
Self-adapted Service Offering for Residential
Environments

Juan M. González (1), José A. Lozano (1), Jorge E. López de Vergara (2), Víctor A. Villagrá (3)

(1) Telefónica Investigación y Desarrollo. ‘Autonomic Communications Division’

(2) Universidad Autónoma de Madrid
(3) Universidad Politécnica de Madrid

Abstract-- One of the main challenges that the telecom

industry is currently facing, is how to manage complex personal
communication environments. These environments present an
increasing number of varied devices such as computers, PDAs,
webcams, Home gateway, sensors, etc. This implies a radical
change from traditional telecommunication settings, composed of
just a few types of standardized terminals. Indeed, Service
Providers have no control over the devices that users install and
deploy at home for service consumption. Furthermore customers
have problems finding the services that fit well with their
equipment from the myriad of services and Service Providers on
the Internet.

This paper demonstrates an application and a proof of concept
for Autonomic Communications architecture to solve this
problem. Using a Home Gateway (HG), with the OSGi
framework deployed, an Autonomic Element (AE) has been
developed with the goal to find and personalize the service offer
for a specific user. The AE is context aware, as it senses devices
connected to the home network together with user preferences.
ISPs only have to define the services and service profiles and the
AE would be able to extract useful services and make a
personalized advertisement for each customer. For the AE
construction, an information model based on ontologies has been
developed, as well as behavior rules to be applied to the ontology
instances, so that an inference engine can reason with them.

Keywords: Context, Aware, Ontologies, OSGi, Services,

Autonomic Communications.

I. INTRODUCTION

ne of the main challenges that the telecom industry is
currently facing, is how to deal with complex personal

communication environments as HANs (Home Area
Networks). These environments will provide a quantum leap in
the communication and information services improving
people’s quality of life.

These environments present an increasing number of varied
devices such as computers, PDAs, webcams, home gateways,
sensors, etc. The complexity of managing such environments is
a handicap for the development of the Information Society.

In the Internet services model, users are usually responsible
for installation, configuration, and maintenance of the
applications and devices that they own. These operations are
seldom an easy task for non-expert users. Furthermore, normal
users just want to ‘enjoy’ services, while ‘others’ manage their
technical environment.

In addition to the complexity of managing such
environments, customers also have problems finding services
that fit well with their equipment amongst the myriad of
services and Service Providers on the Internet.

Current initiatives such as Autonomic Communications
(AC) can help users and Service Providers to cope with this
complexity. AC design enables systems to know what is
happening in their surroundings, as well as to adapt their
behavior in an automatic and autonomous way. AC is a
research area currently of interest, including a number of
topics as is stated in [1]

In HAN networks, the Home Gateway (HG) becomes the
link between service providers or the public domain and the
user’s personal domain. A number of applications offered by
providers could be installed on them. These applications or
bundles, as they will be later called, run in the gateway and are
connected to other applications and devices. For this reason
this device is a good candidate to become autonomic.

The gateway provides the necessary processing logic to
achieve seamless application and services fulfillment.
Additionally, the service provider should offer suitable
services for each particular customer. This will, in turn, result
in increased benefits and higher service consumption.

This paper demonstrates proof of concept on how to use an
Autonomic Communication-based architecture, in order to
achieve a highly scalable solution that will allow service
providers to offer services to thousands of customers in the
same way as if there were just a dozen.

On a Home Gateway (HG), using the OSGi (Open Service
Gateway initiative [2]) as the framework installed on it, an
Autonomous Element (AE) has been built. The AE’s goal is to
find and offer personalized and available services for specific
users. The AE is able to automatically find and show the
services that fit best for each user according to the devices
installed in his HAN and the characteristics of his subscription.
The Service providers’ only responsibility is to define services
and service profiles enabling the AE to extract useful services
and to make a personalized advertisement for each customer.

For the AE construction, an information model based on
ontologies has been developed, as well as behavioral rules
applied to the ontology instances, so that an inference engine
can reason with them.

This paper is structured as follows: The next section briefly

O

presents the related technologies contained herein; the OSGi
framework and autonomic systems. A scenario is then
presented illustrating the usage of the developed system.
Continuing, the architecture of the AE is analyzed, then, the
defined ontology is given, as well as the rules used to calculate
the suitable services for a user. Finally, some conclusions are
given.

