
A semantic web approach to share alerts among

Security Information Management Systems

Jorge E. López de Vergara
1
, Víctor A. Villagrá

2
, Pilar Holgado

1
,

Elena de Frutos
2
, Iván Sanz

3

1 Computer Science Department, Universidad Autónoma de Madrid,

Calle Francisco Tomás y Valiente, 11, 28049 Madrid, Spain
2 Telematic Systems Engineering Department, Universidad Politécnica de Madrid,

Avenida Complutense, s/n, 28040 Madrid, Spain
3 Telefónica Investigación y Desarrollo

Calle Emilio Vargas, 6 28043 Madrid, Spain
jorge.lopez_vergara@uam.es, villagra@dit.upm.es,

mpilar.holgado@estudiante.uam.es, e_le_na@hotmail.com,
isahe@tid.es

Abstract. This paper presents a semantic web-based architecture to share alerts

among Security Information Management Systems (SIMS). Such architecture is

useful if two or more SIMS from different domains need to know information

about alerts happening in the other domains, which is useful for an early

response to network incidents. For this, an ontology has been defined to

describe the knowledge base of each SIMS that contains the security alerts.

These knowledge bases can be queried from other SIMS, using standard

semantic web protocols. Two modules have been implemented: one to insert the

new security alerts in the knowledge base, and another one to query such

knowledge bases. The performance of both modules has been evaluated,

providing some results.

Key words. SIMS, Semantic Web, IDMEF, SPARQL, Jena, Joseki, RDF,

OWL.

1 Introduction

Security is an important issue for Internet Service Providers (ISP). They have to keep

their systems safe from external attacks to maintain the service levels they provide to

costumers. Security threats are identified at routers, firewalls, intrusion detection

systems, etc. generating several alerts in different formats. To deal with all these

incidents, ISPs usually have a Security Information Management System (SIMS) [1],

which collects the event data from their network devices to manage and correlate the

information about any incident. A SIMS is useful to detect intrusions at a global level,

centralizing the alarms from several security devices.

2 J. E. López de Vergara et al.

A step forward in this type of systems would be the distribution of alerts among

SIMS from different ISPs and different vendors for an early response to network

incidents. Thus, mechanisms to communicate security notifications and actions have

to be developed. These mechanisms will let the collaboration among SIMS to share

information about incoming attacks. For this, it is important to homogenise the

information the SIMS are going to share. A data model has to be defined to address

several problems associated with representing intrusion detection alert data: alert

information is inherently heterogeneous, some alerts are defined with very little

information and others provide much more information; and intrusion detection

environments are different, the same attack can contain different information. Current

solutions provide a common XML format to represent alerts, named IDMEF

(Intrusion Detection Message Exchange Format) [2]. Although this format is intended

to exchange messages, it is not a good solution in a collaborative SIMS scenario, as

each SIMS would flood the other SIMS with such messages. It would be better that a

SIMS asks other SIMS about certain alerts, and later infers what is its situation based

on that information. However, IDMEF has not been defined to query for an alert set.

A way to solve this is to use ontologies [3], which have been precisely defined to

share knowledge. Ontologies have been previously proposed to formally describe and

detect complex network attacks [4, 5, 6]. In this paper we propose to define an

ontology based on IDMEF, where the alerts are represented as instances of Alert

classes in that ontology. The use of an ontology language also improves the

information definition, as restrictions can be specified beyond data-types (for

instance, cardinality). With this ontology, each SIMS can store a knowledge base of

alerts, and share it using semantic web interfaces. Then, other SIMS can ask about

alerts by querying such knowledge bases through semantic web interfaces. As a

result, a SIMS would be able to share their knowledge with other domain SIMS. The

knowledge would include policies, incidents, actualizations, etc. In a first phase, this

sharing has been constrained to share alert incidents.

The rest of the paper is structured as follows. Next section presents the architecture

of collaborative SIMs based on knowledge sharing. Then, IDMEF ontology is

explained, showing the process followed in its definition, as well as how to query it.

After this, an implementation of the system that receives IDMEF alerts and stores

them in a knowledge base is described. Results obtained in the different modules are

also provided. Finally, some conclusions and future work lines are given.

2 Semantic collaborative SIMS architecture

The architecture we propose to share information among SIMS is based on semantic

web technologies, as shown in Fig. 1. This figure represents two SIMS but it can be

generalized to several of them. Each SIMS will contain an alert knowledge base that

contains instances of the IDMEF ontology, described in next section. Each knowledge

base can be queried by other SIMS using a semantic web interface that accepts

queries about the ontology.

