
Citation: Luis-Bisbé, E.;

Morales-Gómez, V.; Perdices, D.;

López de Vergara, J.E. No pictures,

please: Using eXplainable Artificial

Intelligence to demystify CNNs for

encrypted network packet

classification. Appl. Sci. 2024, 1, 0.

https://doi.org/

Received: May 3, 2024

Revised: June 14, 2024

Accepted: June 19, 2024

Published:

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

No pictures, please: Using eXplainable Artificial Intelligence to
demystify CNNs for encrypted network packet classification
Ernesto Luis-Bisbé 1, Víctor Morales-Gómez 1, Daniel Perdices 1, and Jorge E. López de Vergara 1,*

1 Department of Electronic and Communication Technologies, School of Engineering, Universidad Autónoma
de Madrid, Spain
* Correspondence: jorge.lopez_vergara@uam.es; Tel.: +34-91-497-22-59 (J.E.L.d.V.)

Featured Application: The results of this work can be applied to improve machine-learning-based
network packet classification.

Abstract: Real-time traffic classification is one of the most important challenges for both Internet ser-
vice providers and users, because the right traffic policing and planning allow a proper optimization
of the network resources. However, there is no perfect solution for this problem, due to the grade of
complexity of modern traffic. Nowadays, Convolutional Neural Networks (CNNs) are believed to be
the miraculous solution for network packet classification of encrypted traffic. Nevertheless, given the
obscure nature of deep learning, an appropriate explanation could not be easily obtained on how
the model is detecting each traffic category. In this paper, we present an analysis on some popular
CNN-based models for network packet classification, focusing on how the model works, how it was
implemented, trained, and tested. By using eXplainable Artificial Intelligence (XAI), we are able to
extract the most important regions of the models and extract some reasoning to justify their decisions.
Moreover, in the process, we look for possible flawed methodologies that can lead to data leakage
or an unrealistic performance evaluation. The results show that CNNs mainly focus on the packet
length to make a decision, which is definitely a waste of resources. As we also check, the same could
also be implemented with simpler machine learning models, such as decision trees. Our findings
indicate that poor experimental protocols result in an unrealistic performance evaluation. Moreover,
XAI techniques are of great help in the assessment of the model, showing that CNNs do not detect
significant features in encrypted payloads apart from packet length.

Keywords: Convolutional Neural Networks; eXplainable Artificial Intelligence; Network Packet
Classification; model evaluation; GradCAM.

1. Introduction

With the rise of the Internet usage, proper management of the network traffic in
modern ISPs has become a challenge of paramount importance. Categorizing each network
packet on the fly is key to proper decision-making. For many applications, such as quality
of service policing or traffic shaping, routing might be more efficient if the type of data
consumed is known. For example, in Internet telephony, latency is key and dropped
packets are acceptable, whereas in a batch download latency is acceptable, but there must
be guarantees that all information is received at least once. This packet classification cannot
be done offline, i.e. after the network flow has already been completed, but rather online, i.e.
while the first packets of the flow are passing in real time through the network equipment.
However, as the Internet has become a fundamental part of our society, privacy issues
have arisen, causing the advent of the encryption of network traffic. Encryption poses yet
another challenge to traffic classification, as classical methods such as those mentioned
below do not make sense any longer. Several methods have been tested for real-time
network packet classification over the years: initially, the rudimentary use of port-based

Appl. Sci. 2024, 1, 0. https://doi.org/10.3390/app1010000 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/article/10.3390/app1010000?type=check_update&version=1
https://doi.org/10.3390/app1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3421-7633
https://orcid.org/0000-0002-4057-4688
https://doi.org/10.3390/app1010000
https://www.mdpi.com/journal/applsci

Appl. Sci. 2024, 1, 0 2 of 26

classification [1] (with a basis on TCP&UDP well-known port numbers); later, the use of
Deep Packet Inspection (DPI) using pattern matching and detecting protocol anomalies [2];
and most recently, algorithms based on statistical features and machine-learning-based
techniques such as Support Vector Machine (SVM) [3], or deep neural networks such as
Convolutional Neural Networks (CNNs) [4,5]. In particular, CNNs are at this moment a
well-known solution for traffic classification, because their ability to find spatial correlations
between earlier and later parts of the data is useful in network traces, where the data might
be correlated spatially to a high degree, due to the relation between contiguous bytes.
In fact, CNNs are becoming increasingly relevant, due to their reported high accuracy
values, but they have a major drawback: they generally behave as black boxes, because
the statistical features detected by the neural network are hard to be explained outside
the context of the predictor itself. Thus, we decided to study in depth the capabilities of
CNNs using a public network traffic dataset, focusing on whether it is feasible to extract
usable data from the model. By analyzing state-of-the-art models and their methodologies
for training and testing, we are able to identify common practices, keys to success, and
possible malpractices, such as data leakage.

Compared to previous works, our methodology includes the following main contri-
butions: firstly, we need to make sure that the separation between packets in the train
and validation sets prevents data leakage. This is, we ensure we do not train and test
with different packets of the same flows, in order to prevent overfitting and avoid bias in
the model. While this is an obvious practice in AI, it is not as simple as it sounds when
doing network packet processing, because packets of the same connection can cause data
leakage if they are incorrectly split. Secondly, we want to gain a deeper understanding of
what CNNs are actually watching. The lack of explainability or interpretability is a major
concern for their potential feasibility and deployment in real-world scenarios. We expect
to hold the model to the same standards of privacy, unbiasedness, and reliability as other
standards in the industry. Once we have the right information, we have built a reference
CNN model for network traffic classification. From the aforementioned dataset, we have
filtered the headers of the packets in order to manipulate just encrypted payload data and
avoid using IP addresses and ports. After training, we analyzed the performance and the
explainability. Regarding explainability, we must study how to extract data directly from a
deep neural network. For this, we have applied techniques used in other research fields,
such as image and video classification, to create a useful representation of the reasoning
behind the classification of network packets. To make our methodology applicable to all
contexts, we used an algorithm that is universally applicable to all CNNs in order to further
understand them, and developed several modifications in the model in order to see how
the behavior may change depending on the added or removed features.

As a result, we focus on understanding important factors for model performance. First,
we analyze characteristics of the data that might be relevant. A good example of this is that
data leakage leads to overfitting when packets of the same flow are both in training and
test set. We also analyze the different parameters of the model that impact performance.
Finally, the decision is analyzed using eXplainable Artificial Intelligence (XAI) techniques,
so that we try to understand how the features are built and what they focus on.

The rest of the paper is structured as follows. Next, section 2 shows the related work,
in order to contextualize our research. Then, section 3 explains how available datasets have
been processed, trying to avoid the bias that is present in many prior network classification
works. In section 4, we present the different components of a CNN architecture to classify
network packets. After that, section 5 presents gradient analysis as a way to explain the
convolutional models. In this way, section 6 applies this technique to real data, so we
can understand what the neural network has generalized from the encrypted traffic it has
trained with. Finally, section 7 concludes the paper, providing a summary of the main
results and contributions.

Appl. Sci. 2024, 1, 0 3 of 26

2. Related work

The problem of network traffic classification has been extensively studied, and many
works, including books, articles, and deep research, have already approached this matter.
As such, this section covers the papers of interest for our research. First, we present state-of-
the-art works that are relevant in the scope of this study. Second, we analyze an extensive
set of CNN-based models to deepen our knowledge on how CNN models are applied in
network packet classification.

2.1. State of the art

Machine learning techniques have been progressing and evolving since the mid-
nineties, but the first proposals to use modern machine-learning techniques for network
traffic classification became popular around the 2000s. A relevant example is SVMs,
appearing around 2002 [6].

Nowadays, XAI has gained a pivotal role in the use of modern artificial intelligence (AI)
in the research community [7], because the difficulties to interpret deep learning models
prevents their use in real scenarios, as the need for accountability, responsibility and
transparency of the decisions arises. Additionally, the unknown properties and behavior of
the model make further improvements much harder to grasp, as we do not have proficient
metrics that help us define better hyperparameters.

Different authors have applied a wide variety of machine learning techniques to
network traffic classification. Different datasets, models, applications and methodologies
have been used, such as Multilayer Perceptron, CNN, Recurrent Neural Networks (RNNs),
Autoencoders, and other types of layers [8–11]. Currently, deep learning has established
itself as one of the main tools in the area of network traffic classification. However, few
studies have addressed how to classify the traffic in real-world situations. The research
made by [12] must be taken as a warning sign: we must develop stronger tools to further
prove and test the models, as most of them heavily underperform on real scenarios due to a
lack of generalization and a misjudgment in the true capabilities of the model. Additionally,
these techniques are sometimes applied to non-encrypted packets, which is not represen-
tative of the nowadays networks. Our work focuses only on encrypted TLS payloads, so
neither the header nor the data format can leak information about the corresponding label.
This will be discussed extensively in section 3.

Authors in [4], one of the first references on using deep learning for traffic classification,
show how to detect malicious traffic using CNNs. They process the network packets to
display them as 2D images, and it is observed that, depending on the type of application,
they can see specific patterns. This is promising because it means that, even if the traffic is
encrypted, there might be a way to classify it according to the application.

The works in [13,14] show that such techniques used in other fields, such as image
or video classification, can be applied in network and service management, bringing a
new perspective into some challenges in the area, and opening up the entire field for a
different point of view. Similarly, we have applied and extended XAI techniques, reaffirm-
ing their strengths and addressing the state-of-the-art challenge of understanding traffic
classification.