II. STATE OF THE ART

As stated above, the proof of concept has been developed
around the OSGi framework as the most representative
technology over Home Gateways. The goal is to make home
gateways behave as an Autonomic System. This section gives
a short overview of both.

A. The OSGi framework

Following [2], the OSGi specifications are defined as a
standardized component-oriented computing environment for
networked services, which is the foundation of enhanced
service-oriented architecture. This framework adds to a
networked device, the capability to manage the lifecycle of the
software components in the device, from anywhere in the
network. Software components can be installed, updated, or
removed on the fly without ever having to disrupt the
operation of the device.

The reason why OSGi is so widely accepted in the industry
is that it forms a small layer that allows multiple JAVATM
based components to cooperate efficiently in a single Java
Virtual Machine (JVM).

The OSGi framework is divided into layers depending on
the functionality of the services it provides to its upper layer
and applications.

Figure 1: OSGi Architecture

On the OSGi framework, applications are called bundles. A

bundle is the specific implementation of an application that
runs on the OSGi Framework.

B. Autonomic systems

In this paper the Autonomic System concept is understood
as stated in [3]. It is defined as ‘a system that operates and
serves its purpose by managing itself without external
intervention even in the case of environmental changes.’

Figure 2 presents a description of an autonomic system where
one fundamental block of the AS is its capability to observe
the external operational context, represented by S1 to Sn
sensing inputs. Another inherent block of an AS is the goal or
purpose it serves, but also the know-how to achieve these
objectives. Logic is the block responsible for making decisions
to serve the system’s purpose, but taking into account
observations of context.

Purpose Know-how

Logic

IN1

INn

OUT1

OUTn

S1 S2 Sn

Autonomic System

Figure 2. Autonomic System Description

Following this definition of Autonomic System it is

important to clarify those characteristics that make a system
behave as an autonomic system. These properties are:

• Automatic: The system must be able to self-

control its internal functions and operations.
• Adaptive: An autonomic system must be able to

change its operation or behavior (i.e. its
configuration, state and functions).

• Aware: An autonomic system must be able to
monitor (sense) its operational context, as well as
its internal state, to be able to assess if its current
operation serves its purpose.

Any system that presents these properties would be
classified as an Autonomic System.

III. SCENARIO

The testing environment for the proof of concept described
in this paper, consists of a home area network (HAN), with a
home gateway (HG) acting as the central core and based on the
OSGi standard. Service delivery lies in the installation of
bundles in the HG. This HG then distributes services to the
correct devices. Figure 3 briefly describes this scenario.

Home
Gateway

Figure 3: Scenario

Without having a centralized system checking the technical

environment, the proof of concept shows how to transform the
HG into an intelligent device capable of knowing which is the
perfect offer for a customer in an ‘autonomic way’ from users’
context information.

In order to transform the HG in an autonomic system, a
bundle implementing an autonomic element has been
developed. This management agent will use the services
offered by the OSGi framework to detect any possible changes
in the customer’s environment and also to act in order to
customize the product offers for the customer.

Each of the levels in the OSGi framework (see figure 1)
offers services that will be used by the agent to become aware
of the customer’s environment. For that purpose the agent has
to know at least:

• The bundles installed on the platform
• The devices inside the network

Furthermore, in order to reason with the information that
has been captured, behavior modeling is another variable that
the agent must take into account. To this end a conceptual
model has been implemented through the use of ontologies for
modeling the information, and ontology-based languages for
modeling the behavior. These languages have been used to
describe the user’s domain, that is, to describe customer’s
profile and the services and devices needed for service
delivery. The agent is able to link this knowledge to the
devices inside the network and the commercial offer to infer
which services are suitable in each situation.

The main actor of the execution scenario is the management
agent, based on the autonomic element architecture. It is able
to become aware of the customer’s environment, and that will
indicate to the service provider how to personalize the offer.

It is placed in the customer’s HG acting as the mediator
between the user and the service provider. The agent is able to
relate intelligently the user’s context information, which it
obtains from its communication with the OSGi framework, and
the information shared with the service provider, contained in
the Ontology repository.

