
Computer Networks 00 (2022) 1–19

Web browsing privacy in the deep learning era:
beyond VPNs and encryption

Daniel Perdicesa,∗, Jorge E. López de Vergaraa,b, Iván Gonzáleza,b, Luis de Pedroa,b

aDepartment of Electronic and Communication Technologies, School of Engineering, Universidad Autónoma de Madrid, Spain
bNaudit High Performance Computing and Networking, Spain

Abstract

Web browsing privacy is a matter of paramount importance for the Internet users. While they try to protect themselves from being monitored by
getting advantage of encryption or VPNs, users’ privacy is still unaccomplished, even taking into account the tangled web, with several domains
visited at the same time in a single web page, or IP addresses of a cloud provider shared by several sites. In this work, we provide a novel approach
to identify user web browsing that only takes into account the IP addresses that the user has connected to and without performing any DNS reverse
resolutions. We use this sequence of addresses as an input of different state-of-the-art deep learning models, such as multi-layer perceptron and
transformers, which are able to accurately identify which was the website actually visited among Alexa’s World Top 500 most visited domains.
Moreover, we have also studied other factors, such as the dependence on the DNS server used to resolve the visited IP addresses, the accuracy for
the top domains (e.g., Google, YouTube, Facebook, etc.), data augmentation by packet sampling simulation to improve our results, the impact on
packet sampling and the fine-tuning and possible impact of model parameters or the scalability of our approach. We conclude that, using only a
10% of the packets, we can identify the visited website with an accuracy and F1 score between 94% and 95%.

Keywords: web browsing analytics, neural network, privacy, deep learning, transformer.

1. Introduction

In the last years, data have become one of the most valu-
able assets in the world. It can provide deep customer insights
to business makers, which are really interested in knowing the
interests of their clients or if they are visiting the competitors
web pages. Nowadays, most of the top tech companies ex-
ploit such data or even sell it to others, making this a really
profitable business, as noticed by public authorities and gov-
ernments [2, 3, 4]. Thus, end users have been paying attention
to this matter since they are the ones who produce data, and they
have no real knowledge of how their data are being employed.

IThis paper is an extended version of our work presented in [1].
∗Corresponding author
Email addresses: daniel.perdices@uam.es (Daniel Perdices),

jorge.lopez_vergara@uam.es (Jorge E. López de Vergara),
ivan.gonzalez@uam.es (Iván González), luis.depedro@uam.es
(Luis de Pedro)

Received: 25th March 2022. Revised: 20th Septiember 2022. Revised:
10th November 2022. Accepted: 15th November 2022.

The final publication is available at Elsevier via
doi:10.1016/j.comnet.2022.109471, to be published in Computer Networks.
© 2022. This manuscript version is made available under the

CC-BY-NC-ND 4.0 license.

Consequently, privacy and data usage have become main
concerns of the Internet users [5]. Answering questions such
as which data are used by the companies, who they share it
with, and how valuable it is; are major issues nowadays. There-
fore, users try to protect themselves as much as possible, in
particular, they limit the amount of data they share. However,
this sometimes does not avoid the data being captured and used
by many agents. Solutions such as encryption, both at HTTP
level [6] and at DNS level [7, 8], have become default stan-
dards that will cover the majority of the traffic in the next years.
Nevertheless, they can only encrypt end-to-end conversations,
meaning that IP and TCP or UDP information is still available.

Another popular method used to protect the privacy and
avoid data usage is using Virtual Private Networks (VPNs). Al-
though VPNs have become increasingly popular and most of
them may encrypt and tunnel IP traffic, in fact, traffic can still
be monitored at the termination point of the VPN. Then, it is
just a matter of who you are giving your data to. This means
that actors between the VPN server network and the website
server can see and use the data. The VPN provider can even go
beyond that, since it also knows the identity of the client.

Other alternatives, such as Tor [9], Brave browser [10] or
using chains of proxies suffer from a similar issue, where your

https://doi.org/10.1016/j.comnet.2022.109471
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

identity might not be clear, but your navigation data can also be
used by the last server in the chain. For many purposes, such as
marketing and trends studies, aggregated data are still valuable,
so it does not matter whether the identity of the user is known.
In fact, we checked that popular Tor-capable browsers such as
Tor or Brave use the same endpoint within the web browsing
activity of a tab, meaning that these Tor exit nodes can still
use, give, and monetize your data. This has proven to be more
than a possibility, given that a significant percentage of Tor exit
nodes have spied on their users’ activity [11] and even have
used sslstrip for HTTP traffic to cryptocurrency exchange
websites [12].

In this light, we want to answer the following main re-
search question: Can someone identify where you are navigat-
ing through in these cases? As we pointed out, this could be
achieved as long as web browsing activity can be inferred from
IP traffic. This means that this question is equivalent to: Can
it be inferred what website you are visiting using only IP layer
information? This is the research question we want to answer,
since IP addresses can be easily obtained using NAT logs, Net-
flow [13] or IPFIX [14] records, or custom monitoring tools.

Given an affirmative answer to the main matter, we are also
interested in subsequent questions regarding the feasibility of a
model in real-life conditions. These are: does the model depend
heavily on external factors such as the location or the DNS res-
olution? Can the model scale to real situations with thousands
of customers and thousands of websites to be identified? Are
there ways of preventing the identification of the website?

From an operational point of view, ISP can see our results
from two rather different points of view. First, they could use
our work to identify customers’ traffic. This allows ISP to
monetize data useful for many marketing purposes, after proper
anonymization and customers’ consent. Second, ISP must take
care of who has access to network traffic data. Giving it to third
parties could lead to potential data breaches on clients’ privacy.

Although the main task is supposedly simple, there are many
complications that can arise. The main issue is what other au-
thors have defined as the tangled web [15]. When connecting
to a website, the web browser has to open a cascade of connec-
tions to other websites due to images, ads, banners, JavaScript
libraries, social media links, and many more. It is not only con-
tent from third-parties that developers include in their websites,
but also mechanisms of the web browser such as prefetching,
ad blockers, or caching that may cause trouble.

This entails that discerning the web browsing behavior from
these connections can be quite problematic and unstable, since
some connections to Facebook servers or Google servers might
appear in other different websites that have nothing to do with
them. It is even possible that some connections are opened
to prefetch other websites or, on the other hand, they are
not opened due to the cache or an ad blocker. Moreover,
the websites deployed on content delivery networks and cloud
providers make this matter worse, as a single IP address can
be shared by several domains [16], which causes DNS reverse
queries to be useless. Furthermore, in our datasets, we observed
that, for each pair of web browsing activities, an average of 25%
of the IP addresses receiving HTTP/HTTPS connections were

present in both traces. Additionally, the mean of the percentage
of IP addresses of one domain that overlap with the IP addresses
of other domains is around 80%.

In this paper, we present two deep learning models: one sim-
ple straight-forward approach, and an adapted version of the
transformer [17], that predict the domain visited using just in-
formation of the observed IP addresses. For the sake of the
evaluation, we have built a dataset of more than 340 GB of net-
work traffic of automatic web browsing activities through the
top 500 domains of Alexa [18]. This model achieves an accu-
racy higher than 94% on this dataset and proves that the answer
to the previous question is affirmative. Also, it allows us to
see how many actors can really know about your web browsing
behavior and, thus, use your data for any purpose.

The rest of the document follows this outline: section 2 pro-
vides a summary of the current state of the art, focusing of the
novelty of this work. Next, section 3 explains the development
of the deep learning models. Section 4 benchmarks the per-
formance of the models with several facts in mind, such as the
DNS servers, the precision for the most visited domains, the im-
pact of packet sampling, and a discussion of the importance of
the parameters of the model. After this, section 5 comments on
the findings and outcomes of this work and section 6 concludes
the document summarizing the main results of this work.

2. State of the art

Traffic identification [19] has become a popular issue in the
last few years. The reasons to do so, however, are quite varied.
For instance, authors in [20] focused on monetization, in partic-
ular, they used DNS data to generate website fingerprints that
can be later used for traffic identification or even traffic gener-
ation. Similarly, authors in [21] used a method called Bag of
Domains, akin to Bag of Words for text processing. Although
the objectives of these papers are quite similar, the data inputs
are rather different. It is clear that DNS data is more reliable,
since names might be the same over time or among different
locations, whereas IP addresses usually change.

Related to this work, authors in [22] addressed a simi-
lar problem of web browsing identification, but with some
differences. First, their set of websites includes some
domains that are clearly not accessed by users, such as
fonts.gstatic.com, whereas we only consider websites or
main domains such as google.com. Also, they use a simple
fingerprint model for this task, while we consider more com-
plex deep learning models that make this approach effortlessly
generalizable to other setups or list of domains. In contrast to
this previous work, the authors in [23] introduce a variety of
deep learning models for a different purpose: predicting the
next DNS query given the sequence of previously performed
queries. Similar to this approach, authors in [24] used deep
learning models to identify web browsing activities, but in this
case from DNS queries.

Furthermore, authors in both [16, 20] tackled the issue of the
tangled web that we have explained before, where it is hard to
tell when some connections are caused by a particular website.
On the other hand, DNS encryption through DNS-over-HTTPS

3

(DoH) [7] is becoming increasingly popular, meaning that the
only one that can monetize the data would be the DNS server
that receives the encrypted requests. In this case, relying on
the IP addresses solves this issue and makes our proposal more
future-proof. Similarly, authors in [25] propose a system to de-
termine the traffic generated by a site, but not with classification
purposes in mind.

Flow features have also been used to identify web browsing
activities. For instance, the work in [26] proposed to use the
density estimation of the flow size and binary Bayes belief net-
works to distinguish between the top 50 most popular websites
using anonymized NetFlow logs. This approach, although it
is limited to 50 websites, can only detect correctly a 48% of
the cases. Moreover, authors of [27] designed a model to iden-
tify domain names using flow-level features such as the size
of the second packet, the inter-delay between packets, or the
number of packet retransmission. Although this approach may
detect servers even if IP addresses have changed, the output of
the model is different from our proposal. While we predict the
website the users are navigating through, they just predict the
domain name of each individual connection.

