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Abstract

Incoming 5G networks will evolve regarding how they operate due to the use of virtualization technologies. Network functions that are
necessary for communication will be virtual and will run on top of commodity servers. Among these functions, it will be essential to deploy
monitoring probes, which will provide information regarding how the network is behaving, which will be later analyzed for self-management
purposes. However, to date, the network probes have needed to be physical to perform at link-rates in high-speed networks, and it is challenging
to deploy them in virtual environments. Thus, it will be necessary to rely on bare-metal accelerators to deal with existing input/output (I/O)
performance problems. Next, to control the costs of implementing these virtual network probes, our approach is to leverage the capabilities that
current commercial off-the-shelf network cards provide for virtual environments. Specifically, to this end, we have implemented HPCAP40vf,
which is a driver that is GPL-licensed and available for download, for network capture in virtual machines. This driver handles the communication
with an Intel XL710 40 Gbit/s commercial network card to enable a network monitoring application run within a virtual machine. To store
the captured traffic, we have relied on NVMe drives due to their high transference rate, as they are directly connected to the PCIe bus. We
have assessed the performance of this approach and compared it with DPDK, in terms of both capturing and storing the network traffic by
measuring the achieved data rates. The evaluation has taken into account two virtualization technologies, namely, KVM and Docker, and two
access methods to the underlying hardware, namely, VirtIO and PCI passthrough. With this methodology, we have identified bottlenecks and
determined the optimal solution in each case to reduce overheads due to virtualization. This approach can also be applied to the development
of other performance-hungry virtual network functions. The obtained results demonstrate the feasibility of our proposed approach: when we
correctly use the capabilities that current commercial network cards provide, our virtual network probe can monitor at 40 Gbit/s with full packet
capture and storage and simultaneously track the traffic among other virtual network functions inside the host and with the external network.

Keywords: traffic capture and storage, virtual network function, virtual function, software-defined networking, HPCAP, HPCAP40vf, DPDK,
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1. Introduction

The incoming mobile 5G networks will be autonomic [1] and
sliced [2]. In this context, these networks will have to imple-
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ment an observe-analyze-act (OAA) loop [3] that enables them
to be self-managed with little human intervention. The observa-
tion process involves checking the network health regularly by
monitoring every network element and the traffic that is travers-
ing the network. Monitoring can be carried out with passive or
active probes; each has benefits and drawbacks. Active moni-
toring refers to injecting traffic into the network, which can be
harmful in congested scenarios. In contrast, passive monitoring
refers to capturing all the traffic and providing an exact picture
of what is happening in the network at each moment, even in
the worst-case scenarios when the network is heavily loaded,
which are probably the most interesting scenarios from a net-
work management point of view.

According to [4], future 5G networks will provide at least
20 Gbit/s downlink and 10 Gbit/s uplink per mobile base sta-
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tion. Therefore, to monitor the traffic passively in these nodes,
it will be necessary to deploy at least 40 Gbit/s capture inter-
faces on every base station —if a standard Ethernet data rate
is used—, to feed the OAA loop. Although this presents a
substantial challenge, monitoring at 40 Gbit/s is only a step
towards higher speeds, such as 100 Gbit/s or the recently ap-
proved 400 Gbit/s Ethernet standard [5].

Additionally, the slicing of 5G networks refers to resource
virtualization, with concepts such as software-defined network-
ing (SDN) and network function virtualization (NFV) [6]. In
this context, the Broadband Forum has proposed a virtualized
architecture: Cloud Central Office (CloudCO) [7]. In this ap-
proach, most of the communication network elements are en-
capsulated in CloudCO macro-nodes, which virtualize every
necessary component. This proposed architecture, along with
others, such as the architecture that is being developed in the
H2020 METRO-HAUL project2, tends to reduce overprovi-
sioning and human interaction. This would lower the network
costs in terms of both capital expenditures (CAPEX) and oper-
ational expenditures (OPEX), which is desirable for every net-
work operator and Internet service provider.

To monitor future 5G networks, we will need to use such vir-
tualization computing nodes. Thus, we introduce the concept
of a virtual network probe (VNP): A VNP can be defined as a
virtual network function (VNF) that is in charge of monitoring
the traffic of both physical and virtual network elements. The
term VNP represents a use case that aligns with in the monitor-
ing as a service (MaaS) trend [8, 9]. Apart from all the advan-
tages that NFV provides, VNP can solve some of the problems
that are introduced by a pure virtualized network or data center,
which may not appear in a classical full-bare-metal scenario of
prior-generation networks.

So far, traditional monitoring deployments have had a very
straightforward architecture: the physical probe is connected to
a mirror port in the switch of interest for the traffic analysis and
captures the network frames that are copied to that port. When
virtualization enters the stage, there are additional possibilities,
depending on what needs to be monitored and how.

A first example, which does not require a fully virtualized in-
frastructure, is a distributed environment with many servers and
possible monitoring points. In this scenario, deploying physi-
cal probes to those monitoring points might be unfeasible or, at
least, very expensive. However, if the infrastructure provides
computing nodes, we have the option of deploying these VNPs
on those nodes. Then, the traffic could be externally redirected
to the computing node that contains the virtual probe to monitor
the network without changing anything in the physical infras-
tructure.

This approach can be extended to scenarios that have an NFV
infrastructure, where the traffic to monitor is transmitted among
virtual machines (VM) via virtual functions (VF). Since these
data do not leave the physical server that hosts the VMs, phys-
ical monitoring probes cannot monitor them. In contrast, those
VFs can be configured to mirror their traffic to a virtual network
probe that will be able to monitor and analyze these data.