The execution sequence is described below in three steps:

1. Firstly the agent obtains information about the

customers environment from the OSGi framework that
can be classified in:
• Information related to bundles installed on the

platform and implemented services, using OSGi
services from the interface ‘public interface
BundleContext’ and analyzing the bundles
Manifest.

• Platform characteristics, configuration parameters
and OSGi version.

• Information related to client’s devices, using
services provided by the OSGi framework uPnP.

This information is obtained using asynchronous or
synchronous procedures, depending on the agent’s information

needs.
• Synchronous environment detection: the agent

feeds itself periodically with information related to
the user’s gateway, the bundles list and the
implemented services. Changes in this data do not
require a rapid update in the agent, so they can
wait for the next state request from it.

• Asynchronous environment detection: in this case
it is not the agent that carries out the request but
the gateway that informs the agent of the
disconnection or connection of a new device. This
will release the appropriate actions. It would be
necessary to install a bundle listener that will
gather the events of interest related to the customer
environment: services installations and
uninstallations, the appearance of new devices, etc.

2. Secondly the agent comes in contact with the Ontology

Repository and carries out the following two actions:
• Downloads the ontology. It includes the domain

definitions as well as rules that can be explicitly or
implicitly defined in the ontology so as to model
the agent behaviour In accordance with the
policies and rules defined by the service provider,
the agent decides which services or types of
services can be offered to the customer.

• Updates the customers’ instances in the repository
with the information related to the environment,
based upon the information obtained from the
OSGi framework.

3. Finally, the agent informs the customer directly

sending a message with a URL to their personalized
services offer. This way, the service provider can offer
users the services that the management agent has
selected as suitable for them. This is possible because
it shares the knowledge described by the ontology.

Figures 4 and 5 present the two types of interactions

(asynchronous and synchronous) from the proof of concept:

• Asynchronous: The user plugs a device into the
HAN and the agent automatically personalizes an
offer based upon the customer profile that will
definitely be of interest to them.

• Synchronous: The agent updates the information

knowledge about the customers’ environment and
the appropriate offer for them. When the user
connects with the service provider it will show
them a personalized offer.

User Device
OSGi

Framework Agent

HG (OSGi)

Ontology
Repository

Services
Server

New device
plugged

Device
detection

Event

Inform user

Personalized offer access

Offer

Upload Info

Info Query

Ontology download

Reasoning

Query

Personalized Service List

Figure 4: Synchronous actions sequence

Info Upload

Context Info.
Query

Ontology
download

Reasoning

User Device
OSGi

Framework Agent
Ontology

Repository
Services

Server

Inform user

Personalized offer access

HG (OSGi)
Offer

Query

Personalized Service List

Figure 5: Asynchronous actions sequence

Testing these interactions will validate the use of ontologies

to add a new semantic level, in which we can interpret
requirement information and customer environment
requirements, in order to personalize their services offer.

A specific example of a situation that can be solved with
this type of technology will be:

1. The user connects a webcam to his network.

2. The agent detects this event and uses the knowledge
described by the ontology to search for services which
make use of the webcam to operate (video-vigilance,
videoconference, etc.) and that are also appealing to
the customer due to their profile.

3. A message will inform the customer about new services
that could be enjoyed with a webcam. This message
might include a link to detailed information and
subscription options.

Another example would be when the service provider
modifies its offer with new products or services, meaning that
suitable products are offered to the customers, according to
their profiles.

IV. AUTONOMIC ELEMENT ARCHITECTURE

As stated before, in order to achieve the business objectives
concerning service offer customization, home gateways should
evolve towards autonomic systems. Customer devices are
usually connected to a home area network (HANs) and all
these HANs have one point in common, that is the home
gateway (HG). The proposed architecture is designed to
distribute intelligence over these HGs in order to make them
behave as autonomic systems. These intelligent HGs must be
able to behave according to operators’ rules and policies.

The global architecture proposed is depicted in figure 6.
In order to get the HG running as an autonomic system, a

management agent has been developed. It has been designed
following the autonomic element architecture depicted in
figure 7 and described by IBM in [10].

