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Abstract: In this work, we present and evaluate a hardware architecture for the LOCO-ANS (Low
Complexity Lossless Compression with Asymmetric Numeral Systems) lossless and near-lossless
image compressor, which is based on JPEG-LS standard. The design is implemented in two FPGA
generations, evaluating its performance for different codec configurations. The tests show that the
design is capable of up to 40.5 MPixels/s and 124 MPixels/s per lane for Zynq 7020 and UltraScale+
FPGAs, respectively. Compared to the single thread LOCO-ANS software implementation running
in a 1.2GHz Raspberry Pi 3B, each hardware lane achieves 6.5 times higher throughput, even when
implemented in an older and cost-optimized chip like the Zynq 7020. Results are also presented for a
lossless only version, which achieves a lower footprint and approximately 50% higher performance
than the version that supports both lossless and near-lossless. Interestingly, these great results
were obtained applying High-Level Synthesis, describing the coder with C++ code, which tends
to establish a trade-off between design time and quality of results. These results show that the
algorithm is very suitable for hardware implementation. Moreover, the implemented system is faster
and achieves higher compression than the best previously available near-lossless JPEG-LS hardware
implementation.

Keywords: image and video compression; FPGA; LOCO-ANS; JPEG-LS; real-time; low latency; high
throughput; low power; HLS

1. Introduction

Information compressors allow the reduction of bandwidth requirements and, given
that data transmission systems tend to demand much more power than computing systems,
they are useful as well when energy or dissipation is limited. For the case of images or
videos, apart from lossless compression, we may also introduce errors in a controlled
manner in order to improve the compressibility of the data. A particularly convenient way
to perform this is to use near-lossless compression, which ensures that these errors are
bounded by a limit set by the user. When this limit is set to zero, lossless compression is
obtained.

These codecs are particularly useful when the data to compress contains very valuable
information and/or, given the nature of the application, a minimum quality must be
ensured. Satellite image acquisition is a prominent application of these systems, which
have pushed the development of many algorithms and hardware implementations [1,2].
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Additionally, we can find medical applications such as capsule endoscopy [3–7] or portable
image devices [8].

New applications emerge in scenarios where traditionally raw (uncompressed) data
was transmitted. Given the rapid increase in the data volume generated, image codecs
can reduce costs and development time by leveraging already available transmission
infrastructure and standards. An example of this in the video broadcasting industry is the
use of intermediate codecs (mezzanine codecs), used between initial acquisition and final
distribution [9]. In addition, for the manufacturing industry, we can find high frame per
second (FPS) infrared cameras [10] producing information that is subsequently processed
by an algorithm that may require limitations on the quantization errors to ensure proper
operation. Sometimes these are part of closed-loop control systems, which will additionally
demand latency limitations to ensure control loop stability.

Particularly for the more demanding applications (low energy, high throughput, low
latency), hardware implementations can be needed in order to better compete with other
products in the market or just to meet requirements while achieving real-time compression
of the data stream [11–15]. This tends to be particularly true for the encoder side, as in the
case of remote sensing, like satellite applications or portable devices.

A codec well suited for these applications is JPEG-LS [16], based on the LOCO-I (Low
Complexity Lossless Compression for Images) algorithm, which is known for its great trade-
off between complexity and coding efficiency and amenable hardware implementation [17,
18]. This led to the development of multiple hardware architectures [2,6,19–24] and the
utilization of an adapted version in the Mars Rover mission (NASA) [1]. An extension
of the standard was later presented [25], mainly, to improve the compression rate when
coding lower entropy distributions like those that arise when the error tolerance is greater
than 0. However, this came at the expense of increased complexity, among other reasons,
because it uses an arithmetic coder.

After the development of the JPEG-LS standard extension, a new coding scheme was
developed, Asymmetric Numeral Systems (ANS) [26], which presents a better trade-off be-
tween coding efficiency and speed than the arithmetic coder or the Huffman coder [27,28].
Given this new coding technology plus the observation of an increasing need for more
efficient codecs, LOCO-ANS (Low Complexity Lossless Compression with Asymmetric
Numeral Systems) [29] was developed, based on JPEG-LS, with the aim to improve its
coding efficiency but at a lower expense, compared to the standard’s extension. Target-
ing photographic images, LOCO-ANS can achieve in mean up to 1.6% and 6% higher
compression than the standard for an error tolerance set to 0 (lossless) and 1, respectively.
This improvement continues increasing with the error tolerance. Although in the software
case LOCO-ANS comes with a speed penalty, it compares favorably against state-of-the-
art lossless and near-lossless codecs, since several of its configurations appear on the
speed-compression Pareto frontier.

This work has the objective to approach the aspects not covered previously in [29].
That is:

• Design a hardware implementation for the LOCO-ANS encoder.
• Determine the performance of this encoder in hardware for several of its configura-

tions, and what limits this performance.
• Compare the obtained LOCO-ANS hardware encoder with other JPEG-LS hardware

implementations.

Given these objectives, where we aimed to achieve a first architecture, not a fine-tuned
one, the encoder was completely implemented using High-Level Synthesis to allow faster
development. Thanks to a careful design and advances in the HLS compilers, the resulting
system achieves high performance and a reasonably small footprint. The complete set
of sources required to reproduce the systems here presented are open to the community
through a publicly available repository.1

1 https://github.com/hpcn-uam/LOCO-ANS-HW-coder

https://github.com/hpcn-uam/LOCO-ANS-HW-coder
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Pixel Decorrelator

Figure 1. LOCO-ANS block diagram. Source adapted from [29].

The rest of this paper is structured as follows: first, section 2 revises the ideas in which
this paper is grounded. Next, section 3 describes the architecture of the implemented
system. Then, section 4 provides the obtained implementation results when deploying
the system in different FPGA platforms and evaluates them. After this, section 5 further
discusses the achieved results in light of the related work. Finally, section 6 concludes the
paper by summarizing its main contributions.

2. Background

Before describing the proposed system, this section introduces ANS, the LOCO-ANS
algorithm, and HLS, which are the fundamental ideas this work is based on.

2.1. ANS

ANS coding system [26], similarly to the arithmetic coder, codes a stream of symbols
in a single output bitstream, where whole bits cannot be assigned to a particular input
symbol. That is, it codes the alphabet extension of order n = number of symbols. However,
instead of storing the information in a range (as the arithmetic coder does), it encodes it in
a single natural number, the state. In order to limit the size of this state, a re-normalization
is performed when it is out of bounds and new output bits are generated. Also, to be able
to decode the resulting bitstream, the last ANS coder state must be sent to the decoder.

ANS logic can be encoded in a ROM storing, for each current state (ROM address),
the next state and numbers of bits to take from the current state. This is one of the ways
of implementing tANS, one of the ANS variants. Therefore, although the ideas behind
ANS are a bit more complex, its operation can be really simple. Each ROM, or table, codes
for a specific symbol source distribution, so to perform adaptive coding, several tables
need to be available, choosing the one that better adapts to the currently estimated symbol
probabilities.

When designing a system using tANS, it is important to take into account that the
Kullback–Leibler divergence tends to stay in the (0.05/k2, 0.5/k2) range, with k = |S|/|A|,
where |S| is the size of the state (generally assumed to be 2state_bits) and |A| is the cardinality
of the symbol source the table codes for. In addition, the output bitstream acts as a Last In
First Out (LIFO) memory, a stack. Then, the decoding is performed in the reverse order,
starting the process with the last bits generated and recovering the last symbols first.