Previous studies have demonstrated the ability of neural networks to achieve high
levels of accuracy in the classification of encrypted and non-encrypted traffic. However,
a significant challenge remains in the application of such techniques in real-world envi-
ronments where low latency and high processing rates are required. In such scenarios,
waiting for the arrival of a sufficient number of packets to classify a flow is not feasible and
classification must be performed on individual packets in real-time.

To address this challenge, recent literature has proposed a method whereby network
traffic packets are processed and displayed as 2D grayscale images, which can reveal
discernible patterns depending on the type of application. This approach is particularly
noteworthy as it enables classification of encrypted traffic based on the source application.
Consequently, it presents an opportunity for Internet Service Providers (ISPs) to enforce

Appl. Sci. 2024, 1, 0 4 of 26

service differentiation policies while ensuring the protection of user data. In order to
harness these unique patterns, CNNs are employed as an image classification model.
CNNs have been extensively investigated in recent years for their ability to effectively solve
real-world image classification problems.

One advantage of using neural networks accelerated by GPU (Graphics Processing
Unit) or Deep Learning Processor Units is the parallelization of the classification process.
By working with individual packets, in which no information needs to be saved between
flows, it is possible to create pipelines of work that greatly accelerate the process. However,
there is a challenge that must be addressed. To enable these GPUs to operate at the highest
performance, batches of images ranging from 64 to 256, depending on the architecture used,
are required [15]. This has the disadvantage that one must wait to receive the next packets
to classify when their information is not necessary in the classification process.

If real-time classification is desired, latency is to be minimized. In that case, Deep
Learning Processing units on FPGAs or other converged accelerators are required. Oth-
erwise, image batches would need to be reduced, leading to compromised classification
system bandwidth. Therefore, these accelerators are essential for real-time network packet
classification. With this approach, individual packets can be classified in real-time without
extra latency due to the batching effect or compromising system bandwidth, leading to
significant improvements in classification performance [16].

In contrast to the aforementioned challenges in the field of traffic classification using
CNNs, we note that authors in [17] noticed how flow characteristics might affect their
network classifier. Specifically, their method utilizes both flow information to contextualize
the network traffic. By incorporating such information, they are able to leverage the
power of temporal data and overcome the limitations of traditional packet classification
approaches. Overall, their approach represents a significant advancement in the field,
offering promising possibilities for improving the accuracy and reliability of network traffic
classification.

2.2. Comparative analysis

To comprehend the significance of traffic classification using convolutional networks,
a thorough review of 20 articles published between 2017 and 2022 was conducted. Table 1
provides a summary of this state-of-the-art analysis, comparing our work with previous
research.

The literature review is focused on several key aspects of network traffic classification,
including the classification of services or applications and if the traffic was encrypted, the
dataset analyzed, the network architecture utilized, and whether packet processing was
conducted on the fly or by waiting to generate flow statistics. Additionally, the review
assessed how protocol headers were handled and how packets that did not meet the
minimum size of the neural network input were padded. The analysis also examined
whether the reviewed articles aimed to reduce bias by class balancing and manage data
leakage by separating training streams from testing streams.

In the comparative analysis, we have studied the authors’ handling of bias and data
leakage. We observed that several studies report high accuracy performance on testing
datasets, with some achieving as high as 99%. However, a significant proportion of these
studies lack a detailed description of the experimental protocol and dataset handling
process, raising concerns regarding possible flow bias or data leakage. Except for us and the
work in [21], the rest of studies cited in Table 1 either do not specify how train-test split was
done (‘?’), or give hints that data leakage might have happened (‘×’). Additionally, in many
cases, it is not clear how the packet-to-image conversion is performed, with no information
provided on whether headers are eliminated or if images are padded to obtain the desired
dimensions. Moreover, we note that some studies suffer from imbalanced classes or omit
this information altogether. Finally, the use of flow statistics instead of independent packets
presents a challenge for real-time traffic classification in actual networks, as on-the-fly
processing is required.

Appl. Sci. 2024, 1, 0 5 of 26

Table 1. Review of recent publications on traffic classification.

Paper Year Architecture Dataset Output Online No flow data leakage

Ours. 2024 1D-CNN, 2D-CNN ISCX VPN Services ✓ ✓
[18] 2023 CIL CNN MIRAGE19 Mobile apps × ?
[19] 2022 CNN ISCX nonVPN Services × ×
[20] 2022 Decision Tree ISCX VPN & nonVPN Heartbleed attacks ✓ ?
[21] 2022 1D-CNN MIRAGE COVID CCMA 2022 Mobile apps × ✓
[22] 2022 1D-CNN, DBN ISCX VPN & nonVPN VPN vs nonVPN &

Services
✓ ×

[23] 2022 FDCNN ISCX VPN & nonVPN VPN vs nonVPN &
Services

✓ ×

[12] 2021 2D-CNN ISCX nonVPN Applications ✓ ?
[17] 2021 2D-CNN ISCX VPN & nonVPN Both × ?
[24] 2021 GADCN USTC TFC2016 Applications × ?
[10] 2020 1D-CNN+tSNE Own Services × ?
[25] 2020 SAE & 1D-CNN ISCX VPN & nonVPN Applications ✓ ?
[26] 2020 CNN, LSTM, SAE,

HAN
WIDE, USTC Applications × ?

[27] 2019 1D-CNN ISCX VPN & nonVPN, ISCX 2012
IDS

Services & Malware × ?

[28] 2019 1D-CNN, 2D-CNN,
3D-CNN

ISCX VPN & nonVPN Applications ✓ ×

[29] 2017 CNN Own (RedIRIS) Services × ?
[30] 2017 PNN NOCSET, MOORESET Applications × ?
[31] 2017 2D-CNN USTC TFC2016 Malware ✓ ?
[32] 2017 1D-CNN ISCX VPN & nonVPN VPN vs nonVPN &

Services
✓ ?

[33] 2016 k-NN Own (VPN) Applications × ?

In the articles we have reviewed, a wide variety of open datasets has been uti-
lized. ISCX VPN-nonVPN [33] is the main one for traffic classification, used by [17,19–
23,25,27,28,31]. Other ones are ISCX 2012 IDS [34], USTC-TFC2016 [31], MIRAGE19 [18],
and MIRAGE-COVID-CCMA-2022 [21]. However, some examples of lab-created traffic
and private datasets captured in different regions have been observed [10,26,29,30]. The
aforementioned datasets contain network captures in the form of pcap files, where the label
of the transmitted application or service is indicated in the title. Among these datasets,
ICSX VPN-nonVPN [33] is consistently the most utilized, as it is the largest and has a
wide variety of services and applications. It has been selected as a benchmark dataset in
articles aiming to provide comparisons between their results and the rest of the research
community.

Most of the time the convolutional network architecture was complemented by another
type of ML technique or DL methodology, some examples we have identified are tSNE
(t-distributed Stochastic Neighbor Embedding) [10], k-NN (K-Nearest Neighbor) [33], SAE
(Sparse Autoencoder) [25], RNN (Recurrent Neural Network) [26], GADCN (Generative
Adversarial Deep Convolutional Network) [24], FDCNN (Frequency Domain CNN) [23],
CIL (Class Incremental Learning) [18], Decision Tree [20], DBN (Deep Belief Network) [22]
and Bayesian fusion [17].

Some articles, such as [17–19], studied utilize convolutional neural networks to extract
information from statistics generated with various packets of the same flow.In some cases,
these statistics are used to generate images, while in other cases, classic machine learning
algorithms are utilized for classifying, which are excluded in the study conducted here,
due to fundamental differences with the explainability of CNN classification.

In other studies on traffic classification with machine learning, it has proven to be an
effective way of classification, but it also has several disadvantages. The first challenge is
the difficulty of classifying the first packets of the session, which cannot be classified due to
the lack of statistics. In some studies, this is resolved by waiting for the first five packets to

Appl. Sci. 2024, 1, 0 6 of 26

generate the necessary inputs. Another problem introduced is the increase in packet latency
due to classification, as the classifier must wait for the arrival of the first packets. Finally,
computational and memory costs are added because real-time data structures that allow
indexing of aggregated packet data must be generated, which can be a real challenge in a
network at 10 Gbit/s or higher rates. To solve these problems in a real high-rate network,
classification systems that work on the fly must be sought. Mainly, packet information
should be used without seeking correlation with the information of its network flow. One
way to do this is to convert the packet into an image and process it with the convolutional
network, as for example in [31,32].

3. Initial data processing: avoiding model bias

The very first task we have to solve when working with AI is data pre-processing. Our
main goal is to extract features adapted to network packet classification and build models
with useful and standardized information. It is also essential to manage the bias in our data,
so that the predictions are not only realistic but also accurate and fair. This section details
how data pre-processing was handled, the processes, decisions and developments that
have been made to ensure, to the best of our ability, that the model is capable of classifying
traffic in a real network, avoiding overfitting or model bias.

The dataset used in this paper is the experimentation dataset ISCXVPN2016 [33],
composed of 25 GBytes of captured data traffic divided in 152 capture files. It is grouped
in 42 labels, depending on the application. For our study, we will group these labels into
general categories representing traffic classes [35], such as Video (Vimeo, Facebook Video,
and YouTube), Chat (Facebook chat, Skype or ICQ), Web E-mail (GMail), File Transfer
(FTP) or Audio (Skype). We take this decision because there is no need to look at the
Over-The-Top (OTT) service provider to apply fair QoS policies.