2https://metro-haul.eu/

Both cases are especially interesting for 5G mobile networks.
As described above, the 5G network infrastructure will rely on
virtualized computing nodes that will provide the necessary net-
working functions. Our VNP approach enables network oper-
ators to deploy, either manually or automatically, virtual ma-
chines that monitor the traffic of both physical and virtual net-
work elements without any hardware modification, thereby re-
ducing the costs and improving the reaction speeds to issues
and changes in the network.

The main challenge in developing such passive VNPs is that
traffic capture is a very performance-hungry function [10] be-
cause we must deal with tens of Gigabits per second and tens of
millions of packets per second that must be passed to the VNP.
Therefore, in this paper, we demonstrate how to deal with these
input/output (I/O) performance problems by using and leverag-
ing commercial off-the-shelf network card capabilities. Such
hardware provides functionality that can be applied as bare-
metal accelerators, thereby enabling the implementation of such
VNPs with the performance of physical equipment.

In this work, we study a full packet capture and retention
implementation at 40 Gbit/s under virtualized environments for
passive network monitoring and investigate how we can reach
this data rate without packet loss. To handle the specified data
rate, we have developed HPCAP40vf, which is an evolved ver-
sion of our custom Linux Kernel driver for network traffic cap-
ture that enables the development of VNPs that rely on avail-
able hardware capabilities. This driver is based on previous
implementations [11, 12] and provides support for virtualiza-
tion at 40 Gbit/s. We have also tested a VNP that is based
on the Data Plane Development Kit (DPDK)3 to compare our
solution with a more generic solution. We have assessed the
performance in both cases when the VNPs are deployed on a
commercial server that is equipped with Xeon processors and
an Intel XL710 40 Gbit/s network card and benchmarked the
performance with previous physical developments.

With our approach, the use of a VNP is feasible for network
traffic capture and retention, since the achieved performance is
similar to that provided by physical network probes. In ad-
dition, these results are useful for other performance-hungry
functions apart from network monitoring since it is possible to
apply these ideas in the development of other virtual network
functions. Moreover, all the developed code has been made
open-source for the community and can be found on GitHub.4

The remainder of this article is structured as follows: First,
we discuss the state-of-the-art packet capture and storage sys-
tems in Section 2. Then, we demonstrate various virtualization
approaches for I/O devices in Section 3 and their associated
bottlenecks. In Section 4, we explain the architecture of our
driver and the techniques that are used to optimize the perfor-
mance when building a custom VNP, while Section 5 provides
the results of our tests. Finally, Section 6 presents this study’s
conclusions.

3https://www.dpdk.org/
4https://github.com/hpcn-uam/hpcap40g
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2. State of the art

One of the goals of the monitoring community over the past
decade has been the development of dedicated equipment for
servicing high-speed networks, where custom hardware [13] or
field programmable gate arrays (FPGAs) [14] have been used
to realize the required performance. However, this approach
causes operators’ facilities to be populated with a huge amount
of heterogeneous hardware boxes, which complicates and raises
the maintenance costs. The scalability of such infrastructure is
limited, as it involves adding new hardware boxes when new
technology appears or evolves, which also increases the physi-
cal space, cooling and power consumption requirements.

To minimize hardware costs, the first approach from the in-
dustry was to use commodity hardware. Although not necessar-
ily inexpensive, those systems have a wide range of applications
and are usually more affordable than specific-purpose systems.
In this scenario, researchers have been working on the soft-
ware that powers the monitoring systems and focusing on high-
performance packet capture engines [15–19], subsequent anal-
ysis tools [12, 17] and solutions that address high-performance
needs for network monitoring tasks, such as routing or classify-
ing traffic on multi-Gbit/s links [20]. Furthermore, the availabil-
ity of commodity hardware has enabled widespread experimen-
tation and opened the field to new ideas. One of those ideas is
the focus of this work: to virtualize the monitoring equipment.

Currently, despite its overhead, virtualization is no longer
considered a low-performance option. Current virtualization
engines such as Linux KVM, and XEN, combined with suitable
hardware support, such as VT-d for Intel or Vi for AMD, reduce
the load that is faced by the host operating system and bring
these systems closer to the bare-metal level. The virtualization
of hardware components also introduces new possibilities. The
PCI passthrough technology assigns a PCI device to a guest
VM, which gives it full and direct access to the PCI device.
Although PCI passthrough opens very interesting scenarios in
virtualized systems, it presents limitations, mainly because it
is an exclusive assignment and only one VM can access each
device at a time. For this reason, manufacturers made an extra
effort to develop the concept of single-root input/output virtu-
alization (SR-IOV), which is also known as virtual functions
(VFs) —not to be confused with VNF.

A VF is a PCIe virtual device that is generated at the hard-
ware level by the physical device. As the system considers this
an almost fully independent PCIe device, it can be remapped to
a VM, similar to any other physical PCIe device, thereby allow-
ing a host to share a physical device with almost no overhead
with many virtual machines at the same time. VFs are used not
only in traditional VMs but also in lighter ones, such as Linux
containers. Containers are a technology on which many virtual-
ization tools, such as Docker, have appeared over the last years.
The difference between them and a classical VM is that the
VM has its own memory space, kernel and operating system,
whereas in the container the kernel is shared between the host
and the VM. This virtualization type has higher risks compared
to the traditional VMs [21]; however, it performs better [22],
as resources are easily shared with the host and a full operating

system need not be run on top of the host. More details about
virtual environments will be discussed in Section 3.

Virtualization is also changing the way we design, build and
operate networks. SDN and NFV are examples of the new trend
in which software can be finally decoupled from the hardware.
An example is presented in [23], where authors discuss the us-
age scenarios for virtual switches that utilize physical and vir-
tual network interfaces to quantify the throughput and latency
of software switches. They focus on Open vSwitch (OvS) [24],
which is an open-source implementation of a virtual multilayer
switch that provides a switching stack for hardware virtualiza-
tion environments.

