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Abstract

Realistic network traffic generation is essential for evaluating the performance, security, and scalability of modern communication systems.
Traditional methods, such as traffic replay systems and statistical models, while useful, often fall short in capturing the complexity and variability
of real-world network scenarios. Recent advancements in Artificial Intelligence (AI), especially Large Language Models (LLMs) like ChatGPT,
have introduced new approaches to synthetic traffic generation. This paper presents a novel architecture using OpenAI’s GPT-3.5 Turbo to generate
synthetic network traffic, with a focus on creating multi-protocol conversations that are indistinguishable from real-world interactions. Through
fine-tuning and prompt engineering, the proposed system successfully generates packet- and conversation-level network traffic for ICMP, ARP,
DNS, TCP and HTTP protocols. Additionally, by integrating a Mixture of Experts (MoE) architecture, this model simulates real-world network
conversations with high accuracy, being able to generate a conversation combining ARP, DNS, TCP and HTTP without packet or protocol errors.
The results show how the application of LLMs in network traffic generation improves realism and adaptability, establishing this approach as a
valuable tool for future security testing and network performance evaluation. In addition, the proposed methodology is easily adaptable to other
LLMs available both through APIs and to be downloaded and executed on your own computer.

Keywords: Network traffic generation, Generative AI, GPT, Prompt engineering, Fine-tuning, Mixture of Experts (MoE).

1. Introduction

Today, the rise of Machine Learning (ML) in network and
service management is paving the way for cybersecurity and
operations. These new approaches provide advantages over tra-
ditional systems, but it is well known that they require vast
datasets, especially Deep Learning (DL) models. In this sense,
data quality is key to improve the models, but the amount of
data must be enough to extrapolate the patterns. However,
high-quality datasets available for training are small and scarce,
threatening the ability of the models to generalize.

In this light, generating realistic traffic that complies with ex-
isting communication protocols arises as an optimal solution to
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(Jorge E. López de Vergara ), ivan.gonzalez@uam.es (Iván González ),
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increase the available data for training, evaluation, and testing,
while keeping the quality to a certain level. In particular, the
ability to generate network traffic simulating different scenar-
ios can improve the evaluation of network elements and equip-
ment, preparing them for unknown events. Additionally, this
can also be useful for data augmentation tasks. Besides, this
helps to cope with many limitations of existing network traffic
datasets, such as class imbalance, low quality of the features, or
the age of the captures [1, 2]. Increasing the amount of available
network traffic and making it indistinguishable from real traf-
fic enables new test scenarios to evaluate and improve network
management strategies. Realistic packet generation techniques
can improve many aspects of network security, such as packet
classification [3] models for traffic policing [4, 5] or cybersecu-
rity [6, 7]. Without proper cohesion of elements such as those
mentioned above, the new paradigm of AI-based cybersecurity
will not be achieved.

Recently, a revolution in the generation of content has
erupted as a consequence of new models with exceptional gen-
erative capabilities. In particular, Transformers [8] and Large
Language Models (LLMs) are changing the approach to text
and Natural Language Processing (NLP) problems. In the con-
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text of network management, NLP is receiving attention and
changing the way to solve many problems such as web brows-
ing analytics [9], packet or flow classification [10, 11] or log
analytics [12, 13]. Since LLMs excel in text and code gener-
ation, the topic of network traffic generation might be another
convenient topic. It is true that the throughput of these LLMs
is not good enough to withstand modern transmission rates, but
they might be the best tool to achieve realism.

Therefore, the objective of this work is to bridge the gap
between realistic traffic generation and LLMs, designing a set
of tools that learn and generalize patterns. Consequently, we
must focus not only on the methodology for generating network
packets, but also on the strategies to evaluate its performance.
The challenge of the evaluation is particularly complicated be-
cause the types of errors that can appear are both at the packet-
level and at the protocol-level (i.e., the conversation between
two nodes). This requires a deep analysis of the generated traf-
fic to ensure that there are no mistakes in stateful protocols such
as TCP or HTTP.

This paper contributes by presenting a novel framework that
uses LLMs like GPT-3.5 to produce highly realistic network
traffic, extending current methods of traffic generation, offering
a flexible and scalable alternative to existing solutions. The pri-
mary focus is on creating multi-protocol network conversations,
aiming to generate traffic that is indistinguishable from real-
world interactions. By multi-protocol we mean the different
protocols that can intervene in a network interaction, such as an
ARP request and response of a router MAC address, followed
by a DNS request and response of a web server IP address,
and concluding with the full TCP connection that includes the
HTTP request to that web server and its response. By lever-
aging a Mixture of Experts (MoE) architecture and innovative
prompt engineering techniques, the proposed approach demon-
strates improvements in traffic realism and generation efficiency
across multiple protocols. Additionally, apart from detecting
the correct generation of packets, we also leverage the infor-
mation provided by a well-known tool such as Wireshark [14]
to determine if there is any problem in the protocol conversa-
tions obtained with our system, to better assess the quality of
the generated packets. Moreover, we also test our methodology
with some use cases and using several different LLMs, both
from OpenAI and its competitors, comparing the results among
different models. Our approach presents a novel methodology
that can be easily adapted to any other protocol stack, advancing
network traffic generation towards general environments with
minimal pre-training.

The rest of the document follows this outline: section 2 pro-
vides a summary of the current state of the art, focusing on the
novelty of this work. Next, section 3 explains the decisions
made to create the generator, including data, architecture, and
the model used. After this, section 4 aims to give insight to the
process of creating packets and conversations for each protocol
using different approximations. Then, section 5 presents the
testing methodology, which is later used in section 6 to bench-
mark the performance of the model with several facts in mind,
such as deep down packet evaluation and Success Rate in send-
ing the packets. Next, section 7 applies the methodology to

other LLMs. After this, section 8 comments on the findings
and outcomes of this work and finally, section 9 concludes the
document summarizing the main results of this work.

2. State of the art

The ability to generate realistic network traffic has long been
a subject of interest to both researchers and practitioners in the
fields of network security and performance evaluation. Tradi-
tional methods for network traffic generation have commonly
used traffic replay systems and statistical models to simulate
network behaviors, such as packet arrival rates and user inter-
actions. Traffic replay systems are capable of replicating large-
scale network flows, ensuring accurate reproduction of traf-
fic patterns across diverse environments [15], while statistical
models offer an analytical approach to predict and simulate in-
teraction dynamics based on known distributions and empirical
data.

Synthetic network traffic generation can be categorized into
several types, depending on the level of granularity required:
• Metadata-based Traffic Generation: This type of gen-

eration focuses on creating network traffic that replicates
metadata, such as packet size, timestamps, and other
global variables [16]. While useful for testing basic net-
work throughput, metadata-based traffic generation lacks
the complexity required to simulate realistic communica-
tion flows or attack scenarios.
• Flow-based Traffic Generation: Flow-based traffic gen-

eration simulates entire communication flows between de-
vices, including protocol behavior and user interaction pat-
terns. This approach is more realistic than metadata gen-
eration, as it captures the higher-level interactions within
a network, such as TCP/UDP flow dynamics and session
persistence. However, it often falls short in replicating spe-
cific network protocol behaviors at a packet level like tem-
poral dependencies, which is a significant limitation [17].
• Packet-based Traffic Generation: Packet-based genera-

tion focuses on generating individual packets that mimic
specific behaviors, such as those seen in DNS queries,
ICMP traffic, or HTTP requests. This method is necessary
for testing fine-grained behaviors, such as packet-level at-
tacks or the interaction between protocols at different lay-
ers of the OSI model [18].

Despite these advancements, the primary challenge with
early synthetic traffic generation techniques was their inability
to simulate network traffic that adapted to complex, real-world
scenarios. Most models were static and could not account for
shifts in traffic patterns due to unexpected user behaviors, pro-
tocol changes, or malicious activity.

In recent years, machine learning, particularly deep learning
models, has revolutionized network traffic generation [19, 20].
The introduction of generative models, especially Generative
Adversarial Networks (GANs) and LLMs such as GPT, has
brought a new dimension to synthetic traffic generation by
addressing the limitations of traditional statistical and replay-
based methods [21]. AI models brought adaptability and learn-
ing capabilities that were absent from previous approaches. For



3

metadata-based traffic, deep learning models have been em-
ployed to learn the distribution of network packet features (e.g.,
size, time intervals), enabling the generation of synthetic traffic
that closely mirrors real-world patterns.