Being a multiclass classification problem, choosing always the same class in a balanced-
classes situation would yield an average accuracy of 1

of classes . According to the current
literature, some systems reach values close to 90% in class averages [25,27,36]. However,
one of the main problems detected is that these papers do not make clear the experimental
protocol, e.g. how they split the training and test packets. In the case of network traffic,
it is especially important to split them correctly, to avoid undesired biases. For example,
performing a temporal split on a traffic capture of 100 packets would mean that we take the
first 70 for training and the last 30 for testing. In that case, we might be training the model
on recognizing the start of the connection phase but not the closing part. Thus, the model
will exhibit strong biases in a real environment. Then, will this problem be solved if the
training and test data are taken randomly? Not necessarily. By using random packets, you
are probably using packets from the same flows or sessions in the training and test, causing
data leakage. If part of the test information leaks into the training set, the model does not
learn to generalize but to detect those related packets by identifiers such as IP addresses,
port numbers, or domain names. This is not a realistic case, as it encourages the neural
network to learn particular literals of our dataset instead of general conditions. Even if IP
addresses and ports are discarded, there might be information in the data that identifies
the flow, such as session identifiers or encryption algorithms and keys.

In order to give the full context on how to avoid these issues, an overview of the
whole process will be made from the time the traffic trace is obtained until it is classified
by the neural network. The first thing we will do is to filter from each traffic capture
those packets that do not contain payload of the application, for example ACKs, DNS
and other protocols. This is done to prevent the neural network to train with packets
that can be classified by well-known port in a real application or with DPI techniques.
Then, we must extract from each traffic capture the individual packets and convert them to
binary files. In this step, we will also discard Ethernet, IP, and TCP headers, since they do
not contain payload from the application, and we want to avoid training with data that
depend on the network conditions of the capture. We can take advantage of this process to
group the packets by flows by using the quintuple (source IP, destination IP, source port,

Appl. Sci. 2024, 1, 0 7 of 26

Application DataUDP / TCP
HeaderIP HeaderETH Header

Application Data

Application DataUDP / TCP
Header

Application DataUDP / TCP
HeaderIP Header

Application

Network

Link

Transport

frame

datagram

segment

Figure 1. Protocol headers

destination port, transport protocol). This does not mean that statistics will be extracted,
simply that the packets of the same flow will be labeled. This method was chosen to ensure
the independence of traffic flows and to separate the data into training and testing sets,
avoiding data leakage. This approach leverages the similarity among flows of the same
application (see, for instance, Figure 10). Thus, the objective is to train and test with packets
of different flows in order to avoid overfitting and data leakage. Next, these individual
packets must be converted into images so that they can be used to train the neural network.
Each byte of payload information will be converted to a pixel, and then the pixels will be
arranged according to the desired dimension.

The final step is to generate a convolutional neural network that will process these
images, classify them and extract the most probable application value. With this label,
we could use different QoS policies to improve the experience in the network. With
this process, we have achieved that from each packet an application label is extracted
individually, without the need to load in memory the rest of the flow data. It is important to
work with individual packets and not with network flows to gain speed and reduce latency,
because, in a high-speed system, grouping data extracted from a traffic flow can be time-
consuming, and it would affect the performance of a latency-critical network application
such as VoIP, video calls or live gaming.

3.1. From packets to images

As explained above, we start with the processing of the protocol headers. As shown
in Figure 1, a typical network packet includes ETH, IP, TCP, and UDP headers containing
information specific to the network conditions at the time of packet capture. In our model,
we propose discarding these headers to isolate the payload, thereby retaining only the
"Application Data" bytes. This task is performed using a data preprocessing step done
using Tshark, available in the GitHub repository link attached to the paper 1. The process
is summarized in the paper, but it is a simple filter. These headers should be discarded
for several reasons. The first one is that, due to the number of servers in a cloud platform,
they do not necessarily provide reliable information on the user’s application data (e.g.
different Google services share the same IP addresses) [37]. Therefore, a traffic classification
would not be correctly made according to the applications. The second reason is that they
can easily generate false positives in the neural network model prediction, since it could
learn to differentiate an application by using a specific IP address, a specific port or even
unrelated TCP parameters such as the window size. Additionally, this is not necessary
in the neural network model, as a known port system would more efficiently leverage
port information and avoid over-fitting. In addition, other TCP parameters such as the
ACK or SYN sequence numbers would not necessarily be used to classify traffic. Once the
packet headers have been filtered, the payload binary data has to be transformed into an
image or another data structure that accepts a convolutional neural network as input. To
transform the data into images, we use each byte of information in the packet as a pixel
and represent that value as a grayscale value, i.e. 0 is a black pixel and 255 is a white pixel.
This process will help to normalize the dataset and could help in detecting patterns in the
image representation of the packets.

Appl. Sci. 2024, 1, 0 8 of 26

However, images tend to have fixed sizes, whereas network packets can vary in size:
from minimal sizes of 40 bytes to the maximum of the MTU (usually 1500 bytes), even for
each class (e-mail, chat, video, etc.). Thus, we need all sequences and images to have a fixed
size because CNN libraries usually need a fixed input size. When a packet does not reach
the size to be transformed as an image, missing data should be filled in. Two solutions are
proposed: the first would be to fill in the rest of the packet with zeros (zero padding); the
second would be to fill in with random values (random padding) [12]. We have used the
first alternative, as the intention of the model is to alter the packets only what is needed to
be able to be fed into the model, based on input perturbation techniques. Given the different
packet sizes, filling with random values would introduce an undesirable noise in the model.
In fact, we confirmed that this random padding produced worse performance than zero
padding. Packets without payload data (e.g. TCP SYN or ACK segments) are taken out
of the dataset, as they would be pitch-black images. This packet-to-image process can be
performed for grayscale 1-dimensional (1D) or 2-dimensional (2D) structures [38], although
in other studies, so-called 3-dimensional (3D) architectures have also been considered [28].
By 3D images, they mean images with RGB color gamut, not grayscale. This choice of
the number of dimensions may affect on the performance, both in terms of accuracy of
the model and in terms of throughput of the system. It is expected that a neural network
can take advantage of image acceleration hardware architectures to process in parallel
the 2D and 3D images. Moreover, in these cases it must be considered that an artificial
dimension is created in the packets, where the information is originally sequential, and
a row of pixels does not have to be related to the one immediately above or below it,
as it will be discussed in section 5. In the work by Zhang et al. [28], they presented a
comparative analysis of 1D, 2D and 3D convolutional neural networks (CNNs) for traffic
packet classification. The results showed that 1D CNN achieves the highest precision and
F1-score, which is consistent with previous findings. Interestingly, 3D CNN closely matches
the performance of 1D CNN and even surpasses that of 2D CNN, despite the potential
increase in complexity and spatial information introduced by the 3D images. Furthermore,
that paper provides insight into the resource usage, speed, and bandwidth of the three
cases. It is observed that, as expected, the addition of dimensions to the convolutional
input layer leads to improved speed performance of the classifier.

Regarding the size of the packet, it could be considered that larger image size will
result in better accuracy results, due to the increase of information about each packet that
is provided to the neural network. In our preliminary results, we have observed that
increasing the image size from 28× 28 pixels to 32× 32 pixels significantly improves neural
network performance in packet recognition tasks, with accuracy increasing from 56% to
66%. However, it is important to note that further increases in image size beyond 32 × 32
pixels may not necessarily lead to performance improvements. For example, we found that
38 × 38 pixel images produced the same 66% accuracy. In this work, a size of 1024 pixels
has been used, i.e. square images of 32 × 32 pixels, so that we do not exceed the typical
MTU of 1500 bytes. We chose empirically this size because smaller images yield worse
performance, while larger ones do not exhibit any noticeable improvement.

3.2. Organizing traffic flows

To avoid any data leakage from packets of the same flow in training and test datasets,
we propose a folder structure that allows having the packet images of the same flow in a
common path. This will be useful for testing with independent inputs in the model. As
shown in Figure 2, a folder structure with 3 levels was utilized. At the first level, all the
folders with different traffic captures from the dataset are organized, totaling 42 groups of
applications and services. Within these folders, at the second level, all flows that comprise
the traffic capture are stored. This means that each capture can contain a varying number
of flows, and each flow can have a different number of packets. At the third and final level,
each flow is divided into 1D and 2D images. We did not consider higher dimension images,
as state of the art did not show substantial improvements. These images are stored in the

Appl. Sci. 2024, 1, 0 9 of 26

/traffic_flows
/aim_chat_1a

/facebook_video1a

/vpn_voipbuster1a

/vpn_voipbuster1a_1

/vpn_voipbuster1a_2

/1Dimension

/2Dimension

All traffic captures Each traffic capture Traffic flow folder 1D / 2D images folder

Figure 2. Proposed folder structure for traffic classification

respective folders and are used as input files for model training or testing. A problem with
this system of grouping images by flows is that in some cases, such as file transfer type
applications, there will be very few flows but with thousands of images each. However, in
other cases we may have many small streams with few images. Our proposed solution is
limiting how many packets are used per traffic flow, so that there are not large differences in
the number of packets of each flow. Similarly, the work in [29] developed traffic classifiers
with high accuracy percentage that used only the first 20 packets of each flow. However,
this may introduce bias in the training, since connection closure will not be observed in all
flows.

Figure 3a illustrates the standard dataset division process as described in the reviewed
literature. In this scenario, each packet from a traffic capture (represented as colored geo-
metric shapes) is divided between train and test sets either using a round-robin algorithm
or randomly. This approach can lead to data leakage during model testing, as packets from
flows used in training share information. Figure 3b depicts our proposed methodology,
which includes grouping packets into flows to ensure no information is shared between the
train and test splits. This prevents overfitting and results in a model that should perform
more consistently with what is expected in a real network environment. Hereafter, we will
be naming this phenomenon ‘flow dependence’.