Therefore, the existence of virtual networks and virtual net-
work equipment requires new monitoring solutions. In recent
years, the virtualization of monitoring network probes has at-
tracted substantial attention. For instance, in patent [25], a vir-
tual network probe is presented as a system for monitoring LTE
networks, but with a slightly different meaning. It is virtual
simply because the LTE operator does not know the details of
how monitoring is taking place. ConMon [26] is an automated
system for monitoring the network performance of container-
based applications. In particular, it focuses on the effects of
passive traffic observation on the performance of the applica-
tion containers and on the system resources. EXFO’s Virtual
Probes5 are solutions for deploying verifier virtualized network
functions across any SDN/NFV network to perform testing and
troubleshooting. A similar idea is presented in [27], where au-
thors design a new Open vSwitch vProbe for troubleshooting
performance issues based on the newly proposed IETF network
service header (NSH) with monitoring extensions [28]. Al-
though these works deal with virtual probes, they do not present
a probe that can capture and store traffic, as we are presenting
here.

The vProbe concept appears again in Qosmos’s white pa-
per [29] and, in this case, the authors introduce one of the key
ideas that we are presenting in this article: a method for moni-
toring inter-NFV traffic. The white paper does not include any
implementation details; however, a DPI product that is based
on this technology is able to analyze networks at speeds of up
10 Gbit/s, depending on the configuration. Qosmos’s vProbe
architecture demonstrates that monitoring software runs at the
virtualization-layer level. The main disadvantage of this ap-
proach is that the monitoring capabilities are limited by the per-
formance of the hypervisor, as it is difficult to capture data at
high speed, which must be at least 30 Gbit/s for 5G networks,
as discussed earlier. A similar performance limitation in net-
work virtualization is discussed in [30], where DPDK is used
to increase the throughput of Open vSwitch. Specialized hard-
ware, such as FPGAs [31], could also be used to increase the
performance of virtual networks, although the issues regarding
cost and scalability that discussed previously would remain in
this scenario.

In our solution, we use the network card as a bare-metal ac-
celerator for packet capture and monitoring and obtain the high-

5https://www.exfo.com/en/products/

network-performance-monitoring/virtual-probes/
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est possible performance with the best performance/price ratio.
Our VNP offers the same functionality for monitoring with the
additional capability of capturing and storing all network data.
The concept of VNP fits into the 5G network philosophy and
with the OAA loop and takes into account that the passive mon-
itoring process may not depend on the underlying network de-
ployment or its virtualization technology.

3. Virtualized environments and I/O processing

The use of virtual machines imposes a computational over-
head on any application that is executed on top of them. The ap-
plications that can be substantially affected are the computing-
intensive applications and those with high I/O data transfer,
such as the NFV. For example, an application that is process-
ing the traffic from a 40 GbE link may have to process up
to 59.52 Mpps in the worst-case scenario. This implies ex-
tremely low-latency memory accesses and high memory band-
width, where even the shortest pauses can have a significant
impact on packet loss (for example, in a Skylake processor at
3.40 GHz, an L1 cache hit represents 7% of the available time
for processing a packet in the worst case). There are many vir-
tualization methods, each with advantages and drawbacks and
various degrees of isolation and performance. Since 5G net-
works would not be limited nor restricted to a virtual environ-
ment, we are going to explain the possible virtual environments
and the most popular hypervisors.

Virtualization can be divided into 3 components: the host,
the hypervisor, and the guest. The host speaks with the real
hardware; the hypervisor creates a virtual environment from
the real hardware; and the guest uses it. This type of hyper-
visor has a substantial isolation between the host and the guest
and may make guest functionality independent from the under-
lying hardware. However, this method usually has overheads,
such as double copies, etc. The hypervisor concept has changed
since the Linux containers appeared [32], where the host kernel
acts as a lighter and simpler hypervisor. A Linux container is
a closed environment inside a Linux host, where all the pro-
cesses share the host kernel but each can only interact with its
own filesystem and associated —possibly virtual— hardware.
This implies that Linux containers can run Linux over Linux
and isolation issues may be encountered, such as a critical ker-
nel error that is caused in a container and affects every other
running container [21].

Depending on the selected virtualization technology, perfor-
mance tuning must take place. In terms of classical virtualiza-
tion, the kernel virtual machine (KVM) [33] is the most fre-
quently used and popular virtualization technology and slightly
outperforms other solutions [34]. Several large companies,
such as Google and Amazon6, offer its virtualization services
over KVM. In terms of virtualization that is based on contain-
ers, Docker7 is probably the most well-known and flexible so-
lution [21]. Throughout this article, we are going to focus on

6https://aws.amazon.com/ec2/faqs/?nc1=h_ls
7https://www.docker.com/

these two solutions, namely, KVM and Docker, as representa-
tives of their technologies.

The two principal optimizations that must be performed in
virtual environments are the CPU and memory allocations.
When the physical system has more than one CPU, this must
be communicated to the corresponding VM or container. If the
tuning is omitted, the VM will have suboptimal resource us-
age, with many communication between the CPUs, which re-
sults in a memory latency increase, and performance degra-
dation. There is also an issue regarding memory allocation
that may concern only classical VMs: In classical VMs, ev-
erything is virtualized, including memory. This implies that the
VM memory would be divided into pages; however, the guest
would divide it again into different pages. To mitigate this du-
plicate memory page level, we should map the VM memory
into hugepages [35]. Finally, if the host hardware configuration
supports it, as in our case, virtualization enhancement instruc-
tions should be enabled.

