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Abstract

In an Internet arena where the search engines and other digital marketing firms’ revenues peak, other actors have still open opportunities to
monetize their users’ data. After the convenient anonymization, aggregation, and agreement, the set of websites users visits may result in
exploitable data for ISPs. Uses cover from assessing the scope of advertising campaigns to reinforcing user fidelity among other marketing
approaches, as well as security issues. However, sniffers based on HTTP, DNS, TLS or flow-features do not suffice for this task. Modern websites
are designed for preloading and prefetching some contents in addition to embedding banners, social networks’ links, images, and scripts from
other websites. This self-triggered traffic makes it confusing to assess which websites users visited on purpose. Moreover, DNS caches prevent
some queries of actively visited websites to be even sent. On this limited input, we propose to handle such domains as words and the sequences
of domains as documents. This way, it is possible to identify the visited websites by translating this problem to a text classification context and
applying the most promising techniques of the natural language processing and neural networks fields. After applying different representation
methods such as TF-IDF, Word2vec, Doc2vec, and custom neural networks in diverse scenarios and with several datasets, we can state websites
visited on purpose with accuracy figures over 90%, with peaks close to 100%, being processes that are fully automated and free of any human
parametrization.
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1. Introduction

The different actors in the Internet arena observe how users
interact both with service providers and between them while
they browse, chat, download a file or watch a video, among
other activities. Such interactions generate large amounts of
data at different points of measurements and scales. Some
of these actors are exploiting this data with evident success,
whereas others are still in the early stages. For instance, search
engines such as Google and Bing exploit the search queries of
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their users, generating profits of billions of dollars [1]. Also,
marketing companies like SimilarWeb or Amazon’s Alexa [2]
sell browsing statistics gathered through plugins and toolbars.
While these actors are monetizing their data, others such as
ISPs, or DNS proxies/providers have still open opportunities
to take advantage of the value of their data.

Actually, both research and industry have already paid atten-
tion to profile users’ browsing patterns, such as the websites
they visit, as a valued piece of information [3]. As an example,
it becomes apparent that the identification of a competitor at-
tracting the interest among the customers of a given company is
of paramount interest to such a company, so it can react accord-
ingly. Another example is the impact that a certain advertising
campaign achieves in a specific territory or geographical region,
i.e., the set of users in this territory that has accessed a certain
web after being exposed to a marketing campaign. Besides, and
shifting to security issues, the popularity rankings of websites
or the number of visits a website receives can be considered as
a useful detector of anomaly behavior. That is, when unpop-
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ular or non-existing websites tend to be the most visited in a
given network. In this scenario, ISPs have the perfect occasion
to place in the web-analytics marketing arena.

Needless to say, user privacy rights are of paramount impor-
tance, and traffic encryption mechanisms developed in recent
times are key tools to protect users’ data from a wide range of
attacks [4]. In pursuit of a balance between the provision of
a service and data collecting, some governments and agencies,
such as the United Nations or European Union, have promoted
laws to regulate the quantity and nature of the data that is gath-
ered from users [5]. In addition to this, some ISPs follow a
policy of monitoring only those users that voluntarily want to
be part of commercial studies through online forms. In this way,
users that expressly do not desire to be part of studies are not
considered.

In this light, ISPs are collecting anonymized and aggregated
data, which can be used to reconstruct the browsing activity
of the users. To this end, HTTP traffic was traditionally used to
infer the sites visited. However, very soon the research commu-
nity realized that the trivial approach of an HTTP sniffer does
not suffice for this problem, as traffic encryption was already
becoming a common practice [6]. The first answer to this lim-
itation by the research community was to turn its attention to
DNS traffic or TLS’ Server Name Indication (sni) field. Such
a field contains the domain name of the host that the client is
connecting to, and servers use it to negotiate the certificate used
in each session. As another alternative, the research community
focused on how extended Netflow characteristics are useful to
label connections to websites.

Unfortunately, this revealed other significant problems.
Modern websites are designed [7] in such a way that once a
user actively visits a web, many other HTTP and DNS connec-
tions are triggered in the background (e.g., banners, ads, social
networks’ links, Javascript scripts, prefetched and preloaded
links). This makes it difficult to assess whether a website was
visited on purpose or not. Note that this is key to create brows-
ing statistics as HTTP or DNS traffic from no actively visited
websites must not be considered. In addition to this, the DNS
cache clouds the global vision of the sites visited by users as
browsers may access sites using cached addresses this way not
generating DNS queries when websites are actually visited.

In this light, let us remark that the common factor of these in-
put sources is the same: a partial list of domains (including not
only the actively visited website but also others) obtained while
the users browse the Internet. Therefore, we propose to use
any of these sources of the same information according to the
particularities of each specific environment, but avoiding non-
common information or parameters. For example, a potentially
interesting field such as the DNS’s TTL, which stands for the
time that a name and its resolved address is valid, is not con-
sidered for the sake of homogeneity. In fact, TTL values can be
manipulated [8].

Facing this scenario of limited inputs, as a novel approach,
we realized that domains are nothing but words likewise the
lists of domains can be seen as text documents. In this way, we
propose to translate the problem of users’ browsing profiling
into a text classification context. Certainly, with a high number

of classes (the possible visited websites). In particular, some of
the most promising text classification algorithms and our prob-
lem, user browsing profiling, share multiple points in common.
Both use incomplete information and while they aim at learning
word associations to suggest additional words or synonyms for
a partial sentence (e.g., Google’s autocomplete function), we
propose to search for relationships between the list of occur-
rences of website domains, our corpus of text, and the visited
websites to predict. The observation of this link between prob-
lems and the particularities of the limited input of our problem
allows us to approach it with a novel and promising perspec-
tive. Therefore, all the full potential behind areas such as Natu-
ral Language Processing (NLP) and Artificial Neural Networks
(ANNs) have been reviewed for a problem that intuitively does
not seem related.

