empirical analysis according to strict bandwidth and 

latency restrictions. 

The remainder of this paper is organized as follows: First, we 

describe our proposed architectural design and its operation. 

Subsequently, we present the experimental use case, which 

highlights the main advantages of our approach. We then analyze 

and discuss the implications and applicability of our results to 

broader scenarios. Finally, we conclude this paper by highlighting 

the key findings of our work. 

ARCHITECTURAL DESIGN AND OPERATION 

The design principles applied in this work are intended to 

maximize QoE for actual network conditions with high flexibility 

and adaptability. Given a configurable application, our solution 

adapts its parameters (e.g., video streaming frame rate) to the 

most optimal setting with respect to network QoS indicators. As 

QoS varies over time, the system periodically and unobtrusively 

monitors network performance, and reacts when indicators 

change. 

Figure 1 displays the architectural design of our solution, 

including its main entities and streams. We differentiate two 

phases to achieve a high degree of decoupling between QoE 

optimization and application control. This strategy reduces the 

computational burden during operation. This is critical when 

functions are placed in reduced IoT devices, such as a System-on-

Chip (SoC) aboard a drone, at the cost of having immutable 
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optimization rules. However, and given the input of the models, 

we overcame this apparent shortcoming using extensive 

emulation of possible cases during the learning phase. 

 

Phase I: optimization and learning of policies 

In short, Phase I seeks the set of policies—i.e., application 

settings and update rules—that achieves the optimal QoE, given 

the network QoS. The main entity in this phase is a Learning 

Module, which takes the following: (i) a quality estimator or utility 

function; (ii) a sample of application-specific traffic under different 

configurations; and (iii) a representative grid of the network 

conditions as inputs. In this manner, the Learning Module maps 

application conditions into quality estimation, network 

restrictions into quality estimator, and application network 

requirements into network conditions. The outcome of this phase 

is a set of policies derived from the optimization of quality/utility. 

For this, we applied grid search, as it suited the complexity of the 

parametric space of the optimization. Moreover, and given the 

sources of uncertainty in QoE and QoS estimations, the 

optimization process searches for the maximum-expected QoE 

with respect to the application settings and QoS levels. 

The Learning Module relies on an analysis of the traffic 

generated by the target application with varying configurations 

and network performance. Based on the principles in [4], this 

module emulates impairments to the application-plane data 

according to a variety of configurations, and obtains an estimation 

of their effect on the utility/quality value. This approach offers a 

rich source for testing diverse scenarios, and has proven to be an 

adequate method for assessing quality in this type of 

application [5]. Particularly, it provides the configuration to 

consider for the maximization of quality or utility when network 

performance indicators are known. 

Policies are stored in a database from which they are provided 

to the entities operating in the second phase. In this setup, we 

used a straightforward management approach, whereby policies 

are assumed stationary, and we consider them as immutable after 

the learning phase is complete. However, this design can be 

extended to include on-line learning schemes—even using 

reinforcement to improve the overall application response with 

time [6]. Hence, this framework enables the introduction of 

feedback loops, although these were not supported in the studied 

case. 

 

Phase II: policy-based application control 

Entities in Phase II follow a modular design to improve 

flexibility and facilitate network slicing, which may reduce 

interference between functions. They are classified into three 

planes, based on the functions that they include: monitoring, 

application, and actuation. 

1) Monitoring plane: This plane oversees the testing of network 

conditions. It comprises two Monitoring Agents, which are 

associated with their respective application endpoints. The 

agents conduct active measurements through message 

exchange. With this, the plane determines if requirements 

imposed by the application are met. If network conditions 

change, one of the Monitoring Agents alerts the actuation 

plane. To reduce intrusiveness, the Monitoring Agents thin 

out the number of indicators that represent the network 

status. Additionally, their levels adapt to the application 

requirements to reduce intrusiveness. Finally, the actuation 

plane can update the target performance levels monitored by 

the agents if the application is reconfigured. 

2) Application plane: This includes the application functions and 

streams with QoE needs. The application plane must report 

its QoS requirements for the measurements to be adapted. 

3) Actuation plane: This plane encompasses an Actuation Agent 

that functions to adapt the application parameters to the 

current network conditions. The Actuation Agent receives 

notifications from the Monitoring Agents and updates the 

application with the current network quality information. The 

Actuation Agent links the measured levels to the application 

parameters that maximize QoE using the policies defined in 

the previous phase. The actuation plane may be placed in a 

separate network element or slice from that of the 

application and monitoring entity. 