Due to the importance of I/O issues for network monitor-
ing tasks, the remainder of this section discusses diverse alter-
natives for mapping I/O devices into virtualized environments,
along with their advantages and drawbacks. All the scenarios
are illustrated in Figure 1.

3.1. Full-virtualization

The full-virtualization paradigm is produced when the guest
cannot distinguish whether it is running in a virtualized envi-
ronment or not, as every available hardware looks similar to
the physical one. That includes its identifiers, registers, and ev-
ery low-level characteristic. This paradigm cannot be applied to
Linux containers because every process knows that it is running
in a virtual environment and most of the available hardware is
real hardware or paravirtualized hardware (see Subsection 3.2).
This type of pure-virtualization is the most theoretically desir-
able because the guest will not be dependent on the chosen hy-
pervisor or the hardware differences among machines, thereby
enabling the uniformity among all deployed virtual machines.

In the practical case of network full virtualization, a large
performance drawback is encountered. The incoming packets
are received by the physical NIC driver that is running on the
physical server and traverse the system host network stack be-
fore being delivered to the hypervisor network module. Once
acquired by the hypervisor, packets are delivered to the target
VM depending on the virtual network configuration. This data
path requires at least two additional copies, namely, from the
host to the hypervisor and from the hypervisor to the virtual
machine, which substantially degrades the performance. The
performance degradation that is experienced by network appli-
cations that are running in this configuration has motivated re-
searchers in academia and industry to tune and optimize the
hypervisor packet handling policy. By using a “paravirtual-
ized” e1000 network card (an Intel Gigabit Ethernet network
card), the authors of [36] proposed an approach for increasing
the system throughput from 300 Mbit/s using the conventional
approach to nearly 1 Gbit/s using a VALE software switch in the
worst-case scenario (64-byte UDP packets); the results ranged
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Fig. 1. Different ways of relating an I/O device with a VM or a Linux container.

from 2.7 to 4.4 Gbit/s when transmitting TCP traffic between
VMs in the same physical server.

When using a fully virtualized I/O device, the hypervisor is
the central communication element. Consequently, the hyper-
visor becomes the bottleneck and a single point of failure for
network processing tasks, thereby limiting their applicability
for I/O-intensive applications.

3.2. Paravirtualization and VirtIO

Paravirtualization emerged as an alternative to the full-
virtualization approach, with the difference that the guest knows
that the devices are virtual. Therefore, a driver that is compat-
ible with the virtual device must be instantiated in the guest.
This causes a dependency on the hypervisor technology; how-
ever, it provides a fast data-path between the host and the guest,
with better performance and lower overheads that are due to
simulating unnecessary low-level hardware details. VirtIO [37]
has emerged as the de facto standard for this communication
between the guest and a KVM hypervisor. It implements a flex-
ible API for this communication via a set of queue structures
and callback function handlers. VirtIO supports various types of
I/O devices, such as block, console and PCI devices. In the last
decade, network device support has been added [38]. Its per-
formance has been compared in a previously cited work [36],
where VirtIO could reach 4 Gbit/s with the VALE switch. A
possible alternative to VirtIO is the NetVM module [39]. This
work obtains promising results when performing packet for-
warding between virtual machines that are instantiated in the
same physical server (up to 34 Gbit/s); however, it does not
deal with the problem of capturing the traffic, neither internal
nor external.

The Linux containers have much simpler paravirtualized de-
vices. Network interfaces that are inside the container are typ-
ically provided by network bridges or by the macvtap module,
which are both generated from physical devices.

Devices of this type are similar to those that are created na-
tively by Open vSwitch [24] and can provide an internal band-

width that is closer to the memory bandwidth of the host [23].
However, when a mirroring port is active, the classic OvS will
forward the packet into a user space application and copy it
twice into the destination interface and the monitoring inter-
face. In terms of efficiency, the final delivery of the packet
requires up to five copies: first, from the service to the host
interface; second, to the OvS user space management process;
third, again to the host kernel space; and finally, fourth and fifth
copies to the legacy recipient and the monitoring agent. Even if
the memory bandwidth is huge, these copies degrade the overall
performance. There are several similarities in how VirtIO and
containers work. In the case of storage devices, VirtIO maps
a Linux file into the VM space and containers carry out this
mechanism for every shared device between guest and host.

3.3. PCI passthrough

Most important microprocessor vendors, such as Intel, AMD
and ARM, implement I/O memory management units and a set
of techniques for I/O management. The name of these tech-
niques may vary from one vendor to other (VT-d for Intel vs.
Vi for AMD). Those features theoretically supply the protec-
tion and support that are required for virtual machines to map
safely into their memory space physical or virtual PCI Express
devices. This technology is called PCI passthrough. By us-
ing PCI passthrough, the access from the VM to the device
incurs minimal overhead as all intermediate virtualization lay-
ers disappear. In this configuration, the VM views the devices
as if they were physically connected, which implies that the
used driver must be the same one that manages such devices
in a bare-metal configuration. Consequently, this allows net-
work applications that are being executed in virtual machines to
benefit from the high-performance packet capture solutions that
have been developed for bare-metal scenarios. PCI passthrough
has been successfully applied in high-performance computing
scenarios [12, 40].

The concept of passthrough is simpler in the container ap-
proach than in any other case. It can be implemented by
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mapping the correct control character devices to the container
filesystem. The driver that would use the physical device must
be running in the host, as the container cannot load any kernel
module for security reasons. Therefore, the performance differ-
ence between the host and the container should be small, as we
will explain in detail in Section 5.

