
An Ontology-Based Approach to the Description and
Execution of Composite Network Management Processes

for Network Monitoring

José María Fuentes, Jorge E. López de Vergara, Pablo Castells

Departamento de Ingeniería Informática, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
{Chema.Fuentes, Jorge.Lopez_Vergara, Pablo.Castells}@uam.es

Abstract. Web service technology has been proposed to implement manage-
ment interfaces of managed resources. These web services can usually be com-
bined to perform composite processes. These composite processes can be de-
fined with service ontologies such as OWL-S, which allows their formal de-
scription. However, other technologies, including the Web Services Business
Process Execution Language (WSBPEL), provide more mature execution en-
gines. This paper presents an approach to define and execute composite net-
work management processes with existing technology. For this, a use case is
developed in which a set of web service interfaces are defined for a network
probe, and a composite process is specified using OWL-S to monitor the net-
work load. Then, this specification is later translated to WSBPEL and inter-
preted by a real execution engine.

Keywords: OWL-S, WSBPEL, Composite Process, Network Management,
Network Monitoring.

1 Introduction

Integrated management frameworks have traditionally provided a way to use homo-
geneous procedures to access managed resources. However, the evolution of the net-
works and the services deployed on them have implied the necessity of new manage-
ment mechanisms [1]. Currently, new technologies compete in the network manage-
ment arena, where web services and ontologies can be used respectively for the ex-
change of management information and the definition of management information
itself. Web services provide a maximum decoupling among components and abstrac-
tion of the inner complexities with well defined interfaces. Ontologies provide a way
to formally describe the management information, avoiding misinterpretations.

Web service composition is another technology with application in network man-
agement. A set of web services can be called in a sequence to accomplish the tasks of
a management application. The composition of web services can be defined formally
by using service ontologies such as OWL-S that describe by a set of processes how
and when to invoke these web services. However, current semantic web service tools
are not mature enough to interpret such process descriptions. Then, in the meantime,

2 José María Fuentes, Jorge E. López de Vergara, Pablo Castells

another approach is needed to execute such descriptions in a similar manner, albeit
less expressive than a proper ontology-based representation. For instance, Web Ser-
vices Business Process Execution Language (WSBPEL) definitions can be used in-
stead, as there exist process engines that can interpret this language.

This paper presents an approach to define and execute composite network man-
agement processes based on semantic web service technologies. For this purpose, web
services and the semantic web technologies are introduced in next section. Then, the
representation of composite processes with the OWL-S service ontology is presented,
showing a case study for network monitoring. Later on, an approach is proposed to
cope with the lack of a semantic web service execution environment by redefining the
process with WSBPEL, tackling the translation issues. Finally, some conclusions are
given.

2 Web Services and the Semantic Web

This section briefly describes the technologies that support this proposal to execute
composite network management processes. For this a short introduction to web ser-
vices is given, followed by a review of ontology-based technologies and an analysis
of the confluence of both areas, in the scope of the so-called semantic web services.

2.1 Web Services in Network Management

A web service, as described in [2], is a software system designed to support the inter-
operable machine-to-machine interaction through a communication network. To
achieve this goal, web services describe their functionality with the Web Service
Description Language (WSDL) and they interact with each other by exchanging
SOAP messages serialized in XML and sent over a transport protocol, usually HTTP.

The benefits of introducing a web service layer to encapsulate basic functionalities
that are useful for network management have already been studied in several works
[3, 4, 5], which analyze both service granularity and performance aspects. The last
one of these papers points out a fundamental aspect in our study: the benefits of ob-
taining a common and interoperable interface to access a set of basic functionalities
for network management, which can be used to build further, more complex proc-
esses.

2.2 Semantic Web and Ontologies in Network Management

The semantic web area [6] comprises a set of technologies to change current web
from a network of contents and services interpreted and used by humans to a network
in which such contents and services can be exploited by software agents. Among
these technologies it is especially relevant in this work the use of ontologies.

