An ontology-based method to merge and map
management information models’

Jorge E. Lopez de Vergara, Victor A. Villagra, and Julio Berrocal
Departamento de Ingenieria de Sistemas Telematicos,
Universidad Politécnica de Madrid (DIT-UPM).

E.T.S.I. de Telecomunicacion, Ciudad Universitaria, 28040 Madrid, Spain.
{jlopez, villagra, berrocal } @dit.upm.es

Abstract:

The multiplicity of network management models (SNMP, CMIP, DMI, WBEM...) may imply in
some scenarios the use of multiple management information models defining the resources to be
managed. In these scenarios it is necessary that a manager can have a common view of all
resources to monitor and control them in an integrated way. However, information models cannot
be easily integrated due to the difficulties that arise when dealing with the semantics they contain.
Syntactic translations also known as recasts are commonly used, but they only generate set of
unlinked models with the same format instead of a common view of the managed resources.

The integration of partially overlapped information models has also been studied in the ontology
field. Ontologies exactly focus on the meaning of those concepts composing an information
model, and knowledge systems using ontologies also need such integration to interoperate. This
paper will show the application of ontology-based techniques to improve the integration of current
network management models, explaining the possibilities to reach a semantic translation.

Keywords: Ontology, Network Management, Information Models Integration, Semantic
Translation, Merge and Map.

1 Introduction

Currently, several Integrated Network Management models coexist with different
management information models defining the resources to be managed. Different approaches
have been applied to translate specifications and interactions among OSI-MS (Open Systems
Interconnection, Management Systems), SNMP (Simple Network Management Protocol),
CORBA (Common Object Request Broker Architecture) or DMI (Desktop Management
Interface). For instance, [IMC (ISO Internet Management Coexistence) or JIDM (Joint Inter-
Domain Management) are some results of these efforts. The final objective is that a manager
can have a common view of all resources to monitor and control them in an integrated way.

However, current methods only provide recast translations that work in a syntactic way: a
mapping between the information languages is done instead of a mapping between the
specifications. Although this information is translated using the same format, the managed
resources specifications are still a set of unlinked models. The information remains isolated
because its semantics includes the relationships that connect it to the rest of the model.

In prior works [1, 2, 3], the use of ontologies has been proposed to deal with the semantics of
the management information: they can improve the expressiveness of the management
languages, adding formal axioms and constraints to the specifications. Moreover, ontology
techniques for merging and mapping specifications can also be applied to information
management models. Taking these proposals as a starting point, this paper details these
methods to combine and match ontologies and their adaptation for the integration of

" This work has been partially funded by the Spanish Ministry of Science and Technology under the project
GESEMAN (TIC2002-00934).

management information models, improving current approaches to reach a semantic
translation. In this way, as shown in Figure 1, a common specification of all managed
resources can be obtained by merging different models. On the other hand, it is also necessary
to translate the merged model the manager uses to those models defined for every agent. For
this, a mapping ontology is specified that defines a set of rules to semantically translate the
management information.

SNMP [« :
! |
oMt <_?[ffffii
Manager E '
N CMIP 4—?8
X ! :
N i i ;
: CORBA !
Semantic . R
mappings .
AN

Merging
models <--
semantically

B T

Common
information
model

Figure 1. Paper objectives

This paper is structured as follows. First of all, ontologies are presented. Then, an ontology-
based method to merge and map management information is explained. Next, a case study is
shown that applies this method. Some conclusions are finally given.

2 Ontologies

Ontologies, mainly used in the Artificial Intelligence field, are explicit and formal
specifications of shared conceptualizations [4]. They have been relevant for the development
of intelligent agents and currently are a key technology of the Semantic Web. Some
applications to network management have also been presented recently. A mapping between
SMIng (Structure of Management Information, next generation) and RDF (Resource
Description Framework) has been proposed in [5] so that intelligent agents can use SNMP
MIBs as their common vocabulary. CIM (Common Information Model) metaschema has also
been mapped into OKBC with a similar purpose in [6]. This paper focuses on other
application of ontologies: the integration of network management information taking into
account the semantics included on it.

Solutions applied to integrate different ontologies deal both with the syntax of the description
languages and the meaning of the described information, addressing this problem also from
the semantics viewpoint. Approaches in this scope include some methods that merge, align or
map the information:

* When merging and aligning ontologies, a new ontology is generated that has all the
concepts included in the initial ones. For this, different proposals based on heuristics
exist: candidate concepts or properties to be merged can be found if they are named
with a similar string [7, 8] or if the values of their instances are also similar [9].