The results shown throughout this paper confirms the useful-
ness of the approach. We have learned that there is no perfect
model for the problem, but diverse approaches depending on
the availability of processing time, the use of high-performance
resources such as GPUs or Tensor Processing Units (TPUs) for
training models and the number of domains under study (i.e.,
all the Internet or a few domains of interest, for example, only
TV show websites to measure popularity in a marketing cam-
paign). In particular, we highlight the result of techniques, such
as Term Frequency Inverse Document Frequency (TF-IDF) [9],
Word2Vec [10], Doc2vec [11] and a custom neural network
model with weighted accuracy over 90%, often close to 100%
for diverse scenarios and data, being processes full automated
and free of any human parametrization and interaction.

The rest of the paper is organized as follows: in Section 2,
we review the state of the art putting into perspective our con-
tributions. Next, Section 3 defines the problem formally while
Section 4 presents the methodologies used to address it. Af-
terward, Section 5 covers the data acquisition, and Section 6
studies the performance of the set of approaches in such data.
Later, Section 7 discusses the main lessons and contributions of
this work in relation to the results. Finally, Section 8 concludes
the paper and provides some future lines of work.

2. State of the art

We first present the challenges that the Internet community
faces in the task of extracting website visits from traffic mea-
surements. Then, we focus on how novel approaches from the
machine learning field can be useful in this task.

2.1. Traffic measurements for browsing analytic

The inspection of HTTP traffic and, specifically, its field host
was the natural approach to relate traffic to visited websites. For
instance, authors in [12] classify and identify the traffic using
density-based spatial clustering of applications with noise (DB-
SCAN) clustering algorithm over the URLs, building coarse
categories depending on the service such as advertising or video
streaming.

However, the advent of HTTPS rendered this approach use-
less without Man-In-The-Middle proxies, which are unfeasible
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in many deployments due to privacy concerns. As an alterna-
tive, the monitoring community proposed focusing on the DNS
protocol to reveal the traffic behind an HTTPS flow [13, 14]
and then, perform a correlation between DNS and HTTP traf-
fic [15, 7]. Nevertheless, a fraction of users can choose other
DNS servers than those provided by their ISP and the use of
DNS encryption and DNS over HTTPS (DoH) is gaining pop-
ularity [16, 17]. Moreover, most DNS resolvers and clients im-
plement a cache for DNS traffic where the associated IP address
of a given domain name is temporarily stored. As Time To Live
(TTL) for the cache entry can be long [8], chances are that a
point of presence monitoring traffic cannot see clients’ DNS
queries although they are effectively visiting a website.

In this scenario, the Internet community’s attention turned
into the inspection of some fields of HTTPS. Monitoring
HTTPS traffic can provide some insights on the browsed sites
by means of Server Name Indication (sni) field of TLS pro-
tocol. This field contains the name of the host that the client
is connecting to and serves to negotiate the certificate used in
each connection. This information is presented before the TLS
handshake and allows for the coexistence of multiple HTTPS
sites using the same IP address or addresses. Such a scenario
is commonly found on Content Delivery Networks (CDNs) and
cloud and hosting services.

However, the use of sni is not mandatory and although it is in-
frequent may not be used in the HTTPS connection. Moreover,
recently some companies such as Cloudflare and Mozilla1 are
promoting the use of encrypted snis (eSNIs) [18] and Encrypted
Client Hello (ECH) TLS messages which avoids exposing this
kind of information.

As a last bump in the road, the combination of TCP and
TLS is progressively being substituted by UDP and QUIC [19],
which has become the standard transport mechanism for
HTTP/3. Additionally to the problems presented by TLS,
QUIC provides full encryption for all traffic and presents the
0-RTT mechanism whereby previously established connections
may remain cached for a time period, avoiding initial handshake
in case a connection is reactivated in a similar way that DNS
cache does.

An alternative approach to the inspection of HTTP or DNS
traffic for extracting visits has been analyzing network flow
characteristics. This is the case of works such as [3, 18, 20,
21, 22, 23, 24, 25]. Measures such as packet-size frequen-
cies, total-transmission time, and sizes, among other features,
are exploited to correlate flows and websites to identify vis-
its and security vulnerabilities. In addition, features related to
DNS traffic such as location, resolver, platform were useful to
classify. On these flow features, the authors apply different Ma-
chine Learning techniques, such as Support Vector Machine,
k-Nearest Neighbors algorithms or Random Forest. More-
over, Deep Learning techniques such as convolutional neural
networks (CNN) are considered. Mechanisms based on flow-
features on fully encrypted traffic tend to give less accurate
results. For example, an F-Score higher than 0.8 for 80% of

1https://blog.cloudflare.com/encrypted-client-hello/

considered domains according to the authors in [18]. Several
are the downsides of this approach. First, it is characterizing
how web servers and communications work not the websites
themselves. This way, a change in the server network, soft-
ware version, or transport-layer protocol may have an impact
on the model. Second, they need to collect much traffic, which
entails scale and computational problems. Third, they are es-
pecially sensitive to missing or delayed packets. Finally, such
flow-based approaches require flows to expire before any anal-
ysis is carried out.

While the application of all the above-introduced ideas that
circumvent the encryption problem at different levels and re-
turn a list of the domains present in the traffic, the final target
of obtaining the websites that a user intentionally visited is not
an immediate task. Modern websites are currently designed in
such a way that include a set of external resources such as im-
ages, styles, banners, ads or Javascript scripts that generate both
DNS and HTTP traffic without being specifically requested by
the user. With a similar impact, browsers preload content and
prefetch links in order to speed up browsing which, in turn,
generates non-requested traffic. This phenomenon has been re-
ferred to as the tangled web problem [15].

In sum, whether for one cause or another, it is wrong to con-
sider that a user has visited a website, simply, by having found
DNS, HTTP traffic, or equivalent flows from such a website or
domain. While this dysphoria between the purposefulness of a
visit may not be significant for other issues, it is insufficient for
providing precise results for the monetization of the data.

To address this problem, the authors in [26] proposed the
idea of building weighted footprints. A weighted footprint is
the set of domains that are requested upon site loading ordered
by relevance. By searching such a list of domains in traffic, or
a fraction of them according to the observed TTLs, the effec-
tively visited pages were inferred. Although this mechanism
has proven to be successful, three problems arise nowadays.
First, ISPs and other DNS providers are manipulating TTL val-
ues by means of DNS Transparent Proxies [8]. Also regarding
TTL, the use of DNS encryption techniques at the same time
that choosing non-ISP’s servers render TTL unavailable. More-
over, the emulation of the DNS cache or other user-level brows-
ing structures comes together with a high demand for memory
and resources that scales with the number of users of the net-
work and a complex parameterization. These problems reduced
the scope of application of such footprint-based proposals.