An ontology is defined in [7] as “a formal specification of a shared conceptualiza-
tion”. In practical terms, an ontology is a hierarchy of concepts with attributes and
relations that defines a terminology to define in consensus semantic networks of inter-

An Ontology-Based Approach to the Description and Execution of Processes 3

related information units. An ontology provides a vocabulary of classes and relations
to describe a domain, stressing knowledge sharing and knowledge representation.

The use of ontologies to represent information related to the network management
scope has been addressed to a significant extent in recent research [8, 9, 10, 11, 12,
13]. In the work presented here, the line started in [8] is extended by using a common
representation ontology to formalize a set of specifications for network traffic moni-
toring. In this way, those definitions can be used to obtain a uniform access to a set of
basic functions, common to different network management protocols, which will be
used as a base to define a set of composite management processes based on these
definitions.

2.3 Semantic Web Services in Network Management

Semantic web services are a particularly thriving area within semantic web technolo-
gies. Their objective is to provide a set of functionalities that can be understood by
software systems to exploit (discovery, composition, invocation) these functionalities
in an automatic or semi-automatic manner.

In this way, a set of ontologies have been defined that allows the description of
these functionalities to achieve this goal. Among these proposals, the most relevant
are OWL-S (OWL Services), WSMO (Web Service Modeling Ontology), and SWSO
(Semantic Web Services Ontology) [14]. Although all of them share a similar seman-
tics (they describe in the same terms of inputs, outputs, preconditions and effects the
information about a functionality), the tools and methods provided by each represen-
tation are not so similar. In this paper OWL-S is used to represent the set of basic
functionalities to be later exploited to obtain composite processes based on these
functionalities, resuming the work described in [15]. For this, OWL-S process de-
scription is used, as detailed later. Other work [16] also proposes OWL-S for the
description of network management processes. Using these OWL-S descriptions, for
example, a generic management application could manage resources based on Web
Services, even if it does not know a priori how to do it, which can be very useful in
autonomic environments.

Up to this point, semantic descriptions have been introduced, but not how to im-
plement described functionalities. A common practice is to ground the semantic de-
scriptions on web services. Thus, a grounding between the semantic description and
the WSDL description of the web service is set up, so that when a semantic web ser-
vice is used, a traditional web service is finally invoked.

3 Composite Processes Representation

Starting from the perspective described in the previous section, the objective of this
work is to illustrate a set of techniques to allow the description of web services related
to network management. For this, a set of composite processes relevant for network
management is specified. OWL-S is used for the process description, as it is presented
in next subsection.

4 José María Fuentes, Jorge E. López de Vergara, Pablo Castells

3.1 OWL-S Process Representation

OWL-S [17] allows the representation of a service as a set of interactions with other
services. To represent this interaction, the ServiceModel class and its subclass Process
have been defined. They are based on existing techniques for workflow and process
modeling to describe a service as a process. In this context, two kinds of processes
can be distinguished: atomic processes and composite processes.

An atomic process receives an input message and returns an output message. Thus,
this type of processes can be executed directly. To make it possible, each At-
omicProcess class has a Grounding information associated to it, allowing a client to
build and interpret the messages interchanged with the service.

A composite process is expressed as a composition of other processes (atomic or
composite). This composition can be expressed by the following control structures:
sequence, split, split and join, any-order, choice, if-then-else, iterate, repeat-while,
and repeat-until. Other specific characteristic of these processes is the data flow.
Whereas in an atomic process inputs are generated by a client and outputs are gener-
ated by the process, in a composite process, inputs can come from a client or another
process, and outputs can be generated by different processes. OWL-S provides con-
structs to manage the control structures as well as the information flow in composite
processes.

