
IEEE INTERNET COMPUTING 1

© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publicationsstandards/publications/rights/index.html for more information

Network Quality-Aware Architecture for Adaptive
Video Streaming from Drones

Jesús Molina, David Muelas, Jorge E. López de Vergara, José Javier García-Aranda

Abstract— Video streaming over IP networks presents several challenges for remote drone piloting. To achieve a high Quality of Experience,

minimal latency is mandatory. However, wireless links usually impose dynamic changes to Quality of Service conditions. Moreover, bandwidth

limitations can increase both the final perceived latency and packet loss during video streaming. These circumstances require an architecture

capable of estimating network performance and applying corrective actions in a timely manner to optimize application-level quality. In this paper,

we present such an architecture, and discuss the results of its application in video streaming for remote drone piloting. Our proposal offers a

framework with low coupling between its functional blocks and high adaptability to dynamic scenarios. Accordingly, we aim to pave the way for

reactive applications that leverage edge-computing elements and adapt to network conditions.

Keywords—Quality of Service, Quality of Experience, Quality Measurement, Q4S Protocol, VMAF.

INTRODUCTION

HE development of both computational and network

performance is fostering the deployment of ambitious, real-

time applications that serve content from the network edge [1].

These applications are intended for diverse use cases, such as

connected homes, health monitoring, connected cars, industry

4.0, and smart cities. However, the assurance of adequate Quality

of Service (QoS) levels for such applications is posing significant

challenges in network and performance monitoring. Specifically,

low latency levels and high bandwidths are common application

requirements [2] that can compromise service quality as they vary

over time.

These challenges—particularly amidst the increased

connectivity provided by the Internet of Things (IoT)—are fueling

novel solutions that alleviate the burden of variable network

conditions. As devices are transmitting more multimedia

content—i.e., the Internet of Multimedia Things (IoMT) [3]—this

matter is becoming increasingly urgent because users’ Quality of

Experience suffers when network performance is insufficient. This

deteriorates because IoT devices usually have modest capabilities,

which calls for solutions that are both fitted to such devices and

capable of timely service degradation detection.

 In this work, we present a framework to improve adaptive

video streaming from drones over IP networks. Its design is

intended to provide the highest-achievable QoE with respect to

network performance indicators. For this, our solution integrates

monitoring elements to assess network performance between

application endpoints; modules to define data-driven adaptive

policies that maximize users’ QoE with respect to network QoS;

and agents that adapt the application to actual network conditions

in real-time.

Two main contributions stand out in this paper: First, policy

learning is conducted in a separate phase (prior to the application

setup) via the maximization of a QoE metric when network

performance indicators are known, which reduces the

computational requirements during operation. Second,

decoupling among functions provides a flexible and cost-effective

approach, adjusting services to the actual end-to-end

performance. To highlight the usefulness of this approach, we

present a use case in which video is streamed in real time from an

IoT node aboard a drone to a remote receiver. Subsequently, we

offer an empirical analysis according to strict bandwidth and

latency restrictions.

The remainder of this paper is organized as follows: First, we

describe our proposed architectural design and its operation.

Subsequently, we present the experimental use case, which

highlights the main advantages of our approach. We then analyze

and discuss the implications and applicability of our results to

broader scenarios. Finally, we conclude this paper by highlighting

the key findings of our work.

ARCHITECTURAL DESIGN AND OPERATION

The design principles applied in this work are intended to

maximize QoE for actual network conditions with high flexibility

and adaptability. Given a configurable application, our solution

adapts its parameters (e.g., video streaming frame rate) to the

most optimal setting with respect to network QoS indicators. As

QoS varies over time, the system periodically and unobtrusively

monitors network performance, and reacts when indicators

change.

Figure 1 displays the architectural design of our solution,

including its main entities and streams. We differentiate two

phases to achieve a high degree of decoupling between QoE

optimization and application control. This strategy reduces the

computational burden during operation. This is critical when

functions are placed in reduced IoT devices, such as a System-on-

Chip (SoC) aboard a drone, at the cost of having immutable

T

First three authors are with the Department of Electronics and Communication

Technologies, Escuela Politécnica Superior, Universidad Autónoma de Madrid,

Spain. Last author is with Nokia Spain. Manuscript received April 26th 2019,

revised July 30th 2019, revised December 3rd, 2019, accepted January 5th, 2020.