For more about ANS, see [26,28], and about tANS in hardware, see [30,31].

2.2. LOCO-ANS Algorithm

Fig. 1 shows the LOCO-ANS algorithm block diagram, where two main subsystems
can be appreciated, the Pixel Decorrelator and the TSG Coder. The former processes the
input pixels with the aim to turn them into a stream of statistically independent symbols
with their estimated distribution parameters, which the latter will code. These symbols
are errors made by the adaptive predictor, which are then quantized according to the error
tolerance (NEAR parameter) as shown by equation 1. This quantization allows ensuring
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that the absolute difference between the original value of a pixel and the decoded one is
less or equal to NEAR. Note that if NEAR = 0, then lossless compression is obtained.
Other reversible operations are then applied to εq to improve compression.

εq = round(ε/(2 ∗ NEAR + 1)) (1)

The adaptive predictor is composed of a fixed predictor plus an adaptive bias cor-
rection. The adaptive correction is computed for each context, which is a function of the
gradients surrounding the pixel currently processed. The prediction errors are modeled
using the Two-Sided Geometric (TSG) distribution, that is, an error εq is assumed to have
the following probabilities:

P(θ, s)(εq) = C(θ, s) · θ|εq−s|, εq = 0,±1,±2, ..., (2)

where θ and s are the distribution parameters and C(θ, s) = (1− θ)/(θ1+s + θ−s) is a
normalization factor.

However, to simplify the modeling and coding of this error, the next re-parametrization
is used:

y = y(εq) ,

{
0, εq ≥ 0
1, εq < 0

∼ Bernoulli(p) (3)

and
z = z(εq) , |εq| − y(εq) ∼ Geometric(θ) (4)

where p = (θ1+s)/(θ1−|s| + θ|s|) and θ is the same parameter as in eq. 2 [32]. These
distribution parameters are estimated by the Context Modeler for each context, generating
the estimated quantized versions, θ̂q and p̂q.

As seen in the block diagram, the TSG coder uses two different coders to handle y
and z, both based on tANS. As mentioned, ANS output bitstream acts as a LIFO, but the
decoder needs to obtain the errors in the same order the decorrelator processed them, to be
able to mimic the model adaptations. For this reason, the Block Buffer groups symbols in
blocks and inverts their order. The output bits of a block are packed in the Binary Stack
and stored in the inverse order, so the decoder can recover pixels in the same order the
encoder processed them without additional metadata.

The Bernoulli coder requires a single access to the tANS ROM to code the input y,
whereas the Geometric coder may need several accesses. This is because z is decomposed in
min(d(z + 1)/C(θq)e, NI + 1) subsymbols, where C(θq) + 1 is the cardinality of the tANS
symbol source used for a given θq and NI is a coder parameter that sets the maximum
ROM accesses for each z symbol. However, as shown in [29], for 8-bit gray images and
using C(θq) <= 8 and NI greater than the z range, the coder only requires 1.3 accesses on
average.

These coders may or may not use the same ANS state. If they do, at the cost of losing
the ability to run in parallel, only one ANS state is sent at the end of the block. If they do
not, larger symbol blocks can be used to compensate for the additional bits required to
send the second ANS state. Then, this option establishes a memory-speed trade-off.

For a more in-depth explanation of how the codec works and its design, refer to [29].
Additionally, Appendix A provides some examples of images compressed with LOCO-ANS
setting NEAR to 0 and 3.

2.3. High-level synthesis

There are currently several compilers in the market that translate C/C++ code to
Register Transfer Level (RTL) such as VHDL or Verilog. Examples of these compilers are
Vitis HLS (Xilinx), Intel HLS, or Catapult (Mentor). Apart from the C/C++ code, directives
(sometimes included in the code as #pragmas) are used to guide the compiler towards the
desired architecture. These directives, for example, can establish the desired number of
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clock cycles required for a module to be ready to consume a new input or, in other words,
to set the Initial Interval (II). Additionally, they can shape memories and select a specific
resource for their implementation.

HLS compilers allow faster development of hardware modules [33]. The main reasons
are:

• The code describes the algorithm, whereas the compiler is in charge of scheduling
operations to clock cycles and assigning operators/memory to the target technology
resources.

• Code can be validated much faster using a C/C++ program instead of an RTL simula-
tor.

• Directives allow a wide design space exploration. Moving from a low footprint to a
heavily pipelined, high-performance architecture is possible just by changing a single
line of code.

• After code verification and RTL generation, the output system can be automatically
validated using the C/C++ code to perform an RTL simulation.

• The source code is less technology-dependent.

However, even though compilers have been improving, the use of HLS tends to
establish a trade-off between design time and quality of results (performance and/or
footprint). Also, except for trivial applications, being aware of the underlying architecture
and resources used is still necessary to obtain good implementations.

3. Encoder architecture

In this section, the LOCO-ANS encoder architecture is presented. The block diagram in
fig. 2 shows the main modules composing the system: The Pixel Decorrelator, St Quantizer,
and TSG coder. Each of these modules is implemented in C/C++ with compiler pragmas
and transformed to RTL code using Vitis HLS.

The pixel decorrelator takes pixels as input and outputs a stream of y, p̂q, z, t, and St.
The last two variables are further processed by the St quantizer to generate the θ̂q geometric
distribution parameter. The TSG coder uses a tANS coder to transform the y and z streams
in blocks of bits and, finally, the File Writer sends these streams and header information,
issuing the appropriate DMA commands.

The TSG coder may need several cycles to code a symbol, but it is much faster than
the Pixel Decorrelator, so in order to increase the encoder throughput, the former module
runs at a higher clock frequency. FIFOs are inserted between these modules to move data
from one clock domain to the other.

Subsections below explain in more detail each module.

Pixel 
Decorrelator

St 
Quantizer TSG coder File Writer

Memory 
Driver

image 
samples

Figure 2. LOCO-ANS hardware high-level block diagram. In blue, modules running at the lower
frequency, and in red, modules running at the higher frequency.

3.1. Pixel Decorrelation

Given the sequential nature of the pixel decorrelation algorithm, it is mainly imple-
mented by a single pipelined module, including a single line row buffer. It consists of
an initialization phase and the pixel loop. In the initialization phase, the first pixel is
read (which is not coded but included in the bitstream directly), context memories and
tables used in the pixel loop are initialized according to the NEAR parameter setting. The
operation takes about 512 clock cycles to complete. This could be optimized in many ways,
such as computing and storing several memory entries in a single cycle, or avoiding the
re-computation of tables when NEAR does not change. Additionally, ping-pong memories
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could be used to achieve zero-throughput penalty, initializing these memories in a previous
pipeline stage, as done in [19]). However, the HLS compiler did not support some con-
structions required to create that architecture. Although workarounds exist, the potential
benefit for HD and higher resolution images is negligible (less than 0.056% performance
improvement in the best case and assuming the same clock frequency is achieved). What
is more, particularly in high congestion implementations (i.e. FPGAs with high usage
ratio), this could even reduce the actual throughput, given that the extra logic and use
of additional memory ports can imply frequency penalties. For these reasons, and given
that other works have presented optimized architectures for this part of the algorithm
(changes to the JPEG-LS algorithm do not have important architectural implications), these
initialization time optimizations were not implemented.