Both atomic and composite processes can have two purposes:
1. Change the environment, represented as preconditions and effects.
2. Process data (transform a certain input into a concrete output), represented as proc-

ess inputs and outputs.
In OWL-S, preconditions and effects are represented as logic formulas. OWL-S

does not define a default language to represent such logic formulas. However, it rec-
ommends and provides some facilities to work with the Semantic Web Rule Lan-
guage (SWRL) [18], and gives a mechanism to represent those formulas in other
languages. Service inputs and outputs have to be typed with a class of the related
domain ontology.

With these tools, it is possible to achieve the objective of creating a complex and
interoperable description, based on less complex services, to represent a composite
process, which is useful in the network management scope.

3.2 Case Study: Network Monitoring

To illustrate the concepts described above, a detailed case study is provided. In this
case, a network traffic monitoring process has been defined to analyze the network
load. This process creates a report about network traffic for those interfaces of a probe
that have a load with a value higher than a given threshold. For this, it is necessary to
define the following set of elements:
• A domain ontology developed in OWL that represents the network traffic man-

agement domain. For this purpose, we have used the work in [9], whereby RMON-
MIB (RFC 2819) is translated into OWL as a set of classes and properties.

• A set of web services that encapsulate the functionality provided by the RMON-
MIB. One service has been generated automatically for each object group of the

An Ontology-Based Approach to the Description and Execution of Processes 5

MIB, defining configuration functions needed to create, modify and delete moni-
toring tasks, and information retrieval functions needed to obtain the results of the
monitoring tasks. The semantics of the defined tables has been extracted to distin-
guish between a configuration table, that includes read-create objects and an En-
tryStatus (or RowStatus) column, and a results table, which includes read-only ob-
jects. Fig. 1 shows an example of the operations generated for the tables hostCon-
trolTable and hostTable, in pseudo-code, of the RMON-MIB host object group.

• Finally, these web services are used as a grounding for a set of OWL-S descrip-
tions. These descriptions represent the services, and relate them with the concepts
contained in the domain ontology defined before. Also, SWRL rules are defined, as
described in [11], in order to establish how the represented service interacts with
the real world.

hostControlIndex createHostControlEntry(
 hostControlDataSource, hostControlOwner)
void removeHostControlEntry(hostControlIndex)
void modifyHostControlDataSource(
 hostControlIndex, hostControlDataSource)
void modifyHostControlOwner(
 hostControlIndex, hostControlOwner)
HostControlEntry[] getAllHostControlEntry()
HostControlEntry getHostControlEntryByHostControlIndex(
 hostControlIndex)
HostControlEntry[] getHostControlEntryByHostControlOwner(
 hostControlOwner)
HostEntry[] getAllHostEntry()
HostEntry[] getHostEntryByHostIndex(hostIndex)
HostEntry[] getHostEntryByHostAddress(hostAddress)

Fig. 1. Operations generated for the RMON-MIB host object group.

Then, the monitoring process can be described by using these elements. Fig. 2
shows the modeled process. This process takes the following steps:

SWS InvocationPrecondition

Effect Execution flow

Monitoring iteration for each interface

List
available
interfaces

Start
etherstats
monitoring

Not monitoring

Low network load

Monitoring

Stop host
traffic

monitoring

High network load

Monitoring

Obtain host
traffic report

Obtain
etherstats

report

Monitoring

High network load

Not monitoring

Start host
traffic

monitoring

Send host
traffic report

SWS InvocationPrecondition

Effect Execution flow

Monitoring iteration for each interface

List
available
interfaces

List
available
interfaces

Start
etherstats
monitoring

Not monitoring

Low network load

Monitoring

Stop host
traffic

monitoring
Not monitoring

Low network load

Monitoring

Stop host
traffic

monitoring

High network load

Monitoring

Obtain host
traffic report

High network load

Monitoring

Obtain host
traffic report

Obtain
etherstats

report

Monitoring

High network load

Not monitoring

Start host
traffic

monitoring
Monitoring

High network load

Not monitoring

Start host
traffic

monitoring

Send host
traffic report
Send host

traffic report

Fig. 2. Conceptual representation of the traffic-monitoring OWL-S process.

