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Abstract

Online Quality of Service (QoS) assessment in high speed networks is one of the key concerns for service providers, namely to
detect QoS degradation on-the-fly as soon as possible and avoid customers’ complaints. In this regard, a Key Performance Indicator
(KPI) is the number of TCP retransmissions per flow, which is related to packet losses or increased network and/or client/server
latency. However, to accurately detect TCP retransmissions the whole sequence number list should be tracked which is a challenging
task in multi-Gb/s networks.

In this paper we show that the simplest approach of counting as a retransmission a packet whose sequence number is smaller
than the previous one is enough to detect pathological flows with severe retransmissions. Such a lightweight approach eliminates
the need of tracking the whole TCP flow history, which severely restricts traffic analysis throughput. Our findings show that low
False Positive Rates (FPR) and False Negative Rates (FNR) can be achieved in the detection of such pathological flows with severe
retransmissions, which are of paramount importance for QoS monitoring. Most importantly, we show that live detection of such
pathological flows at 10 Gb/s rate per processing core is feasible.
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1. Introduction

Nowadays, Quality of Service (QoS) assurance is a key dif-
ferentiating aspect in the Internet Service Providers (ISPs) arena,
given the strong competition among them. The performance of
transport protocols plays a key role in this matter, given the im-
pact that they exert on the application layer —specifically, in
this paper we focus on TCP.

Typically, QoS assurance relies on statistics related to net-
work flows [1]. Following RFC 7011 [2], we define a TCP flow
as a set of TCP packets with a common 4-tuple, which traverse
a particular capture point in the network during a bounded time
interval. Thus, a TCP session is composed by two TCP flows
that share the same temporal locality and the 4-tuple, swapping
source and destination addresses and ports.
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In this light, a Key Performance Indicator (KPI) used to
know the provided quality is the amount of TCP retransmis-
sions per flow, especially for large flows produced by file trans-
fers or multimedia content delivery. Indeed, TCP retransmis-
sions may cause noticeable interruptions in HTTP-based stream-
ing, as shown in [3]. Consequently, such retransmissions jeop-
ardize the user-perceived QoS for services that strongly de-
pend on TCP goodput [4]. Furthermore, video streaming shows
considerable erratic behavior with link-layer retransmissions in
loaded links [5].

Hence, the detection of pathological flows, in terms of re-
transmissions, is a cornerstone that indicates possible network
outages and saturation. As such, it serves network managers
to counter-react against QoS degradation events. Nevertheless,
such KPI must be collected in real-time, in order to trigger the
corresponding alerts and swiftly perform the necessary correc-
tive actions.

As it turns out, the real-time nature of current Network Op-
eration Centers (NOCs) entails that a tradeoff between speed
and accuracy in traffic analysis tools is in order. Generally
speaking, the more accurate the analysis tools are, the more
processing power they require. As the network speed is increas-
ing steadily so is the processing power required to obtain KPIs.
However, the speed of electronics is not following the pace of
optics in backbone networks and, as a result, current traffic anal-
ysis tools are far from being able to handle every possible KPI
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online. Thus, there is a tradeoff between information provided
by the KPI and ease of implementation at very high speed.

However, performing live TCP retransmissions analysis on
a fully TCP-utilized 10 Gb/s link is rather challenging, espe-
cially when the resources assigned to monitoring tools are con-
strained. The reason behind this challenge is that the TCP flow
should be reconstructed on-the-fly, which implies sorting the
TCP flow packets as they arrive, with millions of concurrent
flows. Furthermore, some of these flows can be very large, for
example in Over-the-top (OTT) video services. Thus, search-
ing for retransmissions consumes valuable processing time. In
conclusion, looking for every possible retransmission is very
hard to attain at high-speed and possibly irrelevant if the num-
ber of retransmissions is small compared to the total number of
packets in the flow.

Note that the packet arrival rate for a fully occupied 10 Gb/s
link is about 1.6 millions of packets per second [6] if the aver-
age packet size is assumed to be 760 bytes [7]. The situation
only worsens if the average packet size is smaller because the
packet rate increases, which puts more stress on the analysis
tool.

In this paper we present two lightweight heuristics that serve
to evaluate whether a TCP packet is a retransmission or not at
10 Gb/s per processing core. We assess their accuracy and per-
formance both with analytic models and with traces captured in
real production environments. Such performance per core al-
lows to scale to tens of Gbps of total throughput in a multi-core
architecture. These heuristics show very small False Positive
Rates (FPR) and False Negative Rates (FNR) in the detection of
pathological flows and can be integrated in online high-speed
traffic sniffers for real-time QoS degradation alerting. In this
light, the contributions of our work are manifold:
• We extend the discussion about the tradeoff among accu-

racy, performance and resource constraints. To do so, we
provide heuristics for lightweight detection of TCP flows
with pathological retransmissions and evaluate them with
traffic traces from real-world networks in production.

• Such heuristics are also evaluated by means of an ana-
lytic model that yields the expected error based on net-
work conditions (e.g., packet loss). Thus, our experi-
mental methodology generalizes the results to network
scenarios other than specific traces.

• Finally, we also model the computing resources, mainly
in terms of memory, which are necessary to run our heuris-
tics at arbitrarily high traffic rates.

To sum up, our results pave the way for a cost-effective imple-
mentation of network analysis solutions, which can be deployed
in devices with lower processing and memory capabilities.