Cite as: J. Molina, D. Muelas, J.E. López de Vergara, J.J. García-Aranda,

“Network Quality-Aware Architecture for Adaptive Video Streaming from

Drones”, IEEE Internet Computing, 24(1), January/February 2020, pp. 5-13.

DOI:10.1109/MIC.2020.2965492.

http://www.ieee.org/publicationsstandards/publications/rights/index.html
https://orcid.org/0000-0002-1121-6734
https://orcid.org/0000-0002-4057-4688
https://doi.org/10.1109/MIC.2020.2965492

2 IEEE INTERNET COMPUTING

optimization rules. However, and given the input of the models,

we overcame this apparent shortcoming using extensive

emulation of possible cases during the learning phase.

Phase I: optimization and learning of policies

In short, Phase I seeks the set of policies—i.e., application

settings and update rules—that achieves the optimal QoE, given

the network QoS. The main entity in this phase is a Learning

Module, which takes the following: (i) a quality estimator or utility

function; (ii) a sample of application-specific traffic under different

configurations; and (iii) a representative grid of the network

conditions as inputs. In this manner, the Learning Module maps

application conditions into quality estimation, network

restrictions into quality estimator, and application network

requirements into network conditions. The outcome of this phase

is a set of policies derived from the optimization of quality/utility.

For this, we applied grid search, as it suited the complexity of the

parametric space of the optimization. Moreover, and given the

sources of uncertainty in QoE and QoS estimations, the

optimization process searches for the maximum-expected QoE

with respect to the application settings and QoS levels.

The Learning Module relies on an analysis of the traffic

generated by the target application with varying configurations

and network performance. Based on the principles in [4], this

module emulates impairments to the application-plane data

according to a variety of configurations, and obtains an estimation

of their effect on the utility/quality value. This approach offers a

rich source for testing diverse scenarios, and has proven to be an

adequate method for assessing quality in this type of

application [5]. Particularly, it provides the configuration to

consider for the maximization of quality or utility when network

performance indicators are known.

Policies are stored in a database from which they are provided

to the entities operating in the second phase. In this setup, we

used a straightforward management approach, whereby policies

are assumed stationary, and we consider them as immutable after

the learning phase is complete. However, this design can be

extended to include on-line learning schemes—even using

reinforcement to improve the overall application response with

time [6]. Hence, this framework enables the introduction of

feedback loops, although these were not supported in the studied

case.

Phase II: policy-based application control

Entities in Phase II follow a modular design to improve

flexibility and facilitate network slicing, which may reduce

interference between functions. They are classified into three

planes, based on the functions that they include: monitoring,

application, and actuation.

1) Monitoring plane: This plane oversees the testing of network

conditions. It comprises two Monitoring Agents, which are

associated with their respective application endpoints. The

agents conduct active measurements through message

exchange. With this, the plane determines if requirements

imposed by the application are met. If network conditions

change, one of the Monitoring Agents alerts the actuation

plane. To reduce intrusiveness, the Monitoring Agents thin

out the number of indicators that represent the network

status. Additionally, their levels adapt to the application

requirements to reduce intrusiveness. Finally, the actuation

plane can update the target performance levels monitored by

the agents if the application is reconfigured.

2) Application plane: This includes the application functions and

streams with QoE needs. The application plane must report

its QoS requirements for the measurements to be adapted.

3) Actuation plane: This plane encompasses an Actuation Agent

that functions to adapt the application parameters to the

current network conditions. The Actuation Agent receives

notifications from the Monitoring Agents and updates the

application with the current network quality information. The

Actuation Agent links the measured levels to the application

parameters that maximize QoE using the policies defined in

the previous phase. The actuation plane may be placed in a

separate network element or slice from that of the

application and monitoring entity.