* When mapping ontologies, several rules are defined that allow a semantic translation
of their instances. For this, a mapping ontology [10, 11] can be defined that includes
all the concepts of these rules, such as the elements to be mapped, or the formula used
for the translation.

Next section takes advantage of these methods and adapts them for the semantic integration of
management information specifications.

3 M&M: a method to integrate management information
models semantically

Even if all management information models are translated into the same language, the
semantics they contain is not integrated. It is necessary to carry out other procedures that
identify their meaning. This can be done by leveraging the merging and mapping techniques
used in the ontology field. This section presents a new integration method, based on the
combination of different specifications in a common model, defining the mapping rules with
the initial models, as shown in Figure 2.

-

CIM schemas Merged model
Common
SNMP MIBs model MIBs mappings
" generation e
oo process Master.MIF
DMI MasterMIF mappings

-

Figure 2. Process of merging and mapping management information.

To assist in this process, a method called M&M (Merge and Map) has been developed. It
proposes a set of steps to help in the procurement of both the common model and the mapping
rules. This differs from usual ontology integration methods, which are about merging or
mapping but not both processes in parallel.

The merging part is based on the process explained in [7] adapted for the network
management particularities. Other techniques are not applicable to network management
information, because they only deal with classes [8] (properties are not taken into account) or
instance values [9] (which are not known when merging management information models).

The aim of this method is to help the person carrying out this process. For this, the following
set of heuristics is applied to find candidates to be merged with high probability:

* Candidates by similar character strings. Two classes or properties are candidates to be
merged with high probability if they have a similar substring included in their
identifiers or in their descriptions. Synonyms can also be used if they are available.

* Candidates by similar inheritance hierarchy. Two classes are candidates to be merged
with high probability if their parent classes are similar, because child classes of a class
are usually similar to the child classes of another class that has been merged with the
first one.

* Candidates by property domain. Two properties are candidates to be merged with high
probability if the classes containing them are also similar. At the same time, two
classes are candidates to be merged with high probability if the properties they contain
are also similar.

To describe the mapping rules that translate the information instances from a concrete model
to the common model a simple mapping ontology has been defined, using DAMLA+OIL
(DARPA Agent Markup Language plus Ontology Inference Layer) [12] as the specification
language. Figure 3 shows with a class diagram a representation of this ontology. It is based on
ideas contained in [11], but reducing its complexity. A simpler approach [10] is not applicable
because it only deals with classes.

1.*

Formula Element
source elements |
inverge formula +language: String “|+type: String mapped elements

+expression: String +reference: String

1.* 1.*

target elements

Figure 3. Mapping ontology

This ontology has two concepts: each El enent composing an ontology (classes, properties,
etc.) has a translation For nul a. Every El enent has some properties such as the t ype or the
ref erence to its specification. Every Fornul a has an expressi on written in a concrete
| anguage to translate the set of source andtarget el enents. Relationships among mapped
el ement's and i nver se formul a are also included. With this ontology any mapping of those
identified before can be addressed. Other approaches, such as the Mappi ngSt ri ngs qualifier
used in CIM, can only represent direct mappings.

Typical mappings among management information models have been identified. They can be
the following ones or a combination of them:

e Direct, if it is a 1:1 relationship in which no transformation is needed. In this case, the
value contained in an element in both models is exactly the same. Direct mappings are
most common ones and are proposed by default.

e Value set, if it is a 1:1 relationship in which for each value of an element there is
another value for the element of the other model. This kind of mapping is proposed if
at least one of two merged properties has an enumeration of possible values.

e Data types, if it is a 1:1 relationship in which the elements of both models have
different data types that have to be converted.

* Arithmetic operation on one element, if it is a 1:1 relationship in which the value of
one element is obtained calculating it with the value of the element of the other model.
This kind of mapping is useful if the measurement units of both elements are different.

* Arithmetic operations on some elements, if it is a 1:n relationship in which the value
of one element is obtained by arithmetic combination of the values of some elements
of the other domain. In this case, the user should define the mapping expression.

e Character strings, if it is a 1:n relationship in which the value of one element is
composed by concatenating different strings, which are the values of the elements in
the other domain. Once again, the user has to define the mapping rule.