Algorithm 1 Pixel loop algorithm structure

1: q_pixel ← f irst_px
2: for i ∈ [1, image_size) do
3: #pragma HLS PIPELINE II=2 . The lossless optimized version uses II=1

. Data stored in the row buffer does not establish dependencies
4: #pragma HLS DEPENDENCE variable=row_buffer intra false
5: #pragma HLS DEPENDENCE variable=row_buffer inter false
6: Store q_pixel in row bu f f er
7: Read new pixel
8: Compute f ixed prediction, context id, and sign
9: Get context bias and statistics

10: Correct prediction and compute error
11: Per f orm error quantization and modulo reduction
12: Send symbol with metadata to the output
13: q_pixel ← Reconstruct the pixel
14: Update context statistics
15: end for

Alg. 1 describes the pixel loop. This code structure allowed a deep pipeline (shown in
fig. 3), which reads the row buffer, computes the quantized gradients g1 and g2, which do
not depend on the previous pixel (after quantization), and starts to compute the context
id before the previous pixel quantization is finished. To obtain the context id and sign,
the value Q(g1) · 81 + Q(g2) · 9 + Q(g3) is computed, where only the g3 gradient uses the
previous pixel. Then, Q(g1) · 81 + Q(g2) · 9 can be computed in an earlier stage, which
is what the pipeline does. Observe that the gradients order in the equation was chosen
such that the dependency between loop iterations is eased, as the component requiring g3
(which cannot be computed earlier) is not multiplied by any factor.

Additionally, to improve the performance (reducing the II), the updated context
data is forwarded to previous stages when two consecutive pixels have the same context
(something that happens in most cases according to [23], although this depends on the
nature of the images). Originally, this optimization was done explicitly in the code and
using pragmas (to inform the compiler of the false dependency), but newer versions of the
HLS compiler perform this optimization automatically.

Since the HLS compiler handles the scheduling of the operations, the number of
pipeline stages may change depending on the target frequency and FPGA. For the tested
technologies, aiming at the maximum performance, the pixel loop operations were sched-
uled in five stages.
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Generate row 
buffer address

Calc.: 
g1,g2
Q(g1)*81+Q(g2)*9

Update row buffer
Calc.: fix prediction
Get context id
Address context 
mem.

Correct prediction
Calc. error
Correct error sign
Address 
quantization LUTs

Output new symbol
Reconstruct pixel 
(forward to stage 3)
Update context 
(forward to stage 4)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 3. Pixel decorrelator pipeline.

3.1.1. Obtaining the distribution parameter θ̂q

The decorrelator keeps for each context a register St = ∑t
i=0 zi. The register and the

context counter t are then processed by the downstream module St Quantizer (fig. 2) to
obtain the quantized distribution parameter θ̂q. The implemented quantization procedure
is a generalization of the iterative method used in LOCO-I to obtain the k parameter of
the Golomb-power-of-2 coder [34] and it is described in detail in [29]. Alg. 2 shows the
coarse-grained configuration of this quantization function.

Algorithm 2 Coarse grained θ quantization function (Qθ)

Require: St
Require: t
Ensure: θ̂q

1: #pragma HLS PIPELINE
2: θ̂q ← 0
3: for i ∈ [1, MAX_THETA_ID] do
4: if then(St > (t << (i− 1)))
5: θ̂q ← i
6: end if
7: end for

Although this procedure could have been done within the decorrelator, it was decided
to keep it separated, to ease the scheduler job and ensure this operation extended the
pipeline without affecting the pixel loop performance. This operation can be compute-
intensive, but as there are no dependencies among consecutive symbols, the module can
be deeply pipelined, achieving high throughput.

3.1.2. Near-lossless quantization and error reduction

To handle the quantization processes, a set of tables2 was designed to increase the
system performance, taking into account that even small FPGA have plenty of memory
blocks to implement these tables. The alg. 3 describes the error quantization (lines 1-5),
modulo reduction (lines 6-10), and re-scale (line 11) processes.

As suggested in [34], the error quantization can be easily implemented using a table.
However, the result after the modulo reduction logic is stored in the table, as the memory
resources are reduced and it helps to speed up the context update, which is one of the
logical paths that limits the maximum frequency. In addition, a second table contains the
re-scaled error (εre), to avoid the general integer multiplication logic and also to ease the
sequential context dependency.

Additionally, a third table is used, in this case, to speed up the pixel reconstruction
process, which is the other important logical path that could limit the maximum frequency.
There are several ways to perform this, as is shown in fig. 4. To our knowledge, previous
implementations of the LOCO/JPEG-LS encoder reconstruct the pixel starting from the
quantized prediction error (as indicated in the ITU recommendation [16]) or from the
re-scaled error (e.g. [35]). Instead, we use the value of the exact prediction error (only
available on the encoder), to get the reconstructed pixel. Given a NEAR value, each integer

2 The term look-up table (LUT) is usually used to refer to these tables, but here it is avoided in order not to confuse it with the FPGA resource also
denominated LUT
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Algorithm 3 Error quantization and modulo reduction

Require: ε . Input error
Ensure: εq . Output symbol
Ensure: εre . Re-scaled error, ysed to update context bias

. Uniform quantization
1: if ε > 0 then
2: εq ← (NEAR + ε)/(2 ∗ NEAR + 1)
3: else
4: εq ← −(NEAR− ε)/(2 ∗ NEAR + 1)
5: end if

. Reduction modulo α = f(NEAR, pixel depth)
6: if εq < MIN_ERROR then
7: εq ← εq + α
8: else if εq > MAX_ERROR then
9: εq− ← εq − α

10: end if
11: εre ← εq ∗ (2 ∗ NEAR + 1)

will have a quantization error, which can be pre-computed and stored in a table. Then,
the exact prediction error (before the sign correction) addresses the table that provides
the quantization error, and it is then added to the original value of the pixel. As it can be
appreciated in fig. 4, using this method greatly simplifies the computation and eases the
path. This is one of the key ideas that enabled our high-throughput implementation.

These tables could be implemented as ROMs, supporting a small set of NEAR values,
or implemented by RAMs, which are filled depending on the NEAR value currently needed.
In the presented design, the latter option was chosen, giving the system the flexibility to use
any practical NEAR value, using 3 tables with 2pixel depth+1 entries each. The time required
to fill these memories can be masked, as stated before. Although the uniform quantization
would require general integer division, the tables are filled with simpler logic. It is easy
to see that, if sweeping the error range sequentially (either increasing or decreasing by 1)
and starting from zero, almost trivial logic is required to keep track of the division and
remainder.

If a single clock and one edge of the clock are used, the minimum I I for the system
will be 2. To compute the prediction, the context memory is read (memory latency >= 1),
then the prediction error is obtained, which is needed to address the quantization tables
(also implemented with memories with a latency >= 1). The result of the quantization
process is used to address the next pixel context, producing a minimum I I = 2.

Within a module, Vitis HLS does not allow the designs with multiple clocks or using
different clock edges. However, in this case, a great improvement is not expected from
the implementation of these techniques, they will imply a much greater development time
and the result will tend to be more technology-dependent (given that the FPGA fabric
architecture and relative propagation times vary, affecting the pipeline tuning).

