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Abstract—Many management actions for networking infras-
tructures require to simultaneously consider the state of several
network elements. This is particularly critical in the case of
reconfigurable deployments, such as Virtual or Software-Defined
Networks, to scale the affected equipment up and prevent
performance bottlenecks. In this light, we present dPRISMA (dis-
tributed Passive Retrieval of Information, and Statistical Multi-
point Analysis), a passive monitoring system intended to fit
statistical models for network measurements and raise alarms
in the case of extreme behaviors. As distinguishing features,
dPRISMA relies on cost-effective multi-point network measure-
ments, and is able to select a suitable parametric model opti-
mizing the trade-off between fitting and complexity. Therefore,
it can (i) correlate records collected from several vantage points
and detect where performance issues are most likely to appear;
(ii) adjust alarms in terms of the probability of events; and (iii)
adapt its behavior to dynamic network conditions while present-
ing a fair identification of anomalous situations. We evaluate
dPRISMA with experiments both in virtual environments and
with real-world data to provide evidences of its applicability.

Index Terms—network monitoring, probability, passive mea-
surements, performance management, pro-active management

I. INTRODUCTION

In recent times, network environments have turned from
mostly static infrastructures to a challenging context where
flexible software-based configurations are becoming common.
On this basis, network managers have to tackle decisions
that ground on simultaneously considering the state of several
points of the network, to detect and solve possible performance
burdens in a flexible manner —e.g., by scaling up affected
network equipment in virtual networks, or by increasing the
capacity of links. From the monitoring standpoint, methods
and systems have to address these new possibilities and neces-
sities of management activities, providing enhanced assistance
for network operations [1].

Monitoring systems usually rely on active or passive mea-
surements to detect possible issues. The use of the latter
approach reduces risks in operational environments, as it
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provides Key Performance Indicators (KPIs) with minimal
alteration of infrastructure. However, with the increasing het-
erogeneity of services and data rates in current deployments,
passive data gathering is posing significant challenges. In this
light, network monitoring efforts are related to the thinning
and capping of network data [2], and the exploitation of the
distributed nature of these data to shift part of the analysis to
the network equipment [3].

Moreover, network operation requires robust analysis of
network measurements to select the most adequate decisions
for incident solving and prevention. Thus, the application of
suitable statistical modeling can improve pro-active policies,
which motivates the application of methods that adapt to the
evolution of KPIs [4]. This can help both to reduce false
positive ratios and to automate actions, therefore simplifying
management activities.

With these facts, we point to the following desirable char-
acteristics for novel network monitoring solutions:

1) Distributed and passive data gathering: the retrieval
of information should be distributed among different
network elements. Monitoring systems should exploit
capabilities of the equipment to improve scalability with
a horizontal division of tasks. This can be implemented
using several functionalities of common network equip-
ment. For instance, we point to opportunistic retrieval
from built-in capabilities (e.g., exploitation of OpenFlow
records); existing passive monitoring elements (e.g.,
NetFlow or IPFIX exporters); and traffic forwarding
based on SPAN ports or selective OpenFlow rules.

2) Correlation of multi-point measurements: measurements
should be exploited to provide contextual data and link
observations from different elements. As network issues
usually affect complete segments, measurements that
encompass only single points can hide the location,
extension and nature of the problems. Therefore, corre-
lation of measurements can provide deeper insights into
performance issues and network state.

3) Application of statistical models: stochastic nature of
network measurements requires a suitable statistical
modeling. Otherwise, results may not reflect actual
network conditions and spurious values can lead to

978-3-903176-14-0 © 2018 IFIP



TABLE I: Parametric models included in dPRISMA.

Parametric model Density function Mode
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biased decisions. Models should consider a compromise
between goodness of fit and complexity, to optimize
analytics and prevent unnecessary computational costs.

In line with these trends, we present the design of
dPRISMA, a system intended to (i) passively collect network
data (e.g., traffic traces, flow records, . . . ) from several vantage
points in the network; (ii) aggregate and filter data to estimate
Round Trip Time (RTT) components corresponding to differ-
ent network segments; and (iii) fit and select the most suitable
statistical model for these measurements. We focus on RTT,
as this specific KPI has been extensively used to detect and
forecast network bottlenecks [5], [6].