With these considerations, we can perform a desired data-leakage-free train-test split.
Suppose we want to divide the data set between 70% training files and 30% test files. In a
first approach, the first 70% of the flows of the trace are assigned to the training dataset,
and the last 30% are assigned to the test dataset. The advantage of this method is that it is
easy to implement and debug. The main disadvantage is that the training flows will be the
first of the capture and, in case there is a relationship among the flows, some over-fitting
would be introduced. An alternative is to perform a round-robin system between the flows.
In this way, the first 7 flows would be for training, the next 3 for testing, then 7 again for
training, etc. This method corrects the possible over-fitting introduced due to the order in
the flows. The last proposal consists of randomly choosing 70% of the flows in training and
30% in test. This method is very difficult to debug and check for errors. On the other hand,
there will be no problem in the order of flows and their relation and over-fitting.

In summary, this section has detailed the process on how to avoid bias in the classi-
fication of encrypted traffic packets using convolutional networks. Our assumption was
that the current literature and authors were not giving enough effort in the handling and
pre-processing of the payload data. Now, with the given preliminary results, we have
shown that overfitting and model bias might be common in the literature. Our aim in the
next sections will be to study how is the neural network processing the input data in order
to give transparency in the decision-making and audit these black-box-like classification
systems.

Appl. Sci. 2024, 1, 0 10 of 26

Train data split

Test data split

Traffic
capture

Divide the dataset into a 70/30 split
using Round Robin or Random
packet selection.

Beware of shared information between
training and test datasets, as packets
from the same flow are used.

(a) Independent flows

Traffic
capture

Train data split

Test data split

Traffic flow

Separate each flow by
the ip, port & protocol.

Divide the dataset into
a 70/30 split using
traffic flows, instead of
individual packets.

(b) Dependent flows

Figure 3. Comparison between both methods for dataset split.

4. Model Definition

After reviewing all the publications of Section 2, we have come up with a general
schema of a convolutional architecture, depicted in Figure 4. It is divided in two parts:

1. Feature extraction: in the very first part, the packets are inputted to the network,
either as 1D or as 2D tensors. Then, they are fed into a convolutional layer. This
convolutional layer uses small squared kernels (typically using an odd number, such
as 3 or 5, as kernel size) to apply a convolution with an optional activation function,
such as sigmoid or ReLU. The output of this layer is as many images as the number
of kernels. However, this convolutional layer lacks a reduction of dimensionality for
a proper feature extraction. To perform a reduction of the size of the image, a max-
pooling layer is typically employed. This layer consists of reducing the dimension by
2 or 3 on each axis by summarizing the information of squared patches of pixels into
a single pixel that represents the maximum of the patch. One could have considered
other pooling operations, such as the minimum or the mean, but usually the maximum
works better when using ReLU activations. These steps are repeated several times (D
times in Figure 4) until the image is small enough to have captured few but interesting
features.

2. Feature analysis: once we have extracted features using convolutional mechanisms,
the model just employs simple dense layers using standard activation functions to
provide a final output. For this, we have to flatten the images by just concatenat-
ing them or using an RNN. By doing this, we get an analysis of the features that is
concluded with the final layer that provides a probability by using a softmax acti-
vation function. Additionally, to avoid overfitting, weight regularizers and dropout
mechanisms between each layer can be added during training.

With this architecture, we have built a generic CNN to be evaluated. The final selection
of hyperparameters was made after a tuning process, for the best-in-class results of the
model, so it would benefit the most the model we are trying to optimize. In particular,

Appl. Sci. 2024, 1, 0 11 of 26

Input Conv Max pool Flatten MLP Output

For i ∈ {1, . . . , D}

If i = D

If i ̸= D

Feature extraction Feature analysis

Figure 4. General CNN architecture with D convolutional stages.

Table 2. Model parameters

Common parameters

Optimizer Adam
Kernel Size 3

Dropout Rate 0.5
Activation ReLU
Loss func. Cross-entropy

Epochs per training 50
1D-model

Max-Pool Size 2
Number of Conv2D stages 2

Number of fully-connected stages 2
Number of LSTM stages (when used) 2

2D-model
Max-Pool Size 2x2

Number of Conv2D stages 4
Number of fully-connected stages 4

Number of LSTM stages (when used) 2

Table 2 describes the 1D-CNN and the 2D-CNN models, respectively. Both of them use just
two convolutional stages (D = 2) since the size of the tensors after them is already small
enough to do feature extraction. All activation functions, but the one of the output, are
ReLU, given its good performance and well-known characteristics to avoid any vanishing
gradient issue. Since the size of the image is divided by two in each convolutional stage,
we are multiplying the number of kernels by two in each stage, i.e. we have many smaller
images and each of them focuses on a particular feature of the packet. For instance, for the
2D-CNN model, we have that the input is one image of 32 × 32 pixels and the output of the
feature extraction is 64 images of sizes 6 × 6 (or 8 × 8 if we had considered a convolution
layer with border padding).

5. Gradient analysis

As we have seen, proper separation in flows is needed in order to avoid overfitting
or data leakage and reaching a better overall performance. This conclusion was made
with the network behavior analysis when exposed to data of the same flow. In order to
prevent this type of problem in the future, we looked for a way to get an explanation of
the behavior of the models. For this purpose, we apply GradCAM, known as gradient-
weighted class-activation mapping. This XAI algorithm was presented initially by [39] and
used for image-based classification, captioning, and visual question answering model, such
as ResNet [40]. However, this algorithm is applicable to a wider variety of model families,
such as any convolutional neural network (CNN) model with fully-connected layers, with

Appl. Sci. 2024, 1, 0 12 of 26

CNN layer with gradientModel inputs

Layer output

Softmax output
(prediction)

Loss of class index

Computation of guided
gradients (average of feature

map)

Resize guided gradients to
match input shape + ReLU +

Normalization

Histogram (2D or 1D)

Figure 5. Histogram computation diagram in GradCAM.

structured output or multi-modal inputs. GradCAM is a generalization of CAM for CNN
architectures [41].

The main concept behind GradCAM is that deeper representation on a CNN capture
higher-level visual construct, and convolutional layers naturally retain spatial information,
which is lost in fully-connected layers. As such, the last convolutional layers should have
a spatial representation of the features extracted from the input, so the algorithm uses
the gradient information flowing into the last convolutional layer of the CNN to identify
important regions considered by the model for the decision. We will now briefly explain
the algorithm, visually shown in Figure 5.

To obtain the class activation map or heatmap, we first need to find in our model the
CNN layer that we want to extract the gradient from. In Figure 4, this is the convolutional
layer when i = D. As a result, we get (i) the inputs of the model X; (ii) the output
A = [A1, . . . , Ak] of the CNN layer, which consists of k tensors of the same size; and (iii)
the output y of the softmax activations from the model. As an observation, GradCAM
focuses on the feature extraction part of the model, not in the feature analysis part. In that
sense, GradCAM is agnostic to the type of convolutional model as long as the input is fed
into some type of CNN that retains spatial information, so that the extracted heatmap is
spatially correlated to the input X.

We fed the input X, the bytes from the packet payload, into the model, while we retain
information of the gradients of y with respect to A computed with backpropagation, i.e.
∂y
∂A

.
These gradients are used together with A to compute a heatmap for each class. Finally,

the heatmaps are normalized and scaled up to the original size of the input X. Usually, the
last step is made when a representation with both the original image and the activation
map is desired. However, for some cases where we want to extract the data as-is, we can
skip the normalization step.

In addition to the standard use of GradCAM, that is, to detect relevant areas of
information for the model for a certain input, you can also obtain explanations that highlight
support for regions that would make the model change the prediction. This is done by
using the gradient of the opposite of the score of each class with respect to A. This is
called counterfactual explanations, and further reinforces the insight the standard model
might give. These counterfactual explanations are very useful in non-binary classification
problems, as they show what features are they seeing to determine that a possible packet
does not belong to a category. Merging both results, we get both the most important
features the model considers for the prediction, positive and negative, as shown in Figure 6.

Appl. Sci. 2024, 1, 0 13 of 26

More technically speaking, to obtain the heatmap Lc, we have to study the relation
between each output tensor Ak of the last convolutional layer and the output of a class yc,
which is just the c component of vector y. For each element of Ak, we compute a measure
of how that element contributes to yc. In particular, two options can be used: (i) relying on
the gradients, i.e. for the i-th element of the tensor

gk
c(i) =

∂yc

∂Ak
i

; (1)

(ii) or use guided gradients, i.e. for the i-th element of the tensor

gk
c(i) =


∂yc

∂Ak
i

if Ak
i > 0 and

∂yc

∂Ak
i
> 0

0 otherwise.
(2)

By using the first, we just consider the gradients in every part of Ak, while in the second
approach we just take into consideration elements whose value is positive, i.e. they would
trigger the ReLU activation, and whose gradient is also positive, i.e. contribute towards
class c in the classification decision.

Using either of the previous gradients, we compute the average score of Ak,

ac
k = mean

i
gk

c(i), (3)

which represents how much Ak contributes to class c. Moreover, it is worth noting that
this works for both 1D, 2D or n-dimensional CNNs, since we compute the gradient at each
element of Ak and they are averaged all together ignoring their original position or the
2D/3D structure of Ak.