For flow-based traffic generation, deep learning models such
as Recurrent Neural Networks (RNNs) like Long Short-Term
Memory (LSTM) networks, have been utilized to capture the
temporal dependencies between packets within a flow. These
models learn from historical traffic data to produce sequences
that replicate actual communication patterns between devices.
The work by Meslet-Millet et al. [22] shows how RNNs were
successfully applied to generate entire flows of synthetic traffic,
improving the realism of generated traffic for network simula-
tion and security testing.

For packet-based traffic, the same RNNs as in flow-based
generation could be applied, as NetCSTGen demonstrates [22].
We could also make a case for Convolutional Neural Networks
(CNNs) and other deep architectures that have been applied to
generate synthetic packets that mimic specific protocol behav-
iors. These models can generate realistic traffic that emulates
attack scenarios or detailed protocol exchanges, significantly
improving the accuracy of network simulations.

Research into GAN-based models for traffic generation
gained attention a few years ago. They revolutionized net-
work traffic generation, offering new capabilities thanks to their
Generator-Discriminator architecture. One of the best examples
of this is PAC-GAN [23], where the generation of diverse and
realistic synthetic data has been explored by modifying the tra-
ditional GAN framework to improve stability and performance
in high-dimensional data such as network traffic. Previously,
Ring et al. [17] proposed a GAN-based framework for gener-
ating labeled synthetic data to improve intrusion detection sys-
tems using Wasserstein GANs with Gradient Penalty (WGAN-
GP). By simulating realistic traffic patterns, the model signifi-
cantly improved detection accuracy. Similarly, Nukavarapu et
al. [18] applied Wasserstein GAN (WGAN) to generate synthetic
UDP packets. The WGAN model addressed stability issues typ-
ically found in standard GANs, producing high-quality network
traffic that improved the performance of anomaly detection al-
gorithms.

Another work that uses GAN-based models is Netshare [24].
This work focuses on understanding how far the distribution
of the generated traffic is from real traffic, measuring if the
IP addresses or ports of the generated packet headers resemble
real traces with metrics such as the Jensen-Shannon divergence.
Note, however, that apart from IP addresses and ports, it is also
important to check that the rest of the packet content is consis-
tent. Other works that also use a statistical approach to mea-
sure their results are [25] and [26]. Instead of GAN, they use
diffusion models and state space models, respectively, proving
they have lower diverge when compared to prior work. These
works can be useful to generate traffic that resembles statistical
features of a certain dataset. However, a low divergence value
does not assure that the generated packets follow correctly ev-
ery protocol. In this case, other techniques have to be used, like
inspecting every packet consistency, both internally and within
a flow.

Regarding previous approaches, recently, transformer-based
models like GPT (Generative Pre-training Transformer) have
emerged as powerful tools for generating realistic, complex net-
work traffic. These models, initially developed for language
processing tasks, have been adapted for traffic generation due
to their ability to produce sequences that resemble real-world
patterns. These models excel in creating context-aware traffic
that adapts to various protocols and network conditions, sur-
passing the limitations of both metadata-based and flow-based
traffic generation.

The PAC-GPT framework proposed by Kholgh and
Kostakos [27] leverages GPT-3 to generate synthetic network
traffic, capturing the dynamic interactions between network de-
vices. However, they only generate ICMP and DNS packets
with low accuracy, and without generating matched request-
reply conversations. Anyway, this work shows the flexibility of
transformer-based models allows for context-aware traffic gen-
eration, providing a more adaptive solution compared to tradi-
tional replay systems. The ability of LLMs to generate text-like
sequences allows them to model not just the structure of the
traffic but also the interactions between different communica-
tion protocols, making them ideal for generating multi-protocol
traffic conversations. Thus, we take this reference as a starting
point for our contribution.

Related to that approach, a notable work in this topic is
the TrafficGPT framework [28], a generative pre-trained trans-
former model designed to overcome limitations of tokenization
and sequence length in traffic generation tasks. By leveraging
a linear attention mechanism, TrafficGPT extends the capacity
of previous models to handle sequences up to 12 032 tokens,
enabling realistic simulation of network traffic flows. Its main
drawback is that a whole new model has to be trained, instead of
using prompts with existing GPT models in a a few-shot learn-
ing approach. LLMs have proven to be a great fit for few-shot
learning strategies [29], being this approach therefore very in-
teresting for generation optimization and cost reduction.

3. Our proposed architecture

As already mentioned, this investigation takes the work of
Kholgh and Kostakos [27, 30] as a starting point. Therefore, the
proposed architecture, depicted in Figure 1, grounds on the one
presented there, but expanded to support new protocols and fea-
tures, such as conversation generation, a per-protocol Mixture
of Experts (MoE) approach or better data sources for training.

The first component of the proposed architecture is Train-
ing data. We consider the best format for this data to be the
definition of each packet summary provided by Tshark (the
command-line version of Wireshark) output. It must be noted
that this only applies to individual packets’ description, as
Tshark does not give back a simple output for protocol conver-
sation description, therefore needing a new summary descrip-
tion format for this case.

Initially, single packet data is obtained from three sources.
The first one is Ton-IoT [31], which is the PAC-GPT dataset,
so the data from this research is taken as the foundation. The
second source is the packet summaries obtained from other
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Fig. 1. Proposed architecture.

datasets, such as The Ultimate PCAP [32], which is a collec-
tion of network traffic traces by Johannes Weber. It includes
traffic from a wide variety of protocols and from different ver-
sions of each over the years. It is used as an addition to the
data extracted from the previous work, since for some proto-
cols it is insufficient, and for others, such as ARP or HTTP,
there is no previous data. Even with these datasets, we consider
the available data insufficient, as we need larger quantities of
samples to fine-tune and test the model on single packet gen-
eration. For this reason, the third source of data are new sum-
maries with randomized variables generated by Wireshark and
GPT-3.5. Based on the packet description summaries generated
by Wireshark/Tshark, we use prompt engineering to teach GPT-
3.5 how to replicate this structure and generate new data by
modifying variables such as IP and MAC addresses, and other
options according to the explanations provided to the model.
This approach is necessary to get a balanced number of packet
summaries among protocols.

Table 1 shows the difference between the base dataset and the
one created for the investigation. The first group of columns
present the base dataset, where column base dataset charac-
teristics presents the characteristics of the initial dataset, while
column #base dataset packets shows the total number of packet
summaries in this dataset. The second group of columns de-
scribes the additions done to this initial data. New Sources
specifies where the additional data is extracted from, specify-
ing the exact number of packets from each source as the num-
ber in parentheses. Column #packets shows the final number
of packets in the current dataset. Lastly, column new dataset
characteristics specifies the differences between the base and
proposed dataset.

Since data from other sources is not available for the genera-
tion of conversations, and there is no standard summary, a new
base data type was defined for each protocol, and thanks to GPT
models, a series of summaries were generated that are used as
a basis for the model to learn. These base summaries will be
shown later when discussing the creation of conversations.

The next component of the architecture is Prompt. Using
prompt engineering, a query is generated so that the model
learns based on a few-shot learning approach. The query in-
cludes examples of Scapy commands (a packet manipulation
library written in Python) [33] for generating packets or con-
versations for the target protocol, and the model is asked to
generate the commands for a new packet or conversation, using
the input data. The model initially used in this research is GPT
3.5 turbo-instruct, and it returns the Scapy code, which is then
used for two purposes. First, the code is executed to create the
requested packets or conversations, and save them in a PCAP
file. Various levels of checks are applied on this PCAP file, and
thus we extract whether the model has generated the network
packets correctly or not. The second use given to the generated
code is as a basis for training the fined-tuned model. It should
be noted that for this purpose, previous control filters are also
applied to the code to know if it is well generated, since, if it
was not, it could present serious damage to the results of the
fined-tuned model when trained with erroneous data.

Subsequently, the code generated by the fined-tuned model
(the GPT 3.5 turbo-instruct model will also be used for this
purpose) are executed and passed through the same test filters.
On a third stage, the same process is repeated for the MoE cre-
ation, having its results tested using the same filters as those
generated by the prompt engineering and fine-tuning so that the
three approaches can be compared.
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Protocol Base dataset # base dataset
packets

New sources
(# summaries)

# new dataset
packets

new dataset
characteristics

ICMP echo request
echo reply

1271 ToN-IoT (1271) 1271 Echo request
Echo reply
Timestamp
Time-to-live exceeded
Destination unreachable

ARP Non-Existent 0 The Ultimate PCAP (92)
GPT 3.5 (918)

1000 Directed
Broadcast

DNS Type A 526 ToN-IoT (526)
The Ultimate PCAP (189)
GPT-3.5 (285)

1000 Types A, PTR, MX, CAA,
SOA, HTTPS and RP

HTTP Non-Existent 0 The Ultimate PCAP (46)
GPT 3.5 (954)

1000 GET
HEAD
RESPONSE
SUBSCRIBE
UNSUBSCRIBE
CONNECT

Table 1
Base dataset and extended dataset comparison

4. Methodology

In this section, the general structure used for the develop-
ment of the model is presented. As a central and key element
for its operation, it is necessary to define a format to be used,
trying to make it as replicable as possible. As commented in
section 3, Tshark summaries are only available for individual
packets. Thus, a new summary description format is needed for
conversation explanation. These new summaries are based on
the necessary characteristics of each type of conversation, and
they are presented later.