As a conclusion and for the sake of the independence of a
specific scenario, we consider that the general input that a web-
site users’ profiling tool may expect is the set of domains that
DNS, QUIC/TLS’ sni or mechanisms based on extended flows
can extract. Over such a common piece of information, we lay
the foundations of our approach: the observation of the fact that
domains can be considered as words and the set of domains as
a document. In this way, we are proposing to translate inputs
into a text classification problem and exploiting the advances in
the natural language processing and artificial neural networks
fields to determine intentional visits to websites.

https://blog.cloudflare.com/encrypted-client-hello/
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2.2. Natural Language Processing techniques

NLP is a centenary field that still attracts attention, where the
most novel machine learning techniques are significantly con-
tributing. Since the early attempts at the first half of the XX
century, the first setback was the problem of having categori-
cal variables with a potentially unlimited number of values, the
well-known curse of dimensionality phenomenon. Soon, the re-
search community agreed that the key was to build some kind
of smart document representation, e.g., a low-dimensional vec-
tor of characteristics, on which, subsequently, apply the most
diverse set of methods to solve a classification or regression
problem [27]. In this context, classical approaches such as Bag
of Words [28] (BoW) representation arise, in which documents
are represented just as a set of words along with the frequencies
of each word in the sentence. Similarly, TF-IDF is built on top
of the same representation; it only considers the frequency of
the words and not the order, but with a more complex weight-
ing procedure whereby the concept of corpus and collection of
documents were introduced. This idea was particularly useful
for designing Information Retrieval (IR) systems such as search
engines where documents have to be found and ranked with re-
spect to the relevance of the document [29]. Lately, this proved
to be a useful and simple approach but not powerful enough to
fully capture the meaning of a sentence, where order and con-
text play an important role.

Modern representations, known as embeddings, aim at cap-
turing both this idea of relevance and other important facts such
as the order and the context of a word. Word2vec [10] is one of
the most prominent unsupervised algorithms that creates a vec-
tor representation using the context of a word. The idea of the
authors was in fact that if two words can fit in the same place
of a sentence, they must be similar in some sense. As a further
refinement, Doc2vec [11] was proposed as is an extension to-
wards documents. This way, this concept focuses on creating
vector representations of sentences, paragraphs or documents,
rather than lists of ungrouped sentences. This very same idea
has been extended to very different fields such as graphs [30] or
user modeling [31].

To incorporate order into such embedding, recurrent neural
networks emerged as an option. In particular, Long Short-Term
Memory cells [32] are the usual approach to process sequences
of texts or time series. These kinds of models employ feedback
connection to retain a memory or state that is trained to capture
the structure of sequences, which is significantly useful for text
generation [33], automatic translation [34], or sentiment analy-
sis [35]. All the above-introduced mechanisms have been con-
sidered in the process of this work and given its relevance, they
will be further explained in our particular context of utilization
in the next section.

Finally, we remark that NLP and related fields have recently
begun to be applied in the area of communications. As some ex-
amples, the authors in [36] searched for anomalous patterns in
HTTP by means of a word2vec approach. Similarly, in [37] is
studied how to recognize identical users across different social
media platforms. NLP approaches were put into practice to find
relationships between the words, categories, and users. In [38],

the authors explore a method for detecting abnormal comments
in e-commerce and review sites. Focusing on DNS-based ap-
plications, the authors in [39] have applied embeddings to sep-
arate malicious DNS queries from regular ones. In particular,
they aim at detecting botnets by querying for pseudo-random
domains to bypass black-list security mechanisms in data exfil-
tration scenarios.

3. Problem statement

The problem that we address is to determine if a user has
visited a given website on purpose in a given time interval by
exploiting the sources of information available on the heteroge-
neous Internet traffic. In such a statement, two key points stand
out: the available information and the intentionality of the web-
site visits.

Regarding the former, given the previously described state-
of-the-art challenges, the following sources of information for
gathering website domains are viable:

1. The field host of HTTP when it is not encrypted or HTTP
proxy data is available.

2. The qname fields of DNS both question and answer when
they are not encrypted or the logs of the ISPs’ DNS server
are available.

3. The TLS/QUIC field sni when certificates are negotiated
in each connection providing that it is not encrypted.

4. After constructing extended-features flows on the full traf-
fic aggregate, to use them to label connections and do-
mains by inference with a given precision.

We note that the diversity of these sources will provide sig-
nificant audience coverage, while the specific number will de-
pend on users’ own configuration. That is, the set of users that
after changing ISP’s DNS server and encrypt this traffic and
choosing a browser that encrypts esni field (e.g., Tor) visits a
HTTPS website assuming that traffic aggregate can be gathered
(for computational or storage reasons, for example) will com-
prise the uncovered audience. However, while some users may
both encrypt DNS connections and pick a DNS server differ-
ent from the ISP’s one, the majority of users do not. Similarly,
the possibility of finding encrypted sni is low today. Accord-
ing to [18], esni fields were mostly absent in their measurement
campaign. Anyhow, some limitations in audience coverage can
be simply equivalent to the impact that those search engines that
guarantee not to exploit users’ data, such as DuckDuckGo [40],
have on Google search engine’s coverage. Even more, cover-
age can be directly limited simply due to the fact that operators
allow users to demand not to be monitored.