Machine learning and deep learning have also helped the
community to build better proposals. In [28], the authors pro-
pose a deep learning approach based on Convolutional Neural
Networks (CNN) to identify the users’ web connection. Despite
the novelty, the approach is quite focused on the Tor network
case, where security and privacy are a priority but data usage
does not play a significant role. Also, the adversary that wants
that information is in between the user and the input node of
the Tor network. This is quite focused on security issues such
as preventing users to access illegal sites, whereas we are fo-
cused on the other side—i.e. being near the exit node to use the
produced data.

Coarse-grained traffic identification and classification is also
useful to profile the users or clients of the network or to pro-
vide appropriate Quality of Service depending on the type of
service—e.g. P2P, video streaming. In [29], a non-supervised
algorithm is proposed to classify traffic into different categories.
However, they use URLs for this sake, which entails limitations
with the increasing presence of encrypted connections. Also,
in [30], a collection of supervised algorithms is applied with
a similar purpose, with raw captured traffic as input. In this
case, the classes—for instance, www, telnet, or ftp—are very
coarse for many purposes, such as web visit identification for
monetization and website banning and filtering systems. Au-
thors in [31] provided simple probabilistic signatures, obtained
with first n bits of a flow, that can identify network applica-
tions, paying special attention to the amount of data they need
for that purpose. Furthermore, the limitation of packet traces
as input is a huge limit for many situations, where capturing a
large amount of traffic can be overwhelming.

A similar topic that is growing in the community is mo-
bile traffic identification, this is, identify if the traffic was pro-
duced by a mobile app and which app produced the traffic.
In [32, 33, 34, 35, 36, 37], different authors followed a similar
approach using neural networks, CNN in particular, to identify
the traffic. Authors in [38] provided a detailed overview of this

kind of approaches that use deep learning with encrypted data
for mobile traffic identification. In contrast to our approach,
they mainly focus on encryption and using raw data captures,
which limits the final applicability and scalability to scenar-
ios where full capture is feasible. It is worth noting that our
proposal can also be applied to this case of mobile data, but it
would require to re-train the model with an appropriate dataset.
As it was pointed out in [32], most of the traffic they observed
is HTTP or HTTPS and many mobile applications are just web
views with native API connectors.

Finally, with respect to our previous work [1], we have ex-
tended it by better tuning the Multi-Layer Perceptron (MLP)
model, adding and adapting the transformer and doing a com-
parison between them. Additionally, we have included other
metrics aside from the accuracy to assess the models. More-
over, we have also studied the impact of the choice of the pa-
rameters, such as the hash length when using the hashing trick.

3. Model development

In order to precisely define our approach, we must first spec-
ify the inputs and outputs of our models. The input will be a
sequence of IP addresses observed by a monitoring system in
connections of a particular client, i.e.,

A = [a1, . . . , aM], (1)

where M is the length of the sequence and each ai is an IP ad-
dress. It is clear that, in real conditions, M might depend on
several factors. However, we will fix M as a global parame-
ter that trims or pads the sequences to the desired length. The
output is the vector of probabilities, this is,

P = [P(D = d|A = [a1, . . . , aM])]d∈D (2)

where D is the set of all websites we want to identify, d each
website in the set, and D the website to be identified as a random
variable. From the point of view of parameters, there are two
parameters that may impact the model: |D|, the size of D, and
M, the length of the sequence. In both cases, the longer number
of parameters, the more accurate the model is; unfortunately,
training is also going to take longer.

3.1. IP embeddings

In this first subsection, we cover how to process IP addresses.
One of the most important steps to build a neural network model
that is fed with IP addresses is to convert the addresses to real-
valued numbers or vectors. In fact, either an IPv4 or an IPv6
address are just integers that take values over a huge domain,
the upper limits are U = 232 for IPv4 and U = 2128 for IPv6.
For that sake, we will be using the hashing trick [39] with a
linear operator, as we explain below. For both models presented
in this paper, the same process applies to convert A into [π(ai)]i.

First, we need a hash function

h : {0, . . . ,U} → {0, . . . , v} (3)

4

πa1

πa2

πam−1

πam

...
Agg Norm...

...
...

... P̂(d|A)

Multi-Layer PerceptronInput IP sequence embedding Output

A = [ai]i [π(ai)]i Π(A) f (Π(A)) softmax(f (Π(A)))

Fig. 1. Visual and mathematical description of the simple model.

that projects the large space {0, . . . ,U} to a much smaller space
{0, . . . , v}, where U is the aforementioned upper limit and v is
usually called the vocabulary size, i.e., the number of different
elements given by the hash. Additionally, we expect this func-
tion to have the usual properties of a hash, such as distributing
the original data in the project space with little collisions. Given
that v << U, collisions are unavoidable, however, this is a price
we must pay in order to build a model that fits in memory and
that can be trained without major issues. We will evaluate the
impact of v on the results in subsection 4.4.

The next step is just as simple as mapping each index to a
vector, this is, we train wi, a vector in Rd, for each i ∈ {0, . . . , v},
where d is the dimension of the embedding. The categorical
embedding can be defined as

L : {0, . . . , v} → Rd

i→ L(i) = wi (4)

where wi are the parameters that must be trained in the neural
network.

To sum up, both of these functions achieve the objective of
projecting an IP address to a continuous domain. In particular,

π : {0, . . . ,U} → Rd

a→ π(a) = (L ◦ h)(a) = L(h(a)) (5)

is a trainable neural network layer with v · d parameters. This
means that the number of parameters increases linearly with
the vocabulary size, forcing us to find a balance between using
a v large enough to achieve the desired accuracy and not ex-
cessively large to cope with the constraints in training time and
memory usage.

3.2. A straightforward approach
Once we have built a layer to project IP addresses to dense

vectors, we have a sequence of real-valued vectors. This se-
quence should be processed by the model to obtain the predic-
tion. In this matter, several approaches can be taken. First, one

can use the simplest possible approach and aggregate all em-
beddings into a vector by using a global average pooling layer,
for instance. This is, we project the sequence A using the pre-
vious layer and take the mean. Also, we add a normalization
layer to make the training process smoother and avoid any kind
of gradient explosion or fading [40].

Π(A) = Norm

 1
M

M∑
i=1

π(ai)

 . (6)

Equation (6) will be called simple model, due to its straight-
forward approach to the matter. Figure 1 summarizes this
model. First, we process the sequence as in the previous sub-
section to obtain [π(ai)]i. Second, we do an aggregation of all
elements of the sequence and a normalization. And finally, we
pipe the vector into an MLP to obtain the objective probability
as in (2), which is a vector whose components are the proba-
bility of visiting each website given the input sequence that has
been observed.

3.3. Transformers and the attention mechanism
Other more complex alternatives can also be considered.

Since we are processing sequences, Long Short-Term Mem-
ory (LSTM) cells, or even generally speaking Recurrent Neural
Networks (RNN), might be a useful tool, but they focus too
much on the interaction between the elements and the order of
the sequence.

In the last few years, the idea of attention has been intro-
duced in the Artificial Intelligence community, and it has been
of paramount importance for Natural Language Processing. In
particular, self-attention mechanisms might be a good option
given that they offer a better performance than LSTM as they
are also outperforming other models in many areas [41, 42, 43].
Along the different parts, references to Figure 2 will be made
to clarify the main concepts of the attention mechanism and the
transformer architecture.

In general, the attention mechanism provides a model that
builds and uses an alternative representation of the sequence

5

more akin to the human way of processing sequences and im-
ages. In particular, the attention head tries to imitate the way
human beings focus on something. When we put our attention
on an element, we are able to see not only the element itself
with high detail, but also the surroundings with less detail. By
incorporating part of the context into each element of the se-
quence, we get a much better representation of each element of
the sequence.

For each attention head, we compute these elements: the
query Q, the value V , and the key K, all of them using lin-
ear layers with a sequence T as input. In general, each of these
elements in an attention network might be computed using dif-
ferent inputs, but in the case of self-attention, all of them are
computed using the same input T . Usually, this input T is a to-
ken and position embedding, i.e. an embedding that combines
the information of the element itself plus its position in the se-
quence. In our case, we put the positional encoding outside the
equation, and we use the IP embeddings we designed as input,
i.e. T = [π(ai)]i:

Q = Linear(T) = WQ · T + bQ (7)
V = Linear(T) = WV · T + bV (8)
K = Linear(T) = WK · T + bK , (9)

where WQ, WV , and WK are weight matrices of size (v, dK), dK

the dimension of the transformer embedding, and bQ, bV , and
bK optional biases. Despite all of them being similarly com-
puted, they differ in meaning. Q is a row-oriented matrix where
each row corresponds to the query of each element of the se-
quence, i.e. how each element of the sequence looks for related
elements in their context. K is a column-oriented matrix where
each column is the key of each element of the sequence, i.e. the
value that you use to look-up with the query. On the other hand,
V is just a representation of each element of the sequence.

Once these are computed, one can state the self-attention out-
put as

Att = softmax
(

Q · K′
√

dK

)
· V, (10)

this is, we compute the scalar product of all queries and keys
(scores in Figure 2), apply some normalization, and use the
value to build the weighted representation of the sequence.

This would make one self-attention head. However, this
model usually employs several attention heads, this is, we have
different Qi, Vi, Ki that compute Atti with i = 1, · · · ,H, being
H the number of attention heads. All of them are concatenated
and aggregated using matrix dot product

O = [att1, . . . , attH]WO + b0, (11)

where W0 is a weight matrix of size (H·dK , v) and bO an optional
bias.