6 José María Fuentes, Jorge E. López de Vergara, Pablo Castells

1. Call the service operation “List available interfaces”, based on IF-MIB (RFC 2863)
ifEntry. This service takes a void input, and offers an output with information
about all available interfaces in the network probe.

2. Call the service operation “Start etherstats monitoring”, based on RMON-MIB
etherStatsEntry. This service takes as an input the interface list to monitor, and
starts the monitoring task, obtaining Ethernet statistics for each interface.

3. For each interface:
a. Call the service operation “Obtain etherstats report”, based also on RMON-MIB

etherStatsEntry.
b. If the preconditions “high network load” and “not monitoring” are met, call the

service “Start host traffic monitoring”, based on RMON-MIB hostControlEntry.
This service starts the monitoring of each host in a concrete interface of the
probe. If it is correctly invoked, call the service operation “Obtain host traffic
report”, described below.

c. If the “high network load” and “monitoring” preconditions are met, call the ser-
vice operation “Obtain host traffic report”, based on RMON-MIB hostEntry.
This service obtains the report of traffic by host in a concrete interface of the
probe. If it is correctly invoked, call the service operation “Send host traffic re-
port”, in charge of sending reports to a network manager.

d. If the “low network load” and “monitoring” preconditions are met, call the ser-
vice operation “Stop host traffic monitoring”. This service stops the monitoring
of hosts in a concrete interface of the probe.

4 Implementation Approach: Use of WSBPEL

Although the formal approach has been introduced, it is necessary to make an extra
effort when working with semantic web technologies, because current tools are still
under development. Then, first of all, a revision of currently available OWL-S tools
has been done. Among them, only Mindswap’s OWL-S API1 and CMU OWL-S VM2
provide some support to execute semantic web services from an OWL-S description,
although with important limitations. Neither the if-then-else and repeat-while control
structures, nor conditional outputs and effects are supported by the OWL-S API,
unless custom extensions are introduced. The CMU OWL-S VM is not sufficiently
documented to assess the level of support provided by this tool for the execution of
complex semantic web service descriptions. Other tools also exist, as stated in [15],
but they are just devoted to the edition of OWL-S instances.

Due to these limitations, and given that the defined semantic web services are
grounded on a conventional web services, other existing technologies for web service
composition have been studied. In this way, if the semantic web services are grounded
on a traditional web service, process descriptions can also be grounded on traditional
web service composition technologies. In this scope, there are three main approaches:
WSBPEL (Web Services Business Process Execution Language), WSCI (Web Ser-
vices Choreography Interface), and BPML (Business Process Modeling Language).

1 http://www.mindswap.org/2004/owl-s/api/
2 http://projects.semwebcentral.org/projects/owl-s-vm/

An Ontology-Based Approach to the Description and Execution of Processes 7

However, only WSBPEL currently provides a sufficient mature set of tools, including
graphical process editors, execution engines, deployed process managers, process
debuggers, etc. Moreover, being an OASIS standard, WSBPEL is highly accepted,
and has the support of a large community of users.

4.1 WSBPEL Process Representation

WSBPEL [19] defines a model and a grammar to describe the behavior of a business
process based on the interactions among the process and its partners. This interaction
is achieved by means of web services. Moreover, WSBPEL allows defining how the
partners and the process are coordinated to achieve a goal, as well as the state of the
interaction and the logic needed to make this coordination possible. Finally, WSBPEL
provides a mechanism to describe the way in which some activities have to be com-
pensated or undone if any error occurs in the business process. Then, WSBPEL pro-
vides a language to generate process descriptions, independent of the platform, and
supporting the definition of all the fundamental aspects of processes.

As it can be observed, a WSBPEL process implementation externally consists of a
web service, which defines a set of operations to let other systems interact with the
process. Internally, however, a WSBPEL process consists of a complex business
process description, which includes variables, partners, error handling and business
flow definition.