3.1.3. Decorrelator optimized for lossless compression

A decorrelator optimized just for lossless compression operation was also imple-
mented. The removal of the quantization logic, plus the logic simplification that arises
from using a fixed NEAR = 0 allows going from an I I = 2 to I I = 1 with approximately a
25% frequency penalty in the tested technologies. That is about a 50% throughput increase
(see section 4). In this case, this pixel loop is implemented with a 4-stage pipeline and the
frequency bottleneck is established by the context update.

An interesting fact about this optimization is that going from the general decorrelator
to testing on hardware, a first lossless only version took less than one hour. Such fast
development was possible given that just a few lines of C++ code needed to be modified.
These simple modifications led to significant changes in the scheduling of the pipeline,
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Prediction Error

Multiply by sign

Uniform Quantization

Modulo Reduction

Reconstructed Px

x (2 x near + 1)

Get Quantization
Error 

+ original px+ prediction

Detect and Correct
Modulo Reduction

Output symbol

+ prediction

Clamp

Multiply by sign Multiply by sign

x (2 x near + 1)

Re-scaled error 
(for bias update)

Quantization 
Error

Quantized 
Prediction Error

(and context update)

Figure 4. Quantization processes. The operations performed by tables are indicated with red ellipses.

resulting in the stated performance, which would have been much more time-consuming
using HDL languages.

3.2. TSG coder

Subsymbol 
Generator ANS Coder Output Stack Input Buffer 

Subsymbol 
Generator ANS Coder Output Stack Input Buffer 

tANS 
Z 

ROM 

tANS 
Y 

ROM 

Figure 5. High-level block diagram of the double lane TSG coder.

Fig. 5 shows the block diagram of the double lane TSG coder, which allows sharing
the tANS ROMs without clock cycle penalties, as double port memories are used and
each lane requires one port. This module can receive the output of two independent Pixel
Decorrelators and process them in parallel. In this way, it allows the compression of images
in vertical tiles, which was shown to improve compression for HD and higher resolution
images [29].

The system was designed in a 2-level hierarchy because, as we go downstream, the
basic data elements each module processes change. The input buffer works with blocks
of symbols, while the subsymbol generator works at the symbol level, the ANS coder at
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the subsymbol level, and the output stack with blocks of packed bits. This modularization
allows easily choosing the coding technique better suited for each module. The modules
shown in fig. 5 are instantiated in a dataflow region synchronized only by the input and
output interfaces such that each module can run independently. In Vitis HLS, this is
accomplished with the following pragmas:

#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS DATAFLOW disable_start_propagation

3.2.1. Stages of the TSG coder
Input Buffers

Write 
Block 

Buffer 
0

Buffer 
1

n Read 
Block 

 Block m  Block m-1 
m.N  (m+1).N-1 (m-1).N  m.N-1 n+1 n+2 

Figure 6. Input Buffer block diagram, showing its operation for block size N.

The main function of the Input Buffer is to invert the symbol order to make the
adaptive coding with ANS practical (complex methods would be required otherwise).
However, to avoid the use of large memories, this module creates blocks of symbols, and
the order within each block is inverted (see fig. 6). The write and read pipelined functions
are instantiated in a dataflow region using a ping-pong buffer, given the required non-
sequential memory accesses. However, it is noted that there is an alternative with a memory
of one block, which comes at the cost of slightly more complex logic.

Subsymbol Generator

 
Get Z 

Metadata
Z 

Decompose mod(z,C(θq))
Send escape?

Decomposed in 
n subsymbols

Figure 7. Subsymbol Generator block diagram and data transformations within it.

Fig. 7 depicts the Subsymbol Generator and how data is transformed as it goes down-
stream. Its main function is to decompose z in a variable-length sequence of subsymbols
z0, .., zn which is one of the main processes of the Geometric coder.

For coding efficiency reasons, the cardinality of the symbol source modeled by the z
ANS ROM varies for each distribution parameter θq. Then, for a given θq tANS will model
a distribution of the symbols [0..C(θq)]. For this reason, z needs to be represented in terms
of these symbols, so it is decomposed as follows: ∑n

i=0 zi = z, where the first subsymbol
z0 is equal to mod(z, C(θq)) and all the rest are set to C(θq). In this way, to retrieve z, the
decoder just needs to sum subsymbols until it finds one (first encoded, but last decoded)
that is different to C(θq). As C(θq) is always an integer power of 2, this process is simple.
Finally, if it is detected that the length of this sequence is going to be greater than a design
parameter NI (which determines the maximum number of geometric coder iterations) the
subsymbol sequence represents an escape symbol. Following this sequence, the original z
is inserted in the bitstream.
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As described in [29], this process is used to reduce the cardinality tANS needs to
handle, which translates into significantly lower memory requirements and higher coding
efficiency while keeping simple operation.

As it decomposes z and serializes the result with y (in the coupled coders version), this
module establishes the TSG coder bottleneck in terms of symbols per clock cycle (not the
frequency bottleneck, i.e., contains the critical path). Because of this, it was fundamental to
optimize this module to be able to output a new subsymbol every clock cycle. Pipelining
the modules was not sufficient to accomplish this goal. As shown in fig. 7, the z subsymbol
generation process was split into two modules, one to get the required metadata and
another one to decompose the symbol. Also, the Z Decompose module was not described
as a loop, as one normally would specify this procedure, but instead, it was coded as a
pipelined state machine, which allowed reaching the desired performance. Finally, all these
modules are instantiated in a dataflow region synchronized only by the input and output
interfaces.

ANS coder

 
tANS 
code

tANS Y 
ROM 

tANS Z 
ROM 

code
nbits

ANS State

Serialize 
Last State

code
nbits Pack bits

bytes

Figure 8. ANS coder block diagram showing the transformation of sub-symbols into packed bytes.

As shown in fig. 8, the ANS coder is composed of three modules. For each sub-
symbol, the first one chooses the tANS table according to the symbol type (zi or y) and
the distribution parameter. This table is then used to obtain the variable-length code for
the sub-symbol. Thus, the module implements the Bernoulli Coder and the remaining
process of the Geometric Coder. However, they can be easily split, resulting in a simpler
module and the ROM memories would have weaker placement and routing constraints.
The module also accepts bypass symbols, which are used to insert z after the escape symbol.
After the last sub-symbol is coded, the second module inserts the last ANS state as a new
code. The last module packs these codes into compact bytes.

The ANS coder can accept a new input in every clock cycle. This was accomplished
by instantiating the modules in a dataflow region synchronized only by the input and
output interfaces and pipelining each of them with an II=1. This II was achieved by the
modularization of the process and by describing all three modules as state machines.

Output stack

Finally, the Output Stack is in charge of reversing the order of the byte stream of each
block of symbols. For this, it uses a structure similar to the one employed in the Input
Buffer.

3.2.2. Increasing coder performance
Independent component coders

As mentioned before, if y and z ANS coders (Bernoulli and Geometric, resp.) are
independent, the coder throughput would be increased by a (î + 1)/î factor. As indicated
in [29], î tends to be around 1.3 for lossless coding (the worst case). Then, applying this
value will result in a 1.77 times faster coder. What is more, given that z and y coders will
be decoupled and almost no additional logic is required, it is expected that the maximum
frequency would be at least the one achieved for the coupled coders. To implement it, the
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Subsymbol Generator should not serialize z and y, the tANS coder should be split in two
(each with one tANS ROM) and the bit packer should merge the two code streams.