The Monitoring Agents receive feedback from the Actuation

Agent and update the performance levels that application

demands. The Actuation Agent controls the application

configuration, and it decides if the application can be launched (or

when it is finished) by notifying the Monitoring Agents.

Streams in the architecture induce an implicit trade-off

between the decoupling of functions and the overhead of

communications among them: Although different functional

blocks may be placed in different nodes, locality can reduce the

computational costs, delays, and intrusiveness of certain flows.

Moreover, the actuation plane can be deployed in a separate

network slice, whereas the application and monitoring planes

must be attached to the same one. This allows the Monitoring

Figure 1. Diagram displaying the entities and streams of our solution.
Phase I: Learning Module (LM) and policy database. Phase II:
Application (APP), Monitoring Agents (MA) and network
measurements, Actuation Agent (AA), and control flows.

Notifications

MA

APP

Phase II: policy-based application control

Phase I: optimization and learning of policies

Alerts / Updates

Notifications

MA

APP

LM

Policies

AA

J. MOLINA et al.: NETWORK QUALITY-AWARE ARCHITECTURE FOR ADAPTIVE VIDEO STREAMING FROM DRONES 3

Agents to estimate the actual service provided to the application,

and can reduce reconfiguration discontinuities caused by network

performance breakdowns.

EMPIRICAL EVALUATION

Use case description

Our use case encompassed video streaming from a SoC using

a logarithmic hop encoding (LHE) implementation. This

experimental video codec [7] is resilient to packet loss, has a

reasonable compression rate, and has been successfully deployed

in devices with hardware accelerators, such as field-

programmable gate arrays (FPGAs) [8]. The video is transported

over IP networks via RTP and is used to pilot a drone, which

involves severe real-time restrictions with strong latency

constraints and heavy penalties if the video stalls. Consequently,

the application prioritizes low latency and ongoing service over

video quality. Other priority rules could be implemented if the

multimedia streaming had a different objective from piloting a

drone.

Here, the Learning Module maps network QoS indicators into

optimal application parameters: Application QoE is defined by the

QoE of video transmission and drone piloting fluency. Regarding

video QoE, video multimethod assessment fusion (VMAF) [9] was

used for quality assessment, given its apparent performance in

recent empirical comparisons [10]. For the emulation of network

conditions during the Learning Phase, we used standard Linux

netem filters to apply a grid of delays and packet loss to

multimedia traffic transmitted from a network interface (see

https://wiki.linuxfoundation.org/networking/netem for further

details). This process was automated using shell scripting to

explore the expected VMAF value in a uniform grid of network

performance parameters.

The Monitoring Agent was based on the Quality for Service

(Q4S) protocol [11]. Q4S is a text-based protocol with a client-

server architecture that defines messages to negotiate and

conduct QoS measurement sessions. Q4S evaluates the network

in two phases: Negotiation—initial network assessment to

determine if QoS indicators fulfill application requirements; and

Continuity—measurements during application execution to verify

that negotiated requirements are still met. Q4S includes a third

phase, Termination, which occurs when network conditions are

below the minimum requirements.

Q4S starts in the Negotiation phase, when Monitoring Agents

estimate the end-to-end bandwidth, jitter, packet loss, and

latency. If constraints are unfulfilled, measurements are repeated

after reducing the target service level. As soon as the constraints

are met, the Q4S server notifies the Actuation Agent, which starts

the application with the configuration that maximizes the QoE

with respect to the negotiated conditions. Otherwise, application

may not start. Subsequently, Q4S enters the Continuity phase, in

which the Monitoring Agents periodically measure latency, jitter,

and packet loss. If any Monitoring Agent detects a violation of the

QoS requirements, it sends an alert to the Actuation Agent via a

simple Representational State Transfer (REST) interface.

The Actuation Agent receives Q4S alerts and updates the

application parameters according to the predefined policies. To do

so, the Actuation Agent must know Application network

requirements for each setting to compare them with the received

alerts. If network conditions improve, the server-side Monitoring

Agent sends a Recovery message to the Actuation Agent, which

elevates the application QoS. However, if the QoS targets are not

eventually met, the Monitoring Agents notify the Actuation Agent,

which may close the application. Our implementation of the

Monitoring and Actuation agents is available at

https://github.com/hpcn-uam/q4s/.