The rest of the paper is structured as follows: first, we pro-
vide an overview of the state of the art. Then, we present
both approaches to detect retransmissions, the full TCP connec-
tion reconstruction and the proposed approximate alternatives.
Afterwards, we model how our proposals perform, both from
a performance and resource standpoint. Finally, we present
our experimental results and discussion, along with conclusions
that can be drawn from this paper.

Figure 1: A typical monitoring scenario.

1.1. Problem statement and use cases

The typical traffic analysis scenario (illustrated in Figure 1)
features a network probe which is attached to either a router
SPAN (Switched Port ANalyzer) or mirror port, or to a net-
work tap which acts as an aggregation node. This network
probe usually consists of a traffic capture module [6], together
with other software modules devoted to specific traffic analysis
tasks [8, 9, 10].

Nonetheless, the former scenario is rapidly evolving with
the advent of new Software Defined Networks (SDN) [11] and
Network Function Virtualization (NFV) [12]. These new para-
digms are encouraging the adoption of virtual ubiquitous mon-
itoring modules that may be executed on switches and routers,
maybe with limited resources. Actually, several projects are us-
ing software network probes placed in the router itself [13, 14]
as a novel approach for network traffic analysis. Therefore,
decreasing the processing and memory requirements to obtain
KPIs becomes fundamental for the widespread adoption of such
approach.

We note that retransmissions increase the duration of the
flow and decrease throughput. In this light, only the flows with
high number of retransmissions matter, as they are indicative of
QoS degradation and, conversely, a TCP flow with a small ratio
of retransmissions will not affect the perceived QoS that much.

Therefore, we propose to use the ratio of retransmissions
per total number of packets in a flow as a threshold to iden-
tify possible pathological behavior. A threshold value for such
a ratio is configured by the network manager, so as to obtain
a right balance between sensitivity and significance. On the
one hand, if the threshold value is small, a great accuracy in
the measurement tool is necessary, which must be capable of
detecting a small number of retransmissions per flow. Thus,
keeping track of a large sequence number history in the flow
becomes necessary, as counting every possible retransmission
matters. Therefore, a traffic analysis tool that is highly accurate
in the detection of retransmissions must have a large memory
buffer for storing flow sequence numbers, which entails that a
large data structure must be kept in memory.

On the other hand, a larger threshold value increases the
significance of the findings. Actually, spurious retransmissions
are common in any network and are not so much worthwhile
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reporting. However, a possible structural QoS degradation is-
sue may be behind flows with large retransmission ratios. Such
structural events are of interest to the network manager and pro-
vide valuable guidance to proactively fix abnormal situations.

For example, if many flows with severe retransmissions are
detected between different IP addresses on both sides of a wire-
less link, chances are that the link is congested or suffers link
layer errors.

We note that the detection of flows with severe, i.e. patho-
logical, retransmissions does not require to employ a very pre-
cise retransmission detection algorithm, because counting every
possible retransmission is not necessary. A less accurate algo-
rithm suffices in this case, which has the advantage of providing
a better traffic analysis throughput per processing core. Need-
less to say, this is beneficial for network monitoring at higher
speeds or, alternatively, for network monitoring with small em-
bedded probes with limited processing capabilities.

We show that simple retransmission detection heuristics suf-
fice to detect flows with a retransmission ratio threshold value
as small as 5% of the packets. We additionally consider that the
effect of retransmissions in long-lived connections has a larger
impact in QoS than in short-lived ones, for example in live
video broadcasting or on-demand video services (e.g., Youtube
or Netflix). Furthermore, first experiments suggest that it is
harder to find retransmissions in short-lived flows than in long-
lived ones. Consequently, for the above mentioned 5% retrans-
mission probability, we only consider TCP sessions with more
than 100 packets aggregating both directions. The rationale be-
hind these thresholds roots in the findings about the levels of
TCP retransmissions in the Internet, and their links with TCP
performance [15, 16]. That is, retransmission rates above such
thresholds would surely indicate a noticeable QoS degradation.

1.2. State of the Art
Concerning analysis of TCP retransmissions, there is some

previous work in the area. Aside from commercial tools, the
open-source community has released a number of solutions to
analyze network traffic, such as Wireshark [17] or Tstat [18,
19]. Wireshark is the de-facto standard in the industry to per-
form network analysis. It has a great variety of dissectors (more
than 1350) and a very useful and intuitive graphical interface,
but it was not designed for live monitoring of high speed links.
Precisely, Wireshark performance is tied to the number of dis-
sectors enabled. Furthermore, even if most of them are dis-
abled, Wireshark performance is below multi-Gb/s. The Wire-
shark textual counterpart, Tshark, shows better performance
due to the lack of a graphical interface and the analysis through-
put is also well below multi-Gb/s rates. Both tools also suffer
from large memory requirements, which limits the size of the
traces that they can handle.

Tstat is a statistical traffic analyzer which outputs up to 130
metrics per TCP session depending on the configuration. Re-
cently, the authors of Tstat released a new version [20] that can
be used as statistics module which analyzes the traffic captured
by a DPDK-powered network probe, achieving up to 4 inter-
faces of 10 Gb/s of aggregated throughput with 16 instances of
Tstat. Nevertheless, this is a load balancing approach, which

depends on the traffic arrival pattern. If TCP connections are
concentrated on a few ports and IP addresses, such load balanc-
ing becomes unfeasible. In any case, our proposed technique
is also amenable for load balancing in several instances, as we
support 10 Gb/s with a single processing thread.