Decreasing the maximum iterations limit

In addition, the worst-case performance, as well as the maximum code extension,
can be controlled using the maximum geometric coder parameter NI. This is particularly
important for implementations with limited buffering.

4. Results

This section presents how the designs were tested as well as the achieved frequencies
and resource footprints. Finally, throughput and latency analyses are provided.

4.1. Test platform and encoder configurations description

Zynq 
Processing

System
LOCO ANS 

Encoder 

LOCO ANS 
Encoder 

Input 
DMA 

Output 
DMA 

Input 
DMA 

Output 
DMA 

tANS Y 
ROM 

tANS Z 
ROM 

AXI4

AXI4 Stream

Figure 9. Block diagram of the accelerator, µP, and interfaces.

In order to conduct the hardware verification, the system depicted in fig. 9 was
implemented in two different Xilinx FPGA technologies, described in table 1: Zynq 7
(cost-optimized, Artix 7 based FPGA fabric) and Zynq UltraScale+ MPSoC. For all im-
plementations, although not optimal in terms of resources, two input and output DMAs
were used to simplify the hardware, as the objective was to verify the encoders building a
demonstrator, not a fully optimized system. Images were sent from the Zynq µP running a
Linux to the FPGA fabric using the input DMAs, which accessed the main memory and
fed the encoder using an AXI4 stream interface. As the encoder generates the compressed
binary, the Output DMA stores it in the main memory. The evaluation of the coding system
was carried out for the configurations in table 2.

Table 1. Characteristics of target parts used in this work.

Board FPGA SG1 Node LUT FF BRAM DSP URAM

Pynq Z2 Z-7020 -1 1 28nm 53K 106K 140 220 -
ZCU104 XCZU7EV -2 2 16nm 230K 460K 312 1728 96

1 Speed Grade (SG). For the chosen targets, Xilinx’s speed grade ranges from 1 to 3, where 1 is the slowest.
In general, we include the speed grade in the name of the device using the format: {version} -{SG}
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Table 2. Codec configurations used in the experiments

# of ANS tables
Configuration Rel. bpp1 State bits NI2 BS3 C range4 for θ for p

LOCO-ANS4 -0.5/-5.0 4 7 2K 1-8 11 8
LOCO-ANS6 -1.1/-5.4 6 7 2K 1-8 15 32
LOCO-ANS7 -1.2/-5.6 7 7 2K 1-8 16 32

These configurations correspond to the Nt4_Stcg5_ANS4, Nt6_Stcg7_ANS6, and Nt6_Stcg8_ANS7
prototypes tested in [29]. The most relevant information is given here, but for a complete description,
refer to that work.
1 Bits per pixel relative to JPEG-LS baseline for NEAR = 0 and NEAR = 1. Data from fig. 10.
2 NI: Number of Geometric coder iterations.
3 BS: Block Size. In this case, 2K means 2048.
4 C: larger ANS table symbol.

4.2. Implementation results

Table 3. LOCO-ANS Encoder implementation metrics for a series of configurations and target parts

Part Coder config Clk0/1 (MHz)1 LUT FF BRAM DSP

Z-7020 LOCO-ANS4 79.4 / 180.4 4580 4992 19.5 4
Z-7020 LOCO-ANS6 81.1 / 182.2 4832 5160 24.0 4
Z-7020 LOCO-ANS7 79.5 / 167.3 5095 5240 32.0 4

XCZU7EV LOCO-ANS4 248.3 / 502.2 6580 5954 19.0 4
XCZU7EV LOCO-ANS6 246.7 / 442.0 6867 6027 23.5 4
XCZU7EV LOCO-ANS7 234.1 / 395.1 6019 5780 33.5 4

Z-7020 LOCO-ANS4-LS 65.0 / 183.1 3979 4160 16.5 2
Z-7020 LOCO-ANS6-LS 64.3 / 186.0 4248 4298 21.0 2
Z-7020 LOCO-ANS7-LS 62.8 / 166.6 4572 4373 29.0 2

XCZU7EV LOCO-ANS4-LS 188.4 / 500.5 4706 4949 19.0 2
XCZU7EV LOCO-ANS6-LS 187.1 / 447.0 4515 4225 21.0 2
XCZU7EV LOCO-ANS7-LS 185.2 / 387.5 5415 5329 31.5 2

The top half features implementations that support near-lossless compression (including lossless), and
the bottom half, lossless-only compression (with -LS suffix).
All the presented implementations have 2 lanes and support up to 8K wide images per lane

1 Clk0 is the low-frequency clock used for the pixel decorrelation process, while clk1 is the high-
frequency clock used for the coder. See fig. 2.

For the tested implementations and both technologies, the critical path of the low-
frequency clock domain is, in general, in the pixel reconstruction loop for the near-lossless
encoders and within the update logic of the adaptive bias correction for the lossless version.

In the case of the high-frequency clock domain, the slowest paths of these implemen-
tations tend to be in the TSG coder and the output DMA for the Zynq 7020 implementation.
Within the TSG coder, the critical path is, in general, either in the tANS logic (from the
tANS ROM new state data output to the tANS ROM address, the new state) or in the Z
Decompose module. In the case of the Zynq MPSoC, the slowest paths tend all to be in the
tANS logic.

4.3. Results evaluation

Results are analyzed in terms of throughput and latency, which are of paramount
importance for real-time image and video applications.

4.3.1. Throughput

The near-lossless decorrelator critical path is in the pixel reconstruction loop, which is
the same procedure used in the standard. This fact supports that the changes introduced
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by LOCO-ANS in the decorrelator do not limit the system performance. In the case of the
lossless decorrelator, the bias context update logic limits the frequency. This procedure is
the same as in the JPEG-LS standard extension, which requires an additional conditional
sign inversion compared to the baseline. This tends to worsen the critical path, but it is
a minor operation compared to the complete logical path. Although it achieves a slower
clock, the lossless decorrelator throughput is about 50% higher than the near-lossless
decorrelator, given that it achieves an II=1 instead of II=2.

The presented implementations represent a wide range of trade-offs between perfor-
mance, compression, and resources (also cost, considering technology dimension). All
of them have the Bernoulli and Geometric coders coupled, then their mean throughput
will be clk1/2.3 MPixels/s for photographic images, where clk1 refers to the clock shown
in table 3. In this way, for a given configuration and target, the TSG coder will have in
the mean between 83% and 98% higher throughput than the near-lossless decorrelators
for the Zynq 7020 implementations and between 47% and 76% for the Zynq MPSoC. In
the case of the lossless optimized decorrelators, this performance gap is reduced to (15%,
26%) and (-10%, 16%), for Zynq 7020 and Zynq MPSoC respectively. From the presented
implementations, just one of them shows a lower TSG coder throughput. In this case, the
increased compression ratio comes at the cost of not only higher memory utilization but
also a throughput penalty.

However, it is observed that many possible optimizations of the TSG coder exist,
and particularly of the tANS procedures. The Z ROM memory layout can be enhanced
to significantly reduce the memory usage, which could have a positive impact on the
maximum frequency as table 3 suggests. Also, alternative hardware tANS implementations
exist [30], which may allow a wider range of performance/resources trade-offs.