Regarding the creation of prompts, a structure with the fol-
lowing sections is established:

1. Brief explanation of needs: protocol, packet or conversa-
tion, and input data.

2. Presentation of one or more examples.
3. Additional explanations. They are added to better guide

the model, improve its performance, or to correct detected
errors.

As mentioned earlier, we intend to generate both individual
packets and conversations. The generation of packets is pro-
posed as an initial test environment to discover the feasibility of
creating more complex elements, such as conversations, based
on the correct generation and relationship of individual packets.

This iterative approach has allowed us to detect errors com-
mon to all types of conversation. Such as the initial inability of
the models to handle changing directions and delays, causing
the conversations to lose all coherence in the eyes of a machine
and of a person familiar with the basic structure of network con-
versations. These errors, and many others, have been corrected
thanks to the explanations added at the end of each prompt. It
is important to highlight that, throughout the tests, the model
understands better and seems to remember more vividly when
generating packets instructions at the end than those at the be-
ginning. When carrying out these tests, input data was divided

into splits composed of 10 summaries each and evaluated inde-
pendently.

All commented prompts and datasets can be found in the Git
repository included in the Resources after the conclusions.

4.1 Packet generation

PAC-GPT [27] generated only ICMP and DNS protocols. It
is undeniable that these two protocols represent a significant
percentage of the daily network traffic, but it is unrealistic to
consider a traffic generator with these capabilities alone. One of
the highlights in the future work of the baseline research is the
incorporation of new protocols. Therefore, we want to take a
step forward by adding new protocols to evaluate the feasibility
of the approach under different conditions. For this purpose,
we intend to introduce ARP and HTTP, as well as to extend the
ICMP and DNS generation capabilities.

The reason behind the introduction of ARP is the evaluation
of the model generation capabilities with a protocol, which, al-
though simple as ICMP, presents a different challenge since it
does not share many characteristics with this protocol.

Meanwhile, the introduction of HTTP is because, although
the DNS protocol also belongs to the application layer, the
HTTP protocol is supported by TCP, and for its correct opera-
tion it is necessary to establish a TCP conversation, which is not
necessary for DNS since it usually works over UDP. An HTTP
conversation is considered a complex test of traffic generation
feasibility, which is why it is introduced in this paper.

It must be noted, that due to economic reasons, not all the
packets are generated, as it would highly increase the cost of
the investigation.

We will now go on to explain the particularities and creation
of the different packets.
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4.1.1. ICMP
ICMP is the first protocol tested, as it is one of the easiest,

commonly used protocols. As seen in Table 1, original data
is quite limited. Although it is true that it represents a large
amount of the packets sent using this protocol, it does not repre-
sent the whole functionality of ICMP. Furthermore, using only
these two easily created ICMP packet types, and such a high
presence in the datasets of this protocol, might be biasing the
evaluation of the generators.

As an example, the Scapy commands required for the gener-
ation of two random ICMP packets are:

scapy.IP(src= "8.8.8.8", dst= "130.231.202.234")

/ scapy.ICMP(type=0, id=0x0002, seq=4)

scapy.IP(src= "130.231.202.234", dst= "8.8.8.8")

/ scapy.ICMP(type=8, id=0x0002, seq=5)

It should be noted that the ttl parameter does not appear
in the commands, as it is not generated in the basic research,
and due to its importance, especially in the ICMP protocol, it is
considered a necessary addition. We do include this parameter
in our dataset, as it appears very useful in case in the future we
want to teach the model to simulate tools such as traceroute,
where this parameter is necessary.

To solve these problems, we decided to generate a new
dataset, including new types of ICMP packets, which, although
less present in daily network traffic, are very useful and show-
case more challenging situations. The selection of the packets
to be generated is based on their capacity to establish bilateral
conversations, since this is the real purpose of this study, to
demonstrate that this type of conversations can really be gener-
ated. Additionally, supporting all of these ICMP types requires
a query several times more complex. The query begins by de-
tailing to the model what its functionality will be, telling it that
it must create ICMP packets (it seems obvious, but it is not),
and then explaining how to create these packets with examples.
After several iterations, where the model failed several times,
we added additional explanations to the prompt, some of them
completely dependent on the protocol and others on the model,
to solve the errors.

By improving ICMP generation capabilities, we aim to
demonstrate how newer LLMs and highly refined prompts can
improve packet creation.

4.1.2. ARP
The ARP packet generation process is similar to ICMP, since

it is also a query-response connectionless-oriented protocol.
Therefore, we can use the ICMP prompt as the basis for the
ARP prompt. Due to the simplicity of the creation of these
packets, it is taken as a design decision to explain the different
types that are intended to be generated, not giving the model
the option of applying previous knowledge in the generation of
each packet.

The lack of short prompts concatenated to the definition of
each type of packet is also noteworthy, mainly because, thanks
to the low complexity of the protocol, it is not necessary to add
these explanations to warn the system of the different options it
offers, thus reducing the number of tokens used in the prompt.

4.1.3. DNS
DNS is an application layer protocol, which makes it more

complicated to generate because it works over lower layer pro-
tocols such as UDP and IP, having, therefore, more possible
points of failure. At the same time, it is a protocol rich in op-
tions, designed to have many of these and be useful in various
scenarios. Packets of this protocol were generated in the re-
search base; therefore, we start from its initial design to under-
stand and improve the generation.

As shown in Table 1, initial data is not varied enough. For
this reason, it was decided to expand the input. With these new
inclusions, we assess the real capabilities of the model of gen-
erating any kind of DNS traffic.

One of the main objectives of this work is to demonstrate
that the state-of-the-art approach to DNS packet generation can
be improved. To this end, we intend to substantially enhance
the explanation given to the model to achieve correct packet
generation.

From our prompt, it can be extracted that a large part of the
errors in previous DNS generation may be due to the little prior
information given to the model. This left the model free to make
random choices which are not reproducible. By giving more
precise prompts, we reduce the randomness of the generating,
reducing the probability of incorrect generation.

It should be noted that the other researchers attributed this
failure to Scapy, given the large number of parameters and op-
tions, especially for the response and additional resource fields.
It is true that this is a critical factor, and that it is also largely
responsible for the low quality of the generated DNS traffic.

At first glance, the difference in the size of the prompts stands
out. Of the 3 protocols discussed so far, DNS has the longest
prompt. This is mainly due to the number of protocol options
and errors detected in the generation.

As in the previous cases, the beginning of the prompt is the
same, to prevent typical errors such as the generation of mul-
tiple packets for a single summary. In this prompt, the same
structure as in the previous ones can be observed, a sample of a
summary and the command that generates the specified packet
and a subsequent series of comments and clarifications of the
variables of these commands, specifying the value or reasoning
necessary to give one value or another in different cases.

This collection of clarifications is based on the different er-
rors that have been found, each explanation in the prompt being
the solution found to an error. As mentioned above, it is prefer-
able to make clarifications at the end because it seems that the
model retains them better and consequently applies them.

We will not go into the details of the different prompts, since
these are based on technical aspects of the protocol and its pa-
rameters, as well as intrinsic aspects of the creation of these
packets with Scapy.

4.1.4. HTTP
HTTP packet generation is still an open topic in LLM-

assisted packet generation. We decided to add this protocol
because we wanted to evaluate the performance of a higher-
complexity protocol in the generation of conversations. A
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connection-oriented protocol is quite challenging, since it must
automatically manage attributes of the connection, such as the
TCP SYN and ACK numbers. This is interesting in compari-
son with DNS, since the latter is based on UDP and does not
require the establishment of sessions; therefore, HTTP will be
used to see if the model is capable of generating more complex
sequences.

As a first feasibility test, it is decided to evaluate whether it is
possible to generate simple HTTP packets, without the need of
connection establishment. The next section will cover the full
TCP&HTTP client-server dialogue.

As with ARP, we do not possess any example of HTTP cre-
ation initially; thus, we cannot modify a base prompt in this
case either. Therefore, we create the prompt from scratch.

It should be noted that this prompt is much shorter than the
previous ones, explaining only two types of packets. It is de-
cided to use this approach (completing it with a textual expla-
nation of how to change the necessary parameters in the case
of another type of packet) given the similarity in the creation
of the different types of traffic, being only necessary to change
certain variables both in the request and in the response.