This way, regardless of the particularities, the common in-
put data on which the methods can be applied is a sequence of
domain names such as:

{abs.twimg.com, video.twimg.com, twitter.com, ...}, (1)

which is the one a user generates when Twitter is visited.
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Formally, let D be our vocabulary, i.e., the set of all domains.
In addition, all the possible sequences may have many more el-
ements outside D, all these words, which are essentially strings
gathered in the traffic, will be called S. The first issue is the di-
mension of D. Typically, classification problems consider only
a few classes, but, in this case, the number of classes is poten-
tially infinite. Furthermore, the different subdomains we use
as predictors are also potentially infinite and they come in se-
quence with no fixed length. Here is an example of what our
model f should do

{abs.twimg.com, video.twimg.com, twitter.com, ...}
f
−→ twitter.com (2)

In order to properly specify the problem, we will call the se-
quence of subdomains S d, where S d = {si}

N(d)
i=1 , the domain

is d ∈ D, and N(d) is the length of the sequence, which de-
pends on the domain. Although this sequence S d may seem
constant, we will see cases where there is some random behav-
ior, mainly two cases: first, the domains are not queried due
to cache effects, persistent connections or 0-RTT mechanism,
such as what happens in this example

{abs.twimg.com, twitter.com, ...}
f
−→ twitter.com (3)

and, second, some parts of the domain names might be random,
like

ipv4-c070-mad001-ix.1︸                        ︷︷                        ︸
random part

. oca.nflxvideo.net︸                ︷︷                ︸
relevant part

, (4)

where the first piece is just a random string related to the cur-
rent local CDN that we are connecting to, and the rest totally
identifies the traffic since it is a Netflix domain.

It may be thought to be an easy problem as the main domain
d is likely part of S d, but the problem is that, for other domain
d′, it may also happen that d ∈ S d′ . Here is emerging the sec-
ond key point of the posed problem, not all the gathered traffic
comes from deliberate visits.

For instance, Facebook appears in many other pages since it
is always referenced whenever a button of “Sign in with Face-
book” is placed without an intentional visit by the user. This
makes the problem way more difficult and, unfortunately, is
more common than expected as the previous section stated.
That is, unsolicited traffic is usually triggered by banners, ads,
Javascript scripts as well as by prefetched and preloaded links
techniques in most of the current websites.

To sum up, we look forward to some classifier

f : SN → [0, 1]|D|

S = {s1, ...sN} → f (S ) = [P(d|S d = S )]d∈D (5)

where S is the input sequence, such as
{abs.twimg.com, video.twimg.com, twitter.com, ...}, N is
the maximum length of the sequence, |D| the number of
domains we consider and P(d|S d = S ) the probability that the
user was browsing site d given that the sequence was S .

4. Methodologies

This section describes several methodologies to solve the
problem of (2) and (5), which is essentially a text classifica-
tion problem. Nowadays, NLP fueled the state of the art of text
processing and classification based on ANN, so this section will
cover both classical techniques and modern approaches to deal
with this.

4.1. Classical approach: term frequency and inverse document
frequency

In this very first approach, we want to think of this as a rec-
ommendation algorithm or a search engine [41], where we aim
at providing a definition for the similarity or distance between
two sequences. For that purpose, it is even more useful to have
a full representation in a metric space, since we can train a clas-
sifier on this space, such as k-Nearest Neighbors (k-NN) or a
Multi-Layer Perceptron (MLP). We have chosen the former as
an example of a simple classifier that allows us to benchmark
solely the quality of the embedding, and the other as a powerful
classifier able to fit further complicated patterns. Other classi-
fiers can also be employed and performance is expected to be
somewhere in the middle between these two classifiers. For in-
stance, Support Vector Machines (SVMs) are known to have
also good performance, but they also suffer from performance
problems when the number of classes is very large [42]—as in
this case—since they are binary classifiers that rely on either
the one-vs-one strategy or the one-vs-rest strategy.

As a training set, we use, at least, a sample sequence of each
domain that we intend to identify. For each document we want
to classify, we assign the class or domain of the nearest neigh-
bor (if k = 1, if we have more samples, we can use k = 3 or
k = 5) or the one given by the MLP classifier.

As mentioned, both need a metric space, in this case, the TF-
IDF [9] methodology provides one. First, we define TF as

TF(s, S d) =

1 + log2 freq(s, S d) if freq(s, S d) > 0
0 otherwise

(6)

and IDF as

IDF(s) = log
|D| + 1
|Ds| + 0.5

(7)

where Ds = {d ∈ D : s ∈ S d}, i.e. the domains whose sequences
contain s. Then, for each d ∈ D, we define vd as the vector

vd = [TF(s, S d) · IDF(s)]s∈S (8)

As we see, vd is a vector with infinite dimension. This would
be problematic, but, the number of non-zero terms is finite due
to the form of TF(s, S d). In order to measure the similarity
between two domains, we use either the Euclidean distance or
the cosine distance defined as simply the cosine of the angle
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between the vectors vd and vd′ ,

sim(d, d′) = cos(vd, vd′ )

=
vd · vd′

|vd ||vd′ |

=

∑
s∈S TF(s, S d)TF(s, S d′ )IDF2(s)√∑

s∈S TF(s, S d)2IDF2(s)
√∑

s∈S TF(s, S d′ )2IDF2(s)
(9)

As we see, the sum of the scalar product and the norm does
only involve the non-zero terms, so, in fact, the dimension of S
does not impact the algorithm, but the performance depends on
the length of the sequence. To use the TF-IDF representation
properly, a sparse matrix is usually employed where only non-
zero terms are stored. These sparse vectors can be fed into other
supervised methods such as an MLP classifier.

4.2. Modern approaches: neural networks
Sequence modeling, both in time series and text processing,

is one of the areas where neural networks excel. In this case, we
propose to follow a similar approach to neural networks that are
able to classify texts or paragraphs (in our case, S d) into cate-
gories (in our case, the domain d). Two approaches will be
covered: the first one is based on the construction of an embed-
ding based on context and the second one is a direct approach
that exposes an end-to-end neural network model working.

Prior to the models, we highlight that neural networks do not
work directly with strings as TF-IDF does; they rely on building
first a vocabulary. This vocabulary is a mapping of each word to
a number. Due to the dimensionality of the data, normally the
vocabulary is limited and less frequent words are considered as
OOV (Out of Vocabulary) tokens. In addition, other tokens are
usually added as the start of the sequence, end of the sequence,
or padding token. These last tokens solve the problem of vari-
able length of the sequence, since neural network only works
with inputs of fixed dimension.

4.2.1. Unsupervised embeddings: Word2Vec and Doc2Vec
First, in order to understand Word2Vec, it is necessary to

understand the two techniques used to perform the algorithm:
Continuous Bag of Words architecture and Skip-Gram. Both
architectures rely on the same concept: an artificial target vari-
able to train the neural network.