Although this is the original version of the formulation of
the algorithm given in [17], we think that a more explanatory
version of the algorithm is helpful to understand the purpose
of the attention mechanism. Algorithm 1 displays a simplified
version of the self-attention mechanism with one head. Each
T [i], element of the sequence T , has associated three vectors

Algorithm 1 Simplified self-attention mechanism

procedure ComputeValueKeyVectors(T)
for i ∈ {0, . . . , len(T) − 1} do

K[i]← WK · T [i] . Key vector of T [i]
V[i]← WV · T [i] . Value vector of T [i]

end for
return K, V

end procedure
procedure OneHeadSimpleSelfAttention(T)

K,V = ComputeValueKeyVectors(T)
for i ∈ {0, . . . , len(T) − 1} do

Q[i]← WQ · T [i] . Query vector of T [i]
for j ∈ {0, . . . , len(T) − 1} do

Attention score of T [i] w.r.t. T [j]
scores[i][j]← Q[i] · K[j]
wV[i][j]← scores[i][j]V[j]

end for
output[i] =

∑
j wV[i][j]

end for
return output, scores

end procedure

K[i], V[i], and Q[i]. K[i] and V[i] represent the element itself
and Q[i] represents how other elements may impact the repre-
sentation of T [i], i.e. how the context is incorporated into the
representation. An important detail is that we compute a ma-
trix of attention scores using Q and K. In the real method, the
scores are computed as

scores = softmax
(

Q · K′
√

dK

)
, (12)

and this matrix models how the context impacts the representa-
tion of each element, since (10) can be written as

Att = scores · V. (13)

Since the result of the self-attention is still a sequence, we
have to process it into a vector, i.e. perform a sequence em-
bedding. For that sake, the following operations are adapted
from [17]:

O = MultiHeadSelfAttention(T), (14)
out1 = Norm(T + O), (15)
out2 = Wo2(max(0,Wo1 · out1 + bo1) + bo2, (16)

FFN = Norm(out1 + out2), (17)

and we finally aggregate the sequence into a vector by using an
average

Π(A) =
1
M

M∑
i=1

FFNi (18)

A priori, choosing the simple model or the attention model is
just a matter of deciding how complex the model should be,
assuming a similar performance. Since packet disorder is quite

6

Table 1
Parameters of the models for our data

Name Description Value
M Length of the sequence 250
U Total number of IP addresses 232

h Hash type md5
v Hash output dimension 60 000
d Embedding dimension 20
H Number of attention heads 8
dK Dimension of the attention key embedding 32
f Layers of MLP [75, 150, 250, 350, 400]

Activation functions ReLu [46]
Train Optimizer Adam [47]

Loss function Cat. cross entropy

common and this may result in unreliable results, we decided
to ignore order of the elements. In the first case, this means
using an aggregation that ignores order, such as the average. In
the second case, this would be accomplished by avoiding the
position embedding. In both cases, Π(A) is a vector of Rd that
can be used in other models such as a Multi-Layer Perceptron
(MLP), denoted hereinafter with f , to predict the output P as
in (2) using a softmax activation function. Once the network
has produced a prediction P̂(d|A), the predicted domain, d̂, can
be computed just by taking the arg max,

d̂ = arg max
d

P̂(d|A). (19)

Code for these models implemented using TensorFlow 2 [44,
45] has been made publicly available for reproducibility of the
results1.

Once the models have already been defined, we need a par-
ticular set of values of the hyperparameters to build instances
of the models. Some of these parameters come from the data,
such as the number of domains, |D|, the length of sequences, M,
or U. However, other parameters depend on the data but cannot
be directly estimated. For most of them, we performed a grid
search with different reasonable values and Table 1 shows the
chosen ones for our dataset, described in the next section. For
the rest of the parameters, like the optimizer, loss function or
activation functions, we followed standard conventions for text
classification problems with neural networks [24].

4. Evaluation

To assess the performance of the model, we have built a
dataset consisting of a total of more than 100 000 samples of
web browsing activities of sites in Alexa’s World Top 500 most
visited domains, performed with five different DNS servers. Al-
though DNS server might seem not important, it is quite rele-
vant since observed IP addresses can highly depend on the DNS
resolutions of the domains.

These samples were collected using an automatic system
previously developed by authors of [20] that was modified to

1https://github.com/hpcn-uam/ip-web-analytics/tree/main/

code

Table 2
Description of the datasets

Name Desc. DNS server # samples
DNS1 Campus DNS 150.244.X.Y 25 000
DNS2 Google 8.8.8.8 25 000
DNS3 Cloudfare 1.1.1.1 25 000
DNS4 Quad9 9.9.9.9 25 000
DNS5 OpenDNS 208.67.222.222 25 000
DNSall All datasets All 125 000

save capture files. Dataset naming conventions and informa-
tion about DNS servers are shown in Table 2. Also, these
datasets are publicly available in aggregated format2, for the
reproducibility of the results and any follow-up work.

For the dataset, we decided to evaluate it in four different
ways: first, we will assess averaged metrics for all the datasets
with different DNS servers. Second, we will see the accuracy of
our model for the most popular websites, thirdly, we will cover
how packet sampling impacts performance of the model, and,
lastly, we will analyze the importance of the hash choice and
the hash output size in relation to performance.

4.1. Effect of name resolution

As we said before, DNS resolution can impact directly the
observed IP addresses during the web browsing. Thus, we com-
pare briefly the performance of the model as a function of the
data the model has been trained with and the data the model has
been tested with.

For this sake, we split each dataset into three pieces: train
(65%), validation (15%) and test (20%). We used the train
dataset to train all the models, the validation dataset to select the
size of the model and control early stopping policies to avoid
overfitting, and the test dataset to compute the next results. Fig-
ure 3 and Figure 4 show this comparison for four classical clas-
sification metrics:

1. Accuracy: the percentage of corrected predicted domains,

accuracy =
|{(A, d) ∈ DNS : d̂(A) = d}|

|dataset|
, (20)

where DNS stands for the whole dataset.
2. Precision: the weighted average of the number of times we

predict correctly a domain (TP) over the number of times
we predict that domain (TP+FP),

precision =
1
|D|

∑
d∈D

|{(A, d) ∈ DNSd : d̂(A) = d}|

|{(A,) ∈ DNS : d̂(A) = d}|
(21)

where DNSd stands for the records of the dataset that visits
to domain d.

2https://github.com/hpcn-uam/ip-web-analytics/tree/main/

dataset

https://github.com/hpcn-uam/ip-web-analytics/tree/main/code
https://github.com/hpcn-uam/ip-web-analytics/tree/main/code
https://github.com/hpcn-uam/ip-web-analytics/tree/main/dataset
https://github.com/hpcn-uam/ip-web-analytics/tree/main/dataset

7

[π(ai)]i

Q(i) =

q1
...

qM

K′(i) =

k1, . . . , kM

V (i) =

v1
...

vM

scores(i) =

sc1,1 . . . sc1,M
...

. . .
...

scM,1 . . . scM,M

Atti

Multiple self-attention heads – For i ∈ {1, . . . ,H}

out1 out2 FFN Π(A)

Fig. 2. Visual and mathematical description of the attention model.

3. Recall: the weighted average of the number of times we
predict correctly a domain (TP) the number of samples of
that domain (TP+FN),

recall =
1
|D|

∑
d∈D

|{(A, d) ∈ DNSd : d̂(A) = d}|
|{(A, d) ∈ DNSd}|

, (22)

4. F1 score: the harmonic mean of the precision and recall,

F1 score =
2

recall−1 + precision−1 (23)

Bear in mind that some of these metrics are not properly de-
fined for a non-binary classification problem and, consequently,
we have extended them by taking the per-class average of the
binary metric. Note also that accuracy and recall can provide
similar results when classes are well-balanced.

Although all metrics aim at different objectives, all can be
assessed in the same way: the closer to 1, the better. With
this in mind, we observed that clearly datasets from DNS1 to
DNS5 have a similar behavior: they score really well when they
are tested with samples from the same dataset, but performance
drops significantly with other datasets. It is interesting the case
of (DNS3,DNS1), where performance drops to worrying levels,
especially in the simple model.

On the other hand, the DNSall dataset is clearly more con-
sistent, meaning that we must have a wide variety of data to
achieve our objective. In order to be compared in fair condi-
tions, all models were trained with the same number of sam-
ples, no matter DNSall is five times larger than the rest of the
datasets. This means that DNSall was down sampled to have
25 000 samples just for this experiment.

Comparing the simple model and the attention model, we see
that performance is quite similar with small variations. It is true
that, in general, the simple model is better than the self-attention
one by a 2%, but such a small margin is not yet conclusive to
discard one model over the other. Further analysis is required.

All the provided metrics give approximately the same results,
which means that results are consistent and definitely not ill-
conditioned or degenerated.

Apart from DNS resolution, other factors such as the web
browser—e.g. Google Chrome or Mozilla Firefox—or the
device—e.g. mobile phone, tablet or computer—play a sig-
nificant role. Authors of [20] had already discussed some of
these matters with DNS queries in the past, which entails that
the same applies to IP addresses.

Given the results, hereinafter we will consider just the model
trained with DNSall and we will use 65% of it for training, 15%
for validation and model selection and 20% for test.

4.2. Detailed view of the most important domains

As it is frequent in classification problems, performance dif-
fers from class to class, this is, we have classes whose precision
is 100% and classes with a much lower value. It is interesting
to see the per-class performance of the model to check that the
averaged metrics may vary. Figure 5a shows the per-class pre-
cision and the percentage of websites that achieved at least that
precision. In particular, we see that 70% and 60% of the web-
sites are predicted with perfect precision, for the simple and the
attention model, respectively. Also, in both models, 90% of the
websites are predicted with at least 0.8 of precision. Between
0.4 and 0.8, model performance is around 5% worse for the at-
tention model. This is coherent with previous results, since the
attention modelwas performing around 2% less in all metrics,
which accounts for this gap of 7% of the websites that have a
decrease of accuracy around 0.4.