3.4. PCI virtual functions

Using PCI passthrough for mapping I/O devices to VMs has
an inherent constraint: only one VM can make use of each
mapped I/O device. Thus, PCI passthrough presents a scala-
bility problem when the number of VMs that are in use is in-
creased, which can only be solved by adding additional PCI
devices, the number of which is also limited, as the number of
PCIe slots is limited by hardware. With the goal of promoting
virtualization performance and interoperability, the PCI Special
Interest Group developed a series of standards: Single-Root I/O
Virtualization (SR-IOV)8. These standards use the term physi-
cal function (PF) to refer to a PCI device that is connected to
a physical PCI slot. They also introduce the concept of virtual
function (VF) as a way for PCI devices to offer a lightweight
register interface for managing the data that are interchanged
with the physical PCI device. A VF is a lightweight PCI device,
that is, it has an I/O memory area that is assigned to it with a set
of control-related registers that allow the end system to use the
VF as a regular PCI device, typically with reduced functional-
ity. Importantly, the driver that manages this new virtual device
is typically different from the one that manages the correspond-
ing physical device, as it must be aware of the peculiarities that
the virtual device presents. After creating the corresponding
VF, they could be mapped to a VM via PCI passthrough as if
they were purely physical devices. A relevant advantage of VF
over PF is that, depending on the underlying hardware, a single
PF can produce several VFs. This behavior allows the system
manager to solve the scalability issue by attaching new virtual
machines to new VFs without needing to increase the amount
of hardware in the system.

Most current network devices support SR-IOV. As our target
is at least 40 Gbit/s, we have focused on the Intel XL700 NIC
family. Those NICs refer to their VFs by introducing the con-
cept of virtual machine device queue (VMDq) and have one-to-
one correspondences with the instantiated VFs. The number of
virtual functions that are generated per physical device is lim-
ited by the hardware and is 128 virtual functions in the case of
the Intel XL710 adapter. As discussed above, only VF-aware
drivers can be used to manage the virtual NIC, which limits the
number of available traffic capture engines.

DPDK has native support for working with VF and Intel also
supplies a VF-aware counterpart to the i40e driver that is used
by the XL710 NIC, which is named i40evf. Additionally, we
developed a VF-aware version of HPCAP, which we named
HPCAP40vf, by following all the design principles that have
guided HPCAP conception [41]. We have tested those three
drivers for use with VFs because, to the best of our knowledge,

8http://pcisig.com/specifications/iov/

no other drivers can capture traffic from an XL710 virtual NIC.
The native driver that is running on the host controls VF gen-
eration and its basic configuration. In a previous work with a
10 Gbit/s Intel card [12], we discovered a relation between the
generation driver and the final performance. These differences
were due to the way in which the old 10 Gbit/s card manages the
packets internally, which is improved in the newer Intel cards,
such as the one that is studied here. This XL710 card fully im-
plements a switch internally; hence, we have not experienced
any performance differentiation between the generation drivers,
because the VF generation consists only of configuring the in-
ternal switch.

For security reasons, the VF default traffic distribution policy
is based on the MAC and IP addresses that are associated with
the VF. Thus, each VF only receives the traffic that is targeted
to its corresponding VM. This limitation is necessary in most
cases; however, it is problematic when our objective is to listen
to the traffic of other VFs or all the traffic that is received by
the card. Through a set of hardware registers —or with the lat-
est i40 driver, which has an undocumented control interface in
the debugfs— the system manager can insert a mirroring rule
into the internal card switch to distribute or replicate the incom-
ing traffic to each VF. Enabling this feature in the Intel XL710
NIC yields a hardware-level packet replication, which mini-
mizes the impact on the capture process performance. Never-
theless, the total throughput is limited by both the performance
of the XL710 internal switch and the PCI interface bandwidth.
This is an important issue because it can affect the normal oper-
ation of the whole system since each incoming packet must be
transferred twice in the PCIe bus.

4. VNP Architecture

As we stated in the introduction, traditional monitoring pas-
sive probes are connected to a mirror port of a switch to re-
ceive the selected traffic (see Figure 3a). While this approach
should yield the best performance, because of the use of ded-
icated hardware, there are several scenarios in which it can-
not be used. For example, when there are multiple monitoring
points, deploying several physical probes might be unfeasible
or expensive. In those cases, a more desirable alternative is to
use the available hardware to execute the monitoring tasks. We
propose a virtual network probe (VNP), which can be deployed
onto any computing node in the data center or network infras-
tructure that can run virtual machines. In this section, we will
describe the driver that provides the high-speed capture of net-
work traffic and the possible configurations for the deployment
of the probe, depending on the monitoring requirements.

4.1. HPCAP40vf: A 40 Gbps capture driver
In most typical environments, the approach that NICs use

when receiving traffic is to write the incoming packets in the
reception (RX) ring in host memory via DMA. Then, the op-
erating system processes those packets and sends them to the
corresponding application. However, the performance of this
approach is far from sufficient when the only purpose of the
system is to capture traffic at high speeds.

6
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Fig. 2. Architecture of the HPCAP40vf driver.

The typical solution in high-speed network monitoring has
been to develop custom capture drivers that bypass the system
and provide direct access to the incoming traffic [42]. For 10
GbE networks, single-threaded capture drivers have been ca-
pable of receiving traffic at line rate; however, with faster stan-
dards, parallelism becomes necessary and the complexity of the
capture systems increases. The driver that powers our VNP,
namely, HPCAP40vf, is based on the same architecture that
proved capable of capturing and storing traffic in 40 GbE net-
works (HPCAP40), which was described in detail in a previous
paper [11] — here, we will only discuss the main ideas behind
that architecture.