Continuous Bag of Words (CBoW): In this first case, we build
sequences where we delete an element, for instance, in se-
quence S = s1, . . . , sN , we call S i to the sequence without si

and the idea is to train a neural network so that fφ(S i) = si,
using some classification loss functions such as the logarithm
of the cross-entropy. Once the neural network is trained, we
only need to specify the embedding. To this end, we use the
same approach as the AE, a hidden layer of size K. Normally,
since these networks can easily have millions of parameters
(≈ |S| × Sequence length × K), it is recommended to keep the
architecture as simple as possible and usually it is just a hidden
layer and an output layer with a soft-max activation function.
Figure 1 shows the architecture of the CBoW.

si−m

si−1

si+1

si+m

...

...

Y1

Yk

... P̂(si)

Input
layer Embedding

Output
layer

Fig. 1. Continuous bag of words architecture

Skip-Gram: As before, we build an artificial target to pre-
dict. In this case, the approach is completely the opposite, just
with the information of one word si, we try to guess the con-
text S i, i.e. fφ(si) = S i. In terms of parameters, this problem
looks heavier and, in fact, it is known to be slower in terms of
convergence than CBoW but it also results in better representa-
tions. As before, a single hidden layer is usually considered to
avoid an excessive number of parameters. Figure 2 shows the
architecture of the Skip-Gram network.

si

Y1

Yk

...

P̂(si−m)

P̂(si−1)

P̂(si+1)

P̂(si+m)

...

...

Output
layerEmbedding

Input
layer

Fig. 2. Skip-Gram architecture using a context of size 2m

Once the embedding is trained and ready, for each word, we
have a number of Rk. Given this, now, the problem is just a
classification problem in Rk with many classes. As long as we
have enough samples to train a classifier, we will be solving the
problem. In order to compare the obtained result with incoming
architectures, we use the same classifiers as before.

Once word2vec methods are clear, it is easier to follow the
doc2vec approximation. As before, there are two possible ap-
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proximations: Paragraph Vector-Distributed Memory (PV-DM)
and Paragraph Vector-Distributed Bag of Words (PV-DBoW).

The first case, PV-DM, is an extension of CBoW. For each
word, we compute the representation using a neural network in
Figure 3. Once all vectors are computed for every word based
on some tags, the word itself, and the context, the resulting em-
bedding is concatenated or averaged in a final vector that repre-
sents the whole paragraph. Tags act as a way of adding domain
information to the network, so tags weight matrix encodes an
embedding of the tags.

si−m

si−1

si+1

si+m

YTags

...

...

Y1

Yk

... P̂(si)

Input layer Hidden
layer Output layer

Fig. 3. Fundamental unit for the distributed memory model for paragraph vector
(PV-DM).

The second case, PV-DBoW, follows an analogous procedure
than skip-gram, but instead of creating the context from the cen-
ter word, it is performed with the tags. Figure 4 explains this
architecture. Once the network is trained, the likelihood of the
observed words can be computed to see from new samples the
estimated probabilities of belonging to a class.

Implementation of all methods can be found in the Python
library for topic modeling gensim [43].

4.2.2. Custom neural networks: embedding layer and direct
approach with recurrent neural networks

Although the usual approach to text processing is unsuper-
vised, we have categories available so we can create a classifier
directly. Thus, the objective now is to create a direct model
based on neural networks. The architecture is shown in Fig-
ure 5.

In this case, we use an embedding layer to represent the data
first in a dense way, instead of a sparse representation. An em-
bedding layer [44] of output size k is a function that converts
each s ∈ S into a trainable weight, this is:

emb : S→ Rk

s→ wi (10)

Tags

Y1

Yk

...

P̂(si−m)

P̂(si)

P̂(si+m)

...

...

Output
layerEmbedding

Input
layer

Fig. 4. Distributed bag of words model for paragraph vector (PV-DBoW).

st

st−1

st−m+1

st−m

...
...

...
... P̂(d)

Input layer
+

Embedding

Recurrent
hidden
layer

More
hidden
layers

Output layer

Fig. 5. Direct approach to text-classification using a RNN

where {wi}
|S|
i=1 are trainable weights. Also, if |S| is too large to

be practical, it is possible to use a hash function to reduce the
number of parameters. This is known as the hashing trick [45].
Bear in mind that this embedding operator is exactly the same
for each word, no matter the position, meaning that the number
of parameters of this layer is proportional to the dimension of
the input |S| and the desired output dimension.

Next, a recurrent layer, in particular, an LSTM layer, treats
the input as a sequence. If this is not done, the input will be
treated as a vector. This means that having the whole sequence
of subdomains but the first one would lead to a completely dif-
ferent vector, whereas, with LSTM cells, neural networks can
learn patterns in the sequence.

Another possibility is to eliminate the complexity of a recur-
rent layer and aggregate the results of each embedding. Fig-
ure 6 presents this architecture. The aggregation can be ei-
ther one that preserves the order such as concatenation or one
that ignores the orders, such as the maximum or the sum. Al-
though this model is weaker than the previous one, it is impor-
tant to consider that training RNN can be extremely challenging
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st

st−1

st−m+1

st−m

...
Agg...

... P̂(d)

Input layer
+

Embedding
Aggregation

More
hidden layers Output layer

Fig. 6. Direct approach to text-classification using an ANN with custom em-
beddings

in many environments, especially with the absence of specific
hardware designed for them, such as TPUs.

5. Data acquisition and preprocessing

Let us pay attention to the data to train the neural networks.
For that purpose, the authors of [26] built a system that is
composed of a capture engine filtering DNS and a number of
web browsers that automatically access a list of objective do-
mains simulating desktop and mobile environments (by chang-
ing, user-agent field) in several operating systems.

This system, hereinafter called the “robot”, is used to query
the information for a list of domains, typically tops of popu-
lar websites or sets of domains of relevance for a client, e.g.,
stores or telecommunications companies. The robot provides a
record that includes much more information than the performed
DNS queries, e.g., the Time-To-Live or the server. Neverthe-
less, these extra attributes will not be used to feed the neural
network, since we pursue to homogenize the input data for dif-
ferent scenarios, and not all of them can provide such extra
attributes. In other words, the robot carries out measurement
campaigns assuming sources of information such as sources 2
and 3, previously defined in Section 3. Also, the validity and
representativeness of data have already been assessed in [26].