However, previous analysis regarding Figure 5 did not take
into consideration a possible prior distribution of the classes
of our problem, this is, the popularity of the website is as-
sumed to be equal for all the websites. As an example, fre-
quent domains such as Google or Facebook will have the same
importance in the final metrics as less frequent domains. In
real-world datasets, it is very frequent that the most frequent
domains are responsible for 90% of the network traffic [48],
the so-called Pareto rule [49] or the Zipf law in the discrete
case [50], whereas the 10% remaining is the rest of the web
browsing activities. This means that, for many purposes, as
long as we are accurate with the top domains, our model will

8

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

87.65% 67.40% 81.61% 60.73% 68.58% 73.20%

78.52% 91.76% 86.84% 70.80% 92.56% 84.10%

47.13% 60.16% 95.61% 56.18% 59.06% 63.63%

79.74% 89.10% 88.03% 89.67% 89.04% 87.12%

76.87% 87.86% 84.83% 65.00% 92.00% 81.31%

96.61% 95.76% 96.02% 95.09% 95.80% 95.85%

(a) Accuracy.

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

86.93% 65.99% 79.87% 59.34% 66.91% 71.81%

76.76% 91.72% 86.57% 69.94% 92.57% 83.51%

43.58% 58.70% 95.57% 54.90% 57.21% 61.99%

77.54% 88.89% 87.76% 89.74% 88.52% 86.49%

75.32% 87.44% 84.29% 63.75% 92.01% 80.56%

96.22% 95.76% 96.02% 95.07% 95.79% 95.77%

(b) F1 score.

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

88.34% 70.07% 81.80% 63.32% 71.02% 74.91%

78.40% 92.11% 87.21% 73.33% 93.33% 84.87%

46.39% 63.89% 95.96% 59.41% 62.58% 65.65%

78.72% 89.68% 88.68% 90.10% 89.27% 87.29%

76.80% 88.61% 85.70% 67.08% 92.69% 82.17%

96.69% 96.25% 96.33% 95.51% 96.26% 96.21%

(c) Precision.

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

87.65% 67.40% 81.61% 60.73% 68.58% 73.20%

78.52% 91.76% 86.84% 70.80% 92.56% 84.10%

47.13% 60.16% 95.61% 56.18% 59.06% 63.63%

79.74% 89.10% 88.03% 89.67% 89.04% 87.12%

76.87% 87.86% 84.83% 65.00% 92.00% 81.31%

96.61% 95.76% 96.02% 95.09% 95.80% 95.85%

(d) Recall.

Fig. 3. Comparison of the performance obtained training and testing with different datasets for the simple aggregation model.

identify successfully a huge amount of the network traffic vol-
ume.

For this sake, Table 3 shows the precision by class, i.e. for
each website, for the top domains according to Alexa for the
simple model. The category ”Others” refer to domains not be-
longing to the top domains shown in the table. For complete-
ness, the confusion matrix of the simple model can be found
in Appendix A. Similar results can be obtained for the atten-
tion model, as shown in the confusion matrix in Figure 6.

Overall, the performance with the simple model is outstand-
ing and even perfect for some of the most important domains
such as Google, YouTube, or Baidu. It is worth noting that
Google and YouTube share some servers, which complicates
our task since similar if not the same IP addresses may appear
on sequences of both domains.

On the other hand, some domains predictions are less accu-
rate. For instance, Facebook only scores a precision of about
90% in the simple model, meaning that there is a 10% of the
times that a user is navigating Facebook, but the model pre-
dicts otherwise. Similarly, Google and YouTube are not always
correctly detected in the attention model. This could be due to
several reasons: similar advertisement presence in other pages,
embedded Facebook pages in other domains, or sign-in with

Facebook or Google plugins.
Other small errors in the top sites are located in Chinese web-

sites, such as sohu.com, qq.com, 360.cn, or tmall.com. Similar
reasons may apply to these cases, where content or advertis-
ing could be shared among different websites. Anyway, aver-
age precision is over 95%, making the model both accurate and
precise.

4.3. Impact of packet sampling

The third part of the section covers the impact of packet sam-
pling. First, we want to assess the distributions in our dataset.
This provides valuable insights of the dataset that can help us
to assess the limits of packet sampling per user, i.e., the mini-
mum number of packets that are required to predict accurately
the domain the user is visiting.

Figure 7 displays both the histogram of the number of ob-
served IP addresses and the total number of packets. The left-
hand side of the figure depicts the distribution of the number of
IP addresses in each web browsing session, i.e., the distribution
of the length of the sequence A. The mode of the distribution is
15, so the most common length is 15, but around 10% percent-
age of the samples are composed of more than 50 different IP
addresses.

9

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

85.30% 65.10% 76.06% 60.29% 67.74% 70.90%

74.17% 90.78% 84.45% 71.91% 89.98% 82.26%

56.78% 68.84% 93.68% 62.93% 67.20% 69.89%

73.22% 86.32% 84.77% 89.09% 85.52% 83.78%

71.48% 84.26% 83.00% 69.98% 90.92% 79.93%

95.74% 94.48% 94.23% 93.62% 94.88% 94.59%

(a) Accuracy.

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

84.58% 62.74% 73.91% 57.39% 65.16% 68.75%

71.07% 90.69% 83.91% 70.02% 89.66% 81.07%

52.90% 67.08% 93.63% 60.29% 64.66% 67.71%

70.57% 85.60% 83.97% 89.07% 84.73% 82.79%

68.58% 84.16% 82.22% 67.56% 90.73% 78.65%

95.39% 94.44% 94.18% 93.65% 94.86% 94.50%

(b) F1 score.

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

85.93% 65.21% 74.81% 59.09% 66.62% 70.33%

71.41% 91.25% 84.84% 71.41% 90.38% 81.86%

53.26% 70.52% 94.27% 62.24% 67.22% 69.50%

71.43% 86.19% 84.88% 89.60% 85.52% 83.52%

69.80% 86.71% 83.36% 69.20% 91.44% 80.10%

96.22% 95.04% 94.64% 94.13% 95.43% 95.09%

(c) Precision.

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall

Tested with

D
N

S 1
D

N
S 2

D
N

S 3
D

N
S 4

D
N

S 5
D

N
S a

ll

Tr
ai

ne
d

wi
th

85.30% 65.10% 76.06% 60.29% 67.74% 70.90%

74.17% 90.78% 84.45% 71.91% 89.98% 82.26%

56.78% 68.84% 93.68% 62.93% 67.20% 69.89%

73.22% 86.32% 84.77% 89.09% 85.52% 83.78%

71.48% 84.26% 83.00% 69.98% 90.92% 79.93%

95.74% 94.48% 94.23% 93.62% 94.88% 94.59%

(d) Recall.

Fig. 4. Comparison of the performance obtained when training and testing with different datasets for the attention model.

On the other hand, the right-hand side shows the histogram
of number of packets per web browsing session in logarithmic
scale for both axes. As we see, the mode of the distribution
is around 103, i.e., frequently, the web visits are composed of
hundreds to thousands of packets, while only less than 2% of
them are composed of more than tens of thousands of packets.

Since we want to know how the model behaves when we start
losing information, we simulated packet sampling and look for
solutions to mitigate it. In particular, data augmentation can be
applied. It consists of extending the training dataset with addi-
tional samples which are just the original ones with small mod-
ifications or extra noise. In computer vision, it is quite useful to
train a model to ignore scale or orientation.

Let F = [F1, . . . , FM] be the vector of frequencies associated
to each IP address, this is, a1 has been observed in F1 packets.
It is simple to convert F into a normalized vector F = F∑M

i=1 Fi
,

which will be used for the packet sampling and whose compo-
nents are the relative frequencies of each IP address. Then, we
can just sample from A using this distribution. If we draw a ran-
dom sample following the probability distribution F and we call
the empirical frequencies F ′ = [F′1, . . . , F

′
M], it is direct how to

compute the augmented sample by just taking the elements of
A whose element in F′ is greater than zero—i.e., the elements

that appeared in the sample:

A′ = [ai ∈ A such that F′i > 0]. (24)

Once we have A′, we can add it to our extended dataset and
train the model. Figure 8 shows the results of the four afore-
mentioned classification metrics for both the DNSall dataset and
the augmented version of DNSall against the sampling rate of
the test subset. For each sample of the dataset, we have added
five extra samples for training. Each sample contains only 20%
of the original information, i.e., we have used a sampling rate
r = 0.2.

For all the metrics, we observed a similar behavior: a slight
decay of the non-augmented model with sampling rates from
0.2 to 1, followed by a more noticeable reduction between 0.2
and 0.1, ending in a complete drop at around 0.05. We see
that the augmented model always improves the performance,
reaching a maximum at 100% of sampling rate—i.e. no sam-
pling for testing—of 97% and 96% with the simple and atten-
tion model respectively.

Besides, zoomed-in subfigures show the metrics decay be-
tween 0 and 0.1. It becomes apparent that for sampling rates
up to 5%, augmented model performance is around 90%. Since
we have observed that the mode of the number of packets per

10

0.0 0.2 0.4 0.6 0.8 1.0
x

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Cl
as

se
s w

ith
 p

re
cis

io
n

x
or

 h
ig

he
r

Simple model
Attention model

(a) Without data augmentation.

0.0 0.2 0.4 0.6 0.8 1.0
x

65%

70%

75%

80%

85%

90%

95%

100%

Cl
as

se
s w

ith
 p

re
cis

io
n

x
or

 h
ig

he
r

Simple model trained with augmented data
Attention model trained with augmented data

(b) With data augmentation.

Fig. 5. Performance per website for the simple model and the attention model.

Table 3
Precision by class for the most visited websites in Alexa’s World Top 500 for the simple model

W
eb

si
te

go
og

le
.c

om

yo
ut

ub
e.

co
m

tm
ai

l.c
om

ba
id

u.
co

m

qq
.c

om

so
hu

.c
om

fa
ce

bo
ok

.c
om

ta
ob

ao
.c

om

36
0.

cn

jd
.c

om

am
az

on
.c

om

ya
ho

o.
co

m

w
ik

ip
ed

ia
.o

rg

w
ei

bo
.c

om

si
na

.c
om

.c
n

zo
om

.u
s

O
th

er
s

Prec. 100.00% 100.00% 97.96% 100.00% 95.92% 97.96% 89.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.96%

sample is around 3 000 packets, it means that we need around
150 packets to have representatives samples that our model pre-
dicts with an accuracy of 80%. Besides, if we had 300 packets,
accuracy would improve to more than 93%. Comparing both
models, we observe a difference when sampling rates are close
to zero, when the attention model seems to generalize better
than the simple model.