The variables section is composed of the variable descriptions used by the process,
providing its definition in terms of WSDL messages, XSD (XML Schema Data type)
types or XML Schema elements. These variables are useful to maintain data and in-
formation related to the process status, based on the exchanged messages at a certain
time. To access these variables, XPath expressions can be used.

The partners or partnerLinks section describes the behaviour of each web service
that interacts with the process. Each partner is defined by a type and a role. This in-
formation represents the functionality that a partner has to provide so that the process
performs correctly.

The error handling section allows the definition of the actions to be done when an
error occurs during the execution of a business process.

The definition of a business flow allows the description of the set of activities to be
done in order to achieve the goals defined for the business process. For this purpose,
WSBPEL offers a wide set of primitives to deal with data, message reception and
transmission, service invocation, conditional expressions and other control structures.

Finally, WSBPEL can be considered a sufficiently expressive language to be used
for the execution of the composite processes described in OWL-S. Nevertheless, there
are some aspects that WSBPEL cannot cover. The next subsection studies the viabil-
ity of using WSBPEL to support the execution of OWL-S definitions.

4.2 OWL-S Process Grounding on a WSBPEL Description

The grounding of an OWL-S process on a WSBPEL description is relatively easy to
do. WSBPEL offers control structures that are similar to OWL-S structures. At the

8 José María Fuentes, Jorge E. López de Vergara, Pablo Castells

same time, other functionalities (data flow, variable declaration) are also similar in
both descriptions. However, there are some issues to be taken into account: service,
data and logic expression descriptions. Then, this subsection analyzes those points in
which both technologies differ, which instruments can be used to solve these differ-
ences, or what functionality is lost if WSBPEL is used instead of OWL-S. The inverse
approach (i.e. a translation from WSBPEL to OWL-S) can be found in [20].

The first aspect to deal with is related to the types used when defining process data.
In OWL-S, data are typed by an OWL class or a basic XSD type. However, in both
WSDL and WSBPEL descriptions, data are represented by a basic XSD type or a type
described with XML Schema. Thus, a translation from an OWL class instance to an
XML Schema element is needed. For this kind of translation, document transforma-
tion languages such as XSLT (eXtensible Stylesheet Language Transformation) are
commonly used. Nevertheless, this process is usually not trivial, because in OWL and
other ontology languages based on description logics, classes can be defined as a set
of restrictions, and the form of an instance is not easily known. It is worth mentioning
that this problem is not common in network management ontologies, because most
ontologies are derived from existing MIB or CIM schema specifications, based on
objects and properties. Another consideration is about the unique identification of an
instance with a URI, which is lost when transforming it to an XML Schema data type.
Once again, this problem is not common in network management ontologies, in which
functional properties are usually used to identify a concrete instance of a class.

The next aspect is related to logic expressions and their use in both OWL-S and
WSBPEL. Logic expressions in OWL-S are mainly used to define conditions in con-
trol structures, preconditions and effects. As stated before, WSBPEL allows the use of
control structures, but it does not have preconditions and effects when calling a part-
ner. Then, OWL-S preconditions and effects have to be extracted from each service
call, and included in the process flow to achieve a functional correspondence in the
WSBPEL process. This extraction cannot be easily automated, so it has to be done by
hand. Another relevant issue is the expressiveness of the logic expression languages
used in OWL-S and WSBPEL. WSBPEL does not provide such a language, using
XPath instead. XPath [21] is a language to manipulate XML with a set of added func-
tions, such as arithmetic comparisons (<, >, =) and simple Boolean expressions (and,
or, not). On the other hand, OWL-S proposes the use of SWRL to define logic expres-
sions, which joint with the OWL descriptions provides a higher expressiveness than
XPath. Given that current WSBPEL engines do not support SWRL, the logic expres-
sions contained in the OWL-S descriptions have to be limited so that they can be
translated to XPath. Then, this translation cannot be done automatically.