There are not many prompts. This is because the genera-
tion of these packets is simple, thanks to the use of the Scapy
classes HTTPRequest() and HTTPResponse(), which greatly
facilitate the creation of these packets and the definition of their
parameters in a way that is understandable for the model.

It is true that, since HTTP is a textual protocol, it could have
been created without using these classes, simply by generating
the text string. This approach was also tried, but was discarded
because it was more complicated for the model to understand,
having to change specific parts of a string.

Special emphasis has been placed on ports. This has its origin
in the model’s treatment of them, since it seems that they are
difficult to understand, and they are always structured in the
same way for the model.

4.2 Conversations generation
This section is considered the core of our research. It is in-

tended to demonstrate something that, although it may seem
logical, has not been previously shown in the studied literature:
that it is possible to generate synthetic conversations hardly dis-
tinguishable from real ones with already available LLMs. This
work is a first step on this path, serving as a demonstration of
the conversation creation capabilities of the following proto-
cols. In this sense, we approached individual packet genera-
tion as a way to ensure the generation limits of the model, then
working on these limits with conversation generation to reach
the edge of traffic generation without errors. For this purpose,
we select only the best-case scenario for each protocol, willing
to assure a base advance on this field to continue working from
it on the future. Table 2 shows the number of summaries gath-
ered for each type of conversation, using from each protocol a
minimum of 200 conversations for testing.

Before starting to describe the process of generating these
conversations, it is important to emphasize another essential el-
ement of the protocol conversations. The communication de-
lay between the different ends, derived from the processing and

ICMP ARP DNS HTTP
# summaries 280 305 220 220

Table 2
Number of conversations in dataset

forwarding of the packets by the intermediate elements and the
other end of the communication. If one intends to design a
system capable of simulating conversations, it is imperative to
model this delay, since it is inherent to the conversation, and
without its presence one cannot think of a realistic conversa-
tion.

This delay is usually modeled with a Gaussian distribution.
Therefore, we intend to teach the model to introduce a random
waiting time between each pair of packets (regardless of the
type of conversation) so that this condition is met.

4.2.1. ICMP
ICMP conversations are one of the simplest that can be found

on the network. These, from the point of view of the sender and
receiver, have only 2 packets.

4.2.1.1 Input data

As discussed above, there is no input data; therefore, it is nec-
essary to define a format to summarize these conversations so
that the model can easily understand the different parameters.
An example of the chosen format is:

Source: IP="172.16.0.5" // Destination:

IP="172.16.0.15" // Others: id=0x3532 seq= 147

type=Echo

Source: IP="10.10.10.1" // Destination:

IP="10.10.10.2" // Others: id=0x8234 seq= 223

type=Timestamp

These summaries, although simple, gather the minimum pa-
rameters to establish an ICMP conversation. In them, we can
find data related to the endpoints of the conversation, as well
as internal variables of the conversation such as the ID or the
initial sequence number. In turn, the type of conversation to be
generated is defined.

For the generation of these summaries, a base structure is
defined, and for the replication of this structure, completed with
different values in each summary generated, the GPT 3.5 turbo-
instruct model is used.

4.2.1.2 Generation of the conversation

Since this part of the work was developed after the generation of
packets, the previously acquired knowledge is used to generate
the prompts. This allows a more efficient prompt engineering,
achieving an efficient reduction of the number of tokens needed
for the prompts.

Studying the prompt, it is evident that the generation of these
conversations is simple, since we do not find prompts that re-
solve errors in it. In the prompt, two different conversations
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can be seen, defining step by step how the packets should be
and the generation of the random time between them. These
packets are created in the same way as if they were individual
packets. More importantly, it has been proven that eliminating
one of the two conversations does not significantly reduce the
quality of the generated code.

4.2.2. ARP
Hand in hand with ICMP conversations, ARP conversations

are among the simplest that can be found on the network, nor-
mally used to obtain MAC addresses and update the routing ta-
bles of each of the devices. They also have a request-response
structure, so for the endpoints they are no more than 2 packets.

4.2.2.1 Input data

As in the other cases, an initial data type has to be defined.
This data type is based on the one generated and tested during
the generation of ICMP conversations. An example of such
summaries is:

Source: MAC="e9:f0:a1:b2:c3:d4",

IP="10.10.20.1" // Destination: MAC=

"d4:c3:b2:a1:f0:e9" // Wanted: IP= "10.10.20.2"

Source: MAC="f1:a2:b3:c4:d5:e6",

IP="172.16.1.10" // Destination: MAC=

"FF:FF:FF:FF:FF:FF" // Wanted: IP=

"172.16.1.20"

Only 2 types of ARP conversations are generated, those start-
ing from a query to Broadcast and those starting from a query
to a specific destination. The dataset has an even representation
of these two types of conversations, although in the real world,
it is the first ones that are more used.

For the generation of these summaries, as in ICMP, the GPT
3.5 turbo-instruct model has also been used, asking it to gener-
ate both IP addresses and MACs.

4.2.2.2 Generation of the conversations

These conversations consist of the same two-packet scheme,
with a Gaussian random time between them. In this case, it has
been decided to apply another approach, instead of generating
a single query combining the prompts of both cases, 2 differ-
ent queries are created, and we select which one is sent to the
model in each case depending on the input summary we have.

An important insight extracted from the generation of pack-
ets is that the model works better when it does not have to gen-
erate variables defined by text. That is, logically, it is easier for
the model to replicate “var=randint(1,5)” than to understand
“you must generate a random integer between 1 and 5, and as-
sign it to the variable var”. Therefore, this new approach will
be used in cases where it is necessary to generate random vari-
ables.

As in the case of ICMP, there are no auxiliary prompts for
error correction, this is also due to the good generation of results
from the beginning, with no results to correct.

4.2.3. DNS
DNS conversations have a similar structure to the previous

ones, i.e., they are based on a request-response architecture,
given that, although it is an application layer protocol, thanks
to its encapsulation over UDP it is not necessary to establish
connections.

However, in this case it is necessary to pay special attention
to the individual generation of the packets, since, as mentioned
in subsection 4.1.3, they present greater difficulties in their cre-
ation.

For reasons that will be detailed in the following sections
on tests and results, it was decided to create only DNS type A
conversations, taking these as a basis for future improvement
and the inclusion of new types of conversations.

4.2.4. Input data
For DNS, the generated data has the following form:

Source: IP= "172.16.0.5" // Destination: IP=

"172.16.0.15" // Others: id=0x3532 ,

resource= "www.google.com" , response =

"172.217.7.196"

Source: IP= "10.10.10.1" // Destination: IP=

"10.10.10.2" // Others: id=0x8234 ,

resource= www.youtube.com , response =

"172.217.10.206"

A continuist structure with the previous cases is maintained,
where the addition of new parameters such as resource and re-
sponse stands out. In these two fields, we find the domain name
of the resource from which we want to obtain the IP address,
and the response with the IP address in which this resource is
located.

As in the previous cases, these IP addresses and resources
have been generated with the GPT 3.5 turbo-instruct model;
therefore, they do not correspond to the real world, they are
simply test data. If we wanted them to correspond to the real
world, it would be enough to simply modify the input data so
that they are in accordance with the real ones, in this way, the
model would generate traffic with real addresses.

4.2.4.1 Generation of conversations

Having decided to generate only conversations of DNS type
A, the process of generating them is greatly simplified, since
the internal structure of these conversations is relatively simple.
This structure has a simple query in the request packet, and a
response field with a single IP in the response packet, with no
Additional Resources.

Contrary to what might be expected, the definition of a DNS
conversation is slightly more complex than that of an ICMP or
ARP conversation. This is only because of the number of pa-
rameters that must be handled when creating the conversation,
but by reducing the number of conversation types to be gener-
ated, the complexity of managing these parameters is consider-
ably reduced.

Thanks to the new approach to the generation of variables
presented in DNS, a major point of failure in the generation has
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been corrected: the management of ports to simulate the use of
unregistered or ephemeral ports.

4.2.5. HTTP
The feasibility of this research lies largely in the correct gen-

eration of HTTP conversations, since its main purpose is to
demonstrate that LLMs are capable of generating complex ses-
sions, as well as managing variables such as the sequence num-
ber or the ACK throughout a conversation. These two variables
are critical for the operation of the conversation; therefore, spe-
cial attention is paid to them throughout the development.