Additionally, the right-hand side of Figure 5 shows the per-
class precision of the models trained with augmented data. In
general, we see a 5% increase in both models, being the atten-
tion model the one that benefits the most of this. The shape of
the curves slightly changes, making them more uniform. How-
ever, the difference between models became more apparent in
the range of accuracies between 0.4 and 0.9.

4.4. Impact of hash choice and hash collisions

Up to this point, there is no clear evidence that the hash colli-
sions might be playing an important role here. However, model
size hugely depends on the size of the input, this is, the hash
output dimension v. Therefore, optimizing the model implies
reducing v as much as possible.

First, a theoretical analysis can be helpful in order to de-
termine potential issues and have a preliminary estimation.
Let h(A) be a sequence of hashed IP addresses, {b1 =

h(a1), . . . , bm = h(am)}. Some assumptions must be made for
this purpose:

• There are at most k characterizing IP addresses in the se-
quence. This means that the prediction of the model is
fundamentally based on the presence of a particular subset

of the sequence, hereinafter called characterizing IP ad-
dresses or domains. Without loss of generality, these char-
acterizing elements will be the first k of the sequence, since
both models ignore the order of the elements. This entails
that ∀d ∈ D

P(d|h(A) = {b1, . . . , bm}) = P(d|h(A) = {b1, . . . , bk}).
(25)

• The hash output is uniform. This means that the distribu-
tion of the outputs of the hash is uniform, given that the
input is also uniformly distributed. We have tested this hy-
pothesis on the data using a χ2 test for different hashes and
values of v, and, with a p-value of 1, we have for all of
them that it holds, i.e.

X ∼ Uniform([0,U]) =⇒ h(X) ∼ Uniform([0, v]). (26)

Let B′ be another sequence of hashed IP addresses, {b′1, . . . , b
′
m}

belonging to a different website. We want to compute what is
the probability of B′ getting confused with h(A). As reasoned
before, the characterizing IP addresses are the ones responsible
for the prediction, so if we have all characterizing domains in
B′, then we will have that the model predicts incorrectly due to
hash collisions. Assuming k = 1, it is simple to compute the

11

Other

google.com

youtube.com
tmall.co

m

baidu.com
qq.com

sohu.com

facebook.com

taobao.com
360.cn

jd.com

amazon.com

yahoo.com

wikipedia.org

weibo.com

sina.com.cn
zoom.us

Predicted domain

Other

google.com

youtube.com

tmall.com

baidu.com

qq.com

sohu.com

facebook.com

taobao.com

360.cn

jd.com

amazon.com

yahoo.com

wikipedia.org

weibo.com

sina.com.cn

zoom.us

Tr
ue

 d
om

ai
n

99.98% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

8.82% 91.18% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

3.41% 0.49% 96.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1.95% 0.00% 0.00% 0.00% 0.00% 0.00% 97.56% 0.00% 0.00% 0.49% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

1.46% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 98.54% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.98% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.93% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.07% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.93% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.07% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

0.49% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.51% 0.00% 0.00%

0.49% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.51% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Fig. 6. Confusion matrix for most visited domains in Alexa’s World Top 500 for the attention model.

0 20 40 60 80 100 120
Number of different IP addresses

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

(a) IP addresses.

101 103 105 107 109 1011

Number of packets

100

101

102

103

104

Fr
eq

ue
nc

y

(b) Packets.

Fig. 7. Histograms of the number of IP addresses and packets observed per web browsing sample

probability of incorrect prediction

I1 = P(dB = dh((A)) = P(∃i ∈ 1 . . . ,m : b′i = b1)
= 1 − P(∀i ∈ 1 . . . ,m : b′i , b1)

= 1 −
m∏

i=1

P(b′i , b1)

= 1 −
(

v − 1
v

)m

=
vm − (v − 1)m

vm . (27)

Once this is done, it can also be computed for k = 2 following

a similar procedure

I2 = P(∃i, j ∈ 1 . . . ,m : b′i = b1, b′j = b2)

= P(∃ j : b′j = b2|∃i : b′i = b1)P(∃i : b′i = b1)

=

(
vm − (v − 1)m

vm

) (
vm−1 − (v − 1)m−1

vm−1

)
. (28)

A general formula for the probability with k characterizing
domains can then be derived

Ik =

m∏
j=m−k+1

(
v j − (v − 1) j

v j

)
, (29)

12

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Simple model trained with DNSall

Simple model trained with augmented DNSall

(a) Accuracy.

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Simple model trained with DNSall

Simple model trained with augmented DNSall

(b) F1 score.

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Simple model trained with DNSall

Simple model trained with augmented DNSall

(c) Precision.

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Re

ca
ll

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Simple model trained with DNSall

Simple model trained with augmented DNSall

(d) Recall.

Fig. 8. Performance of the simple model with and without data augmentation against packet sampling rate per user. Zoomed-in versions between 0 and 0.1 are
included inside each plot.

and we can provide an upper boundU(k, v)

Ik ≤ U(k, v) =

(
vm − (v − 1)m

vm

)k

. (30)

The previous estimation implies that Ik behaves asymptoti-
cally like 1

vk . Figure 10 shows both Ik in terms of k for different
hash output sizes v and the same quantity in terms of v for dif-
ferent values of the number of characterizing IP addresses k.
In a worst-case scenario, this means that for v = 60 000, the
probability of collision would be less than 1% if k = 1. How-
ever, we found that for small values of v such as 200, the model
could reach 86% of accuracy, which entails that the number of
collisions is really far from a really catastrophic U(k = 1, v =

200) ≈ 71%. It should be around U(k = 3, v = 200) ≈ 36%
and U(k = 4, v = 200) ≈ 26% at most, therefore, it is more
likely an average value of k around 3. This would mean that the
probability of collision between two domains must be around
10−7, i.e. it is negligible even for huge datasets.

Nevertheless, it is a parameter that impacts model size and
model training time. In general, it is desirable that v is large
enough to fit the data without many collisions but small enough
to prevent the model to become too large to be handled. Fig-
ure 11 shows the training performance in terms of number of
epochs and time for the simple model.

In the former case, we can see that training curves are sim-
ilar for v ≥ 4096, meaning that there is little to no difference
between these values. For v ≤ 1024, training curves are dif-
ferent, but they reach 91% and 86% of accuracy for v = 1024
and v = 256, respectively. In the latter case, when we change
the axis to time instead of epochs performance differences are
negligible when v ≥ 4096, this is, only for small values of v,
such as v = 256, we can see the impact of hash collision. This
exhibits the trade-off between complexity and accuracy.

Figure 12 shows the same curves, but for the attention model.
Again, for v ≥ 16 385, performance is really similar both in
terms of number of epochs and time. This is expected, since
training transformers will usually take much more time and ef-

13

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Attention model trained with DNSall

Attention model trained with augmented DNSall

(a) Accuracy.

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Attention model trained with DNSall

Attention model trained with augmented DNSall

(b) F1 score.

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Attention model trained with DNSall

Attention model trained with augmented DNSall

(c) Precision.

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Re

ca
ll

0.00 0.02 0.04 0.06 0.08 0.10
0.4

0.6

0.8

1.0

Attention model trained with DNSall

Attention model trained with augmented DNSall

(d) Recall.

Fig. 9. Performance of the attention model with and without data augmentation against packet sampling rate per user. Zoomed-in versions between 0 and 0.1 are
included inside each plot.

fort than most of the simple model. However, we saw before
that the attention model is better at generalizing and learning
context, as it was depicted in previous section.

Furthermore, hash function choice is not playing an impor-
tant role either. One may think that hash function choice may
impact model performance, so the best hash must be chosen.
Fortunately, this is not the case, as shown in Figure 13. In
the left-hand side, training curves for the simple model are
displayed, including also in this case the training without us-
ing hashes, this is, assigning a number to each IP address in
the dataset (this has been possible by using a GPU larger than
the one available at the beginning of this work). They show
a slight difference in the very first epochs, but it is negligible
when 20 epochs are surpassed. Similarly, the right-hand side
figure shows the same curves for the attention model, where
behavior is almost identical, proving our point. The figures also
show that hashes provide similar results than a non-hashed so-
lution. Therefore, we can choose the faster hash function to
reduce the computing times, and work with the hashing trick

when the number of IP addresses to be analyzed is unknown or
very large, making it a scalable solution.

4.5. Comparison with other tools
In section 2, we covered several alternatives to this problem

from a qualitative point of view. To give the full picture, it is
necessary to provide some numerical comparison alongside the
main differences to ensure our solution performance is similar
to the state of the art, or better. In [20], they provide a sys-
tem that relies on DNS data for the same purpose. They man-
aged to obtain an F1-score of 94%, comparable to both simple
model and attention model. However, the emulation of the DNS
cache that they are doing scales poorly, requiring the use of big
data frameworks to deal within an ISP network. In contrast, our
work allows deploying the model in several points of the net-
work, and since it does not require keeping any per-client state,
it can easily scale up to any number of users.

In next work [24], they rely on NLP techniques to avoid the
emulation of the cache, offloading that learning process to NLP

14

1 2 3 4 5
Number of characterizing domains k

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Pr
ob

ab
ilit

y
of

 c
ol

lis
io

n
of

 tw
o

do
m

ai
ns

v = 500
v = 1000
v = 5000
v = 10000
v = 50000
v = 60000
v = 100000

0 20000 40000 60000 80000
Hash output size v

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

Pr
ob

ab
ilit

y
of

 c
ol

lis
io

n
of

 tw
o

do
m

ai
ns

k = 1
k = 2
k = 3
k = 4
k = 5

Fig. 10. Estimation of the probability of collision in terms of the number of characteristic domains in the sequence and the hash output size.