Figure 4 shows the activity diagram that describes the method M&M. Gray activities are
those performed by a user and those in white are automatically completed by the system. In
brief, this method consists on the identification of similar classes and properties, using
commented heuristics, to merge them. At the same time, every element of the mapping
ontology is automatically defined at the beginning, and later, associated formulas are created
when merging the elements. The person in charge of this process must validate every
operation proposed by the method, and can also define different ones. The final result is a

common model and a set of instances of the mapping ontology representing the rules to
translate the merged models, as stated before.

Syntactic translation

Goad models to be merged)

)

Qropose classes as candidates to be merged or aligned) Qrea«e Element instances in the mapping ontology)

Merge classes

Gropose mapping rules for the merged classes >

Gefine mapping rule for the merged classes, including Formula instances and relationships)

_rL

Qropose properties of the merged classes as candidates to be merged >

(Merge properties)

Gropose mapping rules for the merged properties)

Geﬁne mapping rule for the merged properties, including Formula instances and relationships)

—

Figure 4. M&M activity diagram

A manager based on this proposal would work in the following way. If it needs to obtain all
instances of a concrete element of the common model, it will look for it in the mapping
ontology, finding at the same time the formula and mapped elements of the merged models. It
will access each management domain containing this information to get it. Applying the
expression contained in the formula it will translate the value of the instances obtained in each
domain to the common model.

4 Using M&M: integrating the HOST-RESOURCES-MIB in
the CIM schema

To validate the proposed merging and mapping method, it has been applied to a case study in
which the HOST-RESOURCES-MIB has been integrated with the CIM schema. Following
the M&M activity diagram, the first task has been the translation of both specifications to a
common language, which could be MOF (Managed Object Format). In this case, as proposed
in [13], tables and groups of objects of the MIB have been considered as classes, and external
indexes as inheritance relationships. These information specifications are shown as class
diagrams in Figure 5 and Figure 6.

<<smi mib class>>

hrStorage

<<smi mib class>>
hrSystem

+static h Uptime: TimeTicks
+static hr meDate: DateAndTim
tstatic t oadDevice: Integer32
+static b C InternationalDisplayString
+static h Jsers: Gauge32
sstatic b P : Gauge3:

+static hrSystemMaxProcesses: Integer32

+static hrMemorySize: KBytes

<<smi mib class>>

hrSWRunEntry

<<smi mib class>>

hrSWinstalledEntry

<<smi mib class>>

hrDeviceEntry

<<smi mib class>>

hrStorageEntry

ic hrSWOSIndex: In r32
+hrSWRunindex: Integer32
+hrSWRunName: InternationalDisplayString

ic hrSWinstalledL:

+hrSWinstalledIndex: Integer32

hange: TimeTick:
ic hrS Time: TimeT

+hrDevicelndex: Integer32
+hrDeviceType: AutonomousType

+hrDeviceDescr: DisplayString

+hrStoragelndex: Integer32

+hrStorageType: AutonomousType

+hrStorageDescr: DisplayString

+hrSWRunID: ProductID +hrSWir : Internatior playString +hrDevicelD: ProductID +hrStorageAllocationUnits: Integer32
+hrSWRunPath: InternationalDisplayString +hrSWinstalledID: ProductiD +hrDeviceStatus: Enumeration +hrStorageSize: Integer32
+hrSWRunF Internatior i ing +hrSWinstalledType: Enumeration +hrDeviceErrors: Counter32 +hrStorageUsed: Integer32
+hrSWRunType: Enumeration +hrSWinstalledDate: DateAndTime +hrStorageAllocationFailures: Counter32
+hrSWRunStatus: Enumeration /\

<<sparses>> ‘

<<augments>>

<<smi mib class>>

hrSWRunPerfEntry

+hrSWRunPerfCPU: Integer32
+hrSWRunPerfMem: KBytes

<<smi mib class>>

hrProcessorEntry

+hrDevicelndex: Integer32
+hrProcessorFrwiD: ProductiD

+hrProcessorlLoad: Integer32

<<sparsesz

v

<<sparses>>

<<smi mib class>>

hrDiskStorageEntry

<<smi mib class>>

<<smi mib class>>

hrNetworkEntry hrPrinterEntry

+hrDevicelndex: Integer32

+hrDiskStorageAccess: Enumeration

+hrDevicelndex:

+hrNetworklflndex: Integer32

+hrD

Integer32

+hrPrinterStatus: Enumeration

+hrDiskStorageMedia: Enumeration

-+hrPrinterDetectedErrorState: OctetString

+hrDiskStorageRemovable: TruthValue

+hrDiskStorageCapacity: KBytes

<expands>>

<<smi mib class>>

hrPartitionEntry

<<smi mib class>>

hrFSEntry

+hrDevicelndex: Integer32
+hrPartitionindex: Integer32
+hrPartitionLabel: InternationalDisplayString
+hrPartitionID: OctetString

+hrPartitionSize: KBytes
+hrPartitionFSIndex: Integer32

+hrFSindex:

+hrFSMountPoint: InternationalDisplayString
+hrFSRemoteMountPoint: InternationalDisplayString
+hrFSType: AutonomousType

+hrFSAccess: Enumeration

+hrFSBootable: TruthValue

+hrFSStoragelndex: Integer32
+hrFSLastFullBackupDate: DateAndTime
+hrFSLastPartialBackupDate: DateAndTime

Figure 5. HOST-RESOURCES-MIB groups and tables represented as classes

Syncroni%ed

1.0 N 1.

1.
CIM_LogicalElement

Logi%alldemily

CIM_System

+CreationClassName: string
+Name: string

+NameFormat: string
+PrimaryOwnerName: string
+PrimaryOwnerContact: string

+Roles: string[]

CIM_Process

N

+CSCreationClassName: string
+CSName: string
+0SCreationClassName: string
+OSName: string

+Name: string
+CreationClassName: string
+Handle: string

+Priority: uint32
+ExecutionState: uint16
+OtherExecutionDescription: string
+CreationDate: datetime
+TerminationDate: datetime
+KernelModeTime: uint64
+UserModeTime: uint64

+WorkingSetSize: uint64

CIM_LogicalDevice

+SystemCreationClassName: string
+SystemName: string
+CreationClassName: string

+DevicelD: string
+PowerManagementSupported: boolean
+PowerManagementCapabilities: uint16[]
+Availability: uint16

+Statusinfo: uint16

+LastErrorCode: uint32
+ErrorDescription: string

+ErrorCleared: boolean
+OtherldentifyingInfo: string[]
+PowerOnHours: uinté4
+TotalPowerOnHours: uint64
+IdentifyingDescriptions: string[]
+AdditionalAvailability: uint16[]

+MaxQuiesceTime: uinté4

CIM_FileSystem

+CSCreationClassName: string
+CSName: string
+CreationClassName: string
+Name: string

+Root: string

+BlockSize: uint64
+FileSystemSize: uint64
+AvailableSpace: uint64
+ReadOnly: boolean
+EncryptionMethod: string
+CompressionMethod: string
+CaseSensitive: boolean
+CasePreserved: boolean
+CodeSet: uint16[]
+MaxFileNameLength: uint32

+ClusterSize: uint32

CIM_ComputerSystem

+SetPowerState(PowerState: uint16, Time: datetime): uint32

+NameFormat: string

+OtherldentifyingInfo: string[]

+ldentifyingDescriptions: string[]
+Dedicated: uint16[]

+Reset(): uint32
+EnableDevice(Enabled: boolean): uint32
+OnlineDevice(Online: boolean): uint32

+QuiesceDevice(Quiesce: Boolean): uint32

+Fi Type: string

+ResetCapability: uint16

+SaveProperties(): uint32

+PowerMar 2 uint16[] +RestoreProperties(): uint32
+SetPq Po 2 uint32, Time: i :uint32
+SetPo ithOptions(Po! : uint16, Time: datetime, Options: CIM_Settings): uint32

CIM_Printer

CIM_NetworkAdapter

CIM_StorageExtent

CIM_Processor

+PrinterStatus: uint16
+DetectedErrorState: uint16
+Errorinformation: string[]
+PaperSizesSupported: uint16[]
+PaperTypesAvailable: string[]
+DefaultPaperType: string
+CurrentPaperType: string
+LanguagesSupported: uint16[]
+MimeTypesSupported: string[]
+CurrentLanguage: uint16
+CurrentMimeType: string
+DefaultLanguage: uint16
+DefaultMimeType: string
+JobCountSinceLastReset: uint32
+TimeOfLastReset: datetime
+Capabilities: uint16[]

+CapabilitiesDescriptions: string[]

