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Abstract

The monetization of the large amount of data that
ISPs have of their users is still in early stages.
Specifically, the knowledge of the websites that spe-
cific users or aggregates of users visit opens new
opportunities of business, after the convenient san-
itization. However, the construction of accurate
DNS-based web-user profiles on large networks is
a challenge not only because the requirements that
capturing traffic entails, but also given the use of
DNS caches, the proliferation of botnets and the
complexity of current websites (i.e., when a user
visit a website a set of self-triggered DNS queries
for banners, from both same company and third
parties services, as well for some preloaded and
prefetching contents are in place). In this way,
we propose to count the intentional visits users
make to websites by means of DNS weighted foot-
prints. Such novel approach consists of considering
that a website was actively visited if an empirical-
estimated fraction of the DNS queries of both the
own website and the set of self-triggered websites
are found. This approach has been coded in a final
system named DNSPRINTS. After its parameteri-
zation (i.e., balancing the importance of a website
in a footprint with respect to the total set of foot-

prints), we have measured that our proposal is able
to identify visits and their durations with false and
true positives rates between 2-9% and over 90%,
respectively, at throughputs between 800,000 and
1.4 million DNS packets per second in diverse sce-
narios, thus proving both its refinement and ap-
plicability. Index Terms: Browsing analytics;
Data monetization; DNS footprint; web-user pro-
files; DNSPRINTS.

1 Introduction

The commercial exploitation of web browsing ana-
lytics is currently a fact, whereby the collaboration
between both marketing and Internet communi-
ties has progressively strengthened after each busi-
ness success. The information about users’ prefer-
ences that the different actors in the Internet arena
gather can be used not only as inputs for tailored
online-ads but for improved and novel mechanisms
to monetize the rich set of available data [1, 2],
even more with the advent of the Big Data era. In
paying attention to web access profiles, it becomes
apparent that the identification of a competitor at-
tracting the interest among the customers of a given
company is of paramount interest to react accord-
ingly. Similarly, the interest in terms of visits of the
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population of a given geographical area is a useful
input to plan the expansion for many retailers or
to assess the impact of an advertising campaign. A
real-world example of this is Google AdWords ser-
vice [3], such that Google exploits keywords, statis-
tics of keywords, and search results of its users [4]
and customizes ads according to their profiles.

Nonetheless, the capacity of creating users’ web-
profiles is not the exclusive preserve of web search
engines as of today, but also others, such as ISPs,
have the opportunities to exploit such business
model. Actually, in a richer fashion given that
search engines are only aware of the few first ac-
cesses users make to a website. After that, typi-
cally, web names are retained in the browsing his-
tory (or bookmarked), or simply memorized by the
users. This way, search engines are no longer used
as gateways to such sites.

Alternatively to client intrusive software and
add-ons installed on clients’ web browsers, such as
toolbars [5] or cookies [6], the ISP approach to this
issue is the apparently simple task of capturing
and inspecting HTTP traffic. However, two con-
cerns arise. The unstoppable increase of HTTPS
and the implicit difficulty of capturing (needless
to say, inspecting) large volumes of HTTP traf-
fic potentially distributed in different geographical
areas. While the latter remains as an open re-
search area [7], the authors in [8, 9] pointed out
that DNS can play a major role to reveal the traf-
fic behind a HTTPS flow. Further, the authors
in [10, 11] successfully correlated traffic flows [12]
and temporally-close DNS queries, thus identify-
ing IP addresses of users and the name of the ac-
cessed hosts. Unfortunately, such approaches still
require to collect all HTTP/HTTPS and DNS traf-
fic to construct the flows to which relate the DNS
protocol, and, importantly, other collateral issues
emerge:

• DNS Cache: Most of DNS resolvers and clients
implement a cache for DNS traffic where the
associated IP of a given domain name is tem-
porarily stored. As Time To Live (TTL) for
the cache entry can be long [13], chances are
that a point of presence monitoring traffic can-
not see clients’ DNS queries although they are
effectively visiting a web.

• Automated clients, botnets and worms [14,
15, 16]: Often, DNS queries are not gener-

ated by actual users from a web browser, but
from scripts that poll DNS servers with sin-
gle queries searching for updates, information
about the service or mail server addresses as
well as to perform Distributed Denial of Ser-
vice (DDoS) attacks.

• The tangled web [10]: Almost any web includes
a set of external contents (e.g., resources of
other webs of the same company or, simply,
banners or ads) whose domain names have to
be resolved in order to fully load the requested
web itself. This causes that additional DNS
traffic is generated without being explicitly re-
quested by users and makes users’ web-profiles
imprecise, especially for business exploitation.

• Websites’ embedded content preload:
HTML51 recommendation defines special
websites’ attributes such as preload that
calls for an early load of resources not being
part of either the main website loading or the
rendering process. Such resources generate
additional DNS queries.

• Link prefetching: Popular browsers such as
Google Chrome, Mozilla Firefox or Inter-
net Explorer perform link prefetching which
generates non-explicitly requested extra traf-
fic. Prefetching can be performed at dif-
ferent levels. Nowadays almost any browser
pre-resolves domains present in every link of
a website. Moreover, some browsers may
not only resolve link addresses but prefetch
cacheable contents from websites referred by
such links, if possible. Even more, some
browsers, such as Internet Explorer, perform
image pre-rendering. Furthermore, websites
may also indicate browsers to prefetch certain
links, as defined formally in the HTML5 rec-
ommendations by means of special attributes
of the link tag. In sum, all these approaches
generate both HTTP/HTTPS and DNS extra
traffic that impedes generating precise users’
browsing profiles.