Such an autonomic element presents five function modules:
• Knowledge
• Monitor
• Analyze
• Plan
• Execute

HOME GATEWAY

Operating System / HW

JVM (JAVA Virtual Machine)

OSGi Framework

S
ervices

S
ervices

S
ervices

DEVICE

OS/HW

JVM

OSGi

Services

Ontology
Repository

SERVICES SERVER

Web
Portal

Server
Logic

Services
Repository

Communications
Networks

Figure 6: Global Architecture

Figure 7: Autonomic Element (source: IBM)

A. Knowledge

Knowledge (see figure 6) is the necessary description of the
domain that the agent requires. Technologically it is
implemented through a conceptual model; this is an ontology.
The element manager downloads this knowledge from an
ontology repository and acts, supporting all functional
modules that constitute the Autonomic Element.

The ontology is used to make a conceptual description of
the whole user context, what a service is, which relation it has
with devices and technical platforms, dependencies with
bundles, etc. Figure 8 shows some entities defined within the
ontology. This ontology is later presented in section V.

B. Monitor

This functional module (see figure 6) will capture
information from the HG about the technical characteristics of
the Home Gateway, like the version of the operating system
and devices running on the home network. Through the
knowledge module it will also collect information about non-
technical parameters, such as the commercial segment, the
kind of subscription, customer profile, etc.

C. Analyze

This functional module (see figure 6) is responsible for the
reasoning function. The inputs to the system are then analyzed
according to the given rules. These rules are generated by
service providers from high-level policies. And they are
defined to control the global behavior of the community of
Intelligent HGs, in order to have thousands or even millions of
agents composing commercial offers within business
requirements imposed

This inference engine loads the set of instances about HG
context (User Profile, Devices, Platform, and installed Bundles
and Services) and available Services. Combining this
information with the set of defined rules, it obtains which
services fit the user context.

D. Plan

Once there is an inference output, the agent decides actions
(see figure 6). In this case it takes the output of the inference
engine and prepares a web with the list of services needed. The

output of the inference engine will contain a list of Service
instances that are to be displayed to the user. For this, the
Service Server uses the information of each service, contained
in the ontology.

The implementation of the proof of concept does not focus
greatly on this planning task; it simply takes information about
the recommended services obtained through inference in the
analyzing phase. However, it is a very important issue to
consider in future work.

E. Execute

This functional module (see figure 6) executes actions over
the resources. So it starts all the actions oriented to inform
customer about the selected commercial offer

All these modules work together and create a behavior that
converts the HG in an automatic system. Following the
definition stated before, this architecture provides the
following characteristics to the HG:

Automatic: If the user’s context changes, because they have
plugged a new device, made changes to the subscription with
the provider, or even updated software versions; whatever the
situation, the HG will generate a new offer. Additionally, if the
service provider changes the environment by adding new
services to the catalogue, or if it generates new commercial
rules for a specific market segment, Home Gateways will adapt
the customer offer without any external action.

Adaptive: HGs are highly adaptive. They are able to
automatically adapt their behavior (in this case the way they
“think”) when composing commercial offers. The behavior of
the HG depends on the policies that service providers establish
to accomplish their business.

Aware: The HG not only senses all needed parameters in
the context, it is also aware of it in relation with the business
goals of the service provider.

F. Proof of Concept Implementation

The logic of the AE has been implemented in an OSGI
bundle that is responsible for obtaining the installed devices
and bundles using the OSGi API, loading the knowledge in the
inference engine and reading the results and acting
accordingly. Results are published in the web server included
in the OSGi framework. In order to notify that new services
are available, a message with a link to the result web pages is
sent to the customer.

The following software has been used for the described

implementation:
• Protégé: This ontology editor has been used in the

definition of the ontology and the behavior rules. The
ontology has been defined in OWL, and rules have been
defined in SWRL. The use of OWL is important, to allow
a distribution of the ontology knowledge.

• Knopflerfish : This is the OSGi platform implementation
used in the HG. The necessary logic to behave as an AE is
contained in a bundle to be installed in this platform.

• Jena: This Java library has been used to pass on the
ontology information.

• Bossam: This Java inference engine has been used in the
AE to load onto the ontology, existing instances and rules
to infer which services can be advertised to the user.

• Apache Tomcat: This is used for the implementation of
the service provider server, to present the user with the set
of advised services. For this, the server accesses the
inferred knowledge, published in the OSGi platform.