+DefaultCapabilities: uint16[]
+CurrentCapabilities: uint16[]
+MaxCopies: uint32
+DefaultCopies: uint32
+MaxNumberUp: uint32
+DefaultNumberUp: uint32
+HorizontalResolution: uint32
+VerticalResolution: uint32
+CharSetsSupported: string(]
+CurrentCharSet: string
+NaturalLanguagesSupported: string[]
+CurrentNaturalLanguage: string
+MaxSizeSupported: uint32
+AvailableJobSheets: string[]
+MarkingTechnology: uint16

+PermanentAddress: string
+NetworkAddresses: string[]
+Speed: uint64
+MaxSpeed: uint64
+FullDuplex: boolean
+AutoSense: boolean
+OctetsTransmitted: uint64

+OctetsReceived: uinté4

+DataOrganization: uint16
+Purpose: string
+Access: uint16
+ErrorMethodology: string
+BlockSize: uint64
+NumberOfBlocks: uinté4

+ConsumableBlocks: uint64

+IsBasedOnUnderlyingRedundancy: boolean

+SequentialAccess: boolean

+Role: string

+Family: uint16
+OtherFamilyDescription: string
+UpgradeMethod: uint16
+MaxClockSpeed: uint32
+DataWidth: uint16
+AddressWidth: uint16
+LoadPercentage: uint16
+Stepping: string
+UniquelD: string
+CPUStatus: uint16

CIM_Memory

CIM_MediaPartition

CIM_LogicalDisk

+ErrorMethodology: string
+StartingAddress: uint64
+EndingAddress: uint64
+Errorinfo: uint16
+OtherErrorDescription: string
+CorrectableError: boolean
+ErrorTime: datetime
+ErrorAccess: uint16
+ErrorTransferSize: uint32
+ErrorData: uint8[]
+ErrorDataOrder: uint16
+ErrorAddress: uint64
+SystemLevelAddress: boolean
+ErrorResolution: uinté4

+AdditionalErrorData: uint8([]

+Bootable: boolean

+Allocatable: boolean

+Signature: string
+SignatureAlgorithm: string
+SignatureState: string

+Extendable: boolean

7

CIM_DiskPartition

+PrimaryPartition: boolean
+PartitionType: uint16
+PartitionSubtype: uint16

Figure 6. CIM schema subset

Next, using proposed heuristics, some table entries and classes, including their columns and
properties respectively, have been taken as candidates to merge them:

* (Candidates by similar character strings:

(0]

hr Syst emwith CI M_Syst emand CI M_Conput er Syst em because they share the
Syst emsubstring.

hr Devi ceEnt ry with CI M Devi ce, because they share the Devi ce substring.
hr Processor Entry with CI M_Processor, because they share the Processor
substring.

hr Di skSt or ageEntry, hr St or age and hr St or ageEntry, with
Cl M_St or ageExt ent , because they share the St or age substring.
hrPartitionEntry with CI M MediaPartition y ClMDiskPartition,
because they share the Partiti on substring.

hr Net wor kEnt ry with CI M_Net wor kAdapt er , because they share the Net wor k
substring.

hrPrinterEntry with CIMPrinter, because they share the Printer
substring.

hr SWRunEnt ry, hr SWRunPerfEntry, hrSWnstal |l edEntry, and hr FSEntry
do not have any string similarities with the CIM schema, unless synonyms of
SW (Software), Run (Process) or FS (File System) are defined.

* Candidates by similar inheritance hierarchy:

(0]

hr Devi ceEnt ry child classes with those of CI M _Devi ce.
" hrProcessorEntry with Cl M_Processor.
= hrDi skSt orageEnt ry with CI M St or ageExt ent .
= hr Net wor kEnt ry with CI M_Net wor kAdapt er .
= hrPrinterEntry withCI M Printer.

* Candidates by property domain, joint with similar character strings:

(0]

hr Devi ceEnt ry and Cl M _Devi ce properties.
= hrDevi cel Dwith Devi cel D.
= hrDevi ceSt at us with St at usl nf o.
= hrDeviceErrors with LastErrorCode, ErrorDescription and
ErrorC ear ed.
hr Processor Entry and Cl M_Processor properties.
= hrProcessor Fwdl D with Uni quel D.
" hrProcessor Load with LoadPer cent age.
hr Di skSt orageEnt ry, hr St or age, hr St or ageEntry and
Cl M_St or ageExt ent properties.
= hrDi skSt or ageAccess with Access.
hrPrinterEntry and Cl M Pri nt er properties.
® hrPrinterStatus with Printer St atus.
= hrPrinterDetectedErrorState with Det ect edError St at e.