In this light, we search for a mechanism that re-
lying on DNS traffic to detect every time a user ac-
cesses a website is able to circumvent the problem

1https://www.w3.org/TR/html5/
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Figure 1: Sample website layout, with content that
generates self-triggered DNS queries embedded on
several banners and external services

that some queries are hidden by caches, and, im-
portantly, with the capacity to distinguish between
requested website visits and unintentional ones (let
us refer to the latter as self-triggered webs or self-
triggered traffic). To do so, we propose to explic-
itly exploit the tangled characteristic of websites
and DNS preload/prefetch capabilities of current
websites/browsers.

Figure 1 features a sample layout for a website
with several embedded ads, banners and links to
both external and same company services. After
the main website is requested, while users wait for
loading, a set of DNS queries/responses are gen-
erated. Such behavior is illustrated in Figure 2,
where multiple resolution processes are in place.
The set of different resolved domains that a given
website triggers, defines the DNS footprint of such
a website. This way, given a list of root domain
websites, i.e., those websites of interest for business
purposes, we construct their associated DNS foot-
prints that will be used to search in traffic aggre-
gates to determine the visits per user, potentially
sanitized, or per aggregation in market segments
and geographical areas.

User requests a website

with a browser DNS query to resolve root

domain name

DNS server resolves root

domain name

HTTP request for the site

HTTP server sends HTML

file for the site

Web browser identifies

dependencies on the HTML

DNS Queries for 
other domains

DNS server resolves 
domains

HTTP requests for 
domains' content

HTTP responses for 
domains' content

Web browser loads and

displays the website

I

II
III
IV

Figure 2: Flow graph describing the packet flow
of DNS and HTTP traffic when a site is requested
using a web browser
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In fact, being less restrictive with the footprint
(i.e., accept a match although not all the websites
of a footprint are found) circumvents the cache
problem while being more restrictive rules out self-
triggered visits, in other words “false” resolutions
with respect to the actual website requested by the
user. Additionally, we remark that not all web-
sites present in a footprint must be considered at
same level. If a website appears regularly in many
footprints, its capacity of discrimination is limited,
and the opposite for uncommon websites. Conse-
quently, we propose to weight the importance of a
website for footprints construction by its number of
occurrences in the full set of constructed footprints.
How to assign weights is studied along this paper.

The proposed solution has been implemented as
a final system called DNSPRINTS. We have ap-
plied it to a significant set of websites and diverse
cross traffic during different periods of time, as
well as to diverse scenarios of operating systems,
browsers and devices. The accuracy evaluation of
the methodology has shown false positive rates be-
tween 2-9% and true positive rates between 90-95%
depending on the scenario, thus proving the poten-
tial of DNSPRINTS.

Significant results were also found on the per-
formance evaluation of the system implementation,
which is able to handle between 800,000 and 1.4
million DNS packets per second in realistic scenar-
ios including traces from a large National Operator,
thus proving the applicability of DNSPRINTS in the
most challenging networks.

The following section describes the visit-
detection methodology used by DNSPRINTS sys-
tem. Next, the parameterization and accuracy of
the methodology receive attention in Section 3,
while the final system architecture, implementation
as well as performance are detailed in Section 4.
In Section 5, previous works are analyzed pointing
out the main difference with our proposal. Finally,
some conclusions and future work lines are given in
Section 6.

2 DNSPRINTS’ methodology

This section describes our method to identify user
browsing based on DNS traffic. The typical use case
is that of a marketing department willing to analyze
customers’ behavior in a given market segment, for

instance car manufacturers. To this end, the de-
partment provides a set of websites of interest for
the analysis, namely those of the relevant car man-
ufacturers. Our purpose is detecting when a user
has requested a certain website using a browser, out
of such set of websites, only by inspecting the DNS
resolutions generated.

2.1 DNS footprints

Let D = {d1, d2 . . . dN} be the set of websites (typ-
ically, root domains) to monitor. As we stated be-
fore, when a user requests a website di, several reso-
lutions are self-triggered in addition to the domain
name explicitly requested. All these resolved do-
main names (M) make up a set of domains that
define the DNS footprint Fi for that website di, be-
ing Fi = {d1i , d2i . . . d

Mi
i }, i = 1, 2, . . . N . After a

domain name dji has been resolved, clients usually
store that information on a DNS cache for a certain
time T ji suggested by the DNS server.

The time each domain is stored on the DNS cache
is called TTL and varies significantly depending
on the domain. Typically, root domains present
a long TTL (e.g., TTL>1000 seconds) and many
of the subsequent domain resolutions have shorter
ones (e.g., TTL<30 seconds) [17]. As a typical be-
havior, Figure 3 shows the different values that T ji
takes in the set of domains resolved while we vis-
ited a popular news website. Such values present
a very wide range, from a few seconds to several
hours, with the root domain DNS cache entry last-
ing for more than an hour. Accordingly, if a user
reads the news every few minutes, a standard DNS
monitoring tool, inspecting root-domain requests,
would only detect one request to the root domain
every several hours.