As discussed before, the main focus of our driver is to store
the traffic to disk for subsequent analysis. Since the optimal
write performance is achieved with fewer transferences of large
blocks of data instead of many small blocks of data (as is
the case with network packets), we implement a one-copy ap-
proach: the driver copies the frames to a contiguous zone of
memory, which is later written to disk in large blocks, thereby
achieving optimal speeds when writing to disk. While this so-
lution has proven useful in our capture drivers for 10 GbE net-
works [41], it is essentially single-threaded and the translation
to a parallel environment is not straightforward.

In the context of network drivers, parallelism is implemented
in the reception side with multiple receive-side scaling (RSS)
queues, where the NIC copies the frames to different reception
(RX) rings via DMA, depending on their destination. Then,
each ring is assigned to a different CPU so that incoming traffic
is processed in parallel. However, for our capture driver, RSS is
not the most appropriate solution. For example, the traffic can
be distributed unevenly among queues (the NIC assigns pack-
ets from the same network flow —packets that share source and
destination IP addresses and ports— to the same queue and im-
balances can easily appear), thereby causing packet losses that
depend on the traffic profile. Additionally, the frames become
disordered (it is impossible to know which frame came before
if we see the frames in different queues at similar times) and
the precision of the timestamping is decreased, thereby causing
issues in the subsequent analysis of the traffic.

In our driver, we do not use RSS queues; instead, we use
a single RX ring. This ring is divided in fixed-size segments
and each thread is assigned to one segment, as illustrated in
Figure 2. No synchronization mechanism is needed, as every
thread knows exactly its assigned descriptors, and the process
becomes cache-friendly with a predictable latency and through-
put. Furthermore, disorder of the frames can only occur on the
boundary of each sector, when two threads are copying their

corresponding frames at the same time without respecting their
relative order.

Each thread polls continuously the first descriptor in its ring
segment where the NIC will copy the packets. Once the NIC
finishes the copy, it signals that the descriptor is available to be
read. The thread timestamps the packet, copies it to the inter-
mediate buffer, and marks the read descriptors as available for
the NIC to write again. The threads for the copy to the inter-
mediate buffer are synchronized by following the model of a
multiple reader - multiple writer queue but taking into account
the predictable behavior of our capture driver, which enables
the use of several shortcuts and optimizations that improve the
performance. After the write is completed, client applications
can read from that buffer, either in a packet-by-packet fashion
for analysis or, as described above, in fixed-size blocks that are
written to storage media.

We also provide filtering and truncation features to reduce
the amount of data that is passed to the client applications. This
can be useful in scenarios where the storage is limited, in terms
of either speed or capacity, or where part of the traffic is known
to be unnecessary for the analysis and discarding it improves
the efficiency.

4.2. Deployment of the VNP

The VNP that is proposed here consists of two components:
the capture driver and a tool that processes the data. In a
production environment, the tool could be similar to Naudit
DetectPro [42], which generates flow records for real-time
monitoring and storage of the traffic for a later and more de-
tailed analysis of the full traffic or only intervals of interest.
However, other software can be used to process the data, such
as specific-purpose monitoring applications or, as in the case
of the tests that are performed for this paper, a program that
writes data to disk while measuring the throughput. Similarly,
the capture driver can also be changed: although we propose
the use of HPCAP40vf to achieve optimal performance when
writing to storage media, alternatives such as DPDK could be
used instead.

Both components are packaged in the virtual machine or con-
tainer, which can be later deployed directly to computing nodes.
Those nodes only need to assign a VF to the VNP, which will
start monitoring the traffic that passes through the physical net-
work. This scenario is illustrated in Figure 3b. If not only phys-
ical networks but also virtual ones require monitoring, the con-
figuration would be as shown in Figure 3c. The virtual network
is provided by the VFs that are generated by the NIC with an
internal mirror configured so that the traffic from all virtual ma-
chines is captured by our VNP.

7
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Fig. 3. Example of a deployment of network probes. a) Bare metal, b) a virtual probe and c) a virtual probe with mirroring.

The storage media is, in all cases, a physical NVMe drive ar-
ray that is capable of providing both the required capacity and
speed. This space can be linked to the VNP via the techniques
that were described in the previous section: a bare-metal con-
figuration in which the disks are mounted in the host machine,
with PCI passthrough, or with VirtIO. The final choice will de-
pend on the achieved throughput and on the capabilities of the
computing node. For our tests and as we will discuss later, the
bare-metal configuration was determined to be the optimal one
in that aspect.

In our tests, we have run our VNP in KVM and Docker to
assess both virtualization technologies. However, our solution
is not restricted to any specific virtualization platform as we
depend only on standard features, such as the capability of en-
abling PCI passthrough for specific devices or sharing part of
the filesystem with the probe.

5. Performed tests and results

Once the architecture and the underlying technology of the
VNP have been discussed, we present a series of tests and re-
sults, which demonstrate that our virtual network probes are
feasible with 40 Gbit/s off-the-shelf network cards in future 5G
networks.

All the tests have been performed in the same testbed, which
consists of two separate physical machines that are connected
by a 40 GbE direct attach cable, with the specifications that are

Table 1
Specifications of the servers that were used for testing. HyperThreading was
disabled.

Traffic generator VM Host

CPU 2 × Intel Xeon E5-
2630v4

2 × Intel Xeon
Gold 6126

Clock 2.20 GHz 2.60 GHz
Cores 20 24
Memory 128 GB 192 GB
NIC Intel XL710 Intel XL710

listed in Table 1. Both machines run the same operating system,
namely, a minimal Gentoo with a 4.14.7 Linux kernel, with the
recent Meltdown/Spectre patches disabled for performance rea-
sons. The VMs were all running the same system, namely, a
CentOS 7.4 OS with a 3.10.0-693 Linux kernel.