To implement the web service interfaces in this architecture, Joseki server [7] has

been used, based on Jena libraries [8]. Joseki is an HTTP server that implements a

A semantic web approach to share alerts among SIMS 3

query interface for SPARQL (SPARQL Protocol and RDF Query Language) [9].

Joseki provides a way to deal with RDF (Resource Description Framework) and

OWL (Web Ontology Language) data in files and databases. Jena libraries have also

been used for both the instance generator and the query generator, using the SDB

library [10] to store the ontology in a database backend. Section 4 provides a deep

explanation about how they have been implemented.

SIMS1 SIMS2

SPARQL

query
Alert

knowledge

base 1
Semantic Web

interface

Alert

knowledge

base 2

IDMEF alert

IDMEF instance

Security Information Management Systems

Instance

generator
query

generator

Fig. 1. Semantic collaborative SIMS architecture.

3 IDMEF ontology

IDMEF format provides a common language to generate alerts about suspicious

events, which let several systems collaborate in the detection of attacks, or in the

treatment of the stored alerts. Although IDMEF has some advantages (integration of

several sources, use of a well supported format), it has also drawbacks (heterogeneous

data sources led several alerts of a same attack which do not contain the same

information).

To solve the identified problems, we have defined an alert ontology based on the

IDMEF structure. In this process it is worth remarking that IDMEF has been defined

following a model of classes and properties, making easier the ontology definition,

with a more or less direct mapping. The ontology has been defined using OWL [11],

leveraging the advantages of the semantic web (distribution, querying, inferencing,

etc.), and also the results of [12]. Several class restrictions have been defined

(cardinality, data types) by analyzing the IDMEF definition contained in [2].

The following conventions have been taken to define the IDMEF ontology:

• Class names start with a capital letter and it is the same as the IDMEF class name.

• Property names starts with a lower-case letter and has the format

domain_propertyName, where domain is the name of the class to which the

property belongs, and propertyName is the name of the property.

The following rules have also been taken:

• Each class in an IDMEF message maps to a class in the IDMEF ontology.

4 J. E. López de Vergara et al.

• Each attribute of an IDMEF class is mapped to a data-type property in the

corresponding ontology class.

• Classes that are contained in other class are mapped in general to object-type

properties. An exception to this are aggregated classes that contain text, which

have been mapped to data-type properties.

• A subclass of an IDMEF class is also represented as a subclass in the ontology,

inheriting all the properties of its parent class.

• When an IDMEF attribute cannot contain several values, it is mapped to a

functional class.

• When an IDMEF attribute can only have some specific values, the ontology define

them as the allowed values.

• Numeric attributes are represented as numeric data-types properties, dates are

represented as datetime data-type properties, and the rest as string data-type

properties.

Following the rules above, the ontology has been defined. Fig. 2 shows a

representation of the Alert class, its child classes (OverflowAlert, ToolAlert and

CorrelationAlert), and other referred classes (Classification, AdditionalData, Target,

Source, Assessment, CreateTime, AnalyzerTime, DetectTime, Analyzer). This figure

has been generated using the Protégé [13] ontology editor. The boxes represent the

classes and the arcs can be inheritance (in black, labelled isa) and aggregation (in

blue, labelled with the property names) relationships. A UML (Unified Modelling

Language) representation could also be provided, using the UML profile for OWL

[14].

Our definition enables a mapping from IDMEF messages to IDMEF ontology

instances. In this way, the information contained on each IDMEF message is

translated to an instance of Alert, with instances of Target, Source, etc. as this

information is contained on each message. The ontology includes other additional

classes, so any IDMEF message can be represented in the ontology.

With respect to a plain XML IDMEF message, the ontology provides several

advantages. For instance, the information can be restricted as defined in the IDMEF

definition [2]. Moreover, query languages such as SPARQL can be used to query all

the information contained in the knowledge base, and it is not limited to the scope of a

concrete XML document, which would be the case of IDMEF messages.

To query the knowledge base, SPARQL has been chosen, given that is has been

recently recommended by the W3C as the RDF/RDFS and OWL query language [9].

Using such language a query can be defined as follows:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX idmef: <http://www.dit.upm.es/IdmefOntology.owl#>
SELECT ?alert ?id ?target_address
WHERE {
 ?alert rdf:type idmef:Alert ;
 idmef:alert_messageid ?id ;
 idmef:alert_target ?target .
 ?target idmef:target_node ?tnode .
 ?tnode idmef:node_address ?taddress .
 ?taddress idmef:address_address ?target_address
}

A semantic web approach to share alerts among SIMS 5

Fig. 2. IDMEF ontology definition.