Our proposal integrates several models that proved to char-
acterize the distribution of RTT fairly: dPRISMA automati-
cally ranks those models, and select the one with the highest
goodness of fit and lowest complexity. With this, it constitutes
a promising starting point to provide a flexible and general
framework able to detect changes in the stochastic behavior
of network KPIs while optimizing computational cost. We
note that measures of centrality (e.g., mean, median or mode)
provide an easy-to-understand indicator of KPI departures.
Remarkably, the mode is a significant value (i.e., the most
common value for a specific random variable), its estimation
from a sample is challenging, and is robust against outliers
and censored or truncated data [7].

The main contributions of our work are the study of RTT
decomposition to facilitate the correlation of measurements
and location of issues; and the definition of a methodology
to rank models that puts together goodness of fit and com-
plexity, paving the way for automated selection of the optimal
statistical model for passive measurements. Additionally, we
show that the statistical mode can be fairly obtained from the
inferred models. The operation of dPRISMA allows distribut-
ing the data collection process among several vantage points;
correlating measurements retrieved from heterogeneous data
sources; and it provides flexible models that adapt to changing
behaviors. These aspects can help defining part of the system
functionality in terms of OpenFlow rules, records exported
to SDN controllers, and embed network monitoring functions
in virtual networks, paving the way for improved monitoring
processes in virtual and Software-Defined infrastructures.

To present our results, the rest of this paper is organized as
follows: Section II reviews several related works that motivate
our proposal. After that, Section III presents the architecture
of dPRISMA, describing the main functional blocks of our
prototype, its operation and the method for the automation
of model selection. On its part, Section IV assesses the
functionality of the prototype, and reports the results of a
case study that highlights the relevance of the model selection
process. Finally, Section V discusses the findings of our study,
and Section VI concludes the paper and depicts future work
lines.

II. RELATED WORK

In this section, we present related works that motivate the
design of dPRISMA. We start with a review of statistical
models for RTT measurements, to justify the selection of the
models in our system. Then, we focus on other frameworks
that share design principles with our proposal.

A. Statistical models for RTT

Statistical modeling of network KPIs has deserved much
attention, given its importance for network operation. This
interest has resulted in a vast amount of literature reporting
how different probability distributions represent network mea-
surements, which extends to delay and RTT modeling. Table I
compiles the parametric models included in our solution
(with closed expressions for density function and mode when
available) to summarize the analysis of the literature.

Given their central position in inference, probability theory
and empirical research [8], normal and lognormal models
are a common approach when coping with data analysis.
However, the research of KPIs in operational networks has
exposed that many times they exhibit heavy-tailed behaviors in
existing deployments, which grounded the exploration of more
complex models able to capture large deviations [9]–[11]. As
we will detail in the following sections, our system considers
several parametric models (some of them with heavy tails)
and compares their performance, taking into account different
metrics to optimize the trade-off between goodness of fit and
complexity.

In [12], the authors explored which distribution adjusted
single-hop delays in computer networks. Their conclusions



pointed to a good representation of this KPI with Weibull
distributions, as delays presented fair unimodal behaviors.
Similar results were reported in [13], while in this latter case
multi-modal behaviors were observed (somehow expectable,
as that work analyzed end-to-end delays) so mixtures of
Weibull distributions provided good fitting to the measure-
ments. Inspired by these results, we explored two additional
parametric families, which for some values in the space of
parameters lay near Weibull distributions.

On the one hand, we have considered the Generalized
Extreme Value (GEV) distribution [14], given their suitability
to represent variables with large and rare values. Remarkably,
GEV distributions generalize Weibull, Gumbel and Fréchet
distributions, which motivates the selection of this model. On
the other hand, we also introduced Burr Type XII distributions
to model RTT, motivated by the relation of this parametric
family with Weibull distributions [15] and preliminary results
in other applications to network data [16]. The complexity of
both models is comparable to Weibull distributions, but their
broader flexibility can potentially reduce deviant cases.