After obtaining the averaged gradient score, a partial linearization is made to only
keep the parts that produce a positive response, this is,

Lc = ReLU

(
∑
k

ac
k Ak

)
= max

(
0, ∑

k
ac

k Ak

)
. (4)

Similarly, (3) can be modified to obtain counterfactual explanations, i.e. zones that
discard a class, contributing negatively to yc. This is done by computing the gradient of
−yc. Similarly to (1),

ḡk
c(i) =

∂(−yc)

∂Ak
i

= − ∂yc

∂Ak
i
= −gk

c(i), (5)

so essentially āc
k = −ac

k when using gradients. However, for guided gradients, there is no
relevant relation between these two quantities:

ḡk
c(i) =

− ∂yc

∂Ak
i

if Ak
i > 0 and

∂yc

∂Ak
i
< 0

0 otherwise.
(6)

In both cases, the weights of each Ak can be computed using the previous gradients

āc
k = mean

i
ḡk

c(i), (7)

yielding the final expression for the counterfactual relevance map:

L̄c = ReLU

(
∑
k

āc
k Ak

)
. (8)

Appl. Sci. 2024, 1, 0 14 of 26

200 400 600 800
1000

Position of the byte

0

50

100

150

200

250

300

Re
le

va
nc

e
of

th
e

by
te

GradCAM (Lc) Counterfactual GradCAM (L̄c)

Figure 6. Relevance values given by GradCAM-1D when using both standard and counterfactual
analysis.

Together, Lc and L̄c explain the decision of the model. On the one hand, Lc describes
the regions that contribute to choose class c. On the other hand, L̄c describes which regions
hinted not to choose class c.

Another consideration that must be made is that on multi-class applications like this
one, this technique only presents data relevant to the predicted class. For example, if a
packet has been identified as "Chat", the information that GradCAM will be able to provide
will be related to whether that packet has been identified as "Chat" and not other classes.

GradCAM has been wildly tested and validated in computer vision problems (such
as weakly-supervised localization, segmentation, class discrimination, the identification
of bias in datasets, image captioning or visual question answering) [41–43], but the same
principles can be applied to a network management problem involving CNNs, like the one
at hand in this article.

The specific implementation of this algorithm for the model used in network flow
classification focuses on the gradients obtained in the feature extraction part. Therefore,
despite RNNs or MLPs can be used to find other correlations in the feature analysis,
GradCAM will not consider them. Nevertheless, it still gives a valid metric to understand
the general behavior of the convolutional model, as the later layers can only work with the
extracted features.

In the next section, we will discuss how GradCAM was applied for both 1D-CNNs
and 2D-CNNs and what are the explanations of the decisions of the models.

6. Results

In this section, we present the results of our experiments grouped in four categories.
First, we analyze the performance of our model compared to the state of the art. Second,
we focus on the data, and how some characteristics of the input data may alter significantly
the performance. Third, the same process is repeated for the model and its parameters.
Last, we apply XAI to understand the decision of the model.

Appl. Sci. 2024, 1, 0 15 of 26

Table 3. Global metrics of the proposed models

Precision Recall F-score

1D-CNN 0.845 0.86 0.852
2D-CNN 0.734 0.71 0.721

Chat Audio Email FTPS Video
Predicted Label

Ch
at

Au
di

o
Em

ai
l

FT
PS

Vi
de

o
Tr

ue
 la

be
l

97.6% 1.6% 0.8% 0.0% 0.1%

1.4% 58.6% 10.8% 24.2% 4.9%

3.1% 4.2% 84.9% 0.8% 6.9%

0.0% 0.0% 0.4% 99.6% 0.0%

0.1% 0.2% 0.6% 17.3% 81.8%

Figure 7. Final Confusion Matrix model using 1D input images and client-server flow direction
separated.

6.1. Performance of the model

In section 4, we presented the CNN architecture and two models, 1D-CNN and
2D-CNN. Both of these networks, although they can be trained for any purpose, we are
particularly interested in classifying packets in traffic classes—e.g., video or chat—for QoS
policing purposes.

After dividing the dataset into 70% training and 30% test randomly, an accuracy of 90%
was easily obtained with both models, comparable to state-of-the-art alternatives [25,27,36].
However, as we explained previously, we believe that packets of the same flow can only
belong to either the training or the test set.

Consequently, we present in Table 3 the performance metrics of the 2D-CNN model
using a train-test split with the flow division. All of them; precision, recall and F1-score;
are around 85%, which is comparable with the existing architectures and other alternatives.
The small 5% differences, as it is covered in next subsection, is due to the flow dependence.
Furthermore, Figure 7 displays the confusion matrix for the 1D model after some data
preprocessing. This shows that the error is mostly focused on the audio class, being this
confused with e-mail and video classes.

Appl. Sci. 2024, 1, 0 16 of 26

10 20 30 40 50
Epochs

0.45

0.55

0.65

0.75

0.85

0.95

Ac
cu

ra
cy

Training Validation

(a) Independent flows

10 20 30 40 50
Epochs

0.45

0.55

0.65

0.75

0.85

0.95

Ac
cu

ra
cy

Training Validation

(b) Dependent flows

Figure 8. Training and validation of the base model with dependent and independent flows.

200 400 600 800
1000

Position of the byte

0

50

100

150

200

250

300

Re
le

va
nc

e
of

th
e

by
te

FTP Uplink (C→S) FTP Downlink (S→C)

Figure 9. GradCAM histogram of FTP client vs server.

6.2. Understanding your data

There are some aspects of the data that are worth mentioning: the flow dependence
and its effects, the effect of direction of the flow, and the padding of small packets.

In order to study the impact of flow dependence, we trained the same model with two
different datasets. First, we trained the model with just a random split over the packets, as
shown in the Figure 8b. Using a validation set of random packets, we managed to observe
that both training and validation curves overlap, showing accuracy above 90%. On a first
view, this would mean that the model is not overfitting, and the performance is optimal.

On the other hand, when training and validating the system with independent flows,
performance change drastically. While the accuracy in training was about 90%, independent
flows of the validation set showed that the real number is more around 65%. This is, the
model is not learning to generalize the specific per-class characteristics of the packets, but
learning fixed patterns that are related to the particular flows or servers involved. This
overfitting due to data leakage renders the model incapable of handling real-life situations
where all data might be coming from systems not present in the training data.

Appl. Sci. 2024, 1, 0 17 of 26

Figure 10. Payload images of the packets in two different Chat flows.

0 5 10 15 20 25 30
Relevance value of the byte in X axis

0

5

10

15

20

25

30

Re
le

va
nc

e
va

lu
e

of
th

e
by

te
in
Y

ax
is

(a) E-mail

0 5 10 15 20 25 30
Relevance value of the byte in X axis

0

5

10

15

20

25

30
Re

le
va

nc
e

va
lu

e
of

th
e

by
te

in
Y

ax
is

(b) FTP

Figure 11. 2D histograms of the relevance obtained with GradCAM-2D for two classes

Second, we analyze the difference depending on the direction of the flow. Figure 9
shows the Grad-CAM relevance for the class FTP depending on the direction. Both lines
show the relevance of each byte of the packet, denoted by its position, when processed by
the CNN, showing differences in uplink (client to server) and downlink (server to client)
for FTP traffic. Due to the asymmetry of the roles of client and server in this case, uplink
relevance is focused on the first bytes of the packets, where request should have the most
relevant part, while downlink relevance is more spread in higher bytes. This makes clear
that bidirectional flows should not be mixed, since they can have different and confusing
behaviors if considered together.

Third, we study the impact of padding, this is, filling with extra data when the packet
does not reach the desired size of 1024. This can be done in two ways: (1) using random
padding, i.e., adding random bytes at the end of the packet; or (2) using zero padding, i.e.,
adding 0 bytes to fill the rest of the packet. Although both options might be reasonable,
they hide the attribute of the size. If we use the first option, we are considering that the size
of the packet is not an important attribute, and we are hiding that information adding data
to maintain the entropy as it were encrypted. In contrast, the second option exposes the
end of the packet, since models should be able to notice the position of a final position of
zeros.

In this case, we believe that packet size is an important attribute that intuitively can
help identify traffic classes, since we expect that larger packets should belong to data
transfers and small one to other delay-sensitive services. Therefore, we only consider zero
padding, as shown in Figure 10, the bottom of 2D images is filled with black pixels.

Appl. Sci. 2024, 1, 0 18 of 26

6.3. Understanding the model

With all the previous observations about the data, we are now able to understand
better what the model might be doing. In this point, we study what are the difference
between both models and how some parameters may affect the performance.

As we mentioned in previous sections, both models, 1D-CNN and 2D-CNN, perform
similarly. As other studies highlighted [28], the difference between models is noticeable
but minor. When using a 1D approach, we assume that the sequence of bytes is spatially
correlated, i.e., close bytes might have a relation. On the other hand, 2D models do consider
this relation adding an extra relation with bytes that are before or after a fixed offset.
Although this might happen, we did not observe it when plotting data and 2D relevance.
Figure 11 depicts the relevance of each position of the 2D representation to showcase the
absence of strong 2D relations. Two examples are shown: for the class E-mail (Figure 11a),
there is no clear relation; and for the class FTP (Figure 11b), there is some spurious 2D
relation that happen to be periodical but with a small period of length of five to eight
bytes. Additionally, this 2D metric is sensitive to the width of the image, which affects the
generality if, for some reason, this offset changes depending on the environment.