Alternatively, while not all the domains from Fi
will be resolved every time the root domain di is
visited, we observe that most of them do it. Note
that domains with a low value for T ji will be re-
solved more frequently as they expire sooner from
the cache and must be updated regularly. That is,
after a DNS server receives a query for a root do-
main dji , it is likely that it will not be queried again
by this user until its DNS cache entry expires but a
significant fraction of the footprint will. This way,
the accuracy does not depend on the TTL value
that a DNS response announces for the requested
root domain but on the lowest TTL values of all
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Figure 3: Distribution of the TTLs on DNS re-
sponses generated by visiting a popular news web-
site. The vertical line represents the TTL of the
root domain

the domains making up footprint Fi. This allows
us to improve the detection resolution from several
hours to a few minutes or even seconds in the best
case.

2.2 Weighted footprints

After visual inspection of the footprints, it became
apparent that not every domain name dji is equally
representative. For example, www.google.com or
www.facebook.com will be present in the footprint
of many websites due to ads or social media ban-
ners. In other words, resolving www.google.com
does not provide much information about which
website is being visited and, therefore, its rele-
vance should be low. On the other hand, resolving
www.cnn.com is not so common and it will proba-
bly appear in fewer footprints, hence giving much
more information that the former.

This way, for every domain name dji presented in

a footprint a weight wji is assigned. Such weight is
inversely proportional to the number of footprints
that contain such domain name and then normal-
ized in a way that the sum of all weights is equal to
1. The inversely proportional weighting process is
performed to give more importance to the most rel-
evant entries in the footprint and depreciate the im-

portance of domains present in multiple footprints.
More formally, the following equation shows how
the weight is calculated:

w̃ji =
1∣∣∣{x : dji ∈ Fx}

∣∣∣ wji =
w̃ji
N∑
k=1

w̃ki

(1)

for i = 1, . . . , N and j = 1, . . . ,Mi.

2.3 How to consider a visit occurs

To determine whether a user is visiting a certain
monitored website di at a certain moment, all the
weights wji of the domains in Fi that are currently
in this user’s cache are added. Ideally, this sum
would be one per each requested website but it will
not be due to the use of caches. However, intu-
itively, the higher the current sum of the weights
the most likely it is that the user is currently brows-
ing such a website. When the user stops brows-
ing the website, the corresponding DNS cache en-
tries will start expiring and therefore the amount of
domains cached and the sum of their weights will
drop. Using this mechanism we can define the time
series Si(t), t > 0 for each website di and user that
measures the likelihood that a user being currently
visiting the website di. Si(t) is calculated at a given
point in time t as shown in the following equation:

Si(t) =
∑

dji is cached at time t

wji

Then, we define a certain threshold α that Si(t)
has to exceed in order to mark a website as visited.
Whenever Si(t) surpasses the given threshold α, a
visit for that website is counted. In other words, α
represents the fraction of weight footprint captured
to consider that a visit took place although some
domains of the footprint were not present. This
is the key of our method as precisely the root do-
main, because of its high TTL, is the most likely
unresolved domain. On the other hand, we con-
sider the finalization of the visit when Si(t) drops
below α.

The accuracy of the method is directly related to
the value of α. A low value for α increases both the
number of false positives (a website is considered as
visited but the user did not request it) and the time
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d1 d2 . . . dN TTL



d11 0.35 . . . . . . . . . 178
d21 0.15 . . . . . . . . . 60
d31 0.2 . . . . . . . . . 65
...

...
...

. . .
...

...

dM1
1 0.1 . . . . . . . . . 6000
d12 0 . . . . . . . . . 300
...

...
...

. . .
...

...

dM∗
N . . . . . . . . . ωM∗

N TTLM∗
N

sum 1 1 . . . 1

Figure 4: DNS footprints matrix example

resolution of the method (whenever a website is vis-
ited, it is necessary to wait until the weights sum of
such website’s footprint drops below α). Whereas,
a higher value for α will improve the time resolu-
tion but also the probability of missing an actual
website request from a user.

2.4 Numerical examples

Let us illustrate the operation with examples. Fig-
ure 4 represents, in a matrix form, a footprint set
where each cell represents a weight and each col-
umn corresponds to a root domain (d1 to dN ). The
rows correspond to the union set of all resolved
domains (all the different domains observed after
resolving the root domains). Then, Figure 5 illus-
trates the temporal evolution of the detection of
visits to the website corresponding to d1 column of
Figure 4.

We note that when accessing to website d1, the
root domain d11 (I in the latter figure and also in
Figure 2) presents a weight of 0.35 and a TTL of 178
seconds. At this moment the accumulated weight is
0.35. After resolving the root domain, a domain (II
in both figures) is resolved. Such domain presents
a weight of 0.15 and TTL of 60 seconds. At this
moment, the accumulated weight is 0.50. Next, a
second domain (III in the figures) is resolved with a
weight of 0.2 and a TTL of 65. After such resolution
the accumulated weight is 0.7, which surpasses the
predefined α and d1 is marked as visited. Finally,
TTLs of domains II and III expire and the visit is
considered as finished.

α

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

A
cc

um
ul

at
ed

 w
ei

gh
t

Time(s)I II
III

II
 c

ac
he

d 
ex

pi
re

d
II

I c
ac

he
d 

ex
pi

re
d

visited

visited

Figure 5: Temporal evolution in the detection of
visits to the website d1

Certainly, the website d1 can be visited again af-
ter the first visit. If this occurs after domains II and
III are expired from cache, they are resolved again
and the accumulated weight will surpass again α
marking a second visit for website d1 as the figure
shows. If this occurs before entries expire, the sec-
ond visit will be incorrectly considered as a part of a
longer first visit. Note, again, that if we considered
the duration of a visit to be the TTL of the root
domain this issue would occur frequently (root do-
mains’ TTL are typically larger than the time users
stay in a website). Interestingly, we limit the cache
influence to the lowest TTLs of the website’s foot-
print (typically, shorter than the user session) so
making this issue far less likely.