Additionally, in recent times α-stable distributions have
been applied to model RTT [11]. This family is very flexible
and general, but much more complex that those previously
commented. In fact, the fitting of the parameters of α-stable
distributions is computationally expensive [17], [18] and there
is no closed expression for their density function. Remarkably,
α-stable distributions appear in the generalized central limit
theorem and converge to normal distributions for some values
in the space of parameters.

B. Multi-point distributed monitoring systems

Network slicing and virtual networks on top of shared
hardware require flexible and scalable approaches to gather
data without incurring in high costs —e.g., movement of big
data volumes. This matter is not a particularly new concern
for network monitoring, and many previous results explored
principles that can help to improve current systems.

For instance, the design of cooperative monitoring sys-
tems [19] arose as a promising approach to alleviate the short-
comings of monitoring scalability. These classical ideas can
pave the way for improved solutions in the network monitoring
scope, as stated in [1]. The architecture of dPRISMA shares
many of the principles that guided these proposals.

Even more important is that many current network monitor-
ing efforts are focused on how to take advantage of the ever
increasing capabilities of network equipment. This opens the
gate to disaggregate network monitoring, moving specific tasks
to the most suitable equipment in the network. Turboflow [3]
is a recent proposal that relies on the embedding of flow
generation into programmable switches. However, the authors
of that work highlight that stateful information may limit the
complete implementation of some processes in the network
hardware. In the same line, Sonata [20] distributes monitoring
tasks to different network elements, providing a query-based
API that can be exploited by other modules. Parallel to
these proposals, dPRISMA provides high-level analytics after
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Fig. 1: Functional modules of dPRISMA.

aggregation and correlation of traffic packets or flow records
that may be produced by different sources and methodologies.

Finally, and regarding the trends in virtualization and
software-definition of networks, we point to other recent
works that exploit containers to define flexible monitoring
services that can be instantiated on demand and linked to
specific applications [21]. The modular design of dPRISMA is
totally aligned with these trends, providing a higher decoupling
of data gathering and analytics. Such approaches can push
network monitoring proposals toward microservice-oriented
architectures [22].

III. SYSTEM ARCHITECTURE AND DESCRIPTION

Along this section, we describe the main functional compo-
nents of dPRISMA, which are summarized in Figure 1. In the
current proof of concept implementation, dPRISMA relies on
flow records to conduct the analysis and modeling of RTT. To
prevent ambiguities, we clarify that hereafter we refer to TCP
flow as a set of TCP packets with a common 4-tuple, which
traverse a particular vantage point in the network during a
specific time interval, as stated in RFC 7011 [23].

Additionally, we synthesize the operation of dPRISMA in
Figure 2. First of all, passive measurements are gathered
from the available vantage points. These measurements are
aggregated in dPRISMA, and correlated to obtain estimations
of RTT and its components —that is, the increments along
the network segments defined by vantage points. After that, the
system fits and selects the parametric model for measurements,
and provides estimations of significant central values —e.g.,
mean, median and mode— and other order statistics such as
extreme values. This leads to flexible and adaptable profiles
for alerts, thus providing indicators of performance issues.

In the following, we detail these operations and how they
are implemented within the different functional blocks. For
our description, we follow a constructive approach that first
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considers how data are gathered and preprocessed, and then
details how they are exploited to build the models.

A. Data gathering and preprocessing

Flows are collected in several ways. Some examples are
Netflow or IPFIX [23], and other custom tools that send at
least information about when every flow starts. Except for
special cases, these timestamps are taken from SYN and SYN-
ACK segments, which let us have an estimation of RTT
that only requires that both flows of the same connection
are sampled. Regarding performance issues in this process,
we may distinguish two different situations: flow aggregation
in a computing element different to network equipment, and
aggregation inside the networking elements. In the first case,
it is possible to capture traffic up to 40Gb/s in commodity
hardware —e.g., see [24], [25]. In the case of monitoring
functions within network equipment, performance issues may
appear depending on traffic characteristics and capabilities
of specific hardware, while commercial equipment includes
support for this operations.

dPRISMA estimates RTT by subtracting the start times of
two TCP flows that share temporal and spatial localities, and
the 4-tuple swapping source and destination addresses and
ports. Then, it correlates equivalent flows: TCP flows sharing
the 4-tuple and time interval but observed in different points
of presence. This process is described in Algorithm 1.