Apart from some hyperparameters that can be optimized and depend on the amount
of data such as the number of convolutional stages in the feature extraction, we noticed
that the amount of convolution padding (different from the packet padding) might have an
effect on the data. Convolution padding is an important parameter of convolutional layers,
because the borders of the signal are not considered if we do not add a padding for the
convolution. For 1D, this means adding extra data at the beginning and the end, while for
the 2D, this happens every time we reach the borders of the image. Figure 12 represents the
effect of convolution padding length for the relevance of the 1D model. Previous works [44]
had already used convolution padding successfully. Different types of border padding
were tested, but the use of “same” padding (replicating the last value in the border) yielded
the best results, as the model did not lose spatial data, unlike padding with zeros or the
max value. Another test was made using a padding with an arbitrary number of pixels
in the test set, so it would permanently modify the length size of all the packets, and the
classification capabilities of the model were reduced significantly to the extent that it could
not work as intended. Other works also see that packet size is a relevant metric when
analyzing performance of classifiers made with CNNs [12]. Upon testing different widths,
we observed a clear soften of the borders of the relevance when using padding larger than
1 pixel, which may be the result of giving the gradient further space to develop, as per
Figure 12. We settled on using 2-pixel padding here onwards, as it provided generic enough
patterns to analyze and giving a clear outline identified for that packet position in the flow.

6.4. Understanding the decision

After studying the data and the model, we can explore the classification results using
XAI techniques. In this section, we use GradCAM relevance for the different classes of the
dataset to analyze the feature extraction procedure of CNNs in encrypted packets. After
understanding the features, we provide a simplified ML model that achieves a similar
performance with much less complexity.

First, the relevance per sample is computed and displayed in left-hand side of Figure 13.
All of them but Figure 13g display a similar behavior: they are smooth functions with some
random noise. In order to model this, we provide a median function to act as centroid of
the groups that, by nature, should be less noisy. Right-hand side of the figure represents
the same median behavior as representative of the relevance of each byte together with the
histogram of packet lengths.

Figure 13a shows the relevance Lc and counterfactual relevance L̄c according to Grad-
CAM for class Chat. In general, L̄c is always above Lc except for an environment centered
in 300 bytes, where Lc increases and surpasses L̄c. As shown in Figure 10, packets in this
class have different sizes, and their images are filled with zeroes depending on such sizes.
Thus, when looking at Figure 13b, we observe that this point is no random, but the mode of

Appl. Sci. 2024, 1, 0 19 of 26

200 400 600 800
1000

Position of the byte

0

50

100

150

200

250

300

Re
le

va
nc

e
of

th
e

by
te

1px of padding 2px or more of padding

Figure 12. Difference between the use of 1 pixel padding vs 2 pixels or more in GradCAM.

the packet length. This means that the model is mostly focusing on the last bytes of content
of the packet. Due to the convolutional nature of the CNNs, they are powerful to detect
borders (abrupt changes from high values to low values), so in particular, it is likely that
the convolutional model is just extracting the feature that the packet is ending at around
300 bytes. Bear in mind that we have used zero padding to fill the packet images, so the
CNN is able detect this abrupt change to a zero-valued region as the end of each packet.

Similarly, Figure 13c exposes the relevance and counterfactual relevance of class Audio,
where same behavior at around 100 bytes. This is confirmed by Figure 13d, with a mode of
the packet length at around 100 bytes.

For class E-mail, the result is not exactly the same. In this case, the relevance Lc of
Figure 13e is always above L̄c except a small interval centered in 100 bytes. In this case, by
looking at the histogram in Figure 13f, L̄c highlights that values around 100 bytes of packet
size are not likely for class E-mail.

Figure 13g shows the hardest to categorize behavior of all classes, class FTP. Due to the
spread value of the packet sizes, models are showing values of Lc spread around all values
with only the important maximum at 1024 bytes. In particular, this maximum is confirmed
with the mode of the packet size in Figure 13h. This confirms the poor performance of
this class observed in the confusion matrix (Figure 7), due to the overlapping of the packet
length histograms among the classes.

Class Video in Figure 13i exhibits a multi-modal relevance behavior with modes
around 50, 125 and 1024 bytes. For the rest of the values, Lc is equal to L̂c. In the histogram
of Figure 13j, we confirmed yet another time the hypothesis of the packet size being the
most relevant attribute in encrypted traffic classification.

These results allow us to conclude that CNNs are overcomplicated models to classify
high-entropy payloads that provide only the information of the size of the payload. With
this in mind, our next step is to provide a simpler model that uses only the packet size to
check whether similar performance can be achieved with a higher packet classification rate
in packets/s.

For this sake, we built a decision tree that uses only packet size for encrypted packet
classification. The performance obtained across all metrics is around 80%, comparable to
the 85% obtained before. This evidence supports our hypothesis that packet size is the most

Appl. Sci. 2024, 1, 0 20 of 26

200 400 600 800
1000

Position of the byte

0

250
Re

le
va

nc
e

of
th

e
by

te

GradCAM (Lc)
Counterfactual GradCAM (L̄c)

Median of Lc

Median of L̄c

(a) Relevances for class Chat

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

Median of Lc Median of L̄c Histogram of packet length

0

200

400

Fr
eq

ue
nc

y

(b) Packet length histogram for class Chat

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

GradCAM (Lc)
Counterfactual GradCAM (L̄c)

Median of Lc

Median of L̄c

(c) Relevances for class Audio

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

Median of Lc Median of L̄c Histogram of packet length

0

200

400

Fr
eq

ue
nc

y

(d) Packet length histogram for class Audio

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

GradCAM (Lc)
Counterfactual GradCAM (L̄c)

Median of Lc

Median of L̄c

(e) Relevances for class E-mail

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

Median of Lc Median of L̄c Histogram of packet length

0

100

200

Fr
eq

ue
nc

y

(f) Packet length histogram for class E-mail

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

GradCAM (Lc)
Counterfactual GradCAM (L̄c)

Median of Lc

Median of L̄c

(g) Relevances for class FTP

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

Median of Lc Median of L̄c Histogram of packet length

0

200

400

Fr
eq

ue
nc

y

(h) Packet length histogram for class FTP

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

GradCAM (Lc)
Counterfactual GradCAM (L̄c)

Median of Lc

Median of L̄c

(i) Relevances for class Video

200 400 600 800
1000

Position of the byte

0

250

Re
le

va
nc

e
of

th
e

by
te

Median of Lc Median of L̄c Histogram of packet length

0

200

400

Fr
eq

ue
nc

y

(j) Packet length histogram for class Video

Figure 13. Relevance and counterfactual relevance compared to packet length per class

Appl. Sci. 2024, 1, 0 21 of 26

important attribute and that encryption poses quite a challenge that CNNs are not yet able
to solve effectively. Figure 14 shows the trained decision tree, showing the simplicity and
minimal number of parameters of the provided model. Moreover, this solution can run
much faster than a CNN, which is necessary in this scope to classify the network packets in
real time.

Length <= 257.5
gini = 0.8

samples = 9000
value = [1800, 1800, 1800, 1800, 1800]

class = Chat

Length <= 72.5
gini = 0.64

samples = 4500
value = [0, 1800, 1800, 0, 900]

class = Audio

Length <= 638.0
gini = 0.64

samples = 4500
value = [1800, 0, 0, 1800, 900]

class = Chat

Length <= 39.5
gini = 0.449

samples = 1211
value = [0, 1, 799, 0, 411]

class = Email

Length <= 144.5
gini = 0.586

samples = 3289
value = [0, 1799, 1001, 0, 489]

class = Audio

gini = 0.358
samples = 800

value = [0, 0, 613, 0, 187]
class = Email

gini = 0.498
samples = 411

value = [0, 1, 186, 0, 224]
class = Video

gini = 0.478
samples = 2577

value = [0, 1767, 322, 0, 488]
class = Audio

gini = 0.089
samples = 712

value = [0, 32, 679, 0, 1]
class = Email

gini = 0.0
samples = 1800

value = [1800, 0, 0, 0, 0]
class = Chat

Length <= 1012.5
gini = 0.444

samples = 2700
value = [0, 0, 0, 1800, 900]

class = FTP

gini = 0.131
samples = 228

value = [0, 0, 0, 16, 212]
class = Video

gini = 0.402
samples = 2472

value = [0, 0, 0, 1784, 688]
class = FTP

True False

Figure 14. Decision tree for encrypted packet classification

7. Conclusion

In summary, we have analyzed the key aspects from packet classification CNN-based
methodologies, with a focus on their wise choices, to replicate them, and mistakes, to avoid
them. With such information, we built a model that achieved state-of-the-art performance
for the most used dataset, ISCX VPN vs nonVPN [33], and analyze the model predicted
traffic class using GradCAM, a XAI technique for convolutional feature extraction. The
conclusion of the analysis is that, after removing all kind of biases that identify the flow or
the servers, the model just looks at the packet size to make a decision. Consequently, we are
able to match performance by just using a decision tree on the packet size. Despite having
analyzed CNNs for the most popular dataset in encrypted network packet classification,
this methodology can be applied to other datasets with different categories. Next, we detail
the most important contributions of this work.

1. Poor experimental protocols result in an unrealistic performance evaluation: As it has been
shown, the bias introduced in CNN training and validation datasets has not been
sufficiently taken into consideration before. This can be demonstrated by separating
the traffic flows in the dataset preparation process. The neural network will learn
based on data closer to what can be expected from a real traffic network, however the
real accuracy will be limited compared to the theoretical results of other authors. We
propose a better experimental protocol by ensuring that biases are eliminated from
the dataset and avoiding data leakage from the training set to the test set.