The obtained results support the hypothesis that the use of the proposed TSG coder,
which has a compression efficiency higher than the methods used in JPEG-LS, will not
reduce the encoder throughput. This is observed in the hardware tests, where the encoder
pixel rate is determined by the decorrelators when photographic images are compressed,
except the lower TSG coder throughput case (LOCO-ANS7-LS in the Zynq MPSoC). As ex-
pected, this is not the case for randomly generated images, as the coder requires larger code
words for them, and then, it is the TSG coder the one that limits throughput, particularly
for small images and lossless compression.

4.3.2. Latency

The implemented decorrelator latency is determined by the initialization time plus
the pixel loop pipeline depth, which results in 512 + 6 = 518 cycles. For the lossless
optimized version, this is reduced to 365 + 4 = 369 cycles. In the case of the low-end
device implementation (Zynq 7020), this results in 6.3 µs and 5.8 µs latency, respectively. As
mentioned before, if required, the initialization time could be reduced or even completely
masked, but these optimizations were not implemented due to compiler limitations, and
the fact that it was considered that the potential benefits were low.

It is a bit more complicated to obtain the TSG coder latency, as it is data-dependent,
and the coder works with blocks of symbols. To determine the marginal latency (delay
added by the coder), we consider the time starting when the last symbol of the block is
provided to the coder until the moment the coded block is completely out of the module.
Then, avoiding the smaller pipeline delay terms, the TSG coder latency can be computed
as:

(1 + subsym(z)) · BS + dbpp/out_word_sizee · BS clock cycles (5)

Here, BS is the block size, subsym(z) is the mean subsymbols z is decomposed into,
bpp is the mean bits per pixel within the block and out_word_size is the size (in bits) of each
element of the output stack. The latency is dominated by two modules: the Subsymbol
Generator (first term of the equation) and the Output Stack (second term). This is because,
as mentioned before, the former creates a bottleneck given that for each input it consumes
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it outputs several through a single port and the latter buffers the whole block of output
bytes and outputs it in the inverse order.

To obtain a pessimistic mean latency, we assume a low compression rate of 2 (bpp = 4).
The block size is set to 2048, the output stack word size to 8, and subsym(z) ≈ i = 1.3 (as
determined in [29]). Then, for the Zynq 7020 implementation, the mean TSG coder latency
is 31.9 µs.

To estimate a practical upper bound to this latency, the following image compression
case was analyzed:

• Image pixels equal to BS = 2048. In this way, we maximize the block used while
keeping the pixel count low, so the decorrelator’s capability to learn the statistics of
the image is reduced.

• Pixels independently generated using a uniform distribution (worst-case scenario)
and the errors model hurts compression (the prior knowledge is wrong).

• Image shape: 64x32 (cols x rows). This shape allows visiting many different contexts,
and then, the adaptation of the distribution parameter θ̂ will be slower, thus increasing
the resulting bpp.

• NEAR = 0 (lossless compression): which maximizes the error range and bpp.

From a set of 100 images generated in this way, we took the lower compression
instance, where bbp = 9.844 and subsym(z) = 6.31. This code expansion is due to the fact
that the prior knowledge embedded in the algorithm (coming from the feature analysis
of photographic images, such as the correlation between pixels) is wrong in this case and,
as the image is small, it does not have enough samples to correct this. Moreover, given
that the range of the θ distribution parameter was determined with photographic images,
additional θ tables may be needed for these abnormally high entropies. Then, using the
presented formulas, we obtain 97.2 µs as a practical upper bound on the encoder latency
for the Zynq 7020 implementation running at 180 MHz.

Although the presented system establishes a trade-off between latency and compres-
sion, the achieved latency is remarkably low and suitable for many real-time systems.
Moreover, it is possible to tune this trade-off by modifying the implementation parameters.

5. Discussion

In this section, we evaluate the results presented in the previous section as well as
analyze them taking prior works into consideration.

5.1. Related work

There exists a large set of compression methods that achieve a very wide range of
compression-resources-throughput trade-offs, but not all have an amenable hardware
implementation. The use of dynamic structures tends to make logic slower and require a
higher footprint. For example, JPEG-XL [36] can achieve better lossless compression ratios
than JPEG-LS, but for that, it needs very flexible contexts and non-trivial logic is used to
optimize their histograms and the rANS tables to code for these functions. Also, the use of
large memories, like in the case of inter-frame video compression, tends to require external
memories, which also contributes significantly to the system power requirements. Given
the fact that this work targets real-time and, in general, highly constrained applications
with bounds on the errors generated by the compression system and considering the
already mentioned features of the JPEG-LS codec that makes it very suitable for these
applications, the discussion is focused on JPEG-LS-like codecs, analyzing the trade-offs
within this subregion of the metrics space.

Table 4 shows key metrics of the most relevant hardware and, for performance com-
parison, software codecs implementations. In this section, to provide clearer explanations,
we focus on the balanced LOCO-ANS6 configuration.
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Table 4. Comparison with other codec implementations.

Implementation Tech PR 1 Rel. bpp 2 Lanes Mem. bits Area

LOCO-ANS6 3 Zynq 7020 -1 40.6 -1.1/-5.4 2 442.4K 1042 Slices+ 2 DSP
LOCO-ANS6 3 Zynq US+ -2 123.4 -1.1/-5.4 2 433.2K 718.5 CLB + 2 DSP

Chen et al. [19] 6 Virtex 6 25.8 +6.4/+13.0> 2 131.4K 4177 Slices
LOCO-ANS6 [29] Rasp. 3B 4 6.3 -1.1/-5.4 1
Fast JPEG-LS [35]5 Rasp. 3B 4 9.2 0/0 1

LOCO-ANS6 LS 3 Zynq 7020 -1 64.3 -1.1/– 2 387.0K 639 Slices + 1 DSP
LOCO-ANS6 LS 3 Zynq US+ -2 187.1 -1.1/– 2 387.0K 548 CLB + 1 DSP

Daryanavard et al. [37] Stratix 2 155 ≈ 0/– 1 9.5K + 1 row 573 ALUT
Murat [20] 5 Virtex 7 -2 207.8 0/– 1 NR 567 Slices

Kau et al. [21] 6 Cyclone II 113.0 +1.1>/– 1 12.8K + 1 row 2184 LE

The top half features implementations that support near-lossless compression (including lossless), and the bottom half, lossless-only
compression.
Memory bits and area are normalized by the number of lanes.
NR: indicates information not reported
When available, the speed grade is shown to the right of the device name with the "-{speed grade}" format

1 PR: Pixel Rate in MPixels/s/lane
2 Bits per pixel percentage decrease (if negative) or increase (if positive) relative to JPEG-LS baseline for NEAR = 0 and NEAR = 1. Data
from fig. 10. Lossless-only compression implementations can only provide NEAR = 0
3 This work.
4 Software implementations running in Raspberry 3B, with a single thread.
5 Standard-compliant JPEG-LS implementation
6 12-bit image support

5.2. Comparison considerations

Before diving into the analysis of the presented work in light of other works in the
area, we examine what we consider the most relevant aspects of the comparison process
itself that condition it.

5.2.1. Compression trade-offs

The fact that most of these implementations use different algorithms complicates
performance comparisons, particularly because the compression ratios for a given dataset
are not available. Then, it is hard to analyze the trade-offs that each design implies.
Although many works claim to be standard-compliant, some present a design that it is not,
as they apply several changes to the algorithms, in general, to simplify and/or speed up
the implementation. Not supporting the run-mode is a common one.