The Monitoring Agents receive feedback from the Actuation 

Agent and update the performance levels that application 

demands. The Actuation Agent controls the application 

configuration, and it decides if the application can be launched (or 

when it is finished) by notifying the Monitoring Agents. 

Streams in the architecture induce an implicit trade-off 

between the decoupling of functions and the overhead of 

communications among them: Although different functional 

blocks may be placed in different nodes, locality can reduce the 

computational costs, delays, and intrusiveness of certain flows. 

Moreover, the actuation plane can be deployed in a separate 

network slice, whereas the application and monitoring planes 

must be attached to the same one. This allows the Monitoring 

 
Figure 1. Diagram displaying the entities and streams of our solution. 
Phase I: Learning Module (LM) and policy database. Phase II: 
Application (APP), Monitoring Agents (MA) and network 
measurements, Actuation Agent (AA), and control flows. 
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Agents to estimate the actual service provided to the application, 

and can reduce reconfiguration discontinuities caused by network 

performance breakdowns. 

EMPIRICAL EVALUATION 

Use case description 

Our use case encompassed video streaming from a SoC using 

a logarithmic hop encoding (LHE) implementation. This 

experimental video codec [7] is resilient to packet loss, has a 

reasonable compression rate, and has been successfully deployed 

in devices with hardware accelerators, such as field-

programmable gate arrays (FPGAs) [8]. The video is transported 

over IP networks via RTP and is used to pilot a drone, which 

involves severe real-time restrictions with strong latency 

constraints and heavy penalties if the video stalls. Consequently, 

the application prioritizes low latency and ongoing service over 

video quality. Other priority rules could be implemented if the 

multimedia streaming had a different objective from piloting a 

drone. 

Here, the Learning Module maps network QoS indicators into 

optimal application parameters: Application QoE is defined by the 

QoE of video transmission and drone piloting fluency. Regarding 

video QoE, video multimethod assessment fusion (VMAF) [9] was 

used for quality assessment, given its apparent performance in 

recent empirical comparisons [10]. For the emulation of network 

conditions during the Learning Phase, we used standard Linux 

netem filters to apply a grid of delays and packet loss to 

multimedia traffic transmitted from a network interface (see 

https://wiki.linuxfoundation.org/networking/netem for further 

details). This process was automated using shell scripting to 

explore the expected VMAF value in a uniform grid of network 

performance parameters. 

The Monitoring Agent was based on the Quality for Service 

(Q4S) protocol [11]. Q4S is a text-based protocol with a client-

server architecture that defines messages to negotiate and 

conduct QoS measurement sessions. Q4S evaluates the network 

in two phases: Negotiation—initial network assessment to 

determine if QoS indicators fulfill application requirements; and 

Continuity—measurements during application execution to verify 

that negotiated requirements are still met. Q4S includes a third 

phase, Termination, which occurs when network conditions are 

below the minimum requirements. 

Q4S starts in the Negotiation phase, when Monitoring Agents 

estimate the end-to-end bandwidth, jitter, packet loss, and 

latency. If constraints are unfulfilled, measurements are repeated 

after reducing the target service level. As soon as the constraints 

are met, the Q4S server notifies the Actuation Agent, which starts 

the application with the configuration that maximizes the QoE 

with respect to the negotiated conditions. Otherwise, application 

may not start. Subsequently, Q4S enters the Continuity phase, in 

which the Monitoring Agents periodically measure latency, jitter, 

and packet loss. If any Monitoring Agent detects a violation of the 

QoS requirements, it sends an alert to the Actuation Agent via a 

simple Representational State Transfer (REST) interface. 

The Actuation Agent receives Q4S alerts and updates the 

application parameters according to the predefined policies. To do 

so, the Actuation Agent must know Application network 

requirements for each setting to compare them with the received 

alerts. If network conditions improve, the server-side Monitoring 

Agent sends a Recovery message to the Actuation Agent, which 

elevates the application QoS. However, if the QoS targets are not 

eventually met, the Monitoring Agents notify the Actuation Agent, 

which may close the application. Our implementation of the 

Monitoring and Actuation agents is available at 

https://github.com/hpcn-uam/q4s/. 

Testbed and experimental design 

The scenario and hardware details for the proof-of-concept 

evaluation are summarized in Figure 2. The figure shows the 

placement of the following functional blocks within the different 

nodes: a SoC capturing and transmitting the video, a PC receiving 

and displaying the video, and a router connecting the two. 