Other solutions require dedicated hardware such as FPGAs [21,
22] or GPGPUs [23] in order to cope with high packet rates.
Such requirements constrain applicability in general purpose
equipment and significantly increase cost.

Previous work also highlights the interest of studying TCP
retransmissions as network KPI, as they are related to loss ra-
tio. For instance, in [24] two naı̈ve algorithms are proposed
that map retransmissions into packet losses. To do so, they keep
track of the whole TCP sequence number history, to detect if a
packet contains data that was previously sent by one host but not
received by the other. Nonetheless, several TCP behaviors in-
troduce errors in the estimations provided by such algorithms.
For instance, segments may carry partially retransmitted data
together with new data, multiple consecutive retransmissions
may be grouped in a single segment or re-packaged in differ-
ent segments, etc. Moreover, only pathological flows with se-
vere retransmissions jeopardize QoS. Thus, approximate meth-
ods for retransmission detection which sacrifice accuracy for
speed and memory savings suffice.

In conclusion, further efforts have to be made for the de-
tection of pathological TCP flows, in terms of retransmissions,
with a cost-effective approach. Particularly, we propose to eval-
uate simple heuristics to identify retransmissions, which dras-
tically reduce the TCP sequence number list to be tracked and
increase throughput, yet being indicative enough of a potential
QoS degradation event.

2. Retransmission detection approaches

In what follows, we will use the following notation. Given
the nth packet in a unidirectional flow of a TCP session from
IP address A (SYN initiator) to IP address B, we provide the
following definitions in Table 1.

Table 1: Notation

N Number of packets in the flow.
lA→B
n TCP segment payload length.1

sA→B
n TCP segment sequence number.

ACKA→B
n TCP segment ACK number.

∆n Sequence number space covered by packet n.
ReTx Packet with retransmitted TCP segment.

We define sA→B
n such that ∀n ∈ N, n ≤ N,∃k < n:

sA→B
n = sA→B

k + lA→B
k (1)

for some initial sA→B
0 —note that a TCP implementation can

choose any 32-bit value for sA→B
0 . That is, the sequence number

1Since SYN and FIN flags consume a sequence number, lA→B
n equals the

segment payload plus one for each of those flags set.
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(a) Gap Detection heuristic. (b) Out of Order Detection heuristic.

Figure 2: Comparison of the evaluated heuristics.

featured in the nth TCP segment should be the next byte of some
previous segment k. If packet n does not contain a retransmit-
ted segment then k = n − 1, as TCP only transmits blocks of
contiguous data.

As it turns out, we define the sequence number space (in
short, space), covered by segment contained in packet n as the
closed interval

∆n = [sA→B
n , sA→B

n + lA→B
n − 1] (2)

and we will denote the left limit of ∆n by ∆l
n, and the right limit

by ∆r
n.

2.1. Full detection of TCP retransmissions

We deem a TCP segment contained in packet m as a re-
transmission of segment in packet n if and only if ∆m ∩ ∆n , ∅,
n = 1, . . . ,N, m > n, assuming there is no duplicated traffic.
We assume that the capture engine removes packet duplicates
which may be due to the SPAN capture [25]. Actually, our HP-
CAP driver [6] effectively removes duplicates before they are
forwarded to the monitoring probe software itself.

Thus, in order to detect retransmissions for a given segment
in packet n we should keep track of all the previous sequence
number spaces ∆m with m < n. Namely, a data structure has
to be created per flow and has to be sought for each incoming
packets to detect possible retransmissions. Such data structure
will be denoted by “sequence number list”. We note that if a
packet is lost during capture or packets arrive out of order, the
sequence number list will have non-contiguous spaces.

The sequence number list can be kept sorted using the fol-
lowing comparison function:

∆i < ∆ j ⇐⇒ ∆l
i < ∆l

j or (∆l
i = ∆l

j and ∆r
i ≤ ∆r

j) (3)

If ∆i < ∆ j and ∆i ∩ ∆ j , ∅ then we can merge them in

∆′ = [∆l
i,max(∆r

i ,∆
r
j)] (4)

to keep the sequence number list as short as possible.
In real monitoring scenarios, it is not always the case that all

packets appear in the capture, nor that they appear in the same
order they were actually transmitted. If a packet is lost during
capture and is actually a retransmission or contains partially re-
transmitted data, such retransmission will not be detected. On
top of that, if such lost packet is never retransmitted, a perma-
nent gap will appear in the flow sequence number list.

Assuming there is no packet reordering, then the ACKB→A
n

can be used to fill the gaps in the sequence number list of host
B, as it indicates that host B has received all data up to that se-
quence number. Moreover, if selective acknowledgement (SACK)
TCP extension is enabled, it can also be used to fill gaps in the
sequence number list.

In any case, in such approach we note that a data structure
that contains the sequence number spaces seen per connection
in the past is required, for all concurrent connections. Then,
for each incoming packet, the corresponding connection entry
in the data structure should be sought in order to update the
sequence number list. Such a procedure is computationally ex-
pensive for high packet rates and does not scale to arbitrarily
high speeds, thus calling for a simpler approach, which makes
them also more suitable to be deployed in a NFV environment
or in an embedded device.