2. XAI techniques are of great help in the assessment of the model: Using the XAI techniques
discussed above, it has been shown that caution must be had when preprocessing
data, as the model might find not be able to properly identify the classes if two flows
that behave differently (client and server flows) are aggregated into one category.
Moreover, the use of the heatmap shows that the correlations found in the trace by
the model are purely statistical and not based on concrete evidence or certain values
of metadata, so more strict codification that further diffuses the statistical traits of
the payload will affect the accuracy of the model significantly. The use of heatmaps
helps to understand the viability of the model in practical scenarios, where the point

Appl. Sci. 2024, 1, 0 22 of 26

of interest of the model can be extracted and discussed in order to determine if the
training exercise was successful or not.

3. CNNs do not detect significant features in encrypted payloads: Based on the presented
results, CNN do not seem to be the right tool to classify encrypted network packets, as
they are just focusing on the packet length. Just adding random length padding to the
packets of encrypted traffic would be enough to make such classification unfeasible, at
the cost of more payload per packet. This could be a good solution for users’ privacy,
but an inadequate one for the network operators and systems, which would need to
find other solutions to classify the network traffic and handle the extra computing load
and bandwidth. On the other hand, before packets would include random padding,
this conclusion provides a valid means to heuristically classify the traffic at high speed,
just by looking at the packet lengths.

Regarding limitations, in this work we have addressed only CNNs with a technique,
GradCAM, specific for CNNs. Using a generic CNN allowed us to focus on the convolu-
tional features in network encrypted packets. While GradCAM allowed us to extract deeper
information about CNNs, it also limited our study to convolutional features. Nowadays,
other techniques—e.g. Transformers—are emerging, and their rapid development poses
again the challenge of understanding what they are learning. This opens the topic of ex-
tracting and understanding more complex features to improve the differentiation between
traffic patterns.

For the reproducibility of our results, we have published the code and methods in
GitHub1. Furthermore, the same repository includes tools to preprocess and split datasets
to build an appropriate experimental protocol with no biases.

Author Contributions: Conceptualization, J.E.L.d.V.; methodology, J.E.L.d.V.; software, E.L.B, V.M.G.;
validation, E.L.B, V.M.G. and D.P.B.; formal analysis, D.P.B.; investigation, E.L.B, V.M.G.; resources,
J.E.L.d.V.; data curation, E.L.B, V.M.G.; writing—original draft preparation, E.L.B, V.M.G., D.P.B and
J.E.L.d.V.; writing—review and editing, E.L.B, V.M.G., D.P.B and J.E.L.d.V.; visualization, E.L.B, V.M.G.
and D.P.B; supervision, J.E.L.d.V.; project administration, J.E.L.d.V.; funding acquisition, J.E.L.d.V. All
authors have read and agreed to the published version of the manuscript.

Funding: This research has been partially funded by the Spanish State Research Agency under
the project AgileMon (AEI PID2019-104451RB-C21) and by the Spanish Ministry of Science, Inno-
vation and Universities under the program for the training of university lecturers (Grant number:
FPU19/05678).

Data Availability Statement: The data presented in this study were derived from the following
resources available in the public domain: ISCX VPN-nonVPN dataset [33]. The code to process these
data is available at GitHub 1.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

1 https://github.com/elbisbe/XAI_DL_NetworkPacketClassification

https://github.com/elbisbe/XAI_DL_NetworkPacketClassification

Appl. Sci. 2024, 1, 0 23 of 26

1D 1-dimensional
2D 2-dimensional
3D 3-dimensional
ACK Acknowledgement
AI Artificial Intelligence
CNN Convolutional Neural Network
DL Deep Learning
DNS Domain Name System
DPI Deep Packet Inspection
FPGA Field Programmable Gate Array
FTP File Transfer Protocol
GPU Graphics Processing Unit
GradCAM Gradient-weighted Class Activation Mapping
IP Internet Protocol
ISP Internet Service Provider
MDPI Multidisciplinary Digital Publishing Institute
ML Machine Learning
MTU Maximum Transmission Unit
OTT Over-The-Top
QoS Quality of Service
ReLU Rectified Linear Unit
RGB Red, Green, Blue
RNN Recurrent Neural Network
SVM Support Vector Machine
SYN Synchronize
TCP Transport Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
VPN Virtual Private Network
XAI eXplainable Artificial Intelligence

References
1. Zeidanloo, H.R.; Manaf, A.B.A. Botnet Detection by Monitoring Similar Communication Patterns; Vol. abs/1004.1232, LAP LAMBERT

Academic Publishing, 2010.
2. Bremler-Barr, A.; Harchol, Y.; Hay, D.; Koral, Y. Deep packet inspection as a service. In Proceedings of the Proceedings of the 10th

ACM International on Conference on emerging Networking Experiments and Technologies, 2014, pp. 271–282.
3. Yuan, R.; Li, Z.; Guan, X.; Xu, L. An SVM-based machine learning method for accurate internet traffic classification. Information

Systems Frontiers 2010, pp. 149–156.
4. Rezaei, S.; Liu, X. Deep learning for encrypted traffic classification: An overview. IEEE Communications Magazine 2019, 57, 76–81.
5. Xin, R.; Zhang, J.; Shao, Y. Complex network classification with convolutional neural network. Tsinghua Science and Technology

2020, 25, 447–457. https://doi.org/10.26599/TST.2019.9010055.
6. tao Ren, J.; ling Ou, X.; Zhang, Y.; cheng Hu, D. Research on network-level traffic pattern recognition. In Proceedings of

the Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems, 2002, pp. 500–504. https:
//doi.org/10.1109/ITSC.2002.1041268.

7. Roshan, K.; Zafar, A. Utilizing XAI Technique to Improve Autoencoder based Model for Computer Network Anomaly Detection
with Shapley Additive Explanation(SHAP). International journal of Computer Networks & Communications 2021, 13, 109–128.
https://doi.org/10.5121/ijcnc.2021.13607.

8. Zhang, T.; Qiu, H.; Mellia, M.; Li, Y.; Li, H.; Xu, K. Interpreting AI for Networking: Where We Are and Where We Are Going.
IEEE Communications Magazine 2022, 60, 25–31. https://doi.org/10.1109/MCOM.001.2100736.

9. Aceto, G.; Ciuonzo, D.; Montieri, A.; Pescapé, A. Toward effective mobile encrypted traffic classification through deep learning.
Neurocomputing 2020, 409, 306–315.

10. Beliard, C.; Finamore, A.; Rossi, D. Opening the Deep Pandora Box: Explainable Traffic Classification. In Proceedings of the
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2020, pp. 1292–1293.
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162704.

11. Meng, Z.; Wang, M.; Bai, J.; Xu, M.; Mao, H.; Hu, H. Interpreting deep learning-based networking systems. In Proceedings
of the Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication, 2020, pp. 154–171.

12. Ismailaj, K.; Camelo, M.; Latré, S. When Deep Learning May Not Be The Right Tool For Traffic Classification. In Proceedings of
the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), 2021, pp. 884–889.

https://doi.org/10.26599/TST.2019.9010055
https://doi.org/10.1109/ITSC.2002.1041268
https://doi.org/10.1109/ITSC.2002.1041268
https://doi.org/10.5121/ijcnc.2021.13607
https://doi.org/10.1109/MCOM.001.2100736
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162704

Appl. Sci. 2024, 1, 0 24 of 26

13. Caforio, F.P.; Andresini, G.; Vessio, G.; Appice, A.; Malerba, D. Leveraging Grad-CAM to Improve the Accuracy of Network
Intrusion Detection Systems. In Proceedings of the Discovery Science; Soares, C.; Torgo, L., Eds., Cham, 2021; pp. 385–400.

14. Nascita, A.; Montieri, A.; Aceto, G.; Ciuonzo, D.; Persico, V.; Pescapé, A. XAI Meets Mobile Traffic Classification: Understanding
and Improving Multimodal Deep Learning Architectures. IEEE Transactions on Network and Service Management 2021, 18, 4225–4246.
https://doi.org/10.1109/TNSM.2021.3098157.

15. Xie, G.; Li, Q.; Jiang, Y.; Dai, T.; Shen, G.; Li, R.; Sinnott, R.; Xia, S. Sam: Self-attention based deep learning method for online
traffic classification. In Proceedings of the Proceedings of the Workshop on Network Meets AI & ML, 2020, pp. 14–20.

16. Morales Gómez, V. Sistema de clasificación de paquetes a alta tasa utilizando redes neuronales convolucionales y FPGAs
(High-rate packet classification system using convolutional neural networks and FPGAS). Master thesis, Máster Universitario en
Ingeniería de Telecomunicación. Universidad Autónoma de Madrid, 2021.

17. Shapira, T.; Shavitt, Y. FlowPic: A Generic Representation for Encrypted Traffic Classification and Applications Identification.
IEEE Transactions on Network and Service Management 2021, 18, 1218–1232. https://doi.org/10.1109/TNSM.2021.3071441.

18. Bovenzi, G.; Nascita, A.; Yang, L.; Finamore, A.; Aceto, G.; Ciuonzo, D.; Pescapé, A.; Rossi, D. Benchmarking Class Incremental
Learning in Deep Learning Traffic Classification. IEEE Transactions on Network and Service Management 2024, 21, 51–69. https:
//doi.org/10.1109/TNSM.2023.3287430.

19. Banihashemi, S.B.; Akhtarkavan, E. Encrypted Network Traffic Classification Using Deep Learning Method. In Proceedings of the
2022 8th International Conference on Web Research (ICWR), 2022, pp. 1–8. https://doi.org/10.1109/ICWR54782.2022.9786247.