In [21], for example, we note they introduced the following changes without assessing
the implications:

• Not using run-mode.
• Not clamping the corrected prediction (see A.4.2 ITU-T.87). Because of this, the

range of the prediction error is increased and, given that JPEG-LS uses limited-length
Golomb codes, the binary code after the escape code needs to be increased by 1 bit.

• Error modulo reduction is applied after context bias update (see A.4.5 ITU-T.87).
• Not including the error sign correction required by the bias update (see A.4.3 ITU-T.87).

Not applying the error sign correction will have a negative impact on compression, as
it is needed to perform the context merge.

• Not limiting the maximum bias correction (see A.6.2 ITU-T.87).

To quantify the impact on the throughput of these changes, we utilize the Vitis HLS
implementation feature, which instantiates the resulting HDL module in the target device,
performs RTL synthesis followed by place and route (P&R). In this way, it allows obtaining
a good estimation of the performance of a module in a non-congested implementation.
With these changes, the tool reports that the lossless only decorrelator achieves 100 MHz in
the Zynq 7020 (a 55.5% performance increase).

Of course, provided that the trade-offs are understood, changes to the algorithms that
improve performance can be useful. For example, in [37] the bias update mechanism was
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Figure 10. Mean bits per pixel (bpp) obtained by JPEG-LS, JPEG-LS without run mode and LOCO-
ANS

replaced by a more precise one, which also allowed a much more feed-forward pipeline,
resulting in a fasted encoder at the cost of resources. However, in this case, it is not clear
whether the presented results are implementation ones or just RTL synthesis.

To better compare the encoders we run compression experiments where, apart from
LOCO-ANS and JPEG-LS, we test JPEG-LS without run mode 3 and JPEG-LS without run
mode with 32x64 tilling (max tile size supported by [19]). Given the number of changes,
and the fact that it probably has issues, we do not attempt to reproduce the algorithm
implemented in [21]. In this experiment, we used the photographic (non-artificial) images
of the 8-bit gray image dataset maintained by Rawzor 4 for NEAR ∈ [0..3]. The results
are presented in fig. 10. As it can be appreciated, even when dealing with photographic
images, the run-length coder does have a noticeable impact on compression. While LOCO-
ANS6 output file size is 1.1%, 5.4%, 9.2%, and 13.4% smaller than JPEG-LS output (for
NEAR ∈ [0..3], respectively), removing the run-length coder increases it by 1.1%, 6.8%,
14.4%, and 22.3%.

Moreover, we can appreciate the effect of different tile sizes. Diving the image in 2
columns (LOCO-ANS6 (2 lanes) ), which can be compressed in parallel, improves JPEG-LS
by 1.4%, 5.9%, 9.9%, and 14.2% for NEAR ∈ [0..3]. We estimate that this improvement
comes from the intuition that, for wide images, image statistics vary slower when scanning
an image in columns, so the model is more accurate and then, higher compression is
achieved. However, using small tiles, and particularly reducing the height, the encoder
model does not have enough samples to learn the image statistics, so it does not make good
estimations. As a result, JPEG-LS with no run mode with 64x32 tiles worsens compression
even further, increasing the output file size by 6.4%, 13.0%, 20.3%, and 28.0%, compared to
JPEG-LS.

5.2.2. Implementation technology

Another problem is how to normalize speed, considering the target technology. In
the literature, we find implementations in a wide range of devices, using different tech-
nologies. Even within the Xilinx FPGAs, it is hard to make performance comparisons as
both programmable logic fabric architecture and manufacture node change. Although
FPGAs have increased their maximum clock frequency with time, differences between
subsequent releases vary and greater variability can exist within a release, considering
different architectures and speed grades. Additionally, the clock frequency of feed-forward

3 This codec was obtained through the modification of the reference libjpeg codec ( https://github.com/thorfdbg/libjpeg)
4 http://imagecompression.info/test_images/

https://github.com/thorfdbg/libjpeg
http://imagecompression.info/test_images/
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Table 5. Example of FPGA propagation and set-up times relevant to the critical paths present in most
implementations for different technologies

FPGA part Info Propagation time Set up
Device SG Vcc* Year Node LUT FF BRAM (no reg) BRAM

Spartan 3 1 -5 1.2 2003 90nm 530 630 2090 430
Spartan 3 1 -4 1.2 2003 90nm 610 720 2400 490
Virtex 6 2 -1 1 2009 40nm 90 390 2080 620
Virtex 6 2 -3 1 2009 40nm 60 290 1600 470
Artix 7 3 -1 1 2010 28nm 130 530 2460 570

Zynq 7020 4 -1 1 2011 28nm 130 530 2460 570
Virtex 7 5 -2 1 2010 28nm 50 270 1800 420

Zynq US+ 6,7 -2 0.85 2015 16nm 35-50 80 979-1020 283

Propagation and setup times values expressed in picoseconds
* Recommended or middle of range internal device voltage in Volts
1 https://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
2 https://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
3 https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
4 https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-
sheet.pdf
5 https://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
6 https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf
7 Values obtained with the Vivado software from a subset of paths of one of the presented implementations.

compute engines (without data dependencies) was able to increase much more with the
introduction of more pipeline stages within FPGA hard blocks, like on-chip memories and
DSPs. However, codecs with good compression ratios, and particularly JPEG-LS, have
feedback loops that cannot be easily sped up.

For a subset of the Xilinx FPGAs used for the hardware codecs works, table 5 shows
key times involved in the context update logic, which determines the clock frequency of
most of these implementations. Observe the relative magnitude of the BRAM clock to
output propagation time (without output register) compared to other metrics and that it
consumes a significant part of the respective clock periods. Of course, the information
in this table is not enough to have an accurate model that would allow fair comparisons
between technologies, among other reasons, because routing tends to be a major contributor
to the critical paths in FPGA implementations and there is no clear way to compare different
fabric architectures. However, this data does seem to explain, at least in part, the frequency
jump from Zynq 7020 -1 to Zynq UltraScale+ -2 that we observe in table 3.

To overcome this, [20] implemented their architecture, which seems to be standard
compliant, in a set of devices used by previous works. As a result, the presented design
compared favorably both in terms of speed and resources. For this reason, this work, which
achieves 207.8 MPixel/s in a Virtex 7 speed grade 2 with JPEG-LS compression rate, is taken
as a reference point to analyze the proposed lossless encoder results. In the near-lossless
case, we compare to [19], which is the closest to standard-compliant and faster design in
the literature.

5.3. Lossless-only encoders comparison

The Vitis HLS implementation feature was used to estimate the clock frequency that
LOCO-ANS6 would achieve in a Virtex 7 -2, used by the lossless reference architecture. Al-
though the resulting pipeline of the lossless only decorrelator is very similar, the maximum
frequency obtained after P&R is 120 MHz. The performance gap probably comes from the
lower level optimizations applied to the context bias update path, as described in [38] and
later improved in [20], which is the frequency bottleneck of our and their implementations.

At first glance, for lossless, LOCO-ANS6 achieves a compressed image 1.1% smaller
than JPEG-LS (see section 5.2.1), at the cost of throughput. However, the TSG coder is
able to achieve 288 MHz in that device for the 6 ANS configuration. That is, 1.39 times

https://www.xilinx.com/support/documentation/data_sheets/ds099.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds183_Virtex_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds925-zynq-ultrascale-plus.pdf
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faster than the reference design. Thus, if the Bernoulli and Geometric coder are decoupled
(independent ANS states) and an optimized decorrelator is used, the TSG coder would not
be the system bottleneck as, on average, it requires running 1.3 times faster.