The previous examples have shown how a single
website is monitored. In a real production scenario,
DNSPRINTS monitors several websites in parallel.
Figure 6 shows the values of Si(t) over time for
a sample a user session. Each line represents the
sum of the weights wji of the cached domains of a
websites di during the session. Whenever a domain
is visited, the sum of the weights starts increasing.
But after a given time, namely the TTL values, the
sum drops as the DNS cache entries start expiring.
According to when each Si exceeds and, then, falls
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Figure 6: Different footprints likelihood (Si(t)) during a user browsing session each represented with
different colors and line patterns

below the threshold α, visits will be recorded.

2.5 Environment diversity

Another important aspect to consider is that self-
triggered resolutions for a given domain vary with
time as websites layouts do and that, potentially,
such resolutions can also differ between browsers
or, even operating systems. Similarly, most web-
sites present a different layout, or even a different
domain name (after a redirection), when accessed
from a mobile device. Let us refer to such charac-
teristics that can impact on websites’ footprints as
factors.

One option to deal with this diversity is to con-
struct a different footprint per factor or, even, set of
factors. Another option is to construct final foot-
prints as a partial intersection from two or more
partial footprints (i.e., footprints constructed for a
specific browser and operating system). In other
words, having n partial footprints of a website, a
domain is added to the final footprint if it appears
in at least n · β of them.

On the one hand, the β parameter should be
tuned to maximize the robustness of the footprint.
Having β ∼ 0 would turn the partial intersection
into a union, and the final footprint would not be
resilient to minor changes or variations in the web-
site. On the other hand, having β ∼ 1 would turn
the partial intersection into a strict intersection,
greatly shrinking footprints size, and the footprint

would become even empty if partial footprints are
significantly different.

The use of different footprints or partial intersec-
tion for any of the factors previously mentioned is
configurable in DNSPRINTS. The next section will
provide empirical insights and illustrative figures
for such parameters.

3 Footprint inspection, design
and methodology accuracy

We first inspect the impact that several external
factors exert in the construction of footprints. With
the resulting conclusions, we perform the evalua-
tion of DNSPRINTS methodology in terms of accu-
racy. To do both so, we first construct a controlled
dataset in terms of factors and visited websites as
ground truth. That is, a set of traces labeled with
the actual intentional visits on a diverse set of sce-
narios for significant periods of time.

3.1 Ground truth dataset

We developed a robot for simulating web brows-
ing based on Selenium framework [18] configured to
use Google’s public DNS server. Such robot simu-
lates a user session where, given a set of websites, it
randomly visits the websites of such set (with cer-
tain bias towards previously visited ones, i.e., re-
visitation factor), clicking updates and staying as
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much time in each visit as parameterized. Then,
the robot resets itself and simulates another user
session. It gathers all the generated and received
DNS traffic as a PCAP [19] trace and outputs tex-
tual records of each intentionally visited website.
The number of websites a user visits in a session,
clicks, and the duration of each visit are exponen-
tially distributed. In the generated dataset, the
robot was specifically parameterized with averages
of 15 visits per session with revisitation factor of
0.5 [20], 5 clicks per website and durations of 120
seconds [21] per visualized web. For the sake of
completeness and comparison, the robot’s sources
are publicly available at [22].

To construct the dataset the closest possible to
a real user freely browsing the Internet, we have
chosen the list of websites as the union of sets of
potential clients of DNSPRINTS system, and the
most popular websites both internationally and na-
tionwide. In more detail, according to Alexa rank-
ings [23], the list comprises:

1. Top 10/20 nationwide in the following cate-
gories, as candidates to clients for DNSPRINTS

system: radio stations, television channels,
newspapers, magazines, mobile providers, re-
tail establishment/supermarkets, universities,
banks, car manufactures and airlines. We be-
lieve these sorts of companies are likely to ben-
efit from browsing analytics. Besides, the for-
mer set is nationwide as we believe the study is
especially relevant at this level. For example,
comparing users’ dynamics of Ford UK and
Toyota UK websites makes more sense than
comparing one of them with a website of a car
manufacturer in Japan.

2. Websites to add diversity to user browsing:

(a) The top 50 visited websites worldwide.

(b) Other websites to complete the nation-
wide top 250.

In summary, the set of websites to monitor,
previously named as D, are those comprising the
first subset. The other websites cover the typical
user behavior and, eventually, help when measuring
DNSPRINTS noise tolerance. In this latter regard,
note that some of the considered worldwide popular
websites can be unpopular at a specific nationwide
scope (e.g., some Chinese or Russian websites can

be popular in aggregate terms in the world but be
marginally visited in Spain).

The robot was executed during two months using
different combinations of operating systems (Win-
dows 10 and Ubuntu 16.04), web browsers (Mozilla
Firefox and Google Chrome) and desktop/mobile
environments (standard PC and Nexus 5). This
way, we constructed a set of ground truth records
G = {Gi = (ui, di, t0i, t1i, o, b, e)}, i = 1, 2, . . .MG,
which is made up byMG tuples (number of websites
actually visited along the experiment) that con-
tain the user identifier (ui) (in this case, “robot”),
website visited (di), initial time (t0i) and finishing
time (t1i) registering the operating system (o), web
browser (b) and environment (e) used. In addition
to this, a different PCAP, Pobe trace, is gathered
for each combination.