2.2. Approximate detection of TCP retransmissions

In this subsection we present two simple algorithms to es-
timate the number of retransmissions in TCP flows with severe
retransmissions. We will show that such simple procedures are
accurate enough and serve to the purpose of on-the-fly evalua-
tion of retransmissions at 10 Gb/s per core.

Our proposed heuristics are based on the fact that a typical
TCP sender transmits packets in order, and that each segment
features a sequence number sA→B

n which is equal to the previous
segment sequence number plus its payload length, namely,

sA→B
n = sA→B

n−1 + lA→B
n−1 (5)

should no retransmissions occur, as derived from Equation (1).
Consequently, we propose to track only the highest sequence
number seen per TCP flow, and then perform a simple compar-
ison to decide whether a segment is a retransmission or not.

In this light, two simple decision algorithms can be applied:
• The first heuristic, which will be denoted by Gap Detec-

tion heuristic, counts the number of packets which con-
tain a larger sequence number than the one that was ex-
pected, thus creating a gap in the receiver’s buffer (sA→B

n+1 >
sA→B

n + lA→B
n ). The aforementioned gap will have to be

filled by a latter packet, which is the actual segment re-
transmission.

Figure 2a serves to illustrate this phenomenon. We note
that the second packet is lost before the capture point.
Then, upon arrival of the third packet, a gap arises in the
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Figure 3: Markov chain of cumulative number of classification errors

Table 2: Parameters of the error model

p P{packet is classified as false retransmission}
q P{retransmission is not detected}
1 − p − q P{packet is correctly classified}
N The maximum number of packets a flow can have

sequence number stream and it is counted as a retrans-
mission. In the figure, the real retransmission is the next
packet (which is not counted as a retransmission), but in
a general setting the real retransmission may appear sev-
eral segments later.

• The second heuristic, which we will call Out of Order
Detection heuristic, consists in counting the packets with
payload which have a sequence number smaller than the
one expected, i.e., sA→B

n+1 < sA→B
n + lA→B

n . With the given
assumptions, such segments should be retransmissions.

In Figure 2b we illustrate the former heuristic using the
same example as Figure 2a. We note that sA→B

2 is lost
in this case. If we happen to receive sA→B

2 again, which
has a sequence number smaller than the largest one seen,
namely sA→B

3 , we count it as a retransmission. Actually,
it turns out to be a real retransmission in the example.

As a result, these proposals are computationally efficient
and present a very small memory footprint per flow. Further-
more, they can be generalized to track a maximum number of
sequence number spaces (instead of only one) in order to over-
come mild network packet reordering. That is, both general-
ized versions mimic the full reconstruction algorithm, but with
a maximum number of tracked sequence number spaces per
flow. As a result, some differences arise when updating flow
state, such as:
• In case of the generalized Out of Order Detection heuris-

tic, packets that overflow the sequence number list are
counted as retransmissions.

• In case of the generalized Gap Detection heuristic, every
space in the list must be checked to detect gaps which are
counted as retransmissions.

2.3. Classification error

In order to evaluate the effectiveness of our proposed al-
gorithms, we provide an analytic model for the probability of
erroneously classifying a flow as pathological. We define the
parameters in Table 2.

Let EN be the total classification error for a given flow of N
packets,

EN = #{ReTx by ground truth} − #{ReTx by algorithm} (6)

namely, EN is the sum of the classification errors incurred per
packet in the flow. So for a single packet flow, p represents
the probability of E1 = −1, q the probability of E1 = +1, and
1 − p − q is the probability of E1 = 0. Assuming the clas-
sification of each packet is independent, we can model EN as
a finite-state irreducible Markov chain where each state repre-
sents the cumulative sum of classification errors. Indeed, p and
q represent the transition probabilities to the next and previous
states, and 1 − p − q is the probability of remaining in the same
state, as shown in Figure 3.

For such a Markov chain, with 2N + 1 states, the transition
probability matrix (2N + 1) × (2N + 1) is as follows:

P =



1 − q q 0 . . .
. . .

. . . 0 p 1 − p − q q 0 . . .
. . .

. . . 0 p 1 − p


(7)

We note that the number of classification errors, namely
EN ∈ [−N,N], is a random variable whose probability mass
function can be easily computed by λPN , where

λ = (
N times︷  ︸︸  ︷

0, . . . , 0, 1,
N times︷  ︸︸  ︷

0, . . . , 0) (8)

is our initial distribution.
In order to compute the classification error, regardless of the

number of packets N in a flow, we must incorporate the distri-
bution of the number of packets in a flow. Zipf-like phenomena
has been observed in the past in Internet traffic traces [26, 27],
or at least in the distribution tail. Thus, we define the proba-
bility distribution function (PDF) of the number of packets in a
flow as

P (X = x) ≈ Kx−α, K > 0, x ≥ xmin, α > 0 (9)

where K is the normalization constant and typically 2 < α < 3.
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Thus we can express our expected classification error E(|EN |)
as follows

E(|ENmax |) =

Nmax∑
ε=−Nmax

|ε|P(E = ε) =

=

Nmax∑
ε=−Nmax

|ε|

Nmax∑
n=xmin

P(E = ε|N = n)P(N = n) =

=

Nmax∑
n=xmin

2n+1∑
j=1

| j − 1 − n| (λPn) j K n−α (10)

where Nmax is the maximum number of packets per flow in the
trace and K is a normalization constant to make the distribution
of number of packets in a flow add to unity.