Phase I was executed in the PC. Software modules obtained 

subjective quality estimations based on reference and impaired 

video sequences under varied network conditions. An evaluation 

of element behavior in Phase II was conducted with commodity 

and modest-cost hardware elements. We used a ZynqBerry 

(datasheet available at https://wiki.trenz-

electronic.de/display/PD/TE0726+-+ ZynqBerry) as SoC for video 

streaming using LHE offloaded in the FPGA [8]. As the SoC is the 

content provider, it was chosen to place the server Monitoring 

Agent and Actuation Agent; the PC assumed the client role and 

corresponding Monitoring Agent. 

Given the particularities of IoMT use cases, our evaluation was 

based on the following experimental inquiries: 

1) Which effects have relevant QoS factors and their 

implications for policy definitions. 

2) To what extent the framework can adapt the application 

behavior to network QoS. 

3) How resource consumption increases after introducing 

Actuation Agent and Monitoring Agent in the IoMT device. 

 
 
 

 
Figure 2. Hardware testbed for evaluation. Entity placement and 
streams are identified. Unlabeled black solid arrows represent 
connectivity for notifications, alerts, and actuation. 
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The analysis of QoS influence on the perceived QoE focused on 

packet loss and latency, given their prominence in the degradation 

of multimedia and real-time services over IP networks. The tests 

were oriented to determine how packet loss affected the video 

QoE—latency, jitter, and bandwidth limitations usually produce 

the same effect—, and how latency influenced drone piloting. 

The assessment of video QoE relied on the analysis of the main 

and interaction effects of packet loss and Application settings; 

specifically, the luminance-bandwidth-chrominance (YUV) profile, 

frames per second (FPS), packet size, and codified block size. The 

Learning Module emulated the transmission of a first-person 

drone video (coded with varied parameters) across a network. The 

video was restored to the original settings and compared with the 

original when received. The setup included strict real-time bounds 

(less than 100 ms) for the delay between a driving action and the 

first frame presenting the result. Note that decreasing the frame 

rate reduces generated traffic, but increases the time between 

frames, which leads to a trade-off between lower latency and 

network bandwidth requirements. 

Subsequently, the system was tested to determine how it 

behaved under variable network conditions, and its overall 

performance was evaluated. To accomplish this, we monitored the 

application settings, CPU, and memory usage in several executions 

lasting 90 s each. Resource consumption was measured in the 

ZynqBerry, as it was the most limited device.  

ANALYSIS OF RESULTS 

Network performance and video QoE 

Figure 3 summarizes the video QoE analysis. Figure 3 (a) shows 

the test results for how packet loss influenced the VMAF score 

under different application configurations—i.e., which factors 

were most significant for QoE, and how QoE degraded when the 

loss increased. Figure 3 (b) complements the analysis by linking 

QoE to bandwidth consumption. 

Frame rate produced the most significant impact on the QoE 

scores, followed by resolution; whereas color profile was 

essentially irrelevant to the scores. Additionally, it became 

apparent that the packet loss effect was higher in the upper QoE 

levels. Finally, frame rate was found to be the most influential 

factor for bandwidth consumption. These relations are the basis 

for the definition of policies, as they link application settings, 

network conditions, and expected QoE.  

 

System behavior 

Figure 4 (a) shows how the system reconfigured the 

multimedia application under varying network conditions; the 

background color of each numerated region distinguishes a 

different operational condition. 

Initially, the netem filter restricted bandwidth to 10 Mb/s, 

which lies below the highest application requirements (1). 

Measurements were then repeated until both Monitoring Agents 

negotiated the initial conditions—this explains the observable 

traffic peaks in the figure. The Actuation Agent then launched the 

application with the negotiated configuration. Subsequently, the 

bandwidth limitation was removed (2), and latency was increased 

to 100 ms (3) to force a reconfiguration of the application as the 

requirements were no longer met. The Monitoring Agent detected 

the threshold violation and notified the Actuation Agent, which 

reduced the QoE and generated traffic. Subsequently, latency was 

restored (4), which caused the server Monitoring Agent to notify 

the Actuation Agent of the network performance recovery to 

increase quality. Finally, the latency constraint was reestablished 

(5), which triggered a QoE decrease until the application closed 

due to insufficient QoS—this behavior was defined for testing 

purposes, despite being inadvisable during real drone piloting. 

Regarding computational requirements, Figure 4 (b) displays 

the CPU and memory footprints during the experiments, as these 

are typically the most limiting resources for a SoC. Specifically, 

large overhead in either would reduce the applicability of the 

tested solution, and may impact the overall behavior of the drone, 

by substantially increasing power consumption. 

In the figure, the CPU usage presents in two regions, which is 

consistent with the main monitoring phases. There is a remarkable 

peak during the Negotiation phase (the region before red line), in 

 
(a) VMAF score in different setups with respect to packet loss. 