Testbed and experimental design

The scenario and hardware details for the proof-of-concept

evaluation are summarized in Figure 2. The figure shows the

placement of the following functional blocks within the different

nodes: a SoC capturing and transmitting the video, a PC receiving

and displaying the video, and a router connecting the two.

Phase I was executed in the PC. Software modules obtained

subjective quality estimations based on reference and impaired

video sequences under varied network conditions. An evaluation

of element behavior in Phase II was conducted with commodity

and modest-cost hardware elements. We used a ZynqBerry

(datasheet available at https://wiki.trenz-

electronic.de/display/PD/TE0726+-+ ZynqBerry) as SoC for video

streaming using LHE offloaded in the FPGA [8]. As the SoC is the

content provider, it was chosen to place the server Monitoring

Agent and Actuation Agent; the PC assumed the client role and

corresponding Monitoring Agent.

Given the particularities of IoMT use cases, our evaluation was

based on the following experimental inquiries:

1) Which effects have relevant QoS factors and their

implications for policy definitions.

2) To what extent the framework can adapt the application

behavior to network QoS.

3) How resource consumption increases after introducing

Actuation Agent and Monitoring Agent in the IoMT device.

Figure 2. Hardware testbed for evaluation. Entity placement and
streams are identified. Unlabeled black solid arrows represent
connectivity for notifications, alerts, and actuation.

Wired connection to PC

(Ethernet)

Wired (Ethernet) /

Wireless (IEEE 802.11)

connection to Zynq

Router: TP-Link

Archer C7 AC 1750

SoC: Zynq XC7Z010-1 FPGA

WLAN Adapter Linksys AE1000

Raspberry Pi camera v2

PC: Intel(R) Core(TM) i7

CPU 860 @ 2.80GHz 8GB RAM

Ubuntu 14.04.5 LTS

MA

Q4S Server

AA

Video

transmitter

Video

receiver /

player

MA

Q4S Client

(1) Negotiation

RTP: Video streaming

(2) Continuity

R
E

S
T

 A
P

I

Q4S

https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://github.com/hpcn-uam/q4s/
https://wiki.trenz-electronic.de/display/PD/TE0726+-+ZynqBerry
https://wiki.trenz-electronic.de/display/PD/TE0726+-+ZynqBerry
https://wiki.trenz-electronic.de/display/PD/TE0726+-+ZynqBerry

4 IEEE INTERNET COMPUTING

The analysis of QoS influence on the perceived QoE focused on

packet loss and latency, given their prominence in the degradation

of multimedia and real-time services over IP networks. The tests

were oriented to determine how packet loss affected the video

QoE—latency, jitter, and bandwidth limitations usually produce

the same effect—, and how latency influenced drone piloting.

The assessment of video QoE relied on the analysis of the main

and interaction effects of packet loss and Application settings;

specifically, the luminance-bandwidth-chrominance (YUV) profile,

frames per second (FPS), packet size, and codified block size. The

Learning Module emulated the transmission of a first-person

drone video (coded with varied parameters) across a network. The

video was restored to the original settings and compared with the

original when received. The setup included strict real-time bounds

(less than 100 ms) for the delay between a driving action and the

first frame presenting the result. Note that decreasing the frame

rate reduces generated traffic, but increases the time between

frames, which leads to a trade-off between lower latency and

network bandwidth requirements.

Subsequently, the system was tested to determine how it

behaved under variable network conditions, and its overall

performance was evaluated. To accomplish this, we monitored the

application settings, CPU, and memory usage in several executions

lasting 90 s each. Resource consumption was measured in the

ZynqBerry, as it was the most limited device.

ANALYSIS OF RESULTS

Network performance and video QoE

Figure 3 summarizes the video QoE analysis. Figure 3 (a) shows

the test results for how packet loss influenced the VMAF score

under different application configurations—i.e., which factors

were most significant for QoE, and how QoE degraded when the

loss increased. Figure 3 (b) complements the analysis by linking

QoE to bandwidth consumption.