V. CONCEPTUAL MODEL. ONTOLOGIES AND BEHAVIOUR RULES

As stated in previous sections, an ontology with a set of
classes or concepts has been defined based on the described
scenario. This ontology is depicted in figure 8.

Ontology classes, as well as their related properties, are
necessary to specify the domain of the system. Properties can
be both data type properties, useful to contain information (e.g.
the name of a service); or object properties, useful to associate
instances of different classes (e.g. the services contracted by a
customer). Property values can be inferred from existing
knowledge by using a set of rules, as explained later. The set
of classes, depicted in Figure 8, includes the following:
• Service: this class models the services provided by the

service provider. It contains properties such as the price,
complexity, customer segment, type of device needed and
bundle dependency. These properties are useful to infer if
a service should be recommended to a customer.

• User profile: this class defines the profile of a customer
that uses the service provider services with the HG. It
contains properties such as the type of customer; the
maximum service price and the complexity that can be
assumed by the user; identifiers assigned by the network
operator, and a set of properties that link this user with the
service provider services. It is possible to infer what
services are already contracted, what services are
available to the user given its profile and hardware used,

and services that can be advertised to a user given a
change in the HG context.

• Bundle: this class models the OSGi software packages
that can be installed in the HG. Most of the properties of
this class can be obtained from the Manifest file of the
bundle (e.g. imported and exported packages). Based on
these it is possible to infer bundle dependencies.

• OSGi platform: this class models the HG. Its properties
are related to its technical characteristics, as well as the set
of installed bundles and devices, and users of the
platform.

• Device: this class models the devices of the home
network. Its properties are related to the information that
can be obtained through the OSGi services. Two
properties are important to infer knowledge: the type of
device, and the associated services that can be provided
thanks to that device.

The classes and properties of this ontology have been
defined in OWL (Web Ontology Language) [4]. This
ontologies definition language will allow us to take advantage
of the set of tools developed by the Semantic Web community
(e.g. Protégé [5], Jena [6]). The ontology is expected to
include an instance of each service provided by the service
provider and their relationship with bundles, device types they
need, and customer segment to which they are directed. At the
same time, the HG adds to the ontology instances information
about the set of bundles and devices installed on it, which
represent its context.

To perform the reasoning in the HG, the following set of

logical rules have also been defined. These rules have been
specified in SWRL (Semantic Web Rule Language) [7], due to
its tight integration with OWL. Once again, Semantic Web
community tools (e.g. SWRLJess [8], Bossam [9]) have
provided valuable assistance with executing the rules, acting as
inference engines. The rules have been defined in generic
terms, to avoid defining a rule for each user or each device.

OSGiPlatform
CPU String*

memory Integer*
installedDevicesInstance* Device
installedbundles Instance* Bundle

usedBy Instance* UserProfile

Device
softwareVersion String*

deviceType String*
deviceID String*

firmwareVersion String*
hardwareVersion String*

deviceModel String*
deviceManufacturer String*

associatedServices Instance* Service

UserProfile
customerType String*

IMPI String*
maximumServicePrice Float*

IMSI-USIM String*
maximumServiceComplexity Integer*

IMPU String*
contractedServices Instance* Service
advicedServices Instance* Service
availableServices Instance* Service

Service
serviceDescription String*
serviceComplexity Integer*

serviceURL String*
orientedToCostumerType String*

needsDeviceType String*
serviceType String*
servicePrice Float
serviceName String

hasBundleDependency Instance* Bundle

Bundle
Version String*
docUrl String*

apiVendor String*
contactAddress String*
exportsPackage String*
downloadURL String*
symbolicName String*

Vendor String*
Classpath String*

bundleName String*
importsPackage String*
subversionUrl String*
Description String*
Category String*
Activator String*

uuid String*
hasBundleDependencyInstance* Bundle

hasBundleDependency*

hasBundleDependency*
installedBundles*

installedDevices*

associatedServices*

usedBy*

contractedServices*
advicedServices*
availableServices*

Figure 8: Conceptual Model.-Ontology

This is also possible if the operator’s policies need to be
fulfilled. These rules have the aim of obtaining the services
that are going to be recommended to users. Other rules should
be defined if the HG has to perform other tasks (e.g.
autoinstalling bundles).