0 25 50 75 100 125 150 175 200
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Using xxh32 with v = 256
Using xxh32 with v = 1024
Using xxh32 with v = 4096
Using xxh32 with v = 16384
Using xxh32 with v = 65536
Using xxh32 with v = 262144

0 100 200 300 400 500
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Using xxh32 with v = 256
Using xxh32 with v = 1024
Using xxh32 with v = 4096
Using xxh32 with v = 16384
Using xxh32 with v = 65536
Using xxh32 with v = 262144

Fig. 11. Training curves with different values of hash output size v for the simple model.

techniques. They achieve between 90-95% of accuracy, again
comparable to this work. In both cases, the same level of per-
formance was obtained, but with some qualitative differences.
The most obvious one is the type of inputs, in both works they
use DNS requests with domain names, whereas we used IP ad-
dresses, a more challenging problem. On the other hand, the
training data of these alternatives might be valid more time than
in our case. This is because domain names in websites do not
usually change, in contrast to IP addresses, which may even
depend on DNS resolvers or on customers’ geo-location.

Authors in [22] proposed a method that uses similar data in-
put, sequences of IP address. They rely on a custom algorithm
doing fingerprinting. Their accuracy is around 84%, obtaining
78% for websites they considered sensitive since they may leak
your political views, sexual orientation or religion. In contrast
to our work, the number of websites included is higher, around
200 000, but with a number of samples per website much lower,
24 per website for their work against 200 per website of our
work. We were also concerned about the data diversity, i.e. ob-
taining many samples over time that are not always equal by
changing DNS resolvers. This guarantees significance of the

results as well as it makes our evaluation closer to real-world
situations.

5. Discussion

During this work, we have observed several contributions
and remarkable ideas:

1. Web browsing can be inferred from IP addresses: this was
the main objective of this work and the model achieved
it with accuracy higher than 90%. It is worth mention-
ing that data plays a key role, so updated and varied data
are required; as we observed with DNS servers. As long
as the training data is representative of the users’ behav-
ior, web browsing activities can be easily inferred. This
proves that, as long as an actor has data about where you
are connecting to, web traffic identification can be easily
achieved.

2. Pay attention to the most popular websites: because
dataset imbalance can be problematic for training, it is use-
ful to use a balanced dataset. However, top domains must

15

0 25 50 75 100 125 150 175 200
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Using xxh32 with v = 256
Using xxh32 with v = 1024
Using xxh32 with v = 4096
Using xxh32 with v = 16384
Using xxh32 with v = 65536
Using xxh32 with v = 262144

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Using xxh32 with v = 256
Using xxh32 with v = 1024
Using xxh32 with v = 4096
Using xxh32 with v = 16384
Using xxh32 with v = 65536
Using xxh32 with v = 262144

Fig. 12. Training curves with different values of hash output size v for the attention model.

0 10 20 30 40 50 60 70
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Without hashing
Using md5 with v = 32768
Using sha1 with v = 32768
Using xxh32 with v = 32768

(a) simple model.

0 25 50 75 100 125 150 175 200
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Without hashing
Using md5 with v = 32768
Using sha1 with v = 32768
Using xxh32 with v = 32768

(b) attention model.

Fig. 13. Training curves with different types of hashes for both simple model and attention model.

be taken into consideration separately, since they are re-
sponsible for the majority of the traffic. It does not matter
if the model is 99% accurate if it does not work for these
domains that represent, in most cases, 90% of the traffic.
Providing a detailed analysis is advisable to know better
how the model works and which popular domains can be
confused.

3. Data augmentation and sampling improve the model: as
we mentioned before, data augmentation is a powerful way
of extending training datasets and teaching the model not
to pay attention to some facts. In this case, we simulate
traffic sampling so that we generate new samples to be in-
corporated into the training set. It makes the model more
resilient to sampling and accurate in all cases, since it al-
lows the learning to be focused on features that are more
likely to happen, even under packet sampling. We also did
study how many packets the model would need to provide

an accurate prediction, which specifies when the model re-
sult is trustworthy. This answers our concerns with respect
scalability: the model can scale easily for a huge number
of websites.

4. Hashing trick makes the model scalable: we have shown
that hash output size (v) is an important parameter regard-
ing collisions and thus performance. The larger v, the
fewer collisions and better performance. However, this
benefit from increasing v further and further comes with
a cost in computational resources for training and predic-
tion. It has been shown that, even for relatively small val-
ues of v, the model managed to achieve 90% accuracy,
meaning that one can keep this parameter low, allowing
the model to fit in many commodity devices, even for large
datasets with thousands of websites and millions of differ-
ent IP addresses.

5. There is no perfect model: in general, both models achieve

16

a similar performance, higher than 90% of accuracy. The
simple model is more fine-tuned and its cost-performance
trade-off is magnificent, making it a great alternative in re-
ally demanding scenarios or where computation resources
such as GPUs are scarce. On the other hand, self-attention
mechanism takes more time to achieve a similar level, but
we have observed that this model is more resilient to gaps
in the information (compared to itself), like when packet
sampling is applied. In the end, it is all about choosing the
right solution for each scenario while analyzing the afore-
mentioned factors.

However, there are few drawbacks about this approach:
1. Periodical re-training is needed: given the dynamic na-

ture of many IP addresses, models are expected to drop
performance as time passes since IP addresses change. A
better solution would be to use domain names when they
are available. Authors in [24, 20] already covered these
solutions, but they are prompt to disappear with the advent
of encrypted DNS (e.g. DoH) and eSNI. Consequently,
the only possibility is to assume the costs of re-training
the model periodically. How performance decreases as
the data becomes older and older has already been stud-
ied in [22, 20], stating that data normally starts to affect
performance after one week, but most of the data still was
valid even after two months.

2. Data of quality is key: we observed that the results vary
significantly if the DNS server changes. There are other
variables such as the location, the user agent or the type
of device that may affect the results. Therefore, obtaining
high quality datasets is required to get a system that works
on general setups. Most of the effort should be put on
building a highly curated dataset instead of the fine-tuning
of the models.

3. NAT adds noise: in our approach, we assumed that users
may access different websites, but never concurrently.
This might be true for most of the households, but when a
home connection might be providing internet connection
to tens of devices, the probability of two devices accessing
several websites at the same time increases. Also, some
ISPs employ Carrier-Grade NAT (CG-NAT), hiding many
customers behind a single IP address, making this proba-
bility really close to 1. This could be solved either by as-
suming your model outputs a percentage of usage instead
of a probability of visiting, which requires a dataset with
tuples of websites being visited at the same time; or by
separating users traffic. Being the former more reasonable
in some contexts, the latter has also some state of the art in
other fields such as signal processing, where distinguish-
ing several speakers in an audio signal is called speaker
diarization.

These obstacles open a brand-new research line in how to build
these datasets. It implies realistic user behavior simulation and
user device emulation, as well as external variables to be con-
sidered. Besides, they should be built cost-effectively, so in-
stead of doing thousands of website visits, generative mod-
els, such as Generative Adversarial Networks [51] or diffusion

models [52], can be the solution to incorporate many factors
and increase the diversity of the data while keeping the cost of
obtaining new data under control.

6. Conclusion

Along this work, we have presented a model that effectively
identifies web browsing activities just using IP addresses. As
we motivated, this means that there are potentially many ac-
tors that are able to use your data without your consent. This
should not only concern users, but also ISPs that may be al-
ready providing this data to third-parties. In fact, even some of
the best alternatives presumably, such as VPNs, to protect your
data and your privacy cannot totally bypass this, which means
that we must be aware of this possibility.

The obtained results also proved that the model is scalable,
as the number of domains increase, and it can be deployed in
a real environments thanks to the good performance for low
values of the hash output size v. Furthermore, the model can
be easily scalable as the number of customers increases, given
that the model can be deployed in several points of the moni-
toring infrastructure, each of them focused on a portion of all
the customers. Some drawbacks have also been covered, but
bear in mind that most of them can actually be solved with just
a highly-curated training dataset.

In order to overcome this problem and avoid traffic identi-
fication, we foresee the following countermeasures depending
on which side of the connection you are. From the user per-
spective, if the user navigates through Tor or a proxy chain, the
browser should use a different exit node for each connection. In
this way, it becomes more difficult to guess which website the
user is visiting. Also, the user can employ a noise generator–
i.e. a program or browser plugin [53] that generates random
web browsing activities–to make your data harder to analyze
and therefore less valuable.

Some service providers may want to provide extra protection
to their users. However, on this side, actions are pretty lim-
ited. Servers should avoid any static IP address and change IP
addresses within a large set every short period of time so that
it becomes nearly impossible to train any model before the IP
address changes again. This increases management costs, and
routing issues may arise, but they are left with little alternative.

Yet, there are still some open related research lines. First, it
is interesting to study the lifespan—validity over time—of the
datasets. One of the aforementioned issues that potentially may
face these approaches is to determine when the training data is
very old to be representative of the real-world data. Selectively
choosing the websites that change a lot over time in contrast to
the ones that remain mostly static could also be key to provide a
cost-effective update of the training dataset. As mentioned be-
fore, obtaining cost-effectively a good dataset is key to achieve
traffic identification.

Besides, other data sources could be considered, especially,
how SDN can enrich this model. In particular, it is interesting to
see how network equipment can be programmed to send to the
monitoring platform the first packet of each connection. There-
fore, data reduction is optimal, and it is horizontally scalable.

17

Finally, this methodology can also be applied to mobile apps.
Applications can be identified using their interactions at the IP
level.

Acknowledgments

This research has been partially funded by the Spanish State
Research Agency under the project AgileMon (AEI PID2019-
104451RB-C21) and by the Spanish Ministry of Science, In-
novation and Universities under the program for the training of
university lecturers (Grant number: FPU19/05678).