6 J. E. López de Vergara et al.

The query starts with PREFIX clauses, to define the namespaces to be used to

identify the queried classes and properties. After this, the variables alert, id and

target_address that meet a set of conditions are requested: alert variable is of type

Alert, which has the properties alert_messageid and alert_target. Then, alert_target

property refers to an instance with an address value, identified with the variable

target_address.

4 Implementation

The architecture proposed in section 2 has been implemented. Apart from the

components provided by existing semantic web implementations (mainly Joseki

server), we have implemented the module that stores the IDMEF alerts in the

knowledge base (instance generator), as well as the module that queries alerts of an

external knowledge base (query generator). Subsections below present such

implementations, providing later some results in section 5.

4.1 Instance generator

A module has been developed to map the IDMEF messages to ontology instances.

This module has been developed in Java, taking advantage of the libraries that this

language provides for parsing XML documents and ontologies. Fig. 3 shows the steps

that have to be performed to generate and save instances in the knowledge base:

 Open

IDMEF

message

(file)

Parse

IDMEF

message

(XML)

Create

IDMEF

ontology

instances

Save

IDMEF

ontology

instances

Fig. 3. Steps to generate and store ontology instances.

1. The first step is to open the IDMEF message, contained in a file.

2. Next, the IDMEF message, formatted in XML, is parsed. This generates a tree in

memory representing the message. This tree is generated using the SAX Java API.

To reduce parsing times, we have let the file to contain several messages. With this

approach, we can continuously parse several alerts without needing to restart the

process.

3. Then, reading the generated tree, the set of instances of the IDMEF ontology are

generated, using the Jena library.

4. Once the instances have been generated, they are saved in a persistent storage,

which can be either an OWL file or preferably, a database.

Jena libraries, developed at HP Labs, help when dealing with ontologies in Java

applications. In our development we have used Jena version 2, which supports both

RDF and OWL languages, as well as a certain level of reasoning on the defined

A semantic web approach to share alerts among SIMS 7

model. Jena library enables the management of ontologies, adding, deleting or editing

tuples, storing the ontologies and querying them. For this, Jena provides classes such

as:

• Resource: anything that can be described in a model. Literal is a type of resource

that represents a simple data-type, usually a string.

• Property: they are characteristics, attributes or relationships used to describe a

resource.

• Sentence: A resource joint with a property and an associated value.

• Model: they are set of sentences. They include methods to:

− Create models.

− Read and write models.

− Load models in memory.

− Query a model: look for information inside the model.

− Operations on models: union, intersection, difference.

Models can be stored in many ways, including OWL files, as well as

representations of the ontology on a relational database. In this last case, there are

several storing possibilities, depending on the library used to represent the ontology

on the database. Precisely, SDB is a Jena library specifically designed to provide

storage in SQL databases, both proprietary and open source. This storage can be done

through the SDB API.

4.2 Query generator

The Knowledge base, where the alerts are stored, can be queried through semantic

web interface by other SIMS. For this, another module has been developed, which

performs SPARQL queries to a Joseki server through HTTP. This server accesses the

Knowledge Base and it obtains the results of that query. These results are then

received by the query module.

To connect the query module to Joseki, it is necessary to use the ARQ library [15],

which is a query engine for Jena. The query module can execute any SPARQL query.

For most habitual queries, we have implemented a program which does the query

depending on a series of parameters. For instance:

• All alerts depending on the time:

− Alerts in the last week.

− Alerts in the current day.

− Alerts in a day.

− Alerts in an interval of time.

• Alerts queried using other parameters:

− Source IP address.

− Target IP address.

− Source port.

− Target port.

− Alert type.

− Target of the attack.

− Source of the attack.

8 J. E. López de Vergara et al.

− Tools of the attack.

− Overflow Alert.

− Analyzer.

• Assessments of the attacks: impact, actions, etc.

5 Results

The implemented modules, presented above, have been tested to know their

performance. All the results have been obtained in a computer equipped with an Intel

Core2 Duo E8500 processor at 3.16 GHz with 6 MB L2 Cache and 2 Gbyte RAM.

Previous tests with older computers provided worse results.

5.1 Instance generator

To evaluate the generation of instances, IDMEF messages available in [2] have been

used. Table 1 shows the times measured in milliseconds.