Rule 1: It obtains the set of bundles necessary for another

bundle. This rule compares the importsPackage and
exportsPackage of bundle instances to infer if there is a
dependency between two bundles:

Bundle(?importer) ∧
importsPackage(?importer,?importedPackage) ∧
Bundle(?exporter) ∧
exportsPackage(?exporter,?exportedPackage) ∧
swrlb:equal(?importedPackage, ?exportedPackage) →
hasBundleDependency(?importer, ?exporter)

Rule 2: It obtains the set of services that have been

contracted by a customer. It depends on the installed bundles
in the HG that are associated with a service of the service
provider. Then, if a bundle is found that is associated with a
service, and it is installed in the HG of a user, then this user
has contracted that service:

Service(?availableService) ∧ Bundle(?availableBundle)
∧ hasBundleDependency(?availableService,
?availableBundle) ∧ bundleName(?availableBundle,
?availableBundleName) ∧ OSGiPlatform(?gateway) ∧
installedBundles(?gateway, ?installedBundle) ∧
bundleName(?installedBundle, ?installedBundleName) ∧
UserProfile(?user) ∧ usedBy(?gateway, ?user) ∧
swrlb:equal(?availableBundleName, ?installedBundleName)
 → contractedServices(?user, ?availableService)

Rule 3: It obtains the services that are associated with a

device. The device is detected to have been installed in the
gateway. In this case, if a type of device is found that is needed
by a service, then that device can be associated to this service.

Service(?availableService) ∧
needsDeviceType(?availableService, ?neededDeviceType) ∧
Device(?installedDevice) ∧ deviceType(?installedDevice,
?deviceTypeValue) ∧ swrlb:equal(?deviceTypeValue,
?neededDeviceType) →
associatedServices(?installedDevice, ?availableService)

Rule 4: It obtains the services that can be offered to

customers of a certain type. This rule can be amplified by
including properties related to complexity or price. In this
case, a service is available to a user if that service is oriented
towards the same market segment to which the user belongs.

Service(?availableService) ∧ UserProfile(?user) ∧
orientedToCustomerType(?availableService, ?userType) ∧
customerType(?user, ?userTypeValue) ∧
swrlb:equal(?userType, ?userTypeValue) →
availableServices(?user, ?availableService)

Rule 5: It obtains the services that can be recommended to

a customer, given the devices that are attached to the HG.
Prior rules are assumed. This rule compares the services that
are available to a user to those that can be used with a
particular device, installed on the user platform.

UserProfile(?user) ∧ availableServices(?user, ?service)
∧ Device(?device) ∧ OSGiPlatform(?gateway) ∧
usedBy(?gateway, ?user) ∧ installedDevices(?gateway,
?device) ∧ associatedServices(?device, ?service) ∧
¬ contractedServices(?device,?service) →
advicedServices(?user, ?service)

This last rule cannot be completely expressed in SWRL,
because SWRL does not have the NOT (¬) operator. However,
it would be possible to obtain all services that are related to a
customer type and device type.

VI. CONCLUSIONS

This paper has presented a proof of concept to show that
Autonomic Systems are a suitable technology that will allow
operators to face the management complexity of future service
and networks infrastructures. The application of autonomic
technologies in order to manage complexity must result in an
increase on the ease of use for users. In the proof of concept
presented, when a customer buys and installs a new device in
his home network, the Autonomic Element is able to offer
services suitable for such a new device. The same occurs when
the customer subscription is updated or changed. In this way,
customers will not be worried at all about which services are
suitable for them, because all services offered will fit their
requirements. It is also necessary to remark that not only the
technical aspects are considered; commercial information and
customers’ personal preferences are also taken into account.

On the other hand, from a service provider point of view,
autonomic technologies imply a great improvement. Customer
offers are personalized by simply updating information about
services in the shared knowledge. That means that it does not
matter if there are hundreds, thousands or millions of users, the
solution is absolutely scalable. That is one of the main
challenges when facing customer management.