Once we have acquired our dataset, we need to adapt it to be
fed into a neural network. The first step is to build a vocabu-
lary. The vocabulary models S by adding two extra tokens or
words and eliminating the least used ones. So, the vocabulary
will be called Ŝ ⊂ S∪{OOV, BLK}, where OOV and BLK stand
for Out-Of-Vocabulary token and Blank token respectively. The
first one is used whenever an element in S is not in Ŝ and the
second one is used when a sequence is shorter than the maxi-
mum allowed by the neural network.

Once this is done, we map each word to a number. This can
be done through a one-hot encoding (so each word is mapped
to a number in {0, 1} ˆ|S|) or by a simple hashing (so each word is
mapped to a number in {0, . . . , |Ŝ|}). Always the first approach
is preferred, since distances between words in the second space

are not representative whereas, in the first case, all the words
are equally spaced.

Although it is clear that the first option is better, we have
to consider that this means that if vocabulary size is around
100000, we are working with an input space of dimension
100000m, where m is the length of the sequence. This makes
everything so expensive to compute that we have to stick to the
second option in many cases.

Besides, it is possible to apply many techniques, such as
splitting the domains into their subdomains or removing the
repetitive parts of the domain names—e.g. www, and top-level
domains (com, net, etc.) or country code domains (es, us, uk,
etc.). In the latter case, these are usually called stop words in
text processing. While they are sometimes removed, we de-
cided to keep them because some regional domains, such as
google.com.br or google.com.ar, are difficult to differentiate
otherwise.

Then, to cope with the high dimensionality, the aforemen-
tioned embedding layer trains a linear operator and a scalar to
map the input space to a fixed dimension real vector space, for
instance, if we want to map the sequence of integers to a se-
quence of real-valued vectors. This provides a mixed solution
that is usually used so that we do not exhaust the memory when
creating and processing the dataset, the size of hidden layers are
not excessively large and the topology of the words (that now
are vectors in Rk) is more coherent with the problem we intend
to solve.

6. Results

In this section, we will evaluate the different methods ex-
plained before: TF-IDF, doc2vec, and the direct approach with
neural networks. For all these methods, we will evaluate the
performance with several datasets and we will model the impact
of DNS caching. We recall that each time a system queries a
DNS domain, the result is returned with a Time-To-Live (TTL)
field. This means that as long as TTL has not expired, the de-
vice will not ask for the same domain while accessing it. As a
reminder, none of the methods presented here has any informa-
tion about the TTL at training, so the classifiers have no way
of knowing which domains are more likely to be cached. This
means that similar effects should be extendable to any caching
or sampling effect, no matter whether it is related to DNS, TLS,
or traffic sniffing.

To obtain the datasets, we used the aforementioned robot to
query the Top 100 and Top 2500 of worldwide most visited
domains according to Alexa [46]. This is done for two web
browsers: Chromium, the open-source alternative of Google
Chrome, and Mozilla Firefox. In real traffic, we have observed
that a set of only four domains (Google, Facebook, Apple and
Microsoft) can accumulate more than 60% of the global traf-
fic in terms of the number of accesses. In fact, these tops fol-
low Pareto’s Law, as it happens in salary distribution or the fre-
quency of words in English.

It is clear that the less information you have, the less preci-
sion you can achieve. Thus, firstly, we analyze the best achiev-
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able results. This way the performance of the methods is com-
pared with respect to such best possible behavior.

6.1. Ideal classifier

We define the ideal classifier as the one which, as long as the
information is enough, it always predicts the correct domain.
A classifier has enough information to predict the domain d if
and only if S d , S d′ for every domain d′ ∈ D different from d,
i.e. as long as there is no other sequence that happens to be the
same for a different domain.

When we are not considering the effect of caching, this hap-
pens with a very low probability. However, if we start missing
domains in the sequence, the probability starts growing, which
influences the highest possible accuracy.

Figure 7 displays the performance as a function of the num-
ber of missing elements of the sequence for both Alexa’s Top
100 and Top 2500. In the Top 100 case, we see that there is
no significant loss of information after more than 10 excluded
domains from the sequence. After that, it decreases linearly.
With more than 25 missing elements, the performance is signif-
icantly compromised given that accuracy cannot be higher than
60%. This is because many of the sequences have less than 25
elements and become easily empty.

For the Top 2500, behavior differs significantly. An accuracy
of 90% is still attainable even with more than 15 missing ele-
ments, but after that, there is a change in the slope and it ends
with less than 70% for 30 elements.

These calculations show that results of accuracy should be
measured in a different scale, i.e. we should modify the accu-
racy so that results are comparable for a different number of
missing elements. Thus, we define the weighted accuracy with
k missing elements as

wacc(k) =
acc(k)

accideal(k)
, (11)

where acc is the accuracy with k missing elements and
accideal(k) is the accuracy of the ideal classifier.

Intuitively, the weighted accuracy helps us to measure the
accuracy of the classifier as a percentage of the best achievable
accuracy—i.e., the accuracy of the ideal classifier. However,
we need extra information to completely evaluate the results.
In particular, Figure 8 displays the normalized histogram and
the Empirical Cumulative Distribution Function (ECDF) of the
length of the sequences for each dataset. The mean sequence
length is 48.27 for the Top 100 and 65.12 for the Top 2500. In
the histogram, we observe that the mode in both distributions is
around 15-25. This justifies the change of behavior we have ob-
served in Figure 7b around this range. Furthermore, the ECDF
depicts the probability of having a sequence of length higher or
equal than X. This means that if you exclude 30 elements of the
sequences, you would lose 40% to 45% of the dataset due to
empty sequences.

6.2. Results for TF-IDF

First, we test the TF-IDF embedding. TF-IDF embedding re-
tains a lot of information from the texts, in fact the frequencies

of the words, but we expect that high-dimensional data may
arise when coping with huge datasets. For that purpose, sparse
matrices are used to avoid computational issues. Nevertheless,
the dimensionality of the data can also affect the convergence
of the algorithm, so we do not have high expectations in this
method for huge datasets.