Once RTT is estimated and correlated, the equivalent flow
contains information of the flow in several locations. By
looking at Figure 2, we observe that RTT in hop j is given
by Equation 1:

RTTj =

N∑
i=j

∆RTTi (1)

By inverting this linear operator, we can obtain an estimation
of the component in the network segment between vantage
point j and j + 1 with the expression in Equation 2:

∆RTTj = RTTj − RTTj+1 (2)

Algorithm 1 Flow aggregation.

1: function getSuperflows(flows. . . )
2: table ← InitializeSuperFlowsTable()
3: for flow in flows do
4: if flow is ip and tcp then
5: if flow.srcPort < flow.dstPort or

(flow.srcPort = flow.dstPort and
(flow.srcIp < flow.dstIp)) then

6: quintuple ← (flow.srcIp, flow.srcPort, flow.dstIp,
flow.dstPort, flow.ipProto)

7: else
8: quintuple ← (flow.dstIP, flow.dstPort, flow.srcIp,

flow.srcPort, flow.ipProto)
9: end if

10: table[quintuple].addFlow(flow)
11: end if
12: end for
13: return(table)

Note that these estimations do not require synchronization of
equipment clocks.

B. Model selection and adaptation

Due to the stochastic nature of network measurements,
statistical models are needed. In our case, these models are
intended to characterize ∆RTTj behavior, so that frequent
events can be distinguished from anomalies or deviant events.

Apart from how challenging model fitting can result, the
selection of an optimal model to be used emerges as key
matter for systems as ours. For this aim, we have equipped
dPRISMA with several criteria, summarized in Table II, to
adapt its behavior to a wide range of situations:

1) Coefficient of Determination (R2): A well-known metric
of goodness of fit is the coefficient of determination,
R2. This metric is based on a linear fitting of (xk, yk),
where xk are the order statistics of the sample and yk are



TABLE II: Summary of metrics for model selection.

Metric Description Expression
R2 Only considers fitting. 1− SSres

SStot

AIC Considers both fitting and
number of parameters. 2(k − log(L̂))

BIC Considers fitting, number of
parameters and sample size. log(N)k − 2 log(L̂))

the corresponding quantiles of the model. If the samples
follow the model, there must be a strong linear relation,
which entails that R2 must be close to 1. This is a
necessary but no sufficient condition [26], so although
this method cannot provide a formal proof of goodness
of fit, it can be applied to rule out the parametric models
with the lowest values —i.e., to select that with the
strongest linear relation between the order statistics of
the sample and estimated distribution.

2) Akaike Information Criterion (AIC): This a statistical
method to compare different models based on two
factors: complexity and goodness of fit. It has the
expression AIC = 2(k− log(L̂)) where k is the number
of parameters of the model and L̂ is the maximum of the
likelihood function [27]. It is remarkable that complexity
is just evaluated with the number of parameters, and this
makes it a really optimistic approach.

3) Bayesian Information Criterion (BIC): Related to the
aforementioned AIC, it introduces an additional compo-
nent, which is the number of samples. This is intended
to avoid overfitting in parametric models, so that the
complexity and goodness of fit are balanced [28]. The
expression is BIC = log(N)k − 2 log(L̂), where N
stands for the sample size and the rest of variables were
described in AIC.

These three criteria allow choosing the most appropriate
model based on complexity and goodness of fit, and on the
situation and requirements of the other top-level system that
use this information. For instance, for real-time applications,
simpler models are preferred so the model computation is not
a bottleneck in the monitoring system.