The implementation described in this paper has included
both the definition of an ontology to maintain the knowledge
needed by the system, and the development of a management
agent that is loaded in an OSGi platform. All scenarios have
been tested satisfactorily, obtaining in each case those services
that were suitable to the real context of the user. Context was
based on the user profile, OSGi platform characteristics and
installed devices. It has been verified that services that didn’t
fit this context were not offered to customers. Regarding
service provider’s point of view, this decentralized approach
scales better than centralized ones, where service providers
must monitor available resources in each HAN and offer
services after processing all the information.

As a result, we have achieved the goal of making potential
functionality of AS powerful and in the interest of operators to

manage complex infrastructures. But other aspects will be
study in future work. For example it is necessary to check the
performance of AS. The case presented has shown that
inference engines require quite a lot of memory and CPU, and
it is necessary to build them into very limited resources such as
Home Gateways. Performance is a critical aspect that will
affect the deployment cost of these technologies. It is
necessary to improve hardware of current gateways to support
inferences. Additionally, inferences engines’ memory use and
processing requirements must be optimized.

Another important aspect is that of knowledge management,
that is to ask: how should ontologies be supported?
Management architecture for knowledge is essential to have
AS working properly. Ontologies must be defined and
updated, they are distributed and at the same time shared
among all entities. This scheme does not seem to be easy to
tackle given the current state of technology.

Other future work is related to the definition of policies and
rules, and how they should be included implicitly in the
ontology or explicitly as rule instances.

Performance, operation, maintenance and standardization
aspects of autonomic systems must be considered and resolved
before introducing these technologies in live environments.
However, we see Autonomic Systems as the key to overcome
current management state of technology for the forthcoming
communication environments.

These technologies must evolve to a more mature state, not
yet achieved currently. This proof of concept has been a first
step to get an insight about how these technologies must
evolve.

VII. REFERENCES

[1] Michael Smirnov, “Autonomic Communication, Research Agenda for a
New Communication Paradigm” Autonomic Communication, White
Paper, November 2004

[2] OSGi Alliance, “About the OSGi Service Platform” Technical
Whitepaper Revision 4.1, 11th November 2005

[3] S. Schmid, M. Sifalakis, and D.Hutchison, “Towards autonomic
Networks” In proceedings of 3rd Annual Conference on Autonomic
Networking, Autonomic Communication Workshop (IFIP AN/WAC),
Paris, France, September 25-29, 2006.

[4] D. L. McGuinness, F. van Harmelen, “OWL Web Ontology Language
Overview,” W3C Recommendation, 10 February 2004.

[5] H. Knublauch, R. W. Fergerson, N. F. Noy, & M. A. Musen, “The
Protégé OWL Plugin: An Open Development Environment for Semantic
Web Applications,” Third International Semantic Web Conference,
Hiroshima, Japan, 2004.

[6] B. McBride, “Jena: A Semantic Web Toolkit,” IEEE Internet
Computing , vol. 06, no. 6, pp. 55-59, November/December, 2002.

[7] I. Horrocks, P. F. Patel-Schneider, H. Boley, S, Tabet, B. Grosof, M.
Dean, “SWRL: A Semantic Web Rule Language Combining OWL and
RuleML,” W3C Member Submission, 21 May 2004

[8] M. J. O'Connor, H. Knublauch, S. W. Tu, B. Grossof, M. Dean, W. E.
Grosso, M. A. Musen, “Supporting Rule System Interoperability on the
Semantic Web with SWRL,” Fourth International Semantic Web
Conference (ISWC2005), Galway, Ireland, 2005.

[9] Minsu Jang, Joo-Chan Sohn, “Bossam: An Extended Rule Engine for
OWL Inferencing,” Lecture Notes in Computer Science, Volume
3323/2004, Springer Verlag, pp. 128-138

[10] Jeffrey O. Kephart, David M. Chess, “The Vision of Autonomic
Computing”. IEEE Computer Society, January 2003. IBM Thomas J.
Watson Research Center

[11] H. Knublauch, R. W. Fergerson, N. F. Noy, & M. A. Musen, “The
Protégé OWL Plugin: An Open Development Environment for Semantic
Web Applications,” Third International Semantic Web Conference,
Hiroshima, Japan, 2004.

[12] Knopflerfish OSGi, http://www.knopflerfish.org/
[13] Apache Felix, http://cwiki.apache.org/FELIX/
[14] Apache Tomcat, http://tomcat.apache.org/