3.2 Impact of factors on footprints

Let us first elaborate on the resulting weighted foot-
prints after applying DNSPRINTS methodology on
the ground truth dataset. Our first concern is if
footprints are different, and to what extent, be-
tween different environments and over time, or,
conversely, if we can ignore this and construct a
homogeneous set of footprints which, intuitively, is
simpler.

To quantify how a given factor impacts on foot-
prints’ construction, we entrust the task of sum-
marizing the differences between two footprints to
Jaccard distance [24]. Formally, Jaccard distance
measures dissimilarity between finite sample sets as
the complementary of the size of the intersection di-
vided by the size of the union of the sample sets:

Jaccard(S1, S2) = 1− (S1 ∩ S2)

(S1 ∪ S2)

where S1 and S2 are two sets.
We translate this definition to our context [25],

where the members of each set are the domains that
make up each footprint and where such members
belong to the set, not binarily, but proportional to
their weights (in the range [0, 1]):

Jaccard(F1, F2) = 1−
∑
x∈F1∩F2

min(wx1 , w
x
2 )∑

x∈F1∪F2
max(wx1 , w

x
2 )

where two footprints are considered, F1 and F2,
and wxi represent the weight of the domain x in the
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footprint i (i = 1, 2), regardless the order in which
x appears in such footprint.

This provides a distance bounded in the [0, 1] in-
terval for each pair of footprints and allow us to
ascertain if given two footprints the set of domains
of each one are similar or not to the other. In-
tuitively, the distance gives a hint of how domain
weights differ. As an example, a distance of 0.1
implies that the weights of the domains only dif-
fer 10% in average, conversely 0.9 means that such
weights differ 90% in average.

Next, let us calculate the distance between foot-
print outputs per each factor under study.

3.2.1 Factor time

Websites update their contents periodically so it is
expected that their corresponding DNS footprints
suffer changes. This would suggest short sampling
periods to capture the variability, but at same time,
such short sampling period would make footprints
lack generality.

To measure such periods, we construct different
sets of footprints varying the sampling period to
one day, one week and one month, holding constant
other factors. For example, we construct footprints
considering the traffic of one day, and then another
set of footprints for the traffic of the following day,
and so on for all days in the dataset. Finally, we
compare such sets.

The distribution of the distances for the set of
footprints under study after comparing pairs of con-
secutive days, pairs of consecutive weeks and the
two months we measured are depicted in Figure 7
as histograms. The results show that variations in
the intervals of day and week are limited whereas
the opposite holds for one month intervals. Specif-
ically, in the cases of one day and week periods
more than 85% and 75% of the footprints depict
a distance below 25%, respectively, while the same
distance is only achieved by less than 50% of the
footprints from one month to the following.

This reflects that footprints constructed in one
month may differ significantly from the follow-
ing month, so the footprint constructions process
should be repeated with higher frequency. On the
other hand, we find no significant differences be-
tween those constructed in one week and the follow-
ing, and importantly, such differences are similar to
the differences showed when compared footprints

daily. These results point to construct footprints
on week-interval aggregates as a good trade-off be-
tween variability and generality.

3.2.2 Factors operating system, browser
and Mobile/Desktop

Figure 8(a) shows that the variation of the footprint
considering different operating system is marginal,
whereas the difference between browsers is notice-
able (Figure 8(b)). That is, while in the former only
20% of the domains weights vary more than 10%,
this amount increases to almost 50% in the latter.
Although the variation is limited, note that only
20% of the footprints show difference over 50%.
This suggests that the operating system is not a
significant factor while the browser is a moderate
one.

Finally, Figure 8(c) shows the comparison be-
tween footprints constructed by the robot in either
a desktop PC or a mobile phone. The significant
differences between footprints become apparent in
all the histogram. For example, only 15% of the
footprints can be considered equal, less than a half
similar (≤25% variation in weights) and 10% of the
footprints only appears in one of the sets (i.e., dis-
tance equal to 1). Consequently, we consider that
mobile and desktop factor is significant.

3.2.3 Design implications

As a conclusion, in order to construct footprints,
we recommend not to consider the factor operating
system beyond this point. Due to the moderate im-
pact of the factor browser, we will apply a soft in-
tersection between footprints of different browsers,
using β parameter (Section 2.5).

Finally, desktop and mobile environments have
proven to be so different that we consider construct-
ing one different footprint per website and environ-
ment.

Anyway, the following section that describes
DNSPRINTS in terms of architecture will show how
these decisions can be made by network managers
according to their experience, although we believe
that the above experimental results can guide them
in this process.
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Figure 7: Distribution of Jaccard distance among footprints constructed daily, weekly or monthly
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Figure 8: Distribution of Jaccard distance for footprints constructed in different operating systems,
browsers and mobile/desktop, respectively
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3.3 Accuracy evaluation

Now, we compare the ground truth (i.e., robot
records) and the classification that DNSPRINTS

makes once footprints are constructed according to
the above design principles. To sum up, an aggre-
gated duration of one week, β parameter will span
the diversity that browsers account, and we will
have two footprint versions, mobile and desktop,
for websites.

3.3.1 How to evaluate

We applied DNSPRINTS over the full set of cap-
tured traffic (i.e., traces Pobe) for all different val-
ues of α and β in range [0-1] at 0.01 steps. Then,
we constructed a set of estimated visits Hα,β anal-
ogous to the previous ground truth set (G) per
combination of α and β, i.e., Hα,β = {Hi =
(ui, di, t0i, t1i)}, i = 1, 2, . . .MH , with MH being
the number of estimated visits.