In practice, we may find symbol sequences that increase the local mean of Geometric
coder iterations, particularly with very noisy images, but this can be countered by decreas-
ing the iterations limit (also limiting code expansion) and increasing the cardinality of the
tables (decreasing mean iterations). Additionally, increasing the block size (which also
improves compression) and using buffering between the decorrelator and the coder can
mitigate the eventual performance throttling.

Finally, note that these positive results arise from comparing an HLS coder implemen-
tation with the best performing and carefully designed HDL decorrelator.

5.4. Near-lossless encoders comparison

To analyze our near-lossless implementation, [19] is used as a reference point. Given
that this JPEG-LS encoder does not support the run coder and has a maximum tile size of
32x64, the achieved compression ratio is considerably lower than the JPEG-LS standard.
The negative effect of not supporting the run-length coder increases with the NEAR
parameter, as lower entropy symbols are generated and the Golomb coder becomes less
and less efficient as can be appreciated in fig. 10. LOCO-ANS exhibits the opposite behavior,
as the TSG coder is very well suited for near-lossless compression. As a result, LOCO-ANS6
(single lane) achieves 7.0%, 16.2%, 24.5%, and 32.4% smaller output size compared to the
near-lossless reference implementation. Using the two lanes in parallel to compress an
image widens further this compression gap to 7.4%, 16.7%, 25.1%, and 33.0%.

Regarding performance, the reference implementation decorrelator has two lanes with
an I I = 2 running at 51.68 MHz (25.84 Mpixels/s/lane) in a Virtex 6-75t. These lanes share
a single Golomb encoder with I I = 1 running at the same frequency. This performance is
surpassed by our implementation, also with two decorrelator lanes with I I = 2 running at
81.1 MHz (40.55 Mpixels/s/lane for photographic images of medium and above size) in a
Zynq 7020. However, this reference implementation was designed for 12-bit images, which
worsens the two feedback paths that can limit the encoder performance. For this reason, to
better compare these two designs, we run an implementation with Vitis HLS, configuring
our decorrelator to work with 12-bit images. As the newer toolset starting from Vivado
(almost 10 years old) does not support devices prior to the 7 series, the low-end Zynq 7020
(with the lowest speed grade) was targeted as opposed to the higher end Virtex 6. Table 5
gives a hint supporting that this decision favors the reference implementation as all Virtex
6 timings are noticeably smaller than the chosen target. The Virtex 6 speed grade used in
that work is not reported, but this consideration is still applicable to the slowest Virtex 6 as
it can be appreciated in the table. As a result, the 12-bit HLS decorrelator achieved a clock
of 67.3 MHz after P&R, still a 30% higher throughput.

We attribute this performance increase to the alternative method used to reconstruct
the quantized pixel (section 3.1.2). The reference implementation uses the multiplication
by inverse trick to implement the division and applies a compensation scheme to correct
the errors derived from this technique while using 15 bits for the fractional part. For very
deep pixels, this might be more efficient, but in the proposed architecture, using a table,
we achieve a greater simplification and reduction of the critical path. For deeper pixels,
larger tables would indeed be required. But the needed type of memories are abundant
(see table 1), and for this case, targeting up to 12-bit images, only 8 36K on-chip memories
are required (in the case of Xilinx devices). The performance increase comes at the cost of
memory resources, but as it can be observed comparing table 1 and 3, this resource is not
the limiting factor.

Again, as mentioned before, these positive results were obtained comparing an HLS
implementation with carefully designed HDL ones. Additionally, as noted in section 3,
further optimizations are possible. However, for the purpose of this work, the presented
module was optimal enough to analyze the LOCO-ANS encoder performance.
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6. Conclusions

In this work a hardware architecture of LOCO-ANS was described, as well as imple-
mentation results presented, analyzed, and compared against prior works in the area of
near-lossless real-time hardware image compression.

The presented encoder excels in near-lossless compression, achieving the fastest pixel
rate so far with up to 40.5 MPixels/s/lane for a low-end Zynq 7020 device and 124.15
MPixels/s/lane for Zynq Ultrascale+ MPSOC. At the same time, a balanced configuration
of the presented encoder can achieve 7.4%, 16.7%, 25.1%, and 33.0% better compression
than the previous fastest JPEG-LS near-lossless implementation (for an error tolerance in
[0..3], respectively).

In this way, the presented encoder is able to cope with higher image resolutions or
FPS than previous near-lossless encoders while achieving higher compression and keeping
encoding latency below 100 µs. Thus, it is a great tool for real-time video compression and,
in general, for highly constrained scenarios like many remote sensing applications.

These results are in part possible thanks to a new method to perform the pixel re-
construction in the pixel decorrelator and the high-performance Two-Sided coder, based
on tANS, which increases the coding efficiency. Moreover, as mentioned throughout the
article, it is noted that further optimizations of the presented system are possible. Finally,
experiment results support that if used with the fastest lossless optimized JPEG-LS decor-
relators in the state-of-the-art, this coder will improve compression without limiting the
encoder throughput.
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ALUT Adaptive Look-up table
ANS Asymmetric Numeral Systems
AXI Advanced eXtensible Interface
bpp Bits per pixel
BRAM Block RAM (FPGA hard block)
BS Block Size
CLB Configurable Logic Block
DMA Direct Memory Access
DSP Digital Signal Processor (FPGA hard block)
FF Flip Flop
FIFO First in First Out
FPS Frames per Second
HD High Definition
HDL Hardware Description Language
HLS High-level synthesis
II Initial Interval
ITU International Telecommunication Union
JPEG Joint Photographic Experts Group
LE Logic Element
LIFO Last In First Out
LOCO Low Complexity Lossless Compression
LS Lossless
LUT Look-up table
MPSoC Multi-Processing System-on-Chip
NEAR Error tolerance for near-lossless coding
NI Number of Iterations (in the Geometric coder)
P&R Place and Route
PR Pixel rate
PS Processing System
rANS Range Asymmetric Numeral System
RTL Register Transfer Level
SG Speed grade
tANS Tabled Asymmetric Numeral System
TSG Two-Sided Geometric
URAM Ultra RAM (FPGA hard block)
VHDL Very High-Speed Integrated Circuit (VHSIC) Hardware Description Language

Appendix A Compression examples
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Figure A1. Picture of a flower (8-bit, 2268x1512) from the Rawzor dataset. Lossless compression bpp
using LOCO-ANS6: 1.983

Figure A2. Decoded picture of a flower (8-bit, 2268x1512) from the Rawzor dataset using LOCO-
ANS6 with NEAR = 3. bpp: 0.251. PSNR: 44.16 dB
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Figure A3. Picture of traffic (8-bit, cropped to 2048x1320, and converted to gray) from the Challenge
on learned image compression (CLIC) dataset (Available: http://compression.cc/tasks/). Lossless
compression bpp using LOCO-ANS6: 3.524

Figure A4. Decoded picture of traffic (8-bit, cropped to 2048x1320, and converted to gray) from the
CLIC dataset using LOCO-ANS6 with NEAR = 3. bpp: 1.122. PSNR: 42.91 dB

http://compression.cc/tasks/
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