Figure 9 shows the results in terms of the accuracy for the
dataset obtained for the Top 100 of Alexa. The dataset is com-
posed of 15000 samples of the top 100 domains in terms of
visits. The training subset, in this case, is just composed of one
sample per class whereas the test is the rest of the dataset. Al-
though this split seems very aggressive, bear in mind that this
representation can get highly dimensional and noise (random
subdomains) can affect it. As we mentioned before, the objec-
tive of the experiments is to see the impact of the DNS caching
in the results. We observed that results are not affected when
4 or 5 domains are in the cache. However, from that point on,
the results are affected by an approximate ratio of 10% per 5
excluded domains.

For the case of the Top 2500, we expect worse results since
dimensions are much higher. In this case, the training set and
test set are divided randomly with 70% of the sample for train-
ing and 30% for test. Figure 10 displays the results for this case.
In this example, we see that the behavior is almost a straight de-
scending line. MLP classifier scores better than k-NN due to its
complexity, but it cannot show results higher than 85% of accu-
racy for the test set. It can be observed also that in both classi-
fiers we have overfitted the training data so the performance for
the test subset is always lower.

6.3. Results for Doc2Vec
In this case, we split the dataset into a training set composed

of 70% of the sample and a test set composed of 30% of the
sample. Then we trained the embedding using both PV-DM and
PV-DBoW algorithms with different sets of parameters. Once
embeddings are trained, we use k-NN and a MLP classifier to
solve the classification problem now in some real-valued space.

As before, this is done both for Top 100 and Top 2500 of
Alexa. Figure 11 shows the results for the Top 100 of Alexa.
We observed that both MLP and k-NN classifiers score simi-
larly and, again, the decay of the amount of information when
eliding subdomains of the sequence is linear and more or less
with a similar slope to TF-IDF. As a positive advantage, there
is no overfitting in this case. About the hyperparameters, we
found out that a hyperparameter was critical: whether to con-
catenate or to average the representations of the words. When
doing concatenation, the embedding retains information of the
order of the sequence. However, retaining this information
causes the algorithm to overfit and not generalize really well.
On the other hand, averaging provides a way of representing
the words and their contexts partially ignoring the order of the
sequence.

For the Top 2500, Figure 12 represents the score for k-NN
and MLP classifiers. Now, overfitting is clear and the differ-
ence between k-NN and MLP is more obvious as well, being
MLP better than k-NN. It is similar also to TF-IDF with no
highlighted differences.
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Fig. 7. Results for the ideal classifier that bound the best obtainable accuracy.
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Fig. 8. Distribution of the length of the sequences.
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(a) k-NN classifier.
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Fig. 9. Results for the Top 100 of Alexa for TF-IDF embedding. The solid blue line represents the training dataset and the dashed orange line the test dataset.

6.4. Results for RNN and ANN with custom embeddings
Following the previous case, for both the Top 100 and the

Top 2500 datasets, we performed a train-test split with 70% of

the samples for training and 30% for test. In the first case, we
found out that performance is similar to other methods as we
can see in Figure 13 and the difference between training and
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Fig. 10. Results for the Top 2500 of Alexa for TF-IDF embedding. The solid blue line represents the training data set and the dashed orange line the test dataset.
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Fig. 11. Results for the Top 100 of Alexa for doc2vec embedding. The solid blue line represents the training data set and the dashed orange line the test data set.

test is negligible (which means there are no overfitting issues).
However, the decay of the accuracy as a function of the number
of missing subdomains is quite steep and not linear in this case.
This can be due to the fact that RNN takes into account the order
of the domains whereas TF-IDF and doc2vec with averaging
do not, which makes the algorithm more sensible to missing
elements of the sequence.

In the Top 2500 case for RNN, the achieved accuracy is much
worse than TF-IDF. In this case, the decay is not so steep but,
since accuracy is below 50%, it does not make sense to con-
sider the results. This means that the data is not enough even to
reliably train the RNN. As we will see next, the order plays no
significant role, since ANN performance in the same conditions
is significantly higher.

Since the order of the sequence is likely not important, we get
rid of the recurrent layer and just aggregate all the embeddings
with a sum operator. Figure 14 shows improved results, on a par
with doc2vec, both in Top 100 and in Top 2500, but with some
overfitting for the Top 2500. This confirms our hypothesis that

the order of the elements in the sequence is not such a relevant
factor.

6.5. Comparison

As we mentioned in the ideal classifier, accuracy is biased
when the number of excluded domains grows, so in this sub-
section, we cover a comparative study of the performance of
the different methods against the ideal classifier. For that pur-
pose, we compare in Figure 15 the performance in terms of the
weighted accuracy. For the sake of brevity, we have chosen the
best performing scenarios for each method.

All methods have similar behavior, they decrease until the
number of missing elements is around 12-15 and then they ei-
ther maintain the same performance or they even improve it. As
we previously saw in the histogram, almost no sequences have
a length less than 10 and the mode of length of the sequence
is around 15, which justifies this change of behavior around
15. ANN is the only method that suffers from overfitting, given
that training and test performance are not similar. TF-IDF and
doc2vec perform similarly for the Top 100 domains in Alexa,
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Fig. 12. Results for the Top 2500 of Alexa for doc2vec embedding. The solid blue line represents the training data set and the dashed orange line the test data set.
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Fig. 13. Results for the RNN for the Top 100 and Top 2500 of Alexa. The solid blue line represents the training data set and the dashed orange line the test data set.

but some differences arise in the Top 2500. In this case, doc2vec
performs slightly better than TF-IDF, especially with more than
10 excluded domains. On the other hand, ANN follows similar
behavior but with a significantly worse score.

It is also important that training and prediction processes are
feasible in a real environment, since models would be imprac-
tical otherwise. Table 1 shows a summary of the results along
with an evaluation of the approximate memory necessity, train-
ing time, and prediction time for each algorithm. TF-IDF it-
self is an immediate representation of the data, but it builds
extremely high dimensional data. This makes TF-IDF an ap-
propriate option for Top 100 but completely impossible for Top
2500, where memory footprint becomes a problem. In fact, this
makes training and prediction in this representation an extraor-
dinarily expensive process that can take several hours or even
days. On the other hand, ANN offers a relatively low memory
consumption since most of the libraries are already prepared to
handle NLP, which usually requires even larger sequences or
larger vocabularies. Training takes minutes or hours, depend-
ing on the size of the network, but the prediction is always a

fast process that takes only a few seconds. Doc2vec perfor-
mance is somehow similar to ANN but marginally faster. To
make the difference between TF-IDF and the rest more evident,
these last two methods can be trained using GPUs or TPUs,
reducing training time by a factor of 10 in some cases.