Finally, the description of partners has to be analyzed. As commented before,
WSBPEL allows the definition of roles for those partners involved in the process.
This definition is done based on the set of operations that a partner provides. Semantic
Web techniques aim at allowing partner descriptions to be presented in terms of what
is going to be obtained instead of describing a communication interface. Given this
fact, and keeping in mind that the objective of this work is to obtain a practical result,
this kind of partner descriptions have to be avoided. Instead, just operations, inputs
and outputs, along with the appropriate XML Schema mappings, should be defined.

An Ontology-Based Approach to the Description and Execution of Processes 9

4.3 Application to the Case Study: Network Monitoring Process in WSBPEL

Once the WSBPEL process representation and its relationship with OWL-S have been
described, this subsection explains the adaptation to WSBPEL of the case study pre-
sented in subsection 3.2, where an OWL-S specification was defined for a network
monitoring process.

First of all, it is necessary to bind all data. For this purpose, a transformation is per-
formed from the OWL class instances, defined as service inputs and outputs, to the
XML Schema data types of the web services, which encapsulate the RMON function-
ality. There are several ways of doing this binding, among which XSLT transforma-
tions are our proposed approach in this work.

Next, it is necessary to model the OWL-S composite process in WSBPEL. As
mentioned before, this translation is complex and cannot be done automatically, so it
has to be done manually, taking advantage of the available editing tools. In our work,
the ActiveBPEL Designer3 editor has been used. The translation process has been as
follows:
1. Include in the specification all the web service calls needed to complete the proc-

ess. During this step, it is necessary to define the partner profiles for the process.
That is, the set of methods that any network probe has to implement. Given that
semantic web services are used, this definition can be done in terms of objectives
(preconditions and effects) instead of inputs and outputs. However, due to the
problem mentioned above, this description has to include the required operations,
as well as their inputs and outputs, in order to obtain an executable WSBPEL proc-
ess.

2. Define the flow and control structures needed to execute the process. In this step,
the control structures used in the OWL-S description are translated to WSBPEL
structures. This process also requires the translation of the logic expressions used
in the OWL-S specification to those of the WSBPEL description. This is only pos-
sible if the expressivity of OWL-S expressions is limited to fit in the accepted
WSBPEL expressions.

3. Extract the logic introduced in the preconditions and effects of the OWL-S descrip-
tion, and integrate it in the WSBPEL process definition. This step has to be done
again manually for each precondition and effect.
One important aspect to translate the OWL-S description to WSBPEL is the role

that performs the reasoner when processing OWL-S descriptions. In OWL-S proc-
esses, the definition of memory structures does not exist, because it is the reasoner
who takes care of it. However, when describing a WSBPEL process, it is necessary to
specify all the data structures to be used. Then, it is possible that during translation,
some auxiliary variables have to be declared, and the management of these variables
(access, init values, etc.) needs to be specified. If all these facts are taken into account,
the result is a WSBPEL process that can be loaded into a BPEL engine and run as
shown in Fig. 3.

In this work, ActiveBPEL Engine4 has been used to run the WSBPEL process. The
result of this development is a WSBPEL process definition that implements the func-

3 http://www.active-endpoints.com/freebpel/
4 http://www.activebpel.org/

10 José María Fuentes, Jorge E. López de Vergara, Pablo Castells

tionality contained in the OWL-S process description. This WSBPEL definition pre-
sents a WSDL service interface that can be used as a grounding for the OWL-S Ser-
vice description. Thus, this WSBPEL process definition is completely interoperable,
so it can be deployed in any WSBPEL engine. The location of the component services
implied in the WSBPEL process description can be modified using a WS-Address. In
Fig. 4, the process deployed in the ActiveBPEL Engine is shown.