 
(b) VMAF score in different setups with respect to bitrates. 

Figure 3. Analysis of QoE with diverse application configurations. Point 
size shows three different color profiles (gray (YUV 4:0:0), YUV4:2:0, 
and YUV4:2:2). Color and shape of the points show different frame 
rates (15, 30 and 60 frame per seconds) and resolutions (360p, 480p 
and 720p). Straight lines show the trend in each case. 
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which the average CPU usage was approximately 40%. 

Subsequently, it fell below 5%, where it remained for most of the 

duration. Although CPU usage during the Negotiation phase was 

intensive, it is worth noting that the application is launched later; 

hence, there was no interference with its operation. Once the 

application was launched, the CPU usage decreased to below 10%, 

leaving enough space for the application, even when the video 

quality was switched due to changes in network conditions. 

Latency on quality switching is negligible, as it is done by writing in 

a register of the SoC. Memory usage remained fairly constant at 

approximately 5 MB. 

DISCUSSION AND RELATED PROPOSALS 

Our framework separates policy learning and application 

control, as it decomposes the entire workflow into two phases: a 

complex one with no latency constraints, and a simpler one with 

real-time constraints. With this, we aim at taking advantage of 

user-centered policies based on perceived QoE estimations while 

reducing the computational burden. 

According to the results, we can state two immediate facts. 

First, the methodology for policy definition seems to provide a 

suitable framework for optimizing QoE according to QoS 

indicators. Second, our solution can detect performance changes 

and adapt the application configuration to network conditions in 

a timely manner. 

Regarding applicability to broader contexts, our proposal 

focuses on maximizing QoE instead of minimizing consumption 

of network resources. Hence, this framework should be carefully 

tuned and deployed in scenarios that require more control on 

constrained networks. 

Our proposal offers an alternative to narrower or less flexible 

solutions, such as custom modifications to streaming 

protocols [12], or applications that couple network 

measurement and configuration—e.g., adaptive video encoding. 

Although our solution shares the main objectives of such 

proposals, we focus on the consumer side instead of assuming 

control of the infrastructure. Moreover, we point to potential 

extensions of our work by introducing more complex learning 

methods and network control appliances. For instance, some 

proposals [6], [13] have integrated mean opinion score (MOS) 

and other network-related factors to improve the user’s 

experience via topological optimization and bandwidth 

allocation. We believe that combining these approaches will 

improve future applications served from drones and IoMT nodes 

at the network edge. 

CONCLUSIONS 

This article presented an architecture for promptly adapting 

applications to actual network conditions. The strength of our 

architecture is to offer the best QoE to the user according to the 

available network QoS. Its design is user-oriented, focusing on 

satisfaction instead of network performance. 

Our approach offers the possibility of changing the content 

dynamically, depending on the measurements taken. If network 

performance decreases, the Actuator Agent reconfigures the 

application and reduces requirements while maximizing the 

provided QoE. Conversely, the application service level rises when 

network conditions recover. 

We have presented supporting evidence for the usefulness of 

our method, providing empirical insights into a use case related to 

multimedia streaming for remote drone piloting. Our results 

illustrate how policies are obtained from the maximization of QoE 

given diverse network conditions and how the architecture adapts 

 
(a) Adaptation to operational conditions. (1) Before application starts, Q4S 
protocol is used to probe the network. (2) Stable QoS: video is transmitted 
over RTP at 36 frames per second in color. (3) QoS degrades: video is 
transmitted at 27 frames per second, first in YUV4:2:0 (color) and next in 
YUV4:0:0 (gray), finally reducing the frame rate to 22 frames per second. (4) 
QoS recovers: video is transmitted from 22 to 55 frames per second, switching 
also from gray to color. (5) QoS below requirements: video changes again the 
frame rate and color profile, until no transmission policy fits in network 
conditions. 
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(b) Resource usage as CPU percentage (left axis) and memory Megabytes 
(right axis). Vertical red line separates negotiation and continuity phases, 
points (orange for CPU and gray for memory) show the measured 
consumption for the set of experiments executed, solid lines (black for CPU 
and blue for memory) are average values, and dashed lines indicate maximum 
values for CPU percentage. 

Figure 4. System behavior: (a) actuation in application configuration; 
(b) resource consumption. 
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video streaming via its reconfiguration under dynamic network 

performance, and demonstrate the low computational burden of 

our design. We believe our findings can lead to new research in 

the optimization of smart strategies for drones and IoMT nodes, 

which dimensions significantly affect the operation of such 

strategies, and how they can be fairly compared.  
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