For the sake of reproducibility, examples of the methods and
datasets have been made publicly available2.

7. Discussion: challenges and lessons learned

Throughout this paper, we have focused on the problem of
profiling users’ web browsing based on different resources such
TLS records or DNS data. This objective leads us to several
results and contributions about the difficulties and possibilities:

1. Formulation of the problem in terms of NLP: we have de-
fined in Section 3 the problem we propose to solve. These
precise and mathematical definitions allow us to foresee

2Available at https://github.com/hpcn-uam/nlp-web-analytics.

https://github.com/hpcn-uam/nlp-web-analytics
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Fig. 14. Results for the ANN without recurrent layers for the Top 100 and Top 2500 of Alexa. The solid blue line represents the training data set and the dashed
orange line the test data set.
Table 1
Summary of results of the text classification methods for the Top 2500 domains of Alexa. Accuracy@k stands for the accuracy of the method when the number of
excluded elements in each sequence is k.

Model Memory footprint Train time Predict time Accuracy Accuracy@5 Accuracy@10
Ideal - - - >99% >97% >95%

TF-IDF With k-NN High Minutes Hours >80% >70% >65%
With MLP High Hours Minutes >95% >85% >80%

Doc2vec With k-NN Medium Hours Hours >70% >65% >55%
With MLP Low Hours Minutes >90% >80% >75%

ANN With recurrence Low Days* Minutes* >35% >25% >20%
Without recurrence Low Hours* Minutes* >80% >70% >65%

* Computation time using CPU. GPU/TPU might improve drastically this result.

the difficulties that may appear as well as possible solu-
tions based on the state of the art. This means that we have
translated an open problem of identifying the user’s web
browsing behavior from the traffic into a natural-language
classification problem with a high number of classes, en-
abling us to employ the pre-existing state of the art of NLP
to cope with this.

2. Extensive, generic, and scalable approach with respect
to alternatives: we recognize that there are many al-
ternatives for traffic identification and web browsing an-
alytics extraction. In our work, we present an exten-
sive alternative that can be used with either DNS data
or with TLS/QUIC data. It could also be potentially
used with flow data in combination with techniques such
as [3, 18, 20, 21, 22, 23, 24, 25] where resolved domains
are estimated through flow characteristics. In this case, the
resulting performance would be the result of the combined
performance of both systems. Our system is built on top
of the state of the art of consolidated topics of text classi-
fication which have already been widely tested. Further-
more, it does only require a small percentage of the traffic,
instead of relying on full fingerprints of a set of network
packets. Finally, it can be deployed in a distributed way,

scaling up the monitoring for networks of any number of
users.

3. Study of the performance with loss of information: one of
the main alternative sources as input data of our proposal
is DNS data. Consequently, we highlight the performance
of our methods in terms of the portion of the data that is
unseen due to the effect of the local cache. This also ex-
tends beyond that and shows even a stronger result: since
training data do not need any TTL or any feature indicating
that a domain is more likely to be missing in the sequence,
we are resistant to missing data. This can be due to cache
effects, losses in capture engines, sampling techniques or
any other issue that may happen in high-speed network
probes.

4. Definition of ideal classifier: we have defined the theo-
retical ideal classifier that provides a bound of the best
achievable performance in terms of accuracy. As we men-
tioned, the accuracy is biased since it is expected to de-
crease when the number of missing elements of the se-
quence rises. With this, we were able to define a brand
new metric, weighted accuracy (11), and use it to make a
fair comparison of the different methods in Section 6.5.

5. There is no perfect model: we have assessed the perfor-
mance of many models with different parameters. De-
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(b) Top 2500 - TF-IDF.
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(c) Top 100 - doc2vec.
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(d) Top 2500 - doc2vec.
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Fig. 15. Weighted accuracy for all the methods presented in this work

pending on the situation, one option outperforms the oth-
ers. In this case, TF-IDF is a promising option valid
for small datasets. Doc2vec is more suitable for larger
datasets, whereas generic ANN with custom embeddings
is also on par with doc2vec. Moreover, it is the most
promising option to learn the effects of DNS caching with
data augmentation.

6. Overall accuracy: Considering the most suitable model
for every situation (availability of GPU/TPU, number of
domains in the dataset, among other issues), the weighted
accuracy shows figures over 90%. This means that NLP
methods were able to learn the web browsing behavior
successfully, proving to be good alternatives that helped
to build bridges between network monitoring and NLP.
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8. Conclusion

In this paper, we have approached the web browsing analytics
extraction problem using NLP techniques applied over diverse
traffic sources. This allows ISPs and DNS providers to exploit
and monetize the data that inherently flow through their infras-
tructures, thus creating new business opportunities in marketing
and analytics markets. Specifically, we have analyzed several
text modeling techniques applied to DNS and HTTPS data or
even extended flows.

As in many situations, we did not find out an ideal technique
able to be used in every situation. Although TF-IDF is the most
simplistic approach, it is useful even for situations where there
are numerous domains and, thus, neural networks may not con-
verge, making doc2vec and RNN worthless. However, TF-IDF
has a high memory footprint and it comes with an overfitting is-
sue that neither doc2vec nor RNN does. In general, doc2vec is
better than RNN and similar to ANN. This is because the order
of the sequence, in this case, provides no information, as it is
shown in the performance of ANN with aggregation instead of
a recurrent layer.

There are still open research lines, such as improving RNN
performance through data augmentation with permutations. As
another improvement, models can be trained to be resilient
against several factors such as concurrent users behind a NAT
router or DNS proxy or missing data due to cache effects. Al-
though this problem cannot yet justify the search for more com-
plex models than those we covered, attention networks [47] as
well as other equivalent [48] models are emerging as promising
mechanisms that will become useful in addressing the future
challenges of web browsing analytics.
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