Finally we remark that given error probabilities (p, q), the
EN distribution is symmetric to the one with error probabilities
(q, p). In simulations we have observed that the expected error
seems to level off at a value which depends on α, p and q for a
sufficiently large value of N.

2.4. Expected memory savings
Memory consumption is a key issue for performance, be-

cause a memory lookup must be performed for each incoming
packet. Therefore, performance is constrained by the read/write
memory latency. As it turns out, there is a tradeoff between
memory size and speed, namely cache memories are very fast,
but also small.

Clearly, the required memory size depends on the number of
concurrent flows present in the traffic. In this section we provide
an analytical approximation that allows obtaining the memory
size required for a given number of flows and vice versa. To
do so, we analyze the decrease in number of spaces in the se-
quence number list brought by the heuristic algorithms. In what
follows, the following notation is adopted:
• λt, the rate of new connections observed in the monitored

vantage point.

• Wt, the average time that connections are tracked by the
monitoring system. This time is related to the typical du-
ration of a connection in the specific network, but also to
monitoring parameters such as the configurable garbage
collection times.

• M, denotes the upper bound of the number of spaces that
can be tracked per flow.

• IM
t , the expected number of spaces in the sequence num-

ber list per flow, with an upper bound of M spaces.

• LM
t , is the total expected number of sequence number

spaces, with an upper bound of M spaces per flow.
With the above metrics and, following Little’s law, the num-

ber of tracked spaces is given by the expression in Equation (11):

LM
t = λt ·Wt · IM

t (11)

Namely, the expected number of total sequence number spaces
for a given bound per flow (M) is the rate of new connections

Table 3: Memory requirements in MB

Concurrent
TCP Sessions 6.4M 3.2M 1.6M 800K 400K 200K 100K

minimal 512 256 128 64 32 16 8
full reconstruction
1 space per flow 716.8 358.4 179.2 89.6 44.8 22.4 11.2

full reconstruction
1.1 spaces per flow 747.52 373.76 186.88 93.44 46.72 23.36 11.68

times the average time a connection stays in the system times
the expected number of spaces per flow.

In this light, we can compare the complexity and memory
usage of two algorithms with different M values. Specifically,
we are interested in the comparison of our proposal, M = 1,
with the approach that considers the whole list of sequence
numbers M, using the metric in Equation (12):

∆LM
t = LM

t − L1
t = λt ·Wt · (IM

t − I1
t ) (12)

Note that Wt equals the mean TCP session duration plus the
additional time it resides in memory until it is exported [1].

We distinguish two set of sessions regarding the expiration
mechanism:
• TCP flags: a session is expired after receiving FIN or

RST flags. However, some packets may still be in tran-
sit in the network. In order to tackle this issue, RFC
1122 [28] defines TCP TIME-WAIT state timeout as 2
MSL, with MSL arbitrarily set to 120 seconds.

• Inactivity: a session is expired if no packets are received
in a given time interval. For example, if client and server
become isolated due to loss of connectivity the corre-
sponding TCP sessions may crash. Then, the correspond-
ing flow entry in the sequence number list must be re-
leased, to avoid filling the memory with garbage. There-
fore, we can choose the maximum time an inactive ses-
sion is kept alive in our monitoring system. We named
such parameter “Inactivity Time-Out”, or ITO. Hereafter,
we consider a value of 15 minutes (900 seconds) during
our tests, as we have empirically found that this figure
provides a good tradeoff between memory fingerprint and
flow completeness.

In this light, we define

Wt = Dt + c1 · (2 · MS L) + c2 · ITO (13)

with Dt the random duration of a TCP session and c1,c2 are the
expected proportion of flows expired by TCP flags or inactivity,
respectively. We note that c1 + c2 = 1, as they represent the
probabilities of complementary sets. Hence, both depend on
the number of sessions that have to be expired due to inactivity.
As a result, increasing ITO will decrease c2 and vice versa,
because a smaller value of ITO increases the chance that a flow
is deemed inactive.

In Table 3 we show some estimations of required memory
to track a given number of concurrent TCP sessions. For such
estimations, we consider a minimal state representation of 64
bytes per TCP session, that includes the flow 4-tuple (12 bytes),
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Table 4: Traffic traces used in the experiments. (*) TCP sessions with a hundred packets at least.

Trace Size (GB) Millions of
packets

Average
packet size

TCP
Sessions*

Flows*
with ReTx

Average %
Reordered packets

Client to
Server

Server to
Client

α K α K

A 91 149 634B 98279 2972 0.15 2.14 13.00 1.92 6.68
B 120 211 754B 196580 705 1.97 ∗ 10−3 2.28 19.71 1.88 3.93
C 387 539 591B 725648 13721 2.16 ∗ 10−4 2.35 24.02 2.03 9.24
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Figure 4: Example of packet distributions in our traces flows.

number of bytes, number of packets and number of ReTx coun-
ters (6×8 bytes), and the last packet timestamp in seconds (4
bytes). Additionally, we consider an expected average num-
ber of spaces per flow equal to 1.1 (which is a consistent with
the empirical findings presented in Section 3), i.e., 10% more
spaces than tracked TCP flows. For the full reconstruction ap-
proach, the session representation size increases with the num-
ber of tracked spaces as further state information is required.
We consider 24 bytes per space, corresponding to the use of
a linked list. In this situation, we would approximately need
750MB to track 6.4 million concurrent TCP sessions. Further-
more, even if we track just one space per TCP session, about
720MB of memory would be required to track 6.4 million of
concurrent TCP sessions. However, considering a minimal state
representation of 80 bytes per TCP session, with exactly one se-
quence number space per flow (2×2×4 bytes per session), the
memory footprint to track 6.4 million concurrent TCP sessions
reduces to approximately 512MB.