C. Mode estimation

The mode of a sample is a prominent centrality measure that
returns the most probable value of a distribution. Given that
finding a good parametric model is not always feasible, we also
evaluated alternative methods to estimate the mode. We have
considered methods for the univariate case —see the analysis
in the introduction of [7]— and studied both indirect (that is,
relying on a non-parametric density function estimation) and
direct (essentially, search methods around intervals where the
mode is likely to appear) proposals:

1) Estimation through the Kernel Density Estimator (KDE):
This approach arises from the definition of mode. First, the
KDE, a PDF estimator, is calculated. The mode is estimated
as the maximum of the KDE, M̂ode(X) = argmaxx∈Rf̂(x).
While this method can reveal important details about the

density function (e.g., shape or number of modes), it depends
on the convergence of KDE to the actual PDF.

2) Half-Sample Mode (HSM) algorithm: The HSM al-
gorithm is a robust and fast method to approximate the
mode [29]. This algorithm is based on the principle that
“the mode is in the smaller interval that contains half of the
sample”. By applying this idea, we reduce both computations
and assumptions, making this approach a good one to use in
many situations.

IV. EVALUATION

A. Experimental design

The validation of dPRISMA proof of concept encompassed
two different stages: a first one, with laboratory experiments,
where we tested the system in a controlled environment; and
a second one with real data coming from a data center.

The first stage was accomplished in an emulation-based ex-
perimental environment1 on top of mininet [30], [31]. Virtual
networks were deployed in commodity hardware (a laptop PC
with a quad-core processor, 8GB RAM) and configured as
follows:

1) Create a linear topology with either routers or switches
as non-terminal nodes. Specifically, we used 6 hops in
our experiments.

2) Use netem and tc in each link to establish a delay of
(10 + 2i) ms, where i is the index of the hop, and a
capacity of 20 Mbit/s.

3) Capture traffic passing through each interface. As our
method only needs TCP packets with the SYN flag
activated, this capture did not exert a significant impact
on the performance of the environment.

4) Configure terminal nodes as traffic generators. We used
these nodes to generate TCP connections that go through
all hops.

In order to make this situation closer to a real network,
background traffic is introduced. Several techniques were used
to generate such load: (i) ICMP ping with random intervals,
(ii) iperf and (iii) traffic generators that rely on TCP
connections to a conventional TCP or HTTP server [32].

After validation, there were no significant divergences be-
tween the measurements when using any of these methods.
Therefore, we configured several nodes to send ICMP packets
of size 1000 Bytes at random intervals in bursts of 500-
1000 packets to simplify the experiments.

In the second stage of experiments, we analyzed flow
records from a data center network with dPRISMA to assess
its outcomes in an actual case study. This dataset, hereinafter
denoted DatasetISP, has the following characteristics:

• It includes real traffic traces of core and service switches,
load balancers and virtual machines in operation, gath-
ered from an Internet Service Provider (ISP) data center
network.

1The source code is available at https://github.com/hpcn-uam/mininetplus .



(a) Scatter plot of hops 1 and 2 for RTT. (b) Scatter plot of hops 1 and 2 for ∆RTT.

Fig. 3: Results for the virtual environment. The × shows the intersection of the modes of hops 1 and 2.

TABLE III: Estimated mode of ∆RTT1 and ∆RTT2 in the virtual environment, for each of the methods.

∆RTT1 ∆RTT2

Model Mode R2 AIC BIC Mode R2 AIC BIC
KDE 24.669ms - - - 28.817ms - - -
HSM 24.699ms - - - 28.755ms - - -
Normal 25.125ms 0.811 -54393.423 -54380.389 30.561ms 0.789 -44919.993 -44906.959
Lognormal 24.665ms 0.827 -54897.417 -54884.382 28.893ms 0.830 -45842.766 -45829.732
GEV 24.640ms 0.948 -56638.769 -56615.216 28.951ms 0.976 -48284.294 -48264.742
Burr Type XII 24.650ms 0.956 -56636.163 -56616.612 28.657ms 0.996 -48324.508 -48304.956
α-stable ∼24.650ms 0.970 56625.412 -56599.344 ∼29.098ms 0.272 -48052.870 -48026.801

• It was captured using the management software of two
vantage points, so no special equipment was completely
dedicated to network monitoring.

Due to the presence of some outliers in the second hop of
the dataset, some preprocessing was applied to visualize and
plot the data. As some of the destinations of the connections
are virtual machines, the outliers were likely caused by the
hypervisors managing virtual machines.