20. Jacobs, A.S.; Beltiukov, R.; Willinger, W.; Ferreira, R.A.; Gupta, A.; Granville, L.Z. AI/ML for Network Security: The Emperor
Has No Clothes. In Proceedings of the Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, New York, NY, USA, 2022; CCS ’22, p. 1537–1551. https://doi.org/10.1145/3548606.3560609.

21. Guarino, I.; Aceto, G.; Ciuonzo, D.; Montieri, A.; Persico, V.; Pescapè, A. Contextual counters and multimodal Deep Learning
for activity-level traffic classification of mobile communication apps during COVID-19 pandemic. Computer Networks 2022,
219, 109452. https://doi.org/10.1016/j.comnet.2022.109452.

22. Izadi, S.; Ahmadi, M.; Rajabzadeh, A. Network Traffic Classification Using Deep Learning Networks and Bayesian Data Fusion.
Journal of Network and Systems Management 2022, 30, 25. https://doi.org/10.1007/s10922-021-09639-z.

23. Appiah, B.; Sackey, A.K.; Kwabena, O.A.; Kanpogninge, A.J.A.; Buah, P.A. Fusion Dilated CNN for Encrypted Web Traffic
Classification. International Journal of Network Security 2022, 24, 733–740.

24. Dong, S.; Xia, Y.; Peng, T. Traffic identification model based on generative adversarial deep convolutional network. Annals of
Telecommunications 2022, 77, 573–587. https://doi.org/10.1007/s12243-021-00876-6.

25. Lotfollahi, M.; Jafari Siavoshani, M.; Shirali Hossein Zade, R.; Saberian, M. Deep packet: a novel approach for encrypted traffic
classification using deep learning. Soft Computing 2020, 24, 1999–2012. https://doi.org/10.1007/s00500-019-04030-2.

26. Lee, K.H.; Lee, S.H.; Kim, H.C. Traffic Classification Using Deep Learning: Being Highly Accurate is Not Enough. In
Proceedings of the Proceedings of the SIGCOMM ’20 Poster and Demo Sessions, New York, NY, USA, 2021; SIGCOMM ’20, p.
1–2. https://doi.org/10.1145/3405837.3411369.

27. Zeng, Y.; Gu, H.; Wei, W.; Guo, Y. Deep − Full − Range : A Deep Learning Based Network Encrypted Traffic Classification and
Intrusion Detection Framework. IEEE Access 2019, 7, 45182–45190. https://doi.org/10.1109/ACCESS.2019.2908225.

28. Zhang, J.; Li, F.; Wu, H.; Ye, F. Autonomous Model Update Scheme for Deep Learning Based Network Traffic Classifiers. In
Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6. https://doi.org/10.1109/
GLOBECOM38437.2019.9014036.

29. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network Traffic Classifier With Convolutional and Recurrent
Neural Networks for Internet of Things. IEEE Access 2017, 5, 18042–18050. https://doi.org/10.1109/ACCESS.2017.2747560.

30. Dong, S.; Li, R. Traffic identification method based on multiple probabilistic neural network model. Neural Computing and
Applications 2019, 31, 473–487. https://doi.org/10.1007/s00521-017-3081-x.

31. Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classification using convolutional neural network for representation
learning. In Proceedings of the 2017 International Conference on Information Networking (ICOIN), 2017, pp. 712–717.
https://doi.org/10.1109/ICOIN.2017.7899588.

32. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), 2017,
pp. 43–48. https://doi.org/10.1109/ISI.2017.8004872.

33. Draper-Gil., G.; Lashkari., A.H.; Mamun., M.S.I.; A. Ghorbani., A. Characterization of Encrypted and VPN Traffic using Time-
related Features. In Proceedings of the Proceedings of the 2nd International Conference on Information Systems Security and
Privacy - ICISSP,. INSTICC, SciTePress, 2016, pp. 407–414. https://doi.org/10.5220/0005740704070414.

34. Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark datasets
for intrusion detection. Computers & Security 2012, 31, 357–374. https://doi.org/10.1016/j.cose.2011.12.012.

35. 3GPP. Policy and charging control architecture, 2021. TS 23.203, rel.17.
36. Hwang, R.H.; Peng, M.C.; Nguyen, V.L.; Chang, Y.L. An LSTM-based deep learning approach for classifying malicious traffic at

the packet level. Applied Sciences 2019, 9, 3414.
37. Bermudez, I.N.; Mellia, M.; Munafo, M.M.; Keralapura, R.; Nucci, A. Dns to the rescue: Discerning content and services in a

tangled web. In Proceedings of the Proceedings of the 2012 Internet Measurement Conference, 2012, pp. 413–426.

https://doi.org/10.1109/TNSM.2021.3098157
https://doi.org/10.1109/TNSM.2021.3071441
https://doi.org/10.1109/TNSM.2023.3287430
https://doi.org/10.1109/TNSM.2023.3287430
https://doi.org/10.1109/ICWR54782.2022.9786247
https://doi.org/10.1145/3548606.3560609
https://doi.org/10.1016/j.comnet.2022.109452
https://doi.org/10.1007/s10922-021-09639-z
https://doi.org/10.1007/s12243-021-00876-6
https://doi.org/10.1007/s00500-019-04030-2
https://doi.org/10.1145/3405837.3411369
https://doi.org/10.1109/ACCESS.2019.2908225
https://doi.org/10.1109/GLOBECOM38437.2019.9014036
https://doi.org/10.1109/GLOBECOM38437.2019.9014036
https://doi.org/10.1109/ACCESS.2017.2747560
https://doi.org/10.1007/s00521-017-3081-x
https://doi.org/10.1109/ICOIN.2017.7899588
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.5220/0005740704070414
https://doi.org/10.1016/j.cose.2011.12.012

Appl. Sci. 2024, 1, 0 25 of 26

38. Wang, P.; Chen, X.; Ye, F.; Sun, Z. A survey of techniques for mobile service encrypted traffic classification using deep learning.
IEEE Access 2019, 7, 54024–54033.

39. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the Proceedings of the IEEE international conference on computer vision, 2017, pp.
618–626.

40. Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition. Pattern Recognition
2019, 90, 119–133.

41. Rosebrock, A. Grad-CAM: Visualize class activation maps with Keras, TensorFlow, and Deep Learning, 2020.
42. Selvaraju, R.; Das, A.; et al. Grad-CAM: Gradient-weighted Class Activation Mapping. http://gradcam.cloudcv.org/.
43. Madhukar, B. Using Grad-CAM to Visually Verify the Performance of CNN Model. https://analyticsindiamag.com/using-grad-

cam-to-visually-verify-the-performance-of-cnn-model/, 2020.
44. Singirikonda, M. How Padding helps in CNN ? https://mahithas.medium.com/how-padding-helps-in-cnn-2b87957e1b, 2020.

Short Biography of Authors

Ernesto Luis Bisbé is currently a data engineer at Telefónica (Spain). He received his B.Sc. and M.Sc.
degrees in Telecommunication Engineering from Universidad Autónoma de Madrid (Spain) in 2020
and 2022, respectively. His research topics are network traffic measurement and network and service
monitoring.

Víctor Morales Gómez is currently an observability engineer at Future Space (Spain). Previously, he
worked at Naudit HPCN (Spain). He received his B.Sc. and M.Sc. degrees in Telecommunication
Engineering from Universidad Autónoma de Madrid (Spain) in 2019 and 2021, respectively. His
research topics are network traffic measurement and network and service monitoring.

Daniel Perdices is assistant professor at Universidad Autónoma de Madrid (Spain) since 2023. He
previously held an FPU research scholarship by the Spanish Ministry of Science, Innovation and
Universities. Previously, he was an R&D engineer at Naudit HPCN. He received the B.Sc. (Hons)
degrees in Mathematics and in Computer Science (2018), the M.Sc. in Mathematics (2019), the
M.Sc. in Information and Communications Technologies (2020), and Ph.D. in Computer Science and
Telecommunication Engineering (2023), all at Universidad Autónoma de Madrid (Spain). He was
a visiting scholar in 2022 for three months at SmartData@PoliTO, Politecnico di Torino (Italy). He
researches on statistics, mathematical modeling, machine learning, network traffic analysis, and SDN.

http://gradcam.cloudcv.org/
https://analyticsindiamag.com/using-grad-cam-to-visually-verify-the-performance-of-cnn-model/
https://analyticsindiamag.com/using-grad-cam-to-visually-verify-the-performance-of-cnn-model/
https://mahithas.medium.com/how-padding-helps-in-cnn-2b87957e1b

Appl. Sci. 2024, 1, 0 26 of 26

Jorge E. López de Vergara is associate professor at Universidad Autónoma de Madrid (Spain) since
2007. He was accredited as full professor in 2023. He was founding partner until 2023 of Naudit
HPCN, a spin-off company established in 2009, devoted to high-performance traffic monitoring
and analysis. He received his M.Sc. and Ph.D. degrees in Telecommunication Engineering from
Universidad Politécnica de Madrid (Spain) in 1998 and 2003, respectively, where he also held an
FPU-MEC research scholarship. During his Ph.D., he stayed for 6 months in 2000 at HP Labs in
Bristol. He studies network and service management and monitoring, and has coauthored more than
100 scientific papers on topics related to this field.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related work
	State of the art
	Comparative analysis

	Initial data processing: avoiding model bias
	From packets to images
	Organizing traffic flows

	Model Definition
	Gradient analysis
	Results
	Performance of the model
	Understanding your data
	Understanding the model
	Understanding the decision

	Conclusion
	References