Frame rate produced the most significant impact on the QoE

scores, followed by resolution; whereas color profile was

essentially irrelevant to the scores. Additionally, it became

apparent that the packet loss effect was higher in the upper QoE

levels. Finally, frame rate was found to be the most influential

factor for bandwidth consumption. These relations are the basis

for the definition of policies, as they link application settings,

network conditions, and expected QoE.

System behavior

Figure 4 (a) shows how the system reconfigured the

multimedia application under varying network conditions; the

background color of each numerated region distinguishes a

different operational condition.

Initially, the netem filter restricted bandwidth to 10 Mb/s,

which lies below the highest application requirements (1).

Measurements were then repeated until both Monitoring Agents

negotiated the initial conditions—this explains the observable

traffic peaks in the figure. The Actuation Agent then launched the

application with the negotiated configuration. Subsequently, the

bandwidth limitation was removed (2), and latency was increased

to 100 ms (3) to force a reconfiguration of the application as the

requirements were no longer met. The Monitoring Agent detected

the threshold violation and notified the Actuation Agent, which

reduced the QoE and generated traffic. Subsequently, latency was

restored (4), which caused the server Monitoring Agent to notify

the Actuation Agent of the network performance recovery to

increase quality. Finally, the latency constraint was reestablished

(5), which triggered a QoE decrease until the application closed

due to insufficient QoS—this behavior was defined for testing

purposes, despite being inadvisable during real drone piloting.

Regarding computational requirements, Figure 4 (b) displays

the CPU and memory footprints during the experiments, as these

are typically the most limiting resources for a SoC. Specifically,

large overhead in either would reduce the applicability of the

tested solution, and may impact the overall behavior of the drone,

by substantially increasing power consumption.

In the figure, the CPU usage presents in two regions, which is

consistent with the main monitoring phases. There is a remarkable

peak during the Negotiation phase (the region before red line), in

(a) VMAF score in different setups with respect to packet loss.

(b) VMAF score in different setups with respect to bitrates.

Figure 3. Analysis of QoE with diverse application configurations. Point
size shows three different color profiles (gray (YUV 4:0:0), YUV4:2:0,
and YUV4:2:2). Color and shape of the points show different frame
rates (15, 30 and 60 frame per seconds) and resolutions (360p, 480p
and 720p). Straight lines show the trend in each case.

J. MOLINA et al.: NETWORK QUALITY-AWARE ARCHITECTURE FOR ADAPTIVE VIDEO STREAMING FROM DRONES 5

which the average CPU usage was approximately 40%.

Subsequently, it fell below 5%, where it remained for most of the

duration. Although CPU usage during the Negotiation phase was

intensive, it is worth noting that the application is launched later;

hence, there was no interference with its operation. Once the

application was launched, the CPU usage decreased to below 10%,

leaving enough space for the application, even when the video

quality was switched due to changes in network conditions.

Latency on quality switching is negligible, as it is done by writing in

a register of the SoC. Memory usage remained fairly constant at

approximately 5 MB.

DISCUSSION AND RELATED PROPOSALS

Our framework separates policy learning and application

control, as it decomposes the entire workflow into two phases: a

complex one with no latency constraints, and a simpler one with

real-time constraints. With this, we aim at taking advantage of

user-centered policies based on perceived QoE estimations while

reducing the computational burden.

According to the results, we can state two immediate facts.

First, the methodology for policy definition seems to provide a

suitable framework for optimizing QoE according to QoS

indicators. Second, our solution can detect performance changes

and adapt the application configuration to network conditions in

a timely manner.

Regarding applicability to broader contexts, our proposal

focuses on maximizing QoE instead of minimizing consumption

of network resources. Hence, this framework should be carefully

tuned and deployed in scenarios that require more control on

constrained networks.

Our proposal offers an alternative to narrower or less flexible

solutions, such as custom modifications to streaming

protocols [12], or applications that couple network

measurement and configuration—e.g., adaptive video encoding.