Table 1. Time to generate instances of well known IDMEF messages

IDMEF message JDBC SDB SPARQL/Update

Assessment 1235 1040 -

Correlated Alert 1250 1035 640

Disallowed Service 1250 1050 640

Load Module 1220 1050 625

Load Module 2 1250 1035 640

Phf 1220 1035 610

Ping of Death 1220 1035 625

Policy Violation 1265 1035 640

Scanning 1235 1035 610

Teardrop 1220 1035 610

These times are measured after the database is created and the ontology model is

represented on the database. If the database and the model have to be created, there

are two possibilities:

• Use of JDBC (Java Database Connectivity), with a time of around 1.900 s.

• Use of SDB library, with a time of around 1.125 s, faster than the previous case.

Both JDBC and SDB libraries facilitate the connection to databases containing

ontologies from Java application independently of the operating system. These

libraries are also compatible with different databases. In addition, SDB is a Jena

component designed specifically to support SPARQL queries and it provides storage

in both proprietary and open source SQL databases.

Once the database has been created, there are three alternatives to insert the

instances on the ontology database: JDBC, SDB and SPARQL/Update [16]. With

respect to the last alternative, SPARQL/Update is an extension to SPARQL that lets a

A semantic web approach to share alerts among SIMS 9

programmer the definition of insert clauses, whereas JDBC and SDB can insert data

in the ontology by creating ontology data structures in memory that are later stored.

From our experiments, the best measurements are obtained if the language

SPARQL/Update is used to insert the instances. They are approximately a 60% of the

time when SDB library is used, and a 50% compared to when plain JDBC is used. In

the case of the Assessment message there is an exception, because it contains

characters that cannot be used in the SPARQL/Update sentence. In this case, the SDB

library should be used instead.

5.2 Query generator

Some measurements have also been taken with respect to the time that it takes to

perform a concrete query from the query module to a test knowledge base with 112

alerts through the Joseki server. Simplified versions of the queries used for the

experiment are shown below (they also included other variables that could be useful

about other alert properties):

• Alerts depending on a time interval:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX idmef: <http://www.dit.upm.es/IdmefOntology.owl#>
SELECT ?alert ?time
WHERE {
 ?alert rdf:type idmef:Alert .
 ?alert idmef:alert_createTime ?createTime .
 ?createTime idmef:createTime_time ?time .
 FILTER (?time > time1).
 FILTER (?time < time2)
}

where time1 and time2 are properly replaced to query for a concrete period of time.

• Alerts depending on the source IP address.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX idmef: <http://www.dit.upm.es/IdmefOntology.owl#>
SELECT ?alert ?sourceAddress
WHERE {
 ?alert rdf:type idmef:Alert.
 ?alert idmef:alert_source ?source.
 ?source idmef:source_node ?node.
 ?node idmef:node_address ?address.
 ?address idmef:address_address ?sourceAddress.
 FILTER (?sourceAddress = ipAddr)
}

where ipAddr is replaced with a concrete IP address

10 J. E. López de Vergara et al.

• Alerts depending on the target IP address.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX idmef: <http://www.dit.upm.es/IdmefOntology.owl#>
SELECT ?alert ?sourceAddress
WHERE {
 ?alert rdf:type idmef:Alert.
 ?alert idmef:alert_target ?target.
 ?target idmef:target _node ?node.
 ?node idmef:node_address ?address.
 ?address idmef:address_address ?targetAddress.
 FILTER (?targetAddress = ipAddr)
}

where ipAddr is replaced with a concrete IP address.

• Alerts depending on their type:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX idmef: <http://www.dit.upm.es/IdmefOntology.owl#>
SELECT ?alert ?alertName
WHERE {
 ?alert rdf:type idmef:Alert.
 ?alert idmef:alert_classification ?classification.
 ?classification idmef:classification_text ?aName.
 FILTER (?aName = alertName)
}

where alertName is replaced for a concrete alert.

Tables 2, 3, 4 and 5 show below the results obtained when querying the alert

knowledge base with these queries:

Table 2. Knowledge base query times depending on the time interval.

Obtained results Time (ms)

23 547

9 500

32 641

Table 3. Knowledge base query times depending on the source IP of an alert.

Obtained results Time (ms)

1 453

Table 4. Knowledge base query times depending on the target IP of the alerts.

Obtained results Time (ms)

11 500

33 625

77 750

A semantic web approach to share alerts among SIMS 11

Table 5. Knowledge base query times depending on the alert type.