4.2.5.1 Input data

HTTP conversations are the most difficult to generate, but this
is intended to show that they can be generated of different types,
with different codes and Reason Phrases. It must be noted that
we do not use real IP addresses, a random IP address is gen-
erated and then written in the summary. This decision does
not affect the model functioning because, if the real IP address
was to be used, the model would be trained to generate an out-
put with that exact IP address. To do this, a dataset containing
records such as the following is generated:

Source: IP="192.168.1.10", port=1241, Window:

8192 // Destination: IP="192.168.1.20",

port=80, Window: 1634 // Others:

Host="http://ip.webernetz.net/", Path="",

Code=200, Reason Phrase= "OK"

Source: IP="58.29.214.109", port=1123, Window:

48392 // Destination: IP="204.79.197.200",

port=80, Window: 24196 // Others:

Host="http://www.pinterest.com/", Path="",

Code=307, Reason Phrase= "Temporary Redirect"

Source: IP="50.62.160.105", port=5020, Window:

12345 // Destination: IP="104.244.42.129",

port=80, Window: 6172 // Others:

Host="http://www.twitter.com/", Path="",

Code=403, Reason Phrase= "Forbidden"

Clearly, these are the most complex conversation summaries,
given the large number of IP, TCP and HTTP parameters that
the model must handle. Initially, a design decision is made to
endow the model with data such as source port or windows at
both ends to force the model to focus on correct packet con-
struction, and not so much on variable generation. It is true that
in real conversations the window size can be variable, but this
is considered future work for this project.

As in the rest of the protocols, there are two similar datsets,
one used for training and the other for testing. In all datasets,
there is HTTP traffic mixed with the following codes:
• 200: OK
• 307: Temporary Redirect
• 403: Forbidden
• 404: Not Found

4.2.5.2 Conversation generation

A conversation structure of 11 packets has been defined, being
3 for the TCP Handshake, 2 for HTTP messages and another 2
for their respective ACKs, and finally, 4 for the TCP Teardown.
This makes the generation of these conversations particularly
delicate, having to pay close attention to the management of
sequence and acknowledgment numbers, as discussed above.

This prompt is the longest of all, counting with 32 com-
mands. Among these commands, we can find the definition
of the different packets, as well as a continuous update of the
variables previously commented, to ensure their correct man-
agement. This variable control solution was reached after sev-
eral iterations, in which we tried to explain to the model how
to manage these variables by means of text. With the previous
strategy, the model was unable to generate meaningful outputs,
so it was decided to force the model to follow stricter rules so
that its “originality” would not be impaired.

However, we add a brief explanation at the end of the prompt
to solve a recurring error in the model. Strangely, even with
so many example packets, the model did not correctly create
the name of the HTTP variables, which meant that the classes
HTTPRequest() and HTTPResponse() could not be executed.

4.3 Experts creation

From the beginning, the creation of experts is proposed as a
mean of optimizing the operation of the model, reducing the re-
quired input tokens, and improving the efficiency of the model.
This has already been discussed, but there is another major mo-
tive behind this decision, the reduction of errors. It is proposed
that if the model is trained with multiple generated and revised
data, without having the typical model generation errors, this
will prevent the model from committing this type of error again,
thus ensuring its correct operation.

For the creation of these experts, the GPT 3.5 turbo-instruct
model is used, allowing direct comparison with the generation
by prompt engineering. As stated in the OpenAI model fine-
tuning guide [34], the first step required for fine-tuning is the
preparation of the data. These data must follow the dictionary-
based format, so pre-processing of the data is necessary.

Two datasets are generated, one to carry out the generation
of conversations and training of the fine-tuned model, and an-
other one with data not seen by the fine-tuned model for its later
evaluation.

As input data, we have the conversations previously gener-
ated by prompt engineering. We have stored all responses re-
turned by the model in separate files, which are then treated in-
dependently to filter only the returned code (model responses
usually include additional information such as tokens used,
temperature, model used, date and time, etc.). Additionally,
it validates this data by searching for errors in the generation
of the data, and studies the distribution of the messages, and
finally, it returns an estimate of the training cost of each of the
models based on the generated data.

For this step, the conversation datasets of the different proto-
cols are divided in two, one part will be used for training and
the other for validation, the ratio between the parts is 70-30.
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In this input data generation, it is necessary to define a
“role”: “system”, “content”, so that the model understands
what is wanted from it. For all cases, this will be:

You are a new generation traffic generator.

You are specialized in the {} protocol and

conversations generation using python and scapy.

You are especially attentive to variables and

different types of traffic.

As can be seen, it is a relatively simple prompt. In it, it is
only intended to make clear what is expected of the model and
how it should behave. It appears {}, this is nothing more than a
space reserved for the name of the protocol in each of the cases
in which it is necessary to generate an expert.

With this input data, the different experts can be generated.
As one of the purposes of this investigation is the comparison
with the existing best models in equal conditions, we use the
same number of epochs (4) as the base investigation [27], as
the number of epoch can clearly influence the model fitting and
affect testing. We also took into account OpenAI’s community
recommended and preestablished number of epochs (which is
also 4) [35].

Different iterations of this generation of experts have been
carried out while improving the generation of conversations.
However, at the end of the project, there are 4 experts (one per
protocol) capable of generating conversations of similar quality
to those obtained by prompt engineering.

4.4 Mixture of Experts

The concept of expert mixing is not new, it originated in
1991, when Robert Jacobs and Geoffrey Hinton proposed in
their paper Adaptive Mixture of Local Experts [36], a new al-
ternative architecture to the traditional single-network architec-
ture. In this new architecture, a consortium of expert networks
was used in subtasks of a larger problem, thus improving the ac-
curacy and flexibility of the model. In this article, the concept
of a Gating network, or routing network, was also presented,
which was used to decide which expert was best suited to solve
a given input. This routing network had to be trained to adjust
its weights, representing the network’s confidence in each of
the experts.

This architecture was associated with different Artificial In-
telligence systems such as neural networks or Support Vector
Machines (SVMs), having good results but facing problems
such as the computational demand generated by increasing the
number of models and the difficulty of training the routing net-
work for effective operation.

For this reason, in the years following its presentation, the ar-
chitecture was gradually lost, but with the advance of hardware,
thanks to new GPUs and greater computational capacity, the
importance of this architecture grew. Anyway, the real break-
through came in 2020, when it was demonstrated that the union
of a MoE architecture with LLMs offered unexpectedly good
results in natural language processing tasks, and similar. This
has led many to theorize about whether OpenAI’s new model,

Fig. 2. MoE operation for a DNS summary

GPT-4, is built on this architecture. There is no completely
accurate information on this, but what is clear is that Google
has used this architecture for the creation of its most advanced
model, Gemini.

In our MoE there is no need to introduce a routing network,
since it is known in advance what type each summary is, and
the ARP expert would never be asked to generate an HTTP
conversation. In this way, it is possible to reduce the compu-
tational cost, eliminating the cost derived from the training and
execution of the network and the management of weights in
each iteration, and the economic cost of sending the query to
all the models, sending only one query to the selected model.
Therefore, the proposed architecture will be the one shown in
Figure 2.

4.5 Network Conversations Generator

To use the MoE, a script is created to generate traffic. This
script has the particularity that it does not have input data, it
is the script itself that randomly generates summaries of the
different protocols of the experts. Although initially the traffic
generation is random, in the future, with a higher number of
protocols, it is intended to make this randomness depend on the
representation of each protocol in the real traffic.

After generating these summaries, when sending them to one
of the models, the script detects which protocol the summary
belongs to and redirects to the corresponding model. Finally,
the received response is processed and the returned commands
are executed so that they can be stored in a PCAP file and be
the basis for future network traffic datasets.

The generator inherits some features of the packet generator
proposed in the initial research, but it is more focused on the
generation of conversations.

It is important to note that for a conversation to be truthful,
the ends must be truthful. No network expert will be sure that
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Protocol # packets Correctly sent Malformed Non-existent Success rate Presence in to-
tal

IP 683 683 0 0 100% 75.138%
ICMP 200 200 0 0 100% 20.100%
DNS 217 192 0 25 88.48% 21.122%
UDP 217 217 0 0 100% 23.872%
ARP 226 226 0 0 100% 24.862%
HTTP 352 351 0 1 99.72% 38.614%
TCP 352 352 0 0 100% 38.724%

Table 3
Packet generation (GPT-3.5) results divided by protocol

ICMP ARP DNS HTTP
Total 51W-0E (0W-0E) 98W-0E (0W-0E) 0W-25E (0W-25E) 43W-1E (0W-1E)

Table 4
Warnings (W) or errors (E) detected by Wireshark in the packet generation PCAP files. In parentheses, the results after inspecting the cases.

a DNS request to Google’s DNS servers will point to the IP
192.168.10.1, that is why variables such as IPs and MACs are
extracted from a document where you have a control of what
they are, and are not generated randomly.