Although our solution shares the main objectives of such

proposals, we focus on the consumer side instead of assuming

control of the infrastructure. Moreover, we point to potential

extensions of our work by introducing more complex learning

methods and network control appliances. For instance, some

proposals [6], [13] have integrated mean opinion score (MOS)

and other network-related factors to improve the user’s

experience via topological optimization and bandwidth

allocation. We believe that combining these approaches will

improve future applications served from drones and IoMT nodes

at the network edge.

CONCLUSIONS

This article presented an architecture for promptly adapting

applications to actual network conditions. The strength of our

architecture is to offer the best QoE to the user according to the

available network QoS. Its design is user-oriented, focusing on

satisfaction instead of network performance.

Our approach offers the possibility of changing the content

dynamically, depending on the measurements taken. If network

performance decreases, the Actuator Agent reconfigures the

application and reduces requirements while maximizing the

provided QoE. Conversely, the application service level rises when

network conditions recover.

We have presented supporting evidence for the usefulness of

our method, providing empirical insights into a use case related to

multimedia streaming for remote drone piloting. Our results

illustrate how policies are obtained from the maximization of QoE

given diverse network conditions and how the architecture adapts

(a) Adaptation to operational conditions. (1) Before application starts, Q4S
protocol is used to probe the network. (2) Stable QoS: video is transmitted
over RTP at 36 frames per second in color. (3) QoS degrades: video is
transmitted at 27 frames per second, first in YUV4:2:0 (color) and next in
YUV4:0:0 (gray), finally reducing the frame rate to 22 frames per second. (4)
QoS recovers: video is transmitted from 22 to 55 frames per second, switching
also from gray to color. (5) QoS below requirements: video changes again the
frame rate and color profile, until no transmission policy fits in network
conditions.

0

25

50

75

0

2

4

6

0 25 50 75

Experimental t ime (s)

C
P

U
 (

%
)

M
e

m
o

ry
 u

s
e

d
 (M

B
)

Resource CPU Usage Mem. Usage Aggregat ion Avg. Max.

(b) Resource usage as CPU percentage (left axis) and memory Megabytes
(right axis). Vertical red line separates negotiation and continuity phases,
points (orange for CPU and gray for memory) show the measured
consumption for the set of experiments executed, solid lines (black for CPU
and blue for memory) are average values, and dashed lines indicate maximum
values for CPU percentage.

Figure 4. System behavior: (a) actuation in application configuration;
(b) resource consumption.

Color profileFrames per second
55fps

36fps

27fps

22fps

0.0

2.5

5.0

7.5

10.0

25 50 100 12575

Time (s)

T
h
ro

u
g
h
p
u
t
(M

b
/s

)

(1) (2) (3) (4) (5)

Q4S

RTP

Traffic source
YUV4:0:0

YUV4:2:0

6 IEEE INTERNET COMPUTING

video streaming via its reconfiguration under dynamic network

performance, and demonstrate the low computational burden of

our design. We believe our findings can lead to new research in

the optimization of smart strategies for drones and IoMT nodes,

which dimensions significantly affect the operation of such

strategies, and how they can be fairly compared.

ACKNOWLEDGMENT

This research received funding from the projects RACING

DRONES (MINECO/FEDER RTC-2016-4744-7) and TRÁFICA

(MINECO/FEDER TEC2015-69417-C2-1-R).

REFERENCES
[1] M. Gusev, B. Koteska, M. Kostoska, B. Jakimovski, S. Dustdar, O. Scekic,

T. Rausch, S. Nastic, S. Ristov, T. Fahringer, “A deviceless edge computing
approach for streaming IoT applications,” IEEE Internet Computing, 23(1),
pp. 37-45, January 2019.

[2] X. Zuo, Y. Cui, M. Wang, T. Xiao, X. Wang, “Low-latency networking:
Architecture, techniques, and opportunities,” IEEE Internet Computing,
22(5), pp. 56-63, September 2018.

[3] S.A. Alvi, B. Afzal, G.A. Shah, L. Atzori, W. Mahmood, “Internet of
multimedia things: Vision and challenges,” Ad Hoc Networks, 33, pp.
87-111, 2015.