For each of these sets, the ground truth and the
estimations depending on α and β, we constructed
time series per user session and website. Such time
series are vectors in which each position of the vec-
tor states if the website was visited or not by the
user. Moreover, we inspect the width of each vec-
tor cell, i.e. how much time it represents. Note
that small scales (or steps), such as 1 second, al-
low us to evaluate the accuracy for future analysis
that require low-scale precision (e.g., the impact of
a TV advertisement). Other larger scale, for ex-
ample one day, may also provide interesting results
(e.g., popularity of a website as unique daily users)
but information about how many and how long the
visits lasted is lost. Specifically, we have considered
steps of 1 second, 5 minutes, 1 hour, 6 hours and 1
day.

In more detail, given a user session and a web-
site, we construct a vector where each position will
be marked (otherwise, remains unmarked) if such
website was being visited in the time interval the
position represents according to the initial time and
final time that G and Hα,β states. Let us define
vectors

#»

G
step

u,i and
#»

H
α,β,step

s,i , with u identifying each
user session, i the website, and step the particular
scale.

Figure 9 illustrates how both vectors are con-
structed. Specifically, at the top the figure the ac-
tual duration of some visits to website example.com

are shown, in the example two visits occurred

marked by arrows. Then,
#»

G
step

U1,example.com is con-
structed for steps equal to 1 day and 1 hour for illus-
trative purposes. Essentially, the cells that totally
or partially overlap to actual visits are marked. In
the middle of the figure, the process is analogous
but for the estimations. Again, the durations (in
this case estimated by DNSPRINTS) are used to
construct visit vectors.

Then, to evaluate the accuracy, we calculated the
True Positive Rate (TPR) or sensitivity/recall for
a website and session as TPR = TP/(TP + FN),
where TP is the number of true positives and FN
the number of false negatives. In other words, the

ratio between the number of cells that
#»

G
step

u,i and
#»

H
α,β,step

u,i have both marked and the total number

of cells marked in
#»

G
step

u,i .

At the bottom of Figure 9, these values are vi-
sually shown for both day and hour scales, for the
visits to example.com. As an example, we will have
a TPR for the estimation of 7/10 in the case of 1-
hour scale, and 1 for 1-day scale.

Similarly, the False Positive Rate (FPR), or 1-
specificity, is defined as FP/(FP + TN), or in-
tuitively as the ratio between the number of cells

that are marked in
#»

H
α,β,step

s,u but are not marked in
#»

G
step

s,u , and the total cells not marked in
#»

G
α,β,step

s,u .
Turning to the example of Figure 9, FPR is 3/14
and 1 for 1-hour and 1-day scale, respectively.

Using these rates, we build a ROC curve for each
combination of the parameters α and β to illustrate
the accuracy of the method.

3.3.2 Parameters α and β

Let us first pay attention only to the impact of β
in the accuracy, and focus in the 5-minute scale.
Figure 10 shows as a ROC curve where each point
represents the TPR and FPR for a pair of α and β
values (zoomed on FPRs below 0.2 and TPRs over
0.8). Specifically, we show β for 0.1, 0.3, 0.5, 0.7,
0.9 and 0.95, as the legend indicates, while α ranges
between 0.01 and 1 at 0.01 steps. The results indi-
cate that high values of β provide the closest points
to the top left corner, while values of 0.5 and lower
provide worse results. However, we note that the
difference between values is limited. For high β
values (namely, between 0.7 and 0.95) the differ-
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ence is marginal, and only show some significance
compared to the lowest β values (0.1 or 0.3). As
a conclusion, the sensitivity to β is low, roughly
≤ 5%, but it becomes apparent that by using high
values the accuracy peaks. Let us assume in what
follows a β of 0.9 which provides a TPR of 0.93 and
FPR of 0.07 for a certain value of α, which receives
now our attention.

Figure 11 displays the accuracy for the range of
α values, by means of a color scale, separated by
desktop and mobile environments. Three observa-
tions arise: First, we note that the ideal value (top
left corner) for alpha depends on the environment
considered. The value of α to choose in the case of
desktop visits is around 0.75 while it is around 0.5
in the case of mobile visits. As α works as a thresh-
old to define the fraction of a footprint detected to
mark a visit, this shows that DNSPRINTS have to
be less demanding for mobile footprints.

Second, the accuracy is worse in the mobile
environment. We believe that the rationale be-
hind these two results are a less rich set of self-
triggered traffic in mobile websites, which precisely
DNSPRINTS methodology exploits.

Finally, we can conclude that the methodology of
DNSPRINTS achieves, for 5-minutes steps, rates of
TPR=0.95 and FPR=0.05 in desktop traffic. For
the sake of completeness, these metrics translate
into a precision of 0.92, an accuracy of 0.94 and,
finally, a F-score of 0.94. Regarding mobile traf-
fic, rates of TPR≥0.9 and FPR≤0.1 are achieved,
while the rest of the metrics take on values of 0.88,
0.92 and 0.9, for the precision, accuracy and F-score
respectively.