5. Testing methodology

Regarding the evaluation of the packets generated, as men-
tioned earlier in the article, we will follow the same line as pre-
vious research, evaluating the success rate of sending all the
packets. However, first of all, we must be able to detect errors
that the packets may have in the different protocol stack layers.
For this, the following checks are made:
• Errors and/or packet malformations detection at OSI data

link, network, transport, and application layers.
• Errors detection when sending packets.
At the same time, an in-depth study of the PCAP files con-

tained in the packets generated is proposed, to detect errors that
may go unnoticed by the first level of testing. In this step,
special consideration is given to Wireshark’s own study of the
packets and conversations, since this program has specific tools
for detecting anomalies and errors in the protocols.

Therefore, as there is a high confidence in the detection of
this type of failure by Wireshark, a new metric is proposed for
measuring the quality of the traffic generated. This new metric
is the number of warnings and errors detected by Wireshark’s
Expert Info in a capture, which can be of different severity.

Once the evaluation environment is defined, the tests are car-
ried out. In these, multiple iterations of packet generation are
carried out, handing the model different data splits (10 sum-
maries each) and evaluating each one.

Subsequently, the results of the tests on each of the proto-
cols in the different scenarios (packets, conversations, experts,
etc.) are compared with the rest of the protocols to evaluate
the results as a whole, taking into account de mean value of the
metric in the different splits.

6. Results evaluation

6.1 Packet generation
Table 3 shows the results of packet generation using GPT-

3.5. As an initial impression, if compared with the base study
results, a substantial improvement in the results can be seen.
It is true that these are not perfect, but they are significantly
better. Above all, the improvement in DNS stands out, which
goes from a poor 10% (the best result for this protocol in PAC-
GPT [27]) to an acceptable 88.48%, having 25 packets in which
Python and Scapy cannot detect a DNS packet when loading the
DNS packet PCAP file. Further on, with the PCAP file study,
the reason for this error is detailed.

On the other hand, the results for the rest of the protocols
seem encouraging, with ICMP remaining in the upper margin of
the results shown in the base investigation. Considering that in
this study the number of different types of ICMP to be generated
has been extended, it confirms that these models are capable of
generating this traffic at the highest level. The same conclusion
is drawn for ARP. As a note, we would like to highlight the good
abilities of the model to generate “support” protocols such as IP,
UDP and TCP, having no failures in their generation.

Evaluating then the protocols according to the number of fail-
ures that Wireshark’s Expert Info shows in the different PCAP
files, we have the values shown in Table 4. Although they may
look like alarming numbers, the real result is the one shown in
parentheses. For packet generation, these warnings are not con-
sidered relevant, since they are mainly due to non-detection of
responses or duplicate IP or MAC addresses between packets.
The metric is kept because of its interest for the study of con-
versations. Thus, in this case, we focus only on the study of
Wireshark detected errors.

It is not a coincidence that for DNS, we find the same num-
ber of errors in the Wireshark warnings/errors as in the script
designed to detect failures. Anyway, this allows us to easily
identify the reason for these errors.

These errors are generated by packet malformation, this is
the message returned by Wireshark. Further investigation re-
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Protocol # conversa-
tions

# packets Correctly
sent

Malformed Non-
existent

Success rate Presence in
total

IP 534 2274 2274 0 0 100% 85.041%
ICMP 200 400 400 0 0 100% 14.959%
DNS 200 400 400 0 0 100% 14.959%
UDP 200 400 400 0 0 100% 14.959%
ARP 200 400 400 0 0 100% 14.959%
HTTP 134 268 268 0 0 100% 10.022%
TCP 134 1474 1474 0 0 100% 55.123%

Table 5
Conversations generation (GPT-3.5) results divided by protocol

ICMP ARP DNS HTTP
Total 0W-0E (0W-0E) 0W-0E (0W-0E) 0W-0E (0W-0E) 0W-0E (0W-0E)

Table 6
Warnings (W) or errors (E) detected by Wireshark in the conversation generation (GPT-3.5) PCAP files. In parentheses, the results after inspecting the cases.

veals that all of these errors occur in DNS responses, specifi-
cally when they have a poorly declared Additional Resource in
the input summary. An example of a summary that causes this
error is:

130.231.240.70 130.231.202.234 DNS 153 Standard

query response 0x23f8 No such name SOA

usage.fdown.net.oulu.fi SOA

In the above summary, it can be seen how at the end of the
packet definition, it is specified that the packet has a type SOA
Additional Resource. Reviewing the generated commands, it is
found that the model cannot generate this record correctly. It
usually gives this field malformed, or adds more records to the
Additional Resources count in the protocol header. This causes
Wireshark to mismatch the numbers and generate the error. In
the same way, in the script created, we can find this failure in
the form of a packet that cannot be read because Scapy is not
able to handle a packet in which the data does not match.

From this error, it can be seen that even if the model can
correctly generate a large part of the packet, if the summary is
not clear enough, it fails, since it is not able to reconstruct entire
elements based on a single word. This error is attributed more
to the input data than to the capabilities of the model.

In the case of HTTP, in Table 3, we can observe that the script
detects one malformed packet, whereas, Wireshark detects 43
warnings and one error, as shown in Table 4. This difference in
warnings is mainly because Wireshark does not know that all
packets are HTTP, but the script does. Wireshark detects some
packets as TCP retransmissions, as they might have slightly dif-
ferent ACK or SEQ numbers. The error detected is due to a
slight Python coding failure, not related to the protocol com-
prehension. These results seem extremely promising for future
generation of complex HTTP-based structures.

6.2 Conversations generation
Table 5 shows the results of conversation generation using

GPT-3.5.

In this case, the number of packets that have been created
stands out. This is due to the number of packets generated per
summary. For ICMP, DNS and ARP, 2 packets are created per
summary, while for HTTP, 11 are created. Regarding the results
shown, the Success Rate percentages obtained stand out, being
100% in all cases. This is mainly due to the simplicity of certain
conversations, as well as the prompt engineering approach more
oriented to the generation of variables by commands and the
reduction of explanations, as can be seen in the Git repository.

The results obtained for ICMP and ARP follow the line of
those obtained for packet generation. This result is considered
logical, since the packet generation demonstrated the system’s
ability to generate both query and response packets, teaching
the model in this step nothing more than the coherent union of
these.

The high Success rate found in DNS may be surprising, but
it is due to the results obtained in the packet generation. In
this phase, it was shown that the model was unable to generate
correct responses when they had a final Additional Resources
field vaguely explained in the input data, and this affected the
perception of the generation capabilities of this protocol. In
this case, we decided to test the ability to generate conversa-
tions where these final fields did not exist, taking as input the
most common DNS requests in the network, the IP query type
A requests. These are relatively simple, so this result is to be
expected. Progress should be made in this direction to improve
the generation skills for the Additional Resources.

As for the results obtained in HTTP, these are particularly re-
markable, given the complexity of the generated conversation.
The conversation shown in Figure 3 shows the packet break-
down of the conversation. As a comment, we would like to
highlight the ease of the model to manage sequence and ac-
knowledgment numbers. Initially, a textual prompt was tested,
returning poor results, but, when switched to a prompt based
on variables and commands, the results changed drastically.
These results showcase that these models are still relatively
far from fully understanding and replicating human reasoning,
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Protocol # conversa-
tions

# packets Correctly
sent

Malformed Non-
existent

Success rate Presence in
total

IP 516 2076 2076 0 0 100% 83.845%
ICMP 200 400 400 0 0 100% 16.155%
DNS 200 400 400 0 0 100% 16.155%
UDP 200 400 400 0 0 100% 16.155%
ARP 200 400 400 0 0 100% 16.155%
HTTP 116 232 232 0 0 100% 9.370%
TCP 116 1276 1276 0 0 100% 51.535%

Table 7
Conversations generation (Experts) results divided by protocol

ICMP ARP DNS HTTP
Total 0W-0E (0W-0E) 22W-0E (0W-0E) 0W-0E (0W-0E) 0W-0E (0W-0E)

Table 8
Warnings (W) or errors (E) detected by Wireshark in the conversation generation (Experts) PCAP files.

Fig. 3. HTTP presented conversation example

while they are more than capable of performing any kind of task
that can be explained logically.

By re-evaluating this conversation generation according to
the number and type of warnings/errors returned by Wireshark,
we obtain Table 6. In this table, the results returned by the
packet validation script can be corroborated, considering that
Wireshark also evaluates the completeness and perfection of the
conversations. Therefore, the fact that this program does not re-
turn any warnings or errors for the different protocols reaffirms
the theory that the generated traffic is indistinguishable from the
real one.