At the same time, different El enent instances have been generated. Next lines show an
example written in DAMLA+OIL with the definition of some classes and properties from both
models.

<El ement rdf:1D="Cl M Process"
rdf s: | abel =" CI M Process"
type="cl ass"
reference="DMIF| CI M Cl M_Process" />
<El enent rdf: | D="Ker nel MbdeTi ne"
rdf s: | abel =" Cl M _Process. Ker nel ModeTi ne"
type="property"
ref erence="DMIF| Cl M_Process. Ker nel ModeTi me" />
<El enent rdf: | D="User ModeTi ne"
rdfs: | abel =" Cl M _Process. User ModeTi ne"
type="property"
ref erence="DMIF| CIl M _Process. User ModeTi nmre" />

<El emrent rdf: |1 D="hr SWRunPerf Entry"
rdf s: | abel =" hr SWRunPer f Entry"
type="cl ass"
ref erence="1 ETF| HOST- RESOURCES- M B| hr SWRunPer f Ent ry" />
<El enent rdf: | D="hr SWRunPer f CPU"
rdf s: | abel =" hr SWRunPer f Ent ry. hr SWRunPer f CPU'
type="property"
reference=
" | ETF| HOST- RESOURCES- M B| hr SWRunPer f Ent ry. hr SWRunPer f CPU" />

Finally, when two or more elements are merged, a Formul a for their translation is also
proposed. Code included below shows an example of such a formula, in which an expression
has been set up to obtain the value of hr SWRunPerf CPU with an arithmetic operation
combining the values of Ker nel ModeTi me and User ModeTi ne. The expression is written in a
fictitious language called MapTrans, similar to JavaScript.

<Formul a rdf:i d="Kernel MbdeTi ne, User ModeTi ne- >hr SWRunPer f CPU" >
<l anguage>MapTr ans</ | anguage>
<sour ceEl enents rdf:resource="#Kernel ModeTi ne" />
<sour ceEl enents rdf:resource="#User ModeTi ne" />
<target El ements rdf:resource="#hr SWRunPer f CPU" />
<i nver seFor mul a
rdf : r esour ce="#hr SWRunPer f CPU- >Ker nel ModeTi nme, User MbdeTi ne" />
<expressi on>
hr SWRunPer f CPU = (Ker nel ModeTi me +User ModeTi ne) * 10;
</ expr essi on>
</ For mul a>
<El enment rdf: about =" #Ker nel ModeTi ne" >
<fornula rdf:resource=
"#Ker nel ModeTi ne, User MbdeTi ne- >hr SWRunPer f CPU" [>
<mappedEl ements rdf:resource="#hr SWRunPer f CPU" />
</ El ement >
<El enment rdf: about ="#User ModeTi ne" >
<fornula rdf:resource=
"#Ker nel ModeTi ne, User MbdeTi ne- >hr SWRunPer f CPU" [>
<mappedEl ements rdf:resource="#hr SWRunPer f CPU" />
</ El ement >
<El enent rdf: about ="#hr SWRunPer f CPU" >
<fornula rdf:resource=
"#hr SWRunPer f CPU- >Ker nel MbdeTi ne, User ModeTi ne" />
<mappedEl ements rdf:resource="#Ker nel ModeTi ne" />
<mappedEl enents rdf:resource="#User ModeTi ne" />
</ El ement >

5 Conclusions and further work

This paper has presented a method that uses ontology integration techniques to improve the
network management information interoperability. Prior existing works deal with it in a very
limited way, mainly based on recast translations. The method M&M takes into account the
semantics contained in the information. With this, a common model can be generated to be
used by a manager, independently of the underlying management domains. This fact will
improve the management application development, which will be able to correlate data which
until now did not have a direct association because they belonged to different models.

This method has been applied to a case study to validate it, obtaining interesting results.
However, due to the needs of human supervision, it can take some time when integrating big
specifications. In any case, this time will be less than doing this task manually.

A management system similar to that shown in Figure 7 can be developed based on these
ideas. It will take advantage of this ontology-based approach, integrating all management
models in a smart way and bearing in mind the semantics of the defined information. At the
same time, generic gateways can be built that use the mapping ontologies generated with the
method M&M to translate the information between management domains.