3.3.3 Accuracy

We show the accuracy of DNSPRINTS methodol-
ogy for different steps assuming parameters β set
to 0.9 and α equal to 0.75 and 0.5 for desktop and
mobile footprints, respectively. Alternatively, for
comparison purposes, we have considered a simpler
mechanism to assess that a visit occurs. Let us refer
to it as Direct method which consists of consider-
ing that a website was visited if the request for its
root-domain is found in the DNS traffic. Then, the
duration of the visit is considered to be the TTL of
the DNS response of such root-domain.

The results are depicted in Figure 12 both TPR
(a) and FPR (b) where the plain-color bars rep-
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Figure 12: FP and TP rates for desktop and mo-
bile environments for both DNSPRINTS methodol-
ogy and direct method according to different gran-
ularities
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resent DNSPRINTS results. Note that that mo-
bile/desktop environments are shown separately
when differences are significant (i.e., TPRs for di-
rect method were indistinguishable). The values
that are shown for all the cases are in the intersec-
tion of ROC curve to the top left bisector (straight
line [0,1]-[1,0]).

There are four main sources of imprecision in
both approaches:

• Overestimate visit durations

• Underestimate visit durations

• Marking visits that did not occur

• Failing to mark visits that actually occurred

True positive rates will be high in classification
methods that do not underestimate duration and
that do not fail to mark visit. Note that this can
happen to an extent that a mechanism that would
claim that each website of the list of websites to
monitor was constantly visited will present a TPR
of 1, as no visit escapes its detection. However,
this would be at the expense of overestimating visit
duration and considering visits that did not occur,
and so high FPRs.

On the other hand, false positive rates will be
low in systems that do not overestimate durations,
that do not mark as visited websites that were not,
and that do not consider unintentional visits.

In this light, with respect to DNSPRINTS and
Direct approaches, we note that:

• Direct approach will often overestimate the du-
ration of the visit as it considers that visits
last as much the root-domain TTL states, and
this is very unlikely to happen (Section 2.1 ex-
plained that root-domains TTLs tend to be
very long). Conversely, DNSPRINTS rarely
overestimates as the duration is not based on
TTL of root domain, but in the shortest ones
that make up a footprint.

• Regarding underestimation of durations, both
approaches may underestimate some time for
a website if, while a user is visiting a web-
site, the root-domain TTL finishes (Direct)
or the sum of domain weights goes below
α threshold (DNSPRINTS). However, the fre-
quency with which this occurs is different be-
tween approaches. For this to happen in Direct

method, sessions must be longer than root-
domain TTL which is again very unlikely. But
in DNSPRINTS, underestimation may not be
so uncommon. For example, a footprint with
many short TTL domains (e.g., 10 seconds)
may make the sum of weights fall below α be-
fore a user finishes visiting the website (e.g.,
1 minute). However, this TTL distribution is
not the case for the majority of the footprints
and, in any case, the imprecision is limited to
some seconds whereas the imprecision of the
overestimation of Direct method is typically in
the range of minutes or even hours.

• DNSPRINTS may mark a visit that did not oc-
cur if two or more footprints of the list of web-
sites to monitor are essentially the same. How-
ever, Direct method will suffer from all prob-
lems pointed out in the introduction: tangled
web, preload and prefetching of contents, etc.

• DNSPRINTS may fail to mark a visit if α
threshold is higher than it should be for a cer-
tain website. Direct method does not miss vis-
its as if a session goes further its TTL, a new
DNS query will be triggered and the session
duration extended.

As a conclusion, from a qualitatively standpoint,
DNSPRINTS tends to underestimate durations and
some website visits may escape, and Direct method
tends to overestimate and mark websites that were
not visited.

From Figure 12, it stands out that while quan-
titatively both methods give good TPR rates, i.e.
DNSPRINTS barely underestimates and few visits
escape, Direct approach shows very poor FPR (to
the extent that rates typically are found over 20%),
i.e. its overestimation and the number of web-
sites wrongly marked are very significant. Actu-
ally, note that DNSPRINTS results in terms of TPR
are fairly close to those from Direct. In the case
of the smallest granularities, 1 second and 5 min-
utes, DNSPRINTS achieves equivalent results and,
in other scales, the difference is only noticeable by
a few percentage points.

Moreover, note that the FPR of Direct method
is especially high for desktop version compared
to mobile. The rationale behind this is that
mobile websites have less external links and
preload/prefetching is less common. Next, Direct
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approach increases FPR as the scale increases, this
is because overestimating, in large scales, can make
that a session of only some minutes, but incorrectly
estimated in hours, extends over the entire follow-
ing day. However, DNSPRINTS tends to capture
length durations more tightly, even underestimate,
and then this effect is the opposite.

To conclude, after paying attention to specific
digits, the relevance of DNSPRINTS methodology
becomes apparent. FPRs are bounded for the worst
case of 9% and 1% in the best case, and TPR are
over 90% in all cases and up to 95% in the best
case. Regarding other metrics, precision ranges be-
tween 0.92 and 0.87, accuracy between 0.95 and
0.91 with F-scores between 0.94 and 0.9 for the best
and worst cases, respectively.

4 System architecture and
performance assessment

While we believe the previous results have high-
lighted the potential of the DNSPRINTS methodol-
ogy, let us now describe its translation into a final
system and its processing performance.

4.1 Architecture and implementa-
tion

DNSPRINTS system may be co-located with a DNS
server itself, or in a traffic probe that captures
the traffic by means of a Switched Port Analyzer
(SPAN), splitter, or traffic collector [26]. In ad-
dition, the system has as inputs a list or lists of
websites to monitor, a list of other websites to add
diversity in the training phase and, optionally, a
list of user identifiers to monitor, typically IP ad-
dresses (or further details), otherwise all IP ad-
dresses would be considered as users to study.