B. Results in virtual environment
We recall that the delay among nodes was controlled by

netem in the virtual environment, so the double of the con-
figured delay is expected as theoretical ∆RTT. The effect of
traffic load increases somehow this bound, and thus estimated
∆RTT should be slightly higher.

Figure 3 shows scatter plots of the RTT and ∆RTT in the
two first hops —there were no significant differences with
measurements in the other vantage points, so we omit the
consideration of every combination for the sake of brevity.
After truncating extreme values to improve visualization, the
scatter plot for the latter shows a concentrated set of points
around the mode with skewed density functions. Additionally,
Table III summarizes the results of modeling in dPRISMA.

1) Model fitting and selection: The results show that GEV,
Burr Type XII and α-stable distributions are close enough
(R2 > 0.90) to be considered fair models. Table III il-
lustrates the value of the multi-metric ranking. According

to the R2, the preferred model would the sophisticated α-
stable distribution. Though, AIC points to GEV as optimal
model, because its lower complexity (respect to α-stable
distribution) compensates the loss in goodness of fit. Finally,
BIC considers the Burr Type XII as the best model. These
results show how dPRISMA can be tuned to take into account
and balance several factors ( complexity, number of samples
or just goodness-of-fit) depending on the context.

2) Mode estimation: Table III also includes estimated
modes, including the computations with KDE and HSM. In
each case, we observe than the mode is around the theoretical
expected values, both for ∆RTT1 and ∆RTT2 (24 and 28ms,
respectively) plus an additional delay of ∼0.7 ms because of
the background traffic. In this case, it is worth noting that the
mean (mode estimator for the normal model) suffered from
variable deviations with respect the expected value, depending
on the skewness of the ∆RTT distribution. In the case of
∆RTT2, α-stable model also exhibited high distortions, due
to numerical errors during parameter estimations.

C. Case study: analysis of a data center network

Once we have assessed the accuracy of dPRISMA, we
inspect the results obtained during the study of a real data
center network. Similarly to the previous experiments, we
present scatter plots of RTT and ∆RTT in Figure 4, and
summarize the results of model fitting and mode estimation



(a) Scatter plot of hops 1 and 2 for RTT. (b) Scatter plot of hops 1 and 2 for ∆RTT.

Fig. 4: Results for DatasetISP. The × shows the intersection of the modes of hops 1 and 2.

TABLE IV: Estimated mode of ∆RTT1 and ∆RTT2 in DatasetISP, for each of the methods.

∆RTT1 ∆RTT2

Model Mode R2 AIC BIC Mode R2 AIC BIC
KDE 0.1080ms - - - 0.161ms - - -
HSM 0.1124ms - - - 0.167ms - - -
Normal 0.1042ms 0.990 -4754.719 -4747.567 0.7553ms 0.05 -1728.580 -1721.429
Lognormal 0.0861ms 0.905 -4711.002 -4703.850 0.1223ms 0.295 -4093.103 -4085.950
GEV 0.1055ms 0.992 -4750.049 -4739.321 0.1251ms 0.651 -4251.231 -4240.504
Burr Type XII 0.1063ms 0.995 -4754.618 -4743.890 0.1546ms 0.708 -4275.132 -4264.402
α-stable ∼0.1042ms 0.991 -4750.721 -4282.579 ∼0.1568ms 0.970 -4296.883 -4282.579

in Table IV. Additionally, we include in Figure 5 the rep-
resentation of sample data compared to the three models
that provided the best goodness of fit. Figures 5a and 5c
present the comparison among the estimated densities and the
normalized sample histogram, and Figures 5b and 5d depict
the corresponding violin plots with some remarkable order
statistics —specifically, the median as centrality measure, and
the 5th and 95th percentiles for extreme values.

For ∆RTT1 (i.e., measurements in the first vantage point),
Burr Type XII model obtained the highest R2, whereas AIC
and BIC suggest that a normal model is also reasonable
and much less complex. This behavior is coherent with the
insights from Figure 5b, where Burr Type XII presents higher
accordance with the order statistics of the sample, while the
adjusted normal model fairly fits the sample distribution.