Generated with M&M,
Each gateway loads
its mapping ontology

merging management
Manager specifications
Common
model
generated with M&M
CORBA CMIP
gateway gateway
p k

SNMP
gateway

DMI
gateway

A

A
1oP CMIP SNMP IPC/RPC
A
CORBA CMIP SNMP DMI
agents agents agents agents

Figure 7. Architecture of a management system using this approach

Current works are also about the automation of M&M. An existing ontology tool [14] is being
adapted to generate the mapping rules when merging two models. At the same time,
additional heuristics to find candidates more easily are being studied to reduce the human
interaction, including Natural Language Processing techniques to analyze the meaning of the
descriptions.

6 References

1. Jorge E. Lopez de Vergara, Victor A. Villagra, Julio Berrocal, “Semantic Management:
advantages of using an ontology-based management information meta-model”,
Proceedings of the HP Openview University Association Ninth Plenary Workshop (HP-
OVUA'2002), Boblingen, Germany, June 2002.

2. Jorge E. Lopez de Vergara, Victor A. Villagra, Julio Berrocal, Juan 1. Asensio, Roney
Pignaton, “Semantic Management: Application of Ontologies for the Integration of
Management Information Models”, Proceedings of the Eighth IFIP/IEEE International
Symposium on Integrated Network Management (IM'2003), Colorado Springs, Colorado,
U.S.A., March 2003.

10.

11.

12.

13.

14.

Jorge E. Lopez de Vergara, Victor A. Villagra, Juan 1. Asensio, Julio Berrocal,
“Ontologies: Giving Semantics to Network Management Models”, IEEE Network, special
issue on Network Management, Volume 17, Number 3, May/June 2003.

R. Studer, V.R. Benjamins, D. Fensel, “Knowledge Engineering: Principles and
Methods”, Data & Knowledge Engineering, 25: 161-197, 1998.

Jun Shen, Yun Yang, “RDF-Based Knowledge Models for Network Management”,
Proceedings of the Eighth IFIP/IEEE International Symposium on Integrated Network
Management (IM'2003), Colorado Springs, Colorado, U.S.A., March 2003.

Emmanuel Lavinal, Thierry Desprats, Yves Raynaud, “A Conceptual Framework for
Building CIM-Based Ontologies”, Proceedings of the Eighth IFIP/IEEE International
Symposium on Integrated Network Management (IM'2003), Colorado Springs, Colorado,
U.S.A., March 2003.

Natalya Fridman Noy, Mark A. Musen, “An Algorithm for Merging and Aligning
Ontologies: Automation and Tool Support”, Proceedings of the Workshop on Ontology
Management, Sixteenth National Conference on Artificial Intelligence (AAAI-99),
Orlando, Florida, U.S.A., July 1999.

Deborah L. McGuinness, Richard Fikes, James Rice, Steve Wilder, “An Environment for
Merging and Testing Large Ontologies”, Proceedings of the Seventh International
Conference on Principles of Knowledge Representation and Reasoning (KR2000),
Breckenridge, Colorado, U.S.A., April 2000.

Gerd Stumme, Alexander Maedche, “FCA-MERGE: Bottom-Up Merging of Ontologies”,
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI 2001), Seattle, Washington, U.S.A., August 2001.

E-Commerce Integration Meta-Framework (ECIMF) Project, “ECIMF Semantic
Translation tool”, November 2001, available at http://www.ecimf.org/software.html

Alexander Maedche, Boris Motik, Nuno Silva, Raphael Volz, “MAFRA — A MApping
FRAmework for Distributed Ontologies”, Proceedings of the Thirteenth European

Conference on Knowledge Engineering and Knowledge Management (EKAW’02),
Madrid, Spain, October 2002.

Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuiness, Peter F. Patel-
Schneider, Lynn Andrea Stein, “DAML+OIL (March 2001) Reference Description”, W3C
Notes, 18 December 2001.

J. Schonwiélder and A. Miiller, “Reverse Engineering Internet MIBs”, Proceedings of the
Seventh IFIP/IEEE International Symposium on Integrated Network Management, Seattle,
Washington, U.S.A., May 2001.

N. F. Noy, M. A. Musen, “PROMPT: Algorithm and tool for automated ontology merging
and alignment”, Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI'00), Austin, Texas, U.S.A., July 2000.