DNSPRINTS architecture is divided into three
main modules as Figure 13 shows, let us detail
them.

4.1.1 Robot and footprint construction
module

This module is an extension to the previously intro-
duced robot (Section 3.1) that has been enhanced
to automatically visit websites in different operat-

ing systems, browsers and environments thanks to
virtualization.

In this way, a diverse set of virtual machines gen-
erate visits to the sets of websites to monitor and
diversity websites, recording each intentioned visit
as well as its duration. With these ground truth
records and the DNS traffic the module estimates
on-line the ideal values for α (desktop and mobile)
and β parameters (as stated before, intersection
of bisector and ROC curve). With these param-
eters, the weighted footprints are constructed as
explained in Section 2.2, the sources are available
upon request at [27]. Finally, such set of footprints
in addition to α parameters will be used by the
web-profile monitor module to detect visits.

4.1.2 Online web-profile monitoring mod-
ule

This module is in charge of applying the weighted
footprint to the traffic, and preparing the output
for the analysis module. The outputs are records
(formally, H in Section 3.3) that state start and end
times for each estimated visit per user and website,
and, optionally per other characteristics. This way,
the subsequent analysis can be performed, initially,
per user and per website or both, and, if additional
information is provided (e.g., clients’ location or
contract with the company) in more detailed ag-
gregates. Let us detail its implementation.

DNSPRINTS needs to emulate the DNS cache of
each user but note that only those domains in-
cluded in the set of footprints. To do so, the system
uses four data structures:

• CA: Per user, a structure set to track the
domains (all those included in the footprints)
considered cached at a given time.

• Suseri (currently): Per user and per website in
the monitor list, the current value of the sum
of the weights of the domains cached included
in the footprint of the website.

• PQ: A unique heap-based priority queue (pri-
ority according to timestamps) that tracks
when the domains considered cached per user
at a given time must be expired.

• HT : A structure to contain the DNS foot-
prints illustrated as a matrix in Figure 4 but
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Figure 13: DNSPRINTS system’s architecture

implemented as a hash table. Such hash table
is indexed by domain and allows extracting the
footprints (columns of Figure 4) where the do-
main was included and its relevance, i.e., the
weight in the footprint (a cell in Figure 4).

Then, the program flow is:

• Every time a domain response for a user, user,
is observed, dji , such domain is searched in the
set of cached domains (CA):

– If it is not found:

∗ For each those footprints including
dji (through HT ), Suseri (currently)

is increased by wji (which is the cor-
responding weight associated to such
domain name, and again, available at
HT ), and dji is added to the user’s
list of cached domains (CA). If, then,
Si currently surpasses α threshold a
visit for that website is recorded.

∗ An event is added to the priority
queue, PQ, which will subtract the
domain’s weight from Suseri when
time T (TTL of the domain’s re-
sponse) passes.

– If it is found, the priority queue is up-
dated. Actually, such update consists of

adding an event to cancel the old expira-
tion time, and another stating the new
one. Nevertheless, it is worth remark-
ing that the fact of receiving a response
of a cached domain implies that a unex-
pected issue is occurring as cached do-
mains do not need to be resolved. How-
ever, this characteristic is implemented
because there are browsers that may vi-
olate the times indicated by DNS servers
at their own discretion (e.g., TOR [28]).

• Synchronously, PQ launches events which re-
move domains from user cache (CA) accord-
ing to its expiration time. When this happens,
if Si drops below α, the visit that previously
was counted is now done and a record with
the information is exported (e.g., H or G sets
records).

These ideas have been translated into Pseu-
docode 1.

4.1.3 Analysis module

Finally, the monitor feeds the analysis module that
prepares data to be accessed by clients. Currently,
this module estimates visits per user, visits per
websites and per category (e.g., car manufacturers)
over time and grouped by geographical areas show-
ing this information visually, as tables and maps.
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Pseudocode 1 DNSPRINTS main program flow

HASH TABLE HT = empty
Initialize HT = Load Footprints-Weights
PRIORITY QUEUE PQ = empty
SET CA (per user) = empty
VARIABLE S (per user and footprint) = 0
for all DNS response (user,dji , T ) do

for all Footprint (di,w
j
i ) including dji at HT

do
wji = get weight in HT(dji )

if (user, dji ) is not in CA then

Add (user, dji ) to CA

Add (user, wji ) to S
if S > α then

Record-visit (currentTime, user, di)
end if
Insert (currentTime + T, user, EVENT
substract and check finished visits (user,
dji , w

j
i )) in PQ

else
Insert (currentTime + remaining TTL,
user, EVENT add (user, dji , w

j
i )) in PQ

Insert (currentTime + T, user, EVENT
substract and check finished visits (user,
dji , w

j
i )) in PQ

end if
end for

end for

This module also provides market-oriented con-
clusions. It is prepared to compare profiles be-
tween clients and other competitor companies, as
well as remarking those areas where clients are los-
ing/gaining relevance. Also, it permits to relate
the impact of an advertising campaign as Internet
relevance or the popularity of mobile phone apps.

Finally, this module may exploit monitor outputs
as clients require to and can be easily enhanced if
companies may provide DNSPRINTS with informa-
tion about users. As an example, given a phone
operator, DNSPRINTS could focus on users that
are inspecting alternatives in the market and whose
contract is ending.

4.2 Performance

Once the architecture and operation of DNSPRINTS

have been considered