[4] H.D. Moura, D. Fernandes Macedo, M.A.M. Vieira, “Automatic Quality of
Experience Management for WLAN Networks using Multi-Armed
Bandit,” in Proc. 16th IFIP/IEEE International Symposium on Integrated
Network Management, April 2019.

[5] Z. Duanmu, A. Rehman, Z. Wang, “A Quality-of-Experience Database for
Adaptive Video Streaming,” IEEE Trans. on Broadcasting, 64(2), pp.
474-487, June 2018.

[6] X. Huang, T. Yuan, G. Qiao, Y. Ren, “Deep Reinforcement Learning for
Multimedia Traffic Control in Software Defined Networking,” IEEE
Network, 32(6), pp. 35-41, November 2018.

[7] J.J. García Aranda, M. González Casquete, M. Cao Cueto, J. Navarro
Salmerón, F. González Vidal, “Logarithmical hopping encoding: a low
computational complexity algorithm for image compression,” IET Image
Processing, 9(8), pp. 643-651, 2015.

[8] T. Alonso, M. Ruiz, A.L. García-Arias, G. Sutter, J.E. López de Vergara,
“Submicrosecond Latency Video Compression in a Low-End FPGA-based

System-on-Chip,” in Proc. 28th Int. Conf. Field-Programmable Logic and
Applications, August 2018.

[9] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, M. Manohara, “Toward a
practical perceptual video quality metric,” The Netflix Tech Blog, 6, 2016.

[10] N. Barman, M. G. Martini, S. Zadtootaghaj, S. Möller, S. Lee, “A
Comparative Quality Assessment Study for Gaming and Non-Gaming
Videos,” in 2018 Tenth Int. Conf. on Quality of Multimedia Experience,
May 2018, pp. 1-6.

[11] J.J. García Aranda, M. Cortés, J. Salvachúa, M. Narganes, I. Martínez
Sarriegui, “The Quality for Service Protocol,” IETF Internet-Draft, July
2019.

[12] O. Said, Y. Albagory, M. Nofal, F.A. Raddady, “IoT-RTP and IoT-RTCP:
Adaptive Protocols for Multimedia Transmission over Internet of Things
Environments,” IEEE Access, 5, pp. 16757-16773, 2017.

[13] X. Huang, K. Xie, S. Leng, T. Yuan, M. Ma, “Improving Quality of
Experience in multimedia Internet of Things leveraging machine learning
on big data,” Future Generation Computer Systems, 86, pp. 1413-1423,
2018.

Jesús Molina (j.molina.merchan@gmail.com) received his B.Sc. in
Telecommunication Technologies and Services (2016) and M.Sc. in
Telecommunication Engineering (2018) from Universidad Autónoma de
Madrid, where he did his thesis in the scope of the Racing Drones project. His
research interests are in the monitoring and analysis of multimedia networks.

David Muelas (dav.muelasr@gmail.com) received his M.Sc. degrees in
Mathematics and Applications and Information and Communications
Technologies (2015), and a Ph.D. in Computer and Telecommunication
Engineering (2019) from Universidad Autónoma de Madrid. He was a
researcher in the HPCN-UAM group, with interests in network traffic analysis,
SDN, and applied mathematics. Currently, he is a data scientist in BBVA Data &
Analytics.

Jorge E. López de Vergara (jorge.lopez_vergara@uam.es) is an associate
professor at Universidad Autónoma de Madrid and founding partner of Naudit
HPCN. He received his M.Sc. and Ph.D. degrees in Telecommunication
Engineering from Universidad Politécnica de Madrid in 1998 and 2003,
respectively. He researches network and service management and monitoring,
having co-authored more than 100 papers on this topic.

Jose Javier García Aranda (jose_javier.garcia_aranda@nokia.com) is an
innovation project leader at Nokia Spain. He received his M.Sc. and Ph.D.
degrees in Telecommunication Engineering from Universidad Politécnica de
Madrid in 1996 and 2015, respectively. He is the main author of the LHE codec
and Q4S protocol, and led the Racing Drones project.