Monitoring iteration for each interface

WS Invocation

Execution flow

List
available
interfaces

Flow Operation

If low
load

If high
load

No
monitoring

Obtain
etherstats

report

Calculate
load

If
monitoring

If no
monitoring

Start host
traffic

monitoring
Monitoring

If
monitoring

Stop host
traffic

monitoring

Obtain
host traffic

report

Send host
traffic
report

Start ether
stats

monitoring

Monitoring iteration for each interface

WS Invocation

Execution flow

List
available
interfaces

List
available
interfaces

Flow Operation

If low
load

If high
load

No
monitoring

Obtain
etherstats

report

Calculate
load

If
monitoring

If no
monitoring

Start host
traffic

monitoring
Monitoring

If
monitoring

Stop host
traffic

monitoring

Obtain
host traffic

report

Send host
traffic
report

Start ether
stats

monitoring

Start ether
stats

monitoring

Fig. 3. Conceptual representation of the traffic monitoring WSBPEL process.

Fig. 4. Load-based Network Management process deployed in the ActiveBPEL Engine.

An Ontology-Based Approach to the Description and Execution of Processes 11

5 Conclusions

Web service technology allows the definition of network management interfaces to be
deployed on the network resources. These services are usually combined to perform a
management task, but WSDL specifications only provide the information related to
each interface. To address this problem, service ontologies, such as OWL-S, are use-
ful to define the relation among different web services in a management process. This
definition can be interpreted by a manager, which calls the services following a se-
quence with control structures. The advantage of this approach is the shift of the ap-
plication development workload to a process definition, aided by graphical editors
which directly generate that definition from a flow diagram. This paper has presented
a case study in which OWL-S has been used to describe the composite process to
monitor the traffic load of a network.

Due to the necessity of using an execution engine to interpret such definitions, this
work has also studied how to translate an OWL-S definition to WSBPEL. Thus, until
future OWL-S engines make this task unnecessary, the defined composite process has
been translated to WSBPEL and loaded into an execution engine, performing the
network monitoring previously described. Using currently available WSBPEL en-
gines has several benefits, including the use of BAM (Business Activity Monitoring)
technologies [22] to monitor and assess the correctness and quality of the deployed
processes. When OWL-S engines are available and related technologies like BAM
can work with such engines, a future task shall be to load the defined semantic proc-
ess and check if they perform as foreseen.

Given this approach, one may think that WSBPEL can be used directly in most of
cases to combine web services for a management application. However, WSBPEL is
somehow limited, as web services must comply with a set of defined inputs and out-
puts. On the other hand, the semantics of OWL-S enable the future definition of auto-
nomic systems that can interpret the semantics of the processes to achieve their goals.
Future process execution engines will either use OWL-S Process descriptions or
should improve current WSBPEL, importing some of OWL-S semantics key points
identified in this work.

In our envisioned future work we shall also study the application of these tech-
nologies to other management functional areas, following the FCAPS (Fault, Con-
figuration, Accounting, Performance and Security) model, to assess the feasibility of
such management architecture.

References

1. J. Schönwälder, A. Pras, J.P. Martin-Flatin: On the Future of Internet Management
Technologies. IEEE Communications Magazine, Vol. 41, Issue 10 (2003) 90-97.

2. H. Haas, A. Brown: Web Services Glossary. W3C Working Group Note (11 February
2004)

3. G. Pavlou, P. Flegkas, S. Gouveris, A. Liotta: On Management Technologies and the
Potential of Web Services. IEEE Communications Magazine, Vol. 42 Issue 7 (2004) 58-66.

4. A. Pras, T. Drevers, R. van de Meent, D. Cuartel: Comparing the Performance of SNMP
and Web Services-Based Management. eTransactions on Network and Service

12 José María Fuentes, Jorge E. López de Vergara, Pablo Castells

Management, Vol. 1, No. 2 (2004) 72-82.
5. T. Fioreze, L.Z. Granville, M.J. Almeida, L. Tarouco: Comparing Web Services with

SNMP in a Management by Delegation Environment. In. Proc. 9th IFIP/IEEE Intl. Symp.
on Integrated Network Management (IM 2005), Nice, France, (May 2005) 601-614.