As a result, our approach paves the way to implement a
TCP retransmission detection module in small embedded de-
vices, such as FPGAs [22], using much less memory (about
30% savings) with only a minimal loss in accuracy, as will be
shown later.

3. Experimental evaluation

In this section we present an experimental evaluation of
both the accuracy and performance of the proposed heuristics.
First, we assess the accuracy of the heuristics when compared

to the full reconstruction algorithm. Afterwards, we compare
them to Tshark results, as it is considered the reference tool.
These tests were performed at the receiver server, by reading the
packet traces from disk. Lastly, we implement the heuristics in
a traffic capture probe, M3Omon [9], and measure whether the
achievable throughput decreases due to the heuristics. In this
case, packets are read from the NIC at line rate, to characterize
the online system performance.

3.1. Experimental test setup

Our experimental setup consists of two Commodity Off-the-
Shelf (COTS) servers directly connected with an optical fiber
link. One server acts as the sender and the other one as the
receiver.

Our sender server is based on an Intel Xeon E3-1230 v3 pro-
cessor with Hyper-Threading disabled on a Supermicro X10SL7-
F motherboard with 32 GB of DDR3 RAM. Such server uses a
custom FPGA-based system [29] to send traces at 10 Gb/s over
the fiber and reads the traces from a software-controlled RAID-
0 with 8 SSDs disks. The disks are Samsung SSD 840 with 250
GB capacity each.

The receiver server is based on an Intel Xeon E5-2630 pro-
cessor on a Supermicro X9DR3-F motherboard with 128 GB of
DDR3 RAM. The receiver uses our custom driver called
HPCAP [6] to capture the incoming traffic. The traffic is pro-
cessed with our M3Omon software [9] which concurrently stores
packets in a 10 disc RAID-0 controlled with a LSI Logic MegaRAID
SAS 2208 hardware controller and processes them. The RAID
disks are 3TB Hitachi drives, model
HUA723030ALA640 with SATA-3 interface.

Table 4 presents several parameters of the traffic traces that
we used for our experimental analysis. They were captured dur-
ing several days in enterprise networks, and most of the traffic is
HTTP or HTTPS. The average packet size is approximately 760
bytes, similar to the average packet size of Internet traffic [7],
resulting in approximately 1.6 million of packets per second
with a rate of 10Gb/s. The average number of reordered pack-
ets per flow, shown in the table, are computed with the full re-
construction algorithm. These results are consistent to the ones
present in previous studies, as in [30], where an average 0.79%
of reordered packets is reported for IPv4 traffic.

In Figure 4 we show the Complementary Cumulative Dis-
tribution Function (CCDF) or survival function of the number
of packets in a flow. As expected, packets seem to follow a
Zipf distribution whose parameters have been estimated using
the Maximum Likelihood Estimator (MLE) given in [31]. We
have observed that TCP flows in the rest of our traces follow
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(a) Disordered segments negatively affect Out of Order Detection heuristic.

(b) Example showing Gap Detection heuristic limitations.

Figure 5: Situations that limit the accuracy of our heuristics.

similar distributions. In Table 4 we show the fitted parameters
for Equation (9) for each trace, where xmin took values between
6 and 8. Note that the value of α and K heavily depend of the
choice of xmin. These parameters were computed minimizing
the Kolmogorov-Smirnov distance of the fit distribution to the
empirical distribution. This figure shows that the analytical ap-
proximation used in equation 9 is sound, as also expected from
the state of the art in modeling packets per TCP flow [26, 27].

3.2. Accuracy evaluation

In this section, we show the accuracy of the heuristics ver-
sus the full reconstruction approach. From section 1 we re-
call that a unidirectional flow of a TCP session, with at least
one hundred packets, is classified as pathological (PF) if more
than 5% of its packets are retransmissions, being the rest non-
pathological (NPF).

Then, the following situations arise, on a per-flow basis:
1. True Positive (TP): our heuristics classify the NPF flow

correctly as NPF.

2. False Positive (FP): our heuristics detect more retrans-
missions than the ground truth and they classify the NPF
flow as PF.

3. False Negative (FN): our heuristics do not detect enough
retransmissions and they classify a PF flow as NPF.

4. True Negative (TN): our heuristics classify a flow cor-
rectly as NPF.

In Table 5 we show the False Negative Rates (FNR) and
False Positive Rates (FPR) of the heuristics for each test case.
In the tables, we refer to Client to the host who sent the first
SYN packet and Server to the other host. We have shortened
Out of Order Detection heuristic by “OO” and Gap Detection
heuristic by “GD”.

We observe that Gap Detection heuristic yields very poor
detection results compared with Out of Order Detection heuris-
tic, which has reasonable FPR and almost a 0% of FNR.