6.3 Experts creation

Table 7 shows the results of the generated conversations us-
ing the experts created with GPT-3.5. The ideal result would be
for these experts to match the results obtained in conversation
generation.

To complete this assessment, Table 8 shows the number of
warnings and errors returned by Wireshark. There are 22 warn-
ings in the case of ARP, but these are due to the MAC addresses,
since 13 of them are group addresses and not individual ones.
This is not a problem with the model, but with the input data.
Specifically, the input data generated with generative AI.

Comparing tables 5 and 7, in addition to tables 6 and 8, it is
observed that both approaches obtain the same results in terms
of Success Rate and errors. Therefore, it is considered that
the goal pursued with the creation of these experts has been
achieved, given that, obviating the training cost, it has been
demonstrated that the same results can be obtained without the
need to repeatedly explain to the model how it should generate
traffic, thus efficiently reducing costs and increasing efficiency.

6.4 MoE feasability

Since the correct functioning of the experts (fine-tuned mod-
els) has already been demonstrated, it is also intended to check
if the Mixture of Experts architecture works correctly. For this
purpose, 2 tests are proposed. The first test is more of a theo-
retical level test and integration of the models’ evaluation, it is
intended to demonstrate that with this architecture it is possible
to simulate the process that a computer must follow to obtain
a resource hosted on a web page. To obtain this resource, a
first ARP request to your router is necessary to obtain its MAC
address and thus be able to route traffic at layer 2 in its direc-
tion. Subsequently, a query must be made to the DNS server to
obtain the IP address associated with the device on which the
resource is hosted. Finally, when the IP address is available, a
TCP connection is established to obtain the resource via HTTP.
This process is particularly well explained in chapter 6 of the
book “Computer networking: a top-down approach” [37].

Fig. 4. A day in the life of an HTTP connection. Wireshark view of the packets
generated for ARP, DNS, TCP and HTTP protocols.
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The results obtained from this test have been satisfactory
(shown in Figure 4), fully simulating a real situation. Demon-
strating that it is possible to logically combine conversations
using LLMs. Reviewing the PCAP file, it is observed that, for
example, the MAC address of the router obtained in the ARP
response is later the one used in the frames that encapsulate the
datagrams with an external IP address. In the same way, the
IP address obtained in the DNS response is the one used for
the establishment of the TCP connection and subsequent HTTP
query and response.

Additionally, the random mix in the generation of conversa-
tions is tested to evaluate the quality of the datasets that can be
generated by the model. The results obtained are very positive
(shown in Table 9), obtaining the same results as in the case
of the experts, shown in Figure 7, this being logical, given that
they are the same models.

Protocol # conversations # packets % Success Rate
IP 467 2131 100%

ICMP 168 336 100%
DNS 166 332 100%
UDP 166 332 100%
ARP 148 296 100%

HTTP 133 266 100%
TCP 133 1463 100%

Table 9
MoE dataset generation summary

6.5 Towards realistic traffic generation

DNS(src=10.1.1.1, dst=10.0.0.1,

id=0xcafe, resource="netflix.com",

response="54.73.148.110")

HTTP(src=10.1.1.1,

dst=54.73.148.110, code=200,

size=17000)

DNS(src=10.1.1.1, dst=10.0.0.1,

id=randu16, resource="netflix.com",

response="54.73.148.110")

HTTP(src=10.1.1.1,

dst=54.73.148.110, code=200,

size=N(16500,1000))
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Fig. 5. Simplified example of realistic network traffic generation

Through extensive testing and evaluation, we have shown
that generating PCAP files from text descriptions is possible.
This eases the path towards realistic packet generation, as we
cover in this section. Our methodology, based on a Chain-of-
Thought [38] methodology, enables researchers to expand ex-
isting datasets with minimal supervision.

First, the original data should be analyzed to extract both the
connections and some metadata of the connections. For that
sake, standard tools such as Wireshark/tshark can be employed.

This first stage is mostly automatic, with close to no human in-
tervention required. The expected output of each original PCAP
file is a description of each connection and some metrics, such
as inter-arrival times, packet sizes, etc.

Second, the processed data should be generalized. In that
sense, the experiments should be aggregated to characterize the
traffic. For example, if a TCP connection from the client to a
server with server port 22 is always observed, then it should be
generated and have performance metrics akin to the ones of the
original PCAP files. For that, the original connection metadata
is employed to analyze the distributions of most of the met-
rics. While this second stage can be mostly unsupervised by
following common conventions such as randomly changing the
TCP/UDP client ports and using normal distributions to charac-
terize everything, it is true that the attention to the detail makes
a difference. Human supervision, or multi-agent LLM environ-
ments where an LLM supervises the generation, might have a
deeper understanding of the underlying phenomena that affect
traffic, such as caching mechanisms, outages, heavy-tailed dis-
tributions, etc.

Third, the previous generalization allows us to generate ran-
dom text descriptions of the traffic that can be fed into our
model. As we mentioned before, the better the previous pro-
cess, the more realistic the traffic would be. This process is
completely automatic, with no human intervention. Each of the
text descriptions will generate the connections of an artificially
generated PCAP file. Lastly, the descriptions are fed into the
model to generate scapy/Python code. Then, the code runs to
generate the PCAP files.

This whole step-by-step methodology is based on a Chain-
of-Thought to overcome the limitations of LLMs. Basically,
given the end-problem to the model (i.e., ”Generate a PCAP
compatible with Netflix video playback”) is almost an impos-
sible task for the model directly, you must guide it to smaller
and more guided sub-tasks. To summarize the whole process,
Figure 5 shows a simplified example of the pipeline to generate
realistic data from some PCAP repository.

7. Comparison with other LLMs

The objective of this section is to check if the prompts gen-
erated for the GPT-3.5 model can be used with other models
that have appeared during the development of this research. In
this comparison, it should be considered that as new models are
released, they have been trained with greater amounts of data,
making them more capable. Therefore, it is logical that the re-
sults improve, even without modifying the inputs sent to the
models.

The models are selected based on their results on Python
coding benchmarks like HumanEval, ClassEval and Big-
CodeBench among others [39, 40, 41, 42, 43]. The selected
models are the pre-deployed models GPT-4o, GPT-4o mini and
GPT-o1 from OpenAI, Gemini Pro from Google (all of them
accessible through their vendors’ API [44, 45]) and Codestral
and Mixtral models from Mistral, available on the Huggingface
platform (Codestral-22B-v0.1 and Mixtral-8x7B-Instruct-v0.1)
to download, customize and run on our own hardware [46].
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Protocol GPT-3.5 GPT-4o GPT-4o mini GPT-o1 Codestral MoE Mixtral
IP 100% 100% 100% 100% 94.89% 76.16%
ICMP 100% 100% 100% 100% 99.21% 98.97%
DNS 81.48% 97.5% 87.21% 84.29% 81.1% 79.5%
UDP 100% 100% 100% 100% 90.9% 89.8%
ARP 100% 100% 100% 100% 99.6% 95.8%
HTTP 99.72% 100% 100% 100% 95.2% 7.4%
TCP 100% 100% 100% 100% 96.42% 35.67%

Table 10
Comparison of Success Rates obtained in the packet generation

Protocol GPT-3.5 MoE GPT-3.5 GPT-4o GPT-4o mini GPT-o1 Codestral MoE Mixtral
ICMP 100% 100% 100% 100% 100% 100% 97.8%
DNS 100% 100% 100% 100% 100% 100% 100%
ARP 100% 100% 100% 100% 100% 100% 93.1%
HTTP 100% 100% 100% 100% 100% 99.3% 21.6%
TCP 100% 100% 100% 100% 100% 96% 32%

Table 11
Comparison of Success Rates obtained in the conversation generation

We intend to compare the traffic generation against more of
the most advanced models right now. For this purpose, we plan
to evaluate the generation of packets and conversations for all
the selected models. This test was carried out under the pre-
viously established conditions, using the same prompt expla-
nations and making the minimum modifications necessary to
adapt the prompt to the different LLMs. In the particular case of
the Mistral models, they have been run on a 40 GB Nvidia A100
GPU using 4-bit quantization so that they can fit into the avail-
able memory. Quantization is used in LLMs to reduce mem-
ory usage and improve processing speed, making them more
efficient and cost-effective to run on hardware with limited re-
sources. Despite the reduced precision, advanced techniques
help maintain the model’s performance, ensuring it can still per-
form tasks effectively.