References

[1] D. Perdices, J. E. López de Vergara, I. González, Assessing the limits of
privacy and data usage for web browsing analytics, in: 2021 17th Interna-
tional Conference on Network and Service Management (CNSM), 2021,
pp. 173–179. doi:10.23919/CNSM52442.2021.9615560.

[2] European Commission, The European Data Strategy (2020).
URL https://ec.europa.eu/commission/presscorner/

detail/en/fs_20_283

[3] U.S. Government, Federal Data Strategy: Leveraging Data as Strategic
Asset (2021).
URL https://strategy.data.gov/overview/

[4] L. Liu, The Rise of Data Politics: Digital China and the World, Studies
in Comparative International Development 56 (1) (2021) 45–67. doi:

10.1007/S12116-021-09319-8/TABLES/1.
[5] European Commission, How do EU citizens manage their personal data

online? (2020).
URL https://ec.europa.eu/eurostat/web/

products-eurostat-news/-/EDN-20210128-1

[6] D. Benjamin, Using TLS 1.3 with HTTP/2, RFC 8740 (Feb. 2020). doi:
10.17487/RFC8740.

[7] P. E. Hoffman, P. McManus, DNS Queries over HTTPS (DoH), RFC 8484
(10 2018).

[8] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, P. E. Hoffman,
Specification for DNS over Transport Layer Security (TLS), RFC 7858
(May 2016). doi:10.17487/RFC7858.

[9] R. Dingledine, N. Mathewson, P. Syverson, Tor: The Second-Generation
onion router, in: 13th USENIX Security Symposium (USENIX Security
04), USENIX Association, San Diego, CA, 2004, pp. 1–17.

[10] Brave Software Inc., Brave Browser: Secure, Fast and Private Web
Browser, https://brave.com/, accessed: 2022-03-07.

[11] The Hacker News, Over 25% Of Tor Exit Relays Spied On
Users’ Dark Web Activities, https://thehackernews.com/2021/

05/over-25-of-tor-exit-relays-are-spying.html, accessed:
2021-05-19.

[12] The Tor Project, Tor security advisory: exit relays running
sslstrip in May and June 2020, https://blog.torproject.org/

bad-exit-relays-may-june-2020, accessed: 2021-05-19.
[13] B. Claise, Cisco Systems NetFlow Services Export Version 9, RFC 3954

(2004).
[14] P. Aitken, B. Claise, B. Trammell, Specification of the IP Flow Informa-

tion Export (IPFIX) Protocol for the Exchange of Flow Information, RFC
7011 (Sep. 2013). doi:10.17487/RFC7011.

[15] X. Hu, N. Sastry, What a Tangled Web We Weave: Understanding the In-
terconnectedness of the Third Party Cookie Ecosystem, in: WebSci 2020
- Proceedings of the 12th ACM Conference on Web Science, Associa-
tion for Computing Machinery, Inc, 2020, pp. 76–85. doi:10.1145/

3394231.3397897.
[16] I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, A. Nucci, Dns

to the rescue: Discerning content and services in a tangled web, in: Pro-
ceedings of the 2012 Internet Measurement Conference, IMC ’12, Asso-
ciation for Computing Machinery, New York, NY, USA, 2012, pp. 413—
-426. doi:10.1145/2398776.2398819.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, I. Polosukhin, Attention is all you need, in: Proceedings of the

31st International Conference on Neural Information Processing Systems,
NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 6000—
-6010.

[18] Amazon Web Services, Alexa - Top sites (2020).
[19] A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernandes,

D. Sadok, A survey on internet traffic identification, IEEE Communica-
tions Surveys and Tutorials 11 (3) (2009) 37–52. doi:10.1109/SURV.
2009.090304.

[20] J. L. Garcı́a-Dorado, J. Ramos, M. Rodrı́guez, J. Aracil, DNS weighted
footprints for web browsing analytics, Journal of Network and Computer
Applications 111 (2018) 35–48.

[21] M. Trevisan, I. Drago, M. Mellia, M. M. Munafo, Towards web ser-
vice classification using addresses and DNS, in: 2016 International Wire-
less Communications and Mobile Computing Conference, IWCMC 2016,
IEEE, 2016, pp. 38–43.

[22] N. P. Hoang, A. A. Niaki, P. Gill, M. Polychronakis, Domain name en-
cryption is not enough: privacy leakage via IP-based website fingerprint-
ing, Proceedings on Privacy Enhancing Technologies 2021 (4) (2021)
420–440. doi:10.2478/popets-2021-0078.

[23] J. Merlino, P. Rodrı́guez-Bocca, Short-time prediction of dns queries
using deep learning and pre-trained word embedding, in: 2021 XLVII
Latin American Computing Conference (CLEI), 2021, pp. 1–10. doi:

10.1109/CLEI53233.2021.9640221.
[24] D. Perdices, J. Ramos, J. L. Garcı́a-Dorado, I. González, J. E. López

de Vergara, Natural language processing for web browsing analytics:
Challenges, lessons learned, and opportunities, Computer Networks 198
(2021) 108357. doi:10.1016/j.comnet.2021.108357.

[25] M. Trevisan, I. Drago, M. Mellia, H. H. Song, M. Baldi, WHAT: A big
data approach for accounting of modern web services, in: Proceedings of
the 2016 IEEE International Conference on Big Data, IEEE Big Data
2016, IEEE, 2016, pp. 2740–2745. doi:10.1109/BigData.2016.

7840921.
[26] S. Coull, M. Collins, C. Wright, F. Monrose, M. Reiter, On web browsing

privacy in anonymized NetFlows, in: 16th USENIX Security Symposium
(USENIX Security 07), USENIX Association, Boston, MA, 2007, pp.
339–352.

[27] M. Trevisan, F. Soro, M. Mellia, I. Drago, R. Morla, Does domain name
encryption increase users’ privacy?, SIGCOMM Comput. Commun. Rev.
50 (3) (2020) 16–22.

[28] S. Bhat, D. Lu, A. Kwon, S. Devadas, Var-CNN: A Data-Efficient Website
Fingerprinting Attack Based on Deep Learning, Proceedings on Privacy
Enhancing Technologies 2019 (4) (2019) 292–310.

[29] A. Morichetta, M. Mellia, LENTA: Longitudinal exploration for network
traffic analysis from passive data, IEEE Transactions on Network and Ser-
vice Management 16 (3) (2019) 814–827.

[30] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn, F. Abdessamia,
Network Traffic Classification techniques and comparative analysis using
Machine Learning algorithms, in: Proceedings of the 2016 2nd IEEE In-
ternational Conference on Computer and Communications, ICCC 2016
- Proceedings, IEEE, 2017, pp. 2451–2455. doi:10.1109/CompComm.
2016.7925139.

[31] N. Hubballi, M. Swarnkar, M. Conti, BitProb: Probabilistic Bit Sig-
natures for Accurate Application Identification, IEEE Transactions on
Network and Service Management 17 (3) (2020) 1730–1741. doi:

10.1109/TNSM.2020.2999856.
[32] S. Rezaei, B. Kroencke, X. Liu, Large-Scale Mobile App Identification

Using Deep Learning, IEEE Access 8 (2020) 348–362. doi:10.1109/

ACCESS.2019.2962018.
[33] X. Wang, S. Chen, J. Su, Automatic mobile app identification from

encrypted traffic with hybrid neural networks, IEEE Access 8 (2020)
182065–182077. doi:10.1109/ACCESS.2020.3029190.

[34] T. Shapira, Y. Shavitt, FlowPic: Encrypted Internet Traffic Classifica-
tion is as Easy as Image Recognition, in: Proceedings of the 2019 IEEE
Conference on Computer Communications Workshops, INFOCOM WK-
SHPS 2019, IEEE, 2019, pp. 680–687. doi:10.1109/INFCOMW.2019.
8845315.

[35] M. Wang, K. Zheng, D. Luo, Y. Yang, X. Wang, An Encrypted Traffic
Classification Framework Based on Convolutional Neural Networks and
Stacked Autoencoders, in: Proceedings of the 2020 IEEE 6th Interna-
tional Conference on Computer and Communications, ICCC 2020, IEEE,
2020, pp. 634–641. doi:10.1109/ICCC51575.2020.9344978.

http://dx.doi.org/10.23919/CNSM52442.2021.9615560
https://ec.europa.eu/commission/presscorner/detail/en/fs_20_283
https://ec.europa.eu/commission/presscorner/detail/en/fs_20_283
https://ec.europa.eu/commission/presscorner/detail/en/fs_20_283
https://strategy.data.gov/overview/
https://strategy.data.gov/overview/
https://strategy.data.gov/overview/
http://dx.doi.org/10.1007/S12116-021-09319-8/TABLES/1
http://dx.doi.org/10.1007/S12116-021-09319-8/TABLES/1
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20210128-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20210128-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20210128-1
https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20210128-1
http://dx.doi.org/10.17487/RFC8740
http://dx.doi.org/10.17487/RFC8740
http://dx.doi.org/10.17487/RFC7858
https://brave.com/
https://thehackernews.com/2021/05/over-25-of-tor-exit-relays-are-spying.html
https://thehackernews.com/2021/05/over-25-of-tor-exit-relays-are-spying.html
https://blog.torproject.org/bad-exit-relays-may-june-2020
https://blog.torproject.org/bad-exit-relays-may-june-2020
http://dx.doi.org/10.17487/RFC7011
http://dx.doi.org/10.1145/3394231.3397897
http://dx.doi.org/10.1145/3394231.3397897
http://dx.doi.org/10.1145/2398776.2398819
http://dx.doi.org/10.1109/SURV.2009.090304
http://dx.doi.org/10.1109/SURV.2009.090304
http://dx.doi.org/10.2478/popets-2021-0078
http://dx.doi.org/10.1109/CLEI53233.2021.9640221
http://dx.doi.org/10.1109/CLEI53233.2021.9640221
http://dx.doi.org/10.1016/j.comnet.2021.108357
http://dx.doi.org/10.1109/BigData.2016.7840921
http://dx.doi.org/10.1109/BigData.2016.7840921
http://dx.doi.org/10.1109/CompComm.2016.7925139
http://dx.doi.org/10.1109/CompComm.2016.7925139
http://dx.doi.org/10.1109/TNSM.2020.2999856
http://dx.doi.org/10.1109/TNSM.2020.2999856
http://dx.doi.org/10.1109/ACCESS.2019.2962018
http://dx.doi.org/10.1109/ACCESS.2019.2962018
http://dx.doi.org/10.1109/ACCESS.2020.3029190
http://dx.doi.org/10.1109/INFCOMW.2019.8845315
http://dx.doi.org/10.1109/INFCOMW.2019.8845315
http://dx.doi.org/10.1109/ICCC51575.2020.9344978

18

[36] B. Sun, W. Yang, M. Yan, D. Wu, Y. Zhu, Z. Bai, An Encrypted Traf-
fic Classification Method Combining Graph Convolutional Network and
Autoencoder, in: Proceedings of the 2020 IEEE 39th International Perfor-
mance Computing and Communications Conference, IPCCC 2020, IEEE,
2020, pp. 1–8. doi:10.1109/IPCCC50635.2020.9391542.