6. T. Berners-Lee, J. Hendler, O. Lassila: The Semantic Web. Scientific American, Vol. 284,
No. 5 (2001) 34–43

7. T. R. Gruber: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, Vol. 5, No. 2 (1993) 199-220.

8. J.E. López de Vergara, V.A. Villagrá, J.I. Asensio, J. Berrocal: Ontologies: Giving
Semantics to Network Management Models. IEEE Network, Vol. 17, Issue 3, (2003) 15-21.

9. J.E. López de Vergara, V.A. Villagrá, J. Berrocal: Applying the Web Ontology Language
to management information definitions. IEEE Communications Magazine, Vol. 42, Issue 7
(2004) 68-74.

10. S. Quirolgico, P. Assis, A. Westerinen, M. Baskey, E. Stokes: Toward a Formal Common
Information Model Ontology. WISE’2004, Lecture Notes in Computer Science, Volume
3307, Springer Verlag (2004) 11-21.

11. A. Guerrero, V.A. Villagrá, J.E. López de Vergara, J. Berrocal: Ontology-based integration
of management behaviour and information definitions using SWRL and OWL.
DSOM’2005, Lecture Notes in Computer Science, Vol. 3775, Springer Verlag (2005) 12-
23.

12. A.K.Y. Wong, P. Ray, N. Parameswaran, J. Strassner: Ontology Mapping for the
Interoperability Problem in Network Management. IEEE Journal on Selected Areas in
Communications, Vol. 23, Issue 10 (2005) 2058-2068.

13. J. Keeney, D. Lewis, D. O’Sullivan, A. Roelens, A. Boran, R. Richardson: Runtime
Semantic Interoperability for Gathering Ontology-based Network Context. In Proc. 10th
IFIP/IEEE Network Operations and Management Symposium (NOMS’2006), Vancouver,
Canada (April 2006)

14. M. Burstein, C. Bussler, T. Finin, M.N. Huhns, M. Paolucci, A.P. Sheth, S. Williams, M.
Zaremba: A semantic Web services architecture. IEEE Internet Computing, Vol. 9, Issue 5
(2005) 72-81.

15. J.E. López de Vergara, V. A. Villagrá, J. Berrocal: Application of OWL-S to define
management interfaces based on Web Services. MMNS’2005, Lecture Notes in Computer
Science, Vol. 3754, Springer Verlag (2005) 242-253.

16. J. Keeney, K. Carey, D. Lewis, D. O'Sullivan, V. Wade: Ontology-based Semantics for
Composable Autonomic Elements. In Proc. Workshop on AI in Autonomic
Communications at the 19th International Joint Conference on Artificial Intelligence
(IJCAI), Edinburgh, Scotland. (July 2005)

17. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith, S. Narayanan,
M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, K. Sycara: OWL-S: Semantic
Markup for Web Services. W3C Member Submission (November 2004)

18. I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission
(May 2004)

19. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C.K. Liu, V. Mehta, S.
Thatte, P. Yendluri, A. Yiu, A. Alves: Web Services Business Process Execution Language
Version 2.0. OASIS Consortium Committee Draft (December 2005)

20. D. J. Mandell, S. A. McIlraith: Adapting BPEL4WS for the Semantic Web: The Bottom-Up
Approach to Web Service Interoperation. ISWC’2003, Lecture Notes in Computer Science,
Vol. 2870, Springer Verlag (2003) 227-241.

21. J. Clark, S. DeRose, eds.: XML Path Language (XPath) Version 1.0. W3C
Recommendation (November 1999)

22. Alan Joch: Containing Business Processes. Oracle Magazine (March/April 2005)