As a baseline, we first performed a test in which we measured
the capture percentages of both DPDK and HPCAP40 [11] with
the physical interface in both the bare-metal and PCI pass-
through configurations. In the first case, the drivers ran in the
host, and in the second, inside a virtual machine. In the latter
case, although it appears similar to our objective, enabling PCI
passthrough for the physical NIC blocks its usage in the host
and in other virtual machines; therefore, is not useful for our
purposes. However, it serves as a baseline test of how much
overhead the PCI passthrough configurations introduce.

8
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Table 2
Percentage of packets that are captured for various traffic patterns in a fully
saturated 40 Gbit/s link that are obtained by different solutions in bare-metal
(BM) and PCI passthrough (PT) configurations.

Capture
engine

% of packets captured
BM PT

64 B CAIDA 64 B CAIDA

i40e 1.6 11.59 0.2 9.44
DPDK 100 100 100 100

HPCAP40 75.1 100 51.5 100

We compared the results that were obtained with the cap-
ture drivers with what we achieved with the default driver,
namely, i40e, and a tcpdump program. According to Table 2,
the default driver does not achieve a sufficient capture rate in
any case and reaches at most an 11 % when capturing data
from a CAIDA trace [43]. DPDK reaches full capture in both
minimum-frame-size traffic and the CAIDA trace, whereas HP-
CAP40 only achieves full capture in the CAIDA trace, with
noticeable problems in capturing minimum-frame-size traffic.
This is due to the way in which HPCAP40 operates, namely,
by copying the frames to an intermediate buffer for subsequent
storage to disk. In contrast, DPDK discards the packets after
capturing them.

We also tested the throughput of our NVMe disk array with
three setups: a bare-metal setup with the software RAID that
is mounted directly in the host machine, a software RAID
mounted in a virtual machine using PCI passthrough, and a
setup that uses VirtIO to mount the disks inside of the virtual
machine. Then, we copied 3000 blocks of size 5632 KB each
(the blocksize was chosen according to the specifications of
the NVMe drives for optimal write speed) and annotated the
throughput, repeating each measurement ten times.

The system that was used in the test was the VM host, where
we would later run the traffic tests. We had up to 11 Intel DC
P3700 NVMe drives available. Drives of this type were cho-
sen because, at the time of writing this paper, they were the
best-performing storage option in terms of read/write speeds.
Achieving similar speeds with mechanical drives requires larger
arrays, which might be overly expensive or impractical for our
use case.

The results are shown in Figure 4. The bare-metal solu-
tion for the NVMe array consistently performs above 40 Gbit/s
with 5 disks, which is the speed that is necessary for our stor-
age requirements. The passthrough configuration can barely
reach 40 Gbit/s and the maximum speed of VirtIO seems to be
25 Gbit/s.

After we confirmed that the hardware yields acceptable re-
sults, we performed tests with both HPCAP40vf and DPDK in
two main scenarios, each related to a critical point in the imple-
mentation of the traffic capture with virtual functions. First, we
want to ensure that we can receive the network frames in the vir-
tual probe at a sufficiently high rate and that the capture driver
performs well and is not substantially affected by the overhead
of running in the virtual environment. Additionally, we want to
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Fig. 4. Bandwidths using software RAIDs and various numbers of NVMe
drives.

measure the effect of the capture on the normal operation of the
system and the links between virtual machines. We also want
to test the storage system to ensure that we can store the data
from the virtual probe to disk with sufficient bandwidth.

5.1. Network traffic capture
To measure the capacity of our system to receive the net-

work traffic in the virtual probe and the effect of the capture
on the normal operation of the VFs, we set up our testbed in
the following way: One of the machines sent synthetic traf-
fic of a fixed frame size that saturated the 40 GbE link to the
XL710 card. A second machine was set with 3 VMs, each
with one assigned VF. The first VM captured traffic with the
driver and discarded it afterwards, while the other two ran an
iperf bandwidth test9. The first VF was set with mirroring rules
and promiscuous mode so that it received both the synthetic
and the iperf-generated traffic. As a reference, iperf reported a
maximum bandwidth of 25 Gbit/s with no external load on the
XL710 link.

We performed several tests in which the frame size (including
CRC) was varied by powers of two, as that is the variable that
most affects the performance of the capture system. Table 3 lists
the results of these tests. For brevity, we do not list the results
for all frames sizes above the threshold at which we achieved
100 % capture in all cases. With 64-byte frames, DPDK cap-
tures 66.3 % of the frames and HPCAP40vf 57.5 %. However,
at this high frame rate, the internal switch is not capable of deal-
ing with the extra load of an iperf test, which reports a mere
66.7 Kbps bandwidth. The results improve with a frame size of
128 bytes, which is still below what is typically observed in en-
terprise networks. At this point, DPDK captures 100 % of the
traffic and HPCAP40vf 61.9 %. This difference was expected,
as HPCAP40vf is optimized for storage of the traffic and the

9https://iperf.fr/

9
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Table 3
Packet capture performance when using PCI passthrough to a VM and capturing traffic in a fully saturated 40 GbE link, together with the bandwidth that was
reported by iperf in two concurrent VMs that were running in the same host.

Synthetic frame size Synthetic TX rate DPDK capture % HPCAP40vf capture % iperf bandwidth

64 bytes 59.5 Mpps 66.3 % 57.5 % 66.7 Kbit/s
128 bytes 33.8 Mpps 100.0 % 61.9 % 2.2 Gbit/s
256 bytes 17.9 Mpps 100.0 % 100.0 % 3.5 Gbit/s

1024 bytes 4.7 Mpps 100.0 % 100.0 % 3.8 Gbit/s
1514 bytes 3.2 Mpps 100.0 % 100.0 % 3.6 Gbit/s
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Fig. 5. Comparison of the capture percentages of DPDK and HPCAP40vf in a virtual machine and in a Docker environment.

extra copy adds an overhead that affects the performance when
the traffic is not stored but discarded.