In order to understand these results we performed manual
inspection with Wireshark, resulting in the following cases:

Table 5: Experimental results versus full reconstruction algorithm

Trace
Client to Server Server to Client

FNR (%) FPR (%) FNR (%) FPR (%)
OO GD OO GD OO GD OO GD

A 0 62.56 0.69 17.18 0 96.50 1.41 0.91
B 0 88.89 0.02 0.01 0 96.82 0.09 0.01
C 0 14.29 0.01 13.19 0 99.88 0.02 0.01

• In trace A there were bursts of packets in reverse order.
If one of such bursts has n packets, the Out of Order De-
tection heuristic will compute n−1 retransmissions. This
is illustrated in Figure 5a. The Gap Detection heuristic
will compute just 1 retransmission because only the first
packet generates a gap in the sequence number stream.
Thus, the Out of Order Detection heuristic overestimates
the number of retransmissions for that flow, which may
give a False Positive.

• If a gap is present in the sequence number stream, the
Gap Detection heuristic counts a single retransmission
only, as shown in Figure 5b. As stated before, some flows
present multiple retransmissions after a gap, and in such
cases the estimated number of retransmissions is less than
the real number, giving rise to False Negatives.

• Flows with low packet counts are subject to higher FNR
and FPR. Incorrectly classifying two packets out of a
hundred may change the class of the flow, whereas er-
roneously classifying two packets out of a thousand does
not affect the flow classification.

In conclusion, most of our experimental results present
E = 0 for the majority of flows using Out of Order Detection
heuristic, very few false negative errors and even less false pos-
itive errors. Consequently, we expect to have a very low value
of probability p (packet is classified as false retransmission)
and even lower value of probability q (retransmission is not de-
tected), which will be estimated later.

3.3. Comparison with Tshark
In this section we present our validation of the full recon-

struction algorithm and the Out of Order Detection heuristic
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Table 6: Flow classification versus Tshark

Algorithm Client to Server Server to Client
FNR (%) FPR (%) FNR (%) FPR (%)

Full Reconstruction 0 0 0 2.38
OO 0 0 0 2.38

versus Tshark. In our experimental setup we used Tshark ver-
sion 1.10.6 distributed with Ubuntu 14.04.

Both the accounting of retransmissions per flow and the
consideration of a packet as including retransmitted data de-
pends on the flow definition criteria. On the one hand, Tshark
does not include any type of timeout for flow expiration. For in-
stance, Tshark identifies a new TCP stream for a given 4 tuple
only after a new SYN, even if more than 2 MSL seconds have
passed after the connection entered the TIME-WAIT state[32].
On the other hand, Tshark does not seem to implement any
garbage collection timeout, so even after multiple hours of si-
lence, as long as the SYN segment is not in the capture, two
TCP sessions will be merged together. However, most flow
based monitoring solutions implement some sort of flow ex-
piration policy to avoid running out of resources for inactive
flows [8]. For example, NetFlow expires flows with timeouts
in the order of minutes of inactivity [1]. The consequences are
that in case of packet loss during the capture process, which is
quite usual in high-speed networks, Tshark may merge several
TCP sessions and distort the per-flow statistics.

Additionally, we note that Tshark is ill-suited for very large
traces which prevented us from using it to analyze our whole
dataset Coherently, our experimental methodology consists in
two steps. First, we pre-filter TCP sessions in individual traces
to prevent Tshark from merging sessions. More specifically,
we performed a stratified sampling of trace C, randomly sam-
pling 2500 TCP sessions which had no retransmissions and
2500 TCP sessions which had some retransmissions. Out of
such 2500 sessions with retransmissions, 14% turned out to
have severe retransmissions. These 5000 TCP sessions add up
to about 5.2 million packets in total. Second, we obtain fine
grained results in a packet-based fashion, and after that we ag-
gregate them to homogenize the definition of flows.

In Table 6 we show the comparison results for the 5000 TCP
sessions sample. We note the error rates for both the full recon-
struction algorithm and the Out of Order Detection heuristic
are the same for the sampled TCP sessions, and the classifica-
tion error for packets is small. This is expected as Tshark has a
small reordering window and marks some packets as “out of or-
der” rather than retransmissions. That explains the FPR slightly
above 2% in Server to Client TCP flows, which present higher
retransmission rates than Client to Server ones. In any case, the
results show remarkable accuracy of the Out of Order Detection
heuristic.

Finally, we note that this TCP sessions sample can be used
to estimate the (p, q) parameters of our error model. We instru-
mented our implementation of the algorithms to get per packet
classification, and compared it against Tshark classification. We
estimate that p̂ ≈ 1.2× 10−3 and q̂ ≈ 1.8× 10−4, which, accord-

Table 7: Performance evaluation results

Throughput (Gb/s) Throughput (pkt/s) Lost packets (%)
x̄ ± σ x̄ ± σ x̄ ± σ

M3Omon 9.652 ± 0.014 1.584 · 106 ± 2510 1.21 ± 0.09
M3Omon + OO 9.645 ± 0.013 1.585 · 106 ± 2662 1.25 ± 0.11

ing to our model, gives less than 1.5% error when classifying
flows of up to N = 8000 packets.

3.4. Performance evaluation

Following the accuracy results presented above, we select
Out of Order Detection heuristic for the performance evalua-
tion, as it outperforms the other proposed heuristic approach.
To carry out this performance assessment, we chose to send
trace C at 10 Gb/s because it is the largest in bytes, so it made
each test run longer —about 336 seconds. This allowed us to
test if the system had any performance degradation or instabili-
ties over time. First we measured the amount of lost packets and
the average throughput of M3Omon [9] without our algorithm
as a baseline. The experiment was performed 20 times and then,
we calculated the average and standard deviation of each met-
ric that appears in the table. Then we repeated the experiment
adding the Out of Order Detection heuristic in M3Omon [9] and
checked for performance penalties.