[37] R. Moreira, L. F. Rodrigues, P. F. Rosa, R. L. Aguiar, F. D. O. Silva,
Packet Vision: A convolutional neural network approach for network traf-
fic classification, in: Proceedings of the 2020 33rd SIBGRAPI Confer-
ence on Graphics, Patterns and Images, SIBGRAPI 2020, IEEE, 2020,
pp. 256–263. doi:10.1109/SIBGRAPI51738.2020.00042.

[38] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Mobile encrypted traf-
fic classification using deep learning: Experimental evaluation, lessons
learned, and challenges, IEEE Transactions on Network and Service Man-
agement 16 (2) (2019) 445–458. doi:10.1109/TNSM.2019.2899085.

[39] C. Freksen, L. Kamma, K. G. Larsen, Fully understanding the hashing
trick, in: Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, Curran Associates Inc., Red
Hook, NY, USA, 2018, pp. 5394––5404.

[40] Transformers without Tears: Improving the Normalization of Self-
Attention, Zenodo, 2019.

[41] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X. Tang,
Residual attention network for image classification, in: 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
6450–6458.

[42] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network
for scene segmentation, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3141–3149.
doi:10.1109/CVPR.2019.00326.

[43] S. Zeng, F. Graf, C. Hofer, R. Kwitt, Topological attention for time series
forecasting, in: A. Beygelzimer, Y. Dauphin, P. Liang, J. W. Vaughan
(Eds.), Advances in Neural Information Processing Systems, 2021, pp.
1–12.

[44] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, software available from ten-
sorflow.org (2015).
URL https://www.tensorflow.org/

[45] F. Chollet, Keras (2015).
[46] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann

machines, in: Proceedings of the 27th International Conference on Ma-
chine Learning (ICML-10), 2010, pp. 807–814.

[47] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in:
Proceedings of the 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track, 2015, pp. 1–13.

[48] K. Ruth, A. Fass, J. Azose, M. Pearson, E. Thomas, C. Sadowski, Z. Du-
rumeric, A world wide view of browsing the world wide web, in: Pro-
ceedings of the 22nd ACM Internet Measurement Conference, IMC ’22,
Association for Computing Machinery, New York, NY, USA, 2022, p.
317–336. doi:10.1145/3517745.3561418.
URL https://doi.org/10.1145/3517745.3561418

[49] J. G. Webster, S.-F. Lin, The internet audience: Web use as mass behavior,
Journal of Broadcasting & Electronic Media 46 (1) (2002) 1–12. arXiv:
{https://doi.org/10.1207/s15506878jobem4601_1}, doi:10.
1207/s15506878jobem4601_1.
URL https://doi.org/10.1207/s15506878jobem4601_1

[50] J. L. Garcia-Dorado, J. A. Hernandez, J. Aracil, J. E. Lopez de Vergara,
F. J. Monserrat, E. Robles, T. P. de Miguel, On the duration and spatial
characteristics of internet traffic measurement experiments, IEEE Com-
munications Magazine 46 (11) (2008) 148–155. doi:10.1109/MCOM.

2008.4689258.
[51] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks, in:
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Weinberger
(Eds.), Advances in Neural Information Processing Systems, Vol. 27, Cur-
ran Associates, Inc., 2014, pp. 1–9.

[52] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-
resolution image synthesis with latent diffusion models (2021). arXiv:

2112.10752.
[53] Angela Grammatas, Noiszy: a browser plugin which generates meaning-

less web-traffic to disguise your real browsing data, https://noiszy.
com, accessed: 2022-03-07.

Daniel PERDICES is researcher and teaching assis-
tant at Universidad Autónoma de Madrid (Spain). He
holds an FPU research grant by the Spanish Ministry
of Science, Innovation and Universities. Previously,
he was an R&D engineer at Naudit HPCN. He re-
ceived the B.Sc. (Hons) degrees in Mathematics and
in Computer Science (2018), the M.Sc. in Math-
ematics (2019) and the M.Sc. in Information and
Communications Technologies (2020) and currently
is a Ph.D. candidate, all at Universidad Autónoma de

Madrid (Spain). He was a visiting scholar in 2022 for three months at Smart-
Data@PoliTO, Politecnico di Torino (Italy). He researches on statistics, math-
ematical modeling, machine learning, network traffic analysis and SDN.

Jorge E. LÓPEZ DE VERGARA is associate pro-
fessor at Universidad Autónoma de Madrid (Spain)
since 2007 and is a partner of Naudit HPCN, which
is a spin-off company that was founded in 2009 and
is devoted to high-performance traffic monitoring and
analysis. He received his M.Sc. and Ph.D. degrees
in Telecommunication Engineering from Universidad
Politécnica de Madrid (Spain) in 1998 and 2003, re-
spectively, where he also held an FPU-MEC research
grant. During his Ph.D., he stayed for 6 months in
2000 at HP Labs in Bristol. He studies network and

service management and monitoring, and has coauthored more than 100 scien-
tific papers on topics related to this field.

Iván GONZÁLEZ received his M.Sc. degree in
Computer Engineering in 2000 and his Ph.D. in Com-
puter Engineering in 2006, both from UAM, Spain.
From October 2002 to October 2006, he was a teach-
ing assistant at the Computer Engineering Depart-
ment of UAM. From November 2006 to January
2008, he was a postdoctoral research scientist at the
High-Performance Computing Laboratory (HPCL),

Electrical & Computer Engineering Department, George Washington Univer-
sity (Washington, DC). He was a faculty member of the NSF Center of High-
Performance Reconfigurable Computing (CHREC) at George Washington Uni-
versity. He is currently associate professor at UAM, where he is teaching
computer-architecture-related courses. He is also partner of Naudit HPCN.
His main research interests are heterogeneous computing (with GPUs, FPGAs,
etc.), parallel algorithms, and performance tuning. Other interests include big
data, machine learning and data analytics.

Luis DE PEDRO is part-time professor at Universi-
dad Autónoma de Madrid (Spain), and president of
Naudit HPCN, a company devoted to high perfor-
mance traffic monitoring and analysis. He received
his M.Sc. and Ph.D. degrees in Telecommunication
Engineering from Universidad Politécnica de Madrid
(Spain) in 1987 and 1992, respectively. He currently
researches on statistical models for network traffic.

http://dx.doi.org/10.1109/IPCCC50635.2020.9391542
http://dx.doi.org/10.1109/SIBGRAPI51738.2020.00042
http://dx.doi.org/10.1109/TNSM.2019.2899085
http://dx.doi.org/10.1109/CVPR.2019.00326
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/3517745.3561418
http://dx.doi.org/10.1145/3517745.3561418
https://doi.org/10.1145/3517745.3561418
https://doi.org/10.1207/s15506878jobem4601_1
http://arxiv.org/abs/{https://doi.org/10.1207/s15506878jobem4601_1}
http://arxiv.org/abs/{https://doi.org/10.1207/s15506878jobem4601_1}
http://dx.doi.org/10.1207/s15506878jobem4601_1
http://dx.doi.org/10.1207/s15506878jobem4601_1
https://doi.org/10.1207/s15506878jobem4601_1
http://dx.doi.org/10.1109/MCOM.2008.4689258
http://dx.doi.org/10.1109/MCOM.2008.4689258
http://arxiv.org/abs/2112.10752
http://arxiv.org/abs/2112.10752
https://noiszy.com
https://noiszy.com

19

Other

google.com

youtube.com
tmall.co

m

baidu.com
qq.com

sohu.com

facebook.com

taobao.com
360.cn

jd.com

amazon.com

yahoo.com

wikipedia.org

weibo.com

sina.com.cn
zoom.us

Predicted domain

Other

google.com

youtube.com

tmall.com

baidu.com

qq.com

sohu.com

facebook.com

taobao.com

360.cn

jd.com

amazon.com

yahoo.com

wikipedia.org

weibo.com

sina.com.cn

zoom.us

Tr
ue

 d
om

ai
n

99.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.04% 0.00% 0.00% 97.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4.08% 0.00% 0.00% 0.00% 0.00% 95.92% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.04% 0.00% 0.00% 0.00% 0.00% 0.00% 97.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

10.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 89.80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Fig. 14. Confusion matrix for most visited domains in Alexa’s World Top 500 for the simple model.

Appendix A. Confusion matrix for the simple model

For the sake of completeness, Figure 14 depicts the confusion
matrix for the top domains according to Alexa.

	Introduction
	State of the art
	Model development
	IP embeddings
	A straightforward approach
	Transformers and the attention mechanism

	Evaluation
	Effect of name resolution
	Detailed view of the most important domains
	Impact of packet sampling
	Impact of hash choice and hash collisions
	Comparison with other tools

	Discussion
	Conclusion
	Confusion matrix for the simple model