Obtained results Time (ms)

2 468

13 484

7 468

As shown, the time to retrieve the results is dependent on the number of alerts that

match the query, but not on the query itself. Further tests have to be performed with

larger knowledge bases.

6 Conclusions

This work has assessed the applicability of semantic web technologies in security

information management systems, providing a way to semantically share information

among different security domains. For this, an ontology based on IDMEF has been

defined, which can hold all the information of any IDMEF message. To test this

ontology, we have also defined and implemented a semantic collaborative SIMS

architecture, where each SIMS stores its IDMEF alerts in a knowledge base and can

query other SIMS knowledge bases using a SPARQL interface.

The test performed to store alerts showed the times to save such alerts, which can

be acceptable for a prototype but not for a production system that receives tens of

alerts per second. Thus, some approaches have been done to improve these times. On

the one hand, Jena SDB library has been used to optimize the storage of the ontology

in a database. On the other hand, the use of SPARQL/Update has been proposed, to

limit the saving time to that information contained on each alert. Another

improvement has been the parsing of alerts continuously, to avoid launching a Java

process each time an IDMEF message arrives the instance generator. In this way, we

could reduce the storing time to a half from the initial approach.

With respect to the query modules, we have done preliminary tests with good

results. We will generate further tests, modifying the size of the knowledge base to

check how the system performs with larger data sets. It is also important to note that

the instances of old alerts are periodically deleted from the knowledge base. This

avoids its size grow ad infinitum.

As another future work, we will study how to do inference with the information

contained in the knowledge bases.

12 J. E. López de Vergara et al.

Acknowledgements. This work has been done in the framework of the collaboration

with Telefónica I+D in the project SEGUR@ (reference CENIT-2007 2004,

https://www.cenitsegura.es), funded by the CDTI, Spanish Ministry of Science and

Innovation under the program CENIT.

References

1. D. Dubie: Users shoring up net security with SIM. Network World, 30th September 2001.

2. H. Debar, D. Curry, B. Feinstein: The Intrusion Detection Message Exchange Format

(IDMEF). IETF Request for Comments 4765, March 2007

3. T. R. Gruber: A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, Vol. 5, No. 2 (1993) 199-220.

4. J. Undercoffer, A. Joshi, A. Pinkston: Modeling computer attacks: an ontology for

intrusion detection. Lecture Notes in Computer Science, Vol. 2820 (2003) pp. 113-135.

5. D. Geneiatakis, C. Lambrinoudakis: An ontology description for SIP security flaws.

Computer Communications, Vol. 30, Issue 6 (2007) pp. 1367-1374

6. S. Dritsas, V. Dritsou, B. Tsoumas, P. Constantopoulos, D. Gritzalis: OntoSPIT: SPIT

management through ontologies. Computer Communications, Vol. 32, Issue 1 (2009) pp.

203-212.

7. Joseki – A SPARQL Server for Jena, available at http://www.joseki.org/

8. Jena – A Semantic Web Framework for Java , available at http://jena.sourceforge.net/

9. E. Prud'hommeaux, A. Seaborne: SPARQL Query Language for RDF. W3C

Recommendation 15 January 2008.

10. SDB - A SPARQL Database for Jena, available at http://jena.sourceforge.net/SDB/

11. D. L. McGuinness, F. van Harmelen: OWL Web Ontology Language Overview. W3C

Recommendation 10 February 2004.

12. J. E. López de Vergara, E. Vázquez, A. Martin, S. Dubus, M. N. Lepareux: Use of

ontologies for the definition of alerts and policies in a network security platform, Journal

of Networks, Vol. 4, Issue 8 (2009) pp. 720-733.

13. J. H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubézy, H. Eriksson, N.F.

Noy, S.W. Tu: The evolution of Protégé: an environment for knowledge-based systems

development. Int. J. Hum.-Comput. Stud. Vol. 58, Issue 1 (Jan. 2003) pp. 89-123

14. Object Management Group: Ontology Definition Metamodel Version 1.0. OMG

document number formal/2009-05-01, May 2009.

15. ARQ - A SPARQL Processor for Jena, available at http://jena.sourceforge.net/ARQ/

16. A. Seaborne, G. Manjunath, C. Bizer, J. Breslin, S. Das, I. Davis, S. Harris, K. Idehen, O.

Corby, K. Kjernsmo, B. Nowack: SPARQL Update, A language for updating RDF

graphs. W3C Member Submission 15 July 2008.