However, the behavior of ∆RTT2 (i.e., measurements in
the second vantage point) is very different. In this case,
the preferred model is the α-stable distribution, with better
scores (either when considering R2, AIC or BIC) for any
other option. The skewness and tail of ∆RTT2 prevent from
considering more simplistic models, with poor accuracy in the
representation of the shape and order statistics of the sample
distribution —see Figures 5c and 5d for illustration.

This situation exposes two important matters. First of all,
this dataset provides evidences of disparity in the behavior
of RTT components among vantage points. That is, we cannot
assume the existence of a one-fits-all model for network KPIs,

even within the same network. Moreover, our results show
that complex models with outstanding performance in some
situations can fail where simpler ones achieve good results.
Additionally, this analysis shows that RTT components (i.e.,
∆RTT) locate and differentiate how traffic is affected when
traversing each of the vantage points. This fact is useful to
detect situations of local saturation in a network segment that
are not detectable with the aggregated RTT.

V. DISCUSSION

The evaluation of dPRISMA has illustrated the viability
of monitoring systems with the desirable characteristics that
grounded this work. Our proof of concept and case study has
exposed some remarkable ideas:

1) Passive retrieval of relevant information can be dis-
tributed: dPRISMA implements a distributed data gath-
ering strategy, which is useful to improve the scalability
of monitoring systems. Then, data aggregation and pro-
cessing provided meaningful contextual information to
characterize the network state comprehensively.

2) RTT components help to locate where performance
issues are most likely to appear: as shown above,
the observations of RTT do not fully characterize the
behavior of RTT components. Therefore, the application
of strategies such as ours can improve the detection and
actuation in case of network issues.



(a) Histogram and density comparison, ∆RTT1. (b) Violin plots, ∆RTT1. Horizontal lines show percentiles 5th, 50th and
95th of the sample.

(c) Histogram and density comparison, ∆RTT2. (d) Violin plots, ∆RTT2. Horizontal lines show percentiles 5th, 50th and
95th of the sample.

Fig. 5: Comparison among models and observation for ∆RTT1 and ∆RTT2 in DatasetISP.

3) More complex models are not necessarily better: our
evaluation and case study reveal that simpler models
may be better to represent measurements if complexity
is included in the selection criteria. That is, slight
improvements of goodness of fit may not justify the
application of more sophisticated models.

However, some practical issues may arise during the op-
eration of dPRISMA. For instance, random packet sampling
in observation points may harm the fitting of models. That is,
packet sampling can reduce the applicability of our strategy for
RTT estimation and decomposition. This applies when gath-
ering NetFlow or IPFIX records, which can potentially limit
the deployment of dPRISMA in these scenarios. However, we
plan to further analyze to what extent this can jeopardize the
results of this type of strategies, and how to overcome such
limitations with novel capabilities of network equipment.

VI. CONCLUSION

Along this work, we have described a system for network
monitoring able to provide comprehensive multi-point analysis
of RTT values. It relies on the decomposition of RTT values

in different components that reflect the state of different
network segments. We have equipped such a system with an
automatic model selection algorithm that takes into account
goodness of fit and complexity, to optimize computational cost
of the analysis of passive measurements. The experimental
assessment of our proof of concept exposed that it provides
promising results both in synthetic scenarios and in field trials
with data from a data center network. Additionally, we have
released a prototype that is freely available to the community.2

Nonetheless, some future work lines are still open before
unveiling the capabilities of such an approach. First, we plan
to extend data gathering modules to improve interoperabil-
ity with SDN and virtualized elements. Additionally, and
as stated above, we are starting to study the compatibility
of dPRISMA with packet sampling techniques to alleviate
computational burdens. Finally, we point to the exploration
of RTT decomposition as predictor of network overloads and
failures.

2https://github.com/hpcn-uam/dprisma
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[32] D. Perdices, J. E. López de Vergara, P. Roquero, C. Vega, and J. Aracil,
“FlexiTop: a flexible and scalable network monitoring system for Over-
The-Top services,” Network Protocols and Algorithms, vol. 9, no. 3-4,
2017.