Before showing the results, it is necessary to comment that it
was impossible to obtain results from these tests on Google’s
Gemini model. When we tried to make it generate traf-
fic, it was unable to understand the prompts that the Ope-
nAI models could, generating in most iterations non-executable
code. Among all the errors, curiously, it stood out the non-
completeness of commands, mainly given in DNS commands,
since these were the longest and the ones with the largest num-
ber of variables. In these, it usually forgot to define variables,
left the parentheses unclosed or did not give value to some vari-
ables.

The comparison of the results obtained from the different
models is shown in Table 10 for packet generation, and Table 11
for conversation generation. The results obtained seem similar
to those obtained by GPT-3.5, since these were difficult to over-
come. But, diving a little deeper into the generation process,
differences in the generation process are observed. The most
notable difference observed is that GPT-4o, GPT-o1, Codestral
and Mixtral seemed to be trained to return ` ` `python at the

start of each code, even if it was specified otherwise. This ren-
dered the code non-executable, so it was necessary to make a
modification in the processing of the returned code.

Apart from this problem in code generation, focusing on
packet generation, Mixtral obtains the worst results, particu-
larly with HTTP and TCP, where most of the packets have gen-
erated incorrectly due to the fact that the model escapes all the
underscores (e.g., Http\ Version instead of Http Version),
which is especially critical in the parameter names of the related
Scapy functions. In general, Mistral’s models behave worse
than OpenAI models for these tasks, being the most common
faults that some parameters of the functions are invented.

In the case of DNS single packet generation, where the GPT-
3.5 model failed, the newer OpenAI models are better, with
GPT-4o substantially better and slightly better in the case of
GPT-4o mini and GPT-o1. Specifically, in the DNS protocol,
the generation of error packets has been considerably improved.
GPT-4o can generate standard Additional Resources based on a
word in the summary. On the other hand, HTTP single packet
generation capabilities are maintained with OpenAI’s newer
models.

From these results, we draw two main conclusions: that GPT-
4o can react better to situations with little information and that,
at the same time, it can better understand human reasoning ex-
plained by text. On the other hand, by analyzing the GPT-4o
mini results, we can observe that the absolute worsening of
these results is not much in comparison with the GPT-4o results.
In most of these cases, the smaller model is able to maintain the
level of the larger one, being only reduced in the case of DNS.
In this case, the reduction is pronounced. As discussed above,
this protocol presents the most complex instructions, and the
model is not able to correctly process the details related to the
different variables in it. In particular, it fails more in the man-
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Protocol Codestral (s) MoE Mixtral (s)
ICMP 10.21 ± 1.20 18.50 ± 1.50
DNS 26.16 ± 1.39 44.27 ± 2.61
ARP 23.61 ± 1.66 39.63 ± 3.62
HTTP 81.12 ± 3.75 148.24 ± 1.88
TCP 73.37 ± 2.30 112.36 ± 1.96

Table 12
Average generation time and standard deviation of conversations per protocol
on GPU

agement of Resource Records, being unable to generate them
or to count them correctly.

Contrary to our expectations, it seems that the use of reason-
ing models such as GPT-o1 does not substantially improve the
resolution of the problems attributed to the rest of the models
in the generation of DNS traffic. Particularly promising are the
results obtained for conversations generation, specially by GPT-
4o mini. It can be observed that there is no reduction in con-
versation generation skills when reducing the size of the model.
This result opens the door to the minimization of traffic gener-
ation models while maintaining acceptable generation levels.

Regarding the models executed on a local GPU, it is impor-
tant to note that no significant changes have been made to the
prompts from GPT-3.5, so the results are very good, especially
for Codestral, taking into account that these models are rela-
tively small compared to those from OpenAI (and they were
also quantized). The most interesting thing about this compar-
ison is that the Codestral model, trained to generate code, is
much better in most cases than the Mixtral model, which, de-
spite being an MoE and being much larger, it is not as good at
code generation. Apart from correct generation of the packets,
when checking with Wireshark, certain errors similar to those
obtained with the OpenAI models are detected. For example,
malformed packets appear in ARP due to the generated MAC,
which does not match with the Ethernet source MAC. In DNS
results for Mixtral, the request and response transaction num-
bers do not match in most cases. In HTTP, poorly generated
TCP segments appear: segments out of order, lack of acknowl-
edgements, etc. It seems to be a problem more related to TCP
generation, particularly for Mixtral.

Finally, regarding conversation generation times, it has been
found that generation is faster with GPT-4o models than GPT-
3.5 model, being GPT-4o mini the fastest among all of API-
based models. As these models are used over the Internet, it
is difficult to obtain an average generation time, since the re-
sponse time varies depending on the server load, etc. However,
for models run locally on the GPU, that measurement is eas-
ier to calculate using a progress bar (Python’s tqdm library),
which, in addition to showing the progress in the generation of
the packets, also shows the average time per iteration. Table 12
shows the average execution time and the standard deviation of
the conversations per protocol. It can be seen that the greater
the complexity of the protocol, the longer the generation time.
The standard deviation values allow us to conclude that the gen-
eration time is related to the number of tokens generated, which

is not deterministic. The size of the model also affects the gen-
eration time. The Mixtral model, even quantized, is larger than
the Codestral model, hence the time difference between mod-
els. These conclusions can be easily extrapolated to OpenAI
models.

8. Discussion

The achievements of this research underscore the poten-
tial of LLMs to revolutionize synthetic network traffic gener-
ation. Through fine-tuning and prompt engineering, the system
demonstrated significant improvements in traffic realism across
multiple protocols. A key objective of this research was to sim-
ulate multi-protocol network conversations that closely resem-
ble real-world interactions. This was successfully achieved, as
indicated by the high success rates in generating realistic traf-
fic for ICMP, ARP, DNS, and HTTP protocols. Notably, the
system’s ability to handle both simple and complex protocols
marks a major step forward in traffic generation technologies.

One of the primary accomplishments is the introduction of
a Mixture of Experts (MoE) architecture, which improved the
model’s accuracy in generating protocol-specific traffic. By par-
titioning the traffic generation process into distinct expert mod-
els, the system was able to create more precise and context-
aware network traffic. This architecture also facilitated the gen-
eration of more complex network interactions, such as those in-
volving ARP, DNS and TCP connections. Additionally, the use
of fine-tuning allowed for greater flexibility in handling differ-
ent traffic generation tasks.

The results also highlight the effectiveness of LLMs in ad-
dressing limitations found in previous traffic generation mod-
els, particularly in handling dynamic network conditions. This
study confirms that transformer-based models can not only gen-
erate traffic at the packet level but also sustain conversations
across different layers of the OSI model, enhancing their util-
ity in both performance evaluation and security testing environ-
ments.

In conclusion, this research demonstrates that the integration
of LLMs in network traffic generation represents a promising
direction for future work. We showcased our methodology with
popular network protocols, but same procedure can be extended
to less common protocols in many areas depending on the do-
main of the data. The ability to generate realistic and adapt-
able network traffic provides significant benefits for network
simulation, cybersecurity, and testing. Further research could
explore additional protocols and refine the prompt engineer-
ing techniques used, while the inclusion of more diverse data
sources could enhance the system’s generalizability to different
network environments.

9. Conclusions

The potential of AI and LLMs in network traffic engineer-
ing is vast, with applications ranging from network and service
management to traffic analysis and generation. These models
have already proven their effectiveness in areas such as proto-
col prediction, network data interpretation, and packet creation;
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showcasing their adaptability to address complex engineering
issues. Ongoing research and development are likely to re-
veal even more capabilities, amplifying the impact of LLMs on
computer networks and communications. By improving model
designs, expanding training datasets, and exploring explicitly
tailored models for network applications, researchers can fully
leverage these advanced tools to enhance network engineering
and accelerate scientific advancements.

In addition, incorporating LLMs into network analysis pro-
cesses has the potential to revolutionize communications re-
search. These models provide researchers with extensive access
to network data, enabling them to uncover hidden trends, gener-
ate new insights, and make more precise, data-driven decisions.
As a result, LLMs are poised to transform network research,
helping to advance solutions to existing challenges in the field.

However, there are some issues that should be taken into
account when working with these tremendously powerful and
promising technologies. Ethical considerations must also be
properly considered, addressing issues concerning misuse of
the tool in order to commit cybercrime. Safeguarding net-
work security and upholding ethical data collection, storage,
and analysis standards are paramount to ensuring the responsi-
ble and ethical use of LLMs in network engineering.

Moreover, on top of all the model challenges lies the interpre-
tation of the tool. Interpretability remains a key concern, as the
internal mechanisms of large language models are often opaque
and challenging to understand [47]. Gaining insight into how
these models make predictions is essential for ensuring the re-
liability and trustworthiness of their outputs.

Resources

All presented resources, datasets, and prompts are
available at: https://github.com/javieradelgado/

GPT-on-the-wire.
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