With 256-byte frames, both DPDK and HPCAP40vf capture
100 % of the traffic and the bandwidth that is reported by iperf
increases to 3.5 Gbit/s since the internal switch has a lower load
due to the decrease in the number of packets per second that it
must process. Further increases in the frame size do not result
in better iperf performance, as the bottleneck appears to be the
PCI bandwidth of the system, which has an apparent limit of
∼44 Gbit/s.

We also compared the performances that were obtained when
running the virtual network probe as a kernel virtual machine
and as a Docker container. Due to the restrictions of the con-
tainers, both DPDK and HPCAP40vf must run in the host.
Mounting a set of special files inside the containers enables
them to use and control the capture driver.

The results are shown in Figure 5, where the same effect
is observed in DPDK and HPCAP40vf: for minimum-sized
frames, both drivers perform worse in Docker than in KVM.
However, their performances improve faster in Docker and in
both cases, full capture without loss is realized for frames of
size 254 bytes or higher.

5.2. Traffic storage

Now that we are sure that both drivers can receive traffic at
sufficiently high rates, we test whether we can store that traffic
at line rate. For both Docker and KVM, the setup is the same: a
software RAID-0 is mounted with 5 NVMe drives in the virtual
probe where the driver is running, as illustrated in Figure 4.
Then, our traffic generator reproduces a trace with real traffic
and we measure the throughput of our application.

For HPCAP40vf, the storage application is hpcapdd, which
copies the data in blocks from the intermediate buffer to a file.
Although in a previous work [11] we used a specialized appli-
cation that worked with SPDK10 for optimal results, we decided
to not use it in these tests as SPDK adds complexity to the in-
stallation and we achieved a sufficient rate with the hpcapdd
and 5 NVMe drives. This is because we used a better NVMe
drive, which doubles the write speed with respect to the prior
drive model (Intel DC P3600).

With DPDK, various public tools promise that every packet
can be captured and appended to a pcap file at reasonable
speeds. However, we could not run any of them at 40 Gbit/s for

10http://www.spdk.io/

10
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Table 4
Performance when storing two traffic traces to disk.

Capture %
Trace Send rate DPDK HPCAP40vf

CAIDA 39.80 Gbit/s 99.5 % 100.0 %
UAM 39.83 Gbit/s 100.0 % 100.0 %

a long period. The most promising solution is probably Flows-
cope [17]. The authors claim they can reach up to 100 Gbit/s.
Unfortunately, this figure is not a sustained rate and is only re-
alized over a very short time period, where the system detects
that there is an anomaly. In addition to Flowscope, we can find
other DPDK-based implementations, such as dpdkcap [16];
however, the code is very old and unmaintained. Therefore, we
could not use it with a DPDK version that is compatible with
the firmware of our card. Hence, we have developed our cus-
tom DPDK capture solution11, which provides full pcap dump
at 40 Gbit/s.

Table 4 lists the results that we obtained with two traffic
traces: one was obtained at CAIDA [43] and the other is a cap-
ture of traffic in the student laboratory at our university (UAM).
The average frame sizes in these files are 787 and 910 bytes, re-
spectively. We show only the results in KVM, as the differences
with the results in Docker are negligible.

DPDK only captures the UAM trace without losses. How-
ever, HPCAP40vf is capable of capturing all frames in both
cases without loss, which demonstrates that it is feasible to
monitor and store the traffic of a network at 40 Gbit/s using
a virtual network probe.

These results and the differences between capture engines are
expected. As explained previously, HPCAP40vf is oriented to
the capture and storage of the traffic packets; hence, it makes an
extra copy after capturing the packets to align them in memory.
This affects the capture percentage when the traffic is discarded
and not stored; however, it enables client applications to ob-
tain better performance when writing the data to disk in aligned
blocks.

6. Conclusions

In this paper, we proposed a virtual network probe that uses
40 Gbit/s off-the-shelf network cards and demonstrated its fea-
sibility as part of the observe-analyze-act loop that will en-
able future 5G networks to be autonomic and self-managed.
This virtual probe can be incorporated easily into existing de-
ployments without any custom hardware and used as a perma-
nent monitoring solution or launched on-demand as part of a
monitoring-as-a-service platform.

After exploring the possibilities regarding probe virtualiza-
tion, we demonstrated that an architecture that makes use of

11https://github.com/hpcn-uam/DPDK2disk

the SR-IOV virtual functions, which are present in commercial
off-the-shelf NICs, enables the monitoring of both physical net-
works with virtual probes and fully virtual networks. The use
of the VFs as an accelerator enables our solution to reach suffi-
cient speed to capture all the traffic that is passing through the
network in most scenarios. Moreover, via NVMe arrays and
our custom drivers, we can store that traffic and analyze it at a
later time if necessary. However, operators must be careful to
avoid saturating existing deployments if they require full mon-
itoring of a virtual network that uses VFs: the mirrored traffic
is delivered to the virtual probe via the PCI bus and the card
chipset is unable to surpass the upper bound of ∼44 Gbit/s, as
demonstrated in our tests.

We have also demonstrated that our system is agnostic to
the virtualization technology that is employed, as it can run in
both containers and virtual machines. Although we tested our
system using Docker and KVM, we did not use any features
that are specific to either of those solutions; therefore, our VNP
should work with other alternatives, such as LXC and VMWare.

For our system, we have used the freely available Data Plane
Development Kit (DPDK) and developed HPCAP40vf, which
is a 40 Gbit/s VF-aware version of our capture and storage
driver, namely, HPCAP. We have made available its source code
under a GPL license on GitHub so that the community can
freely use under Linux both solutions that are presented in this
paper.
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