In Table 7 we show our experimental results. We note that
most lost packets occurred during the first few seconds of the
capture, then the system stabilized and run stable the rest of
each experiment. Our results show that the cost of running the
algorithm is negligible, and that it can be deployed in produc-
tion environments to detect flows with pathological retransmis-
sions with a packet rate of at least 1.5 million of packets per
second.

3.5. Evaluation of Memory Consumption

We have also assessed the accuracy of the memory con-
sumption model presented in section 2.4. We found that it
matches the experimental data during working hours, but it mar-
ginally underestimates the real memory usage during the nights.
Additionally, and to minimize the effect of the empirical value
of Wt in our estimations, we provide further bounds of the mem-
ory consumption based on the empirical distribution of such pa-
rameter. More specifically, we define lower and upper bounds
by using the 10th and 90th percentiles of Wt, respectively.

In Figure 6 we show the CCDFs of both the values of spaces
predicted by the model given in section 2.4 and the relative er-
ror for trace C. Since the sequence number list is compacted
whenever possible, peaks of up to 2% of retransmitted pack-
ets do not necessarily correlate with spikes in memory usage.
We note that our measured memory consumption is adequately
bound by the values predicted by our model, and that, on aver-
age, a minimal memory representation saves 10% of the spaces
the full reconstruction approach tracks.
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4. Discussion

In a nutshell, our proposal provides highly accurate results
in typical network conditions. However, we identified the fol-
lowing error-prone cases:

1. If the network severely reorders the packets before the
point of capture, both proposed algorithms give incorrect
results. In the full reconstruction algorithm, the Out-of-
Order (OO) packets can be placed in order and no retrans-
missions are detected. However, both of our proposed
heuristics count multiple retransmissions, depending on
the ordering of the segments. We note that reordering
rates are dependent on the site monitored and the path
that packets take on the Internet [33]. Reordered pack-
ets within the same flow constrain TCP performance, and
previous studies show that packet reordering happens with
low probability [33], also shown in our experimental data
in Table 4.

2. If TCP segments are lost before the point of capture, the
corresponding retransmissions will not be detected unless
the host sends more data packets. As shown in Figure 7,
if Host A sends an ACK after the lost segment, the corre-
sponding ACK sequence number shows that packets have
been lost, but our heuristics will not detect it because they
do not take ACK packets into account.

3. The Gap Detection heuristic shows effectiveness in de-
tecting gaps but cannot estimate the number of packets
in the gap, which is necessary in order to determine the
number of retransmissions. It merely counts one retrans-
mission per gap, but there can be many, which hinders its
ability to estimate the number of retransmissions.

4. We have also evaluated the effect of increasing the upper
bound of tracked spaces per flow in the generalized ver-
sions of the algorithms. Our results show negligible im-
provements in accuracy and higher resource utilization,
which further motivate the exploitation of the simplest
versions.

Additionally, the performance evaluation of the Out of Or-
der Detection heuristic shows that the computational cost of
such algorithm is marginal with respect to the overall cost of
flow record generation. Moreover, it also reduces the required
memory of more complex techniques to detect TCP retransmis-
sion.

This set of results allows us to define a guide to select the
most suitable tool for a specific TCP traffic analysis scenario.
To do so, we summarize the findings extracted throughout this
paper in Table 8. If we consider Tshark, we have shown that
it cannot cope with huge traffic volumes analysis as a result of
its memory consumption. Additionally, it cannot process more
than 1Gb/s per processing core. Consequently, this tool should
be applied only in low rate scenarios, as it provides very de-
tailed results. M3Omon overcomes these limitations after inte-
grating the Out of Order Detection heuristic, providing accurate
TCP retransmission detection rates with high performance and
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Figure 6: Behavior of predicted memory and complexity savings ver-
sus measured values.

low hardware requirements. Therefore, our solution paves the
way for advance network monitoring elements that take into ac-
count the existing tradeoff between accuracy and resource con-
sumption for demanding scenarios.

5. Conclusions

This paper has shown that simple heuristics to estimate the
number of TCP retransmissions serve to the purpose of detect-
ing flows with pathological retransmissions at 10 Gb/s speed
per processing core. We thoroughly analyzed two approximate
detection algorithms, that only use partial information from the
sequence number list of TCP sessions.

From the accuracy standpoint, we concluded that a very low
FNR and FPR can be obtained with the Out of Order Detec-
tion heuristic. As for performance, we successfully achieved
10 Gb/s throughput per core, which is the maximum traffic rate
our testbed supports. In fact, preliminary results of further in-
ternal tests reading traffic from memory show that the limits
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Figure 7: The last packet is lost and its retransmission goes undetected.

Table 8: Comparison of the evaluated tools

System
Memory

requirements
Complete

session state
TCP ReTx
detection

Bandwidth /

processing core
Suitable for
big traces

Tshark O
(
packets

)
3 3 < 1 Gb/s 7

M3Omon O (TCP flows) 7 7 10 Gb/s 3

M3Omon + OO O (TCP flows) 7 3 10 Gb/s 3

of our proposal can outperform those presented in this current
work.

Future work includes scaling up the algorithms in through-
put per core. To achieve scalability, some packet sampling strat-
egy could be devised, which is the focus of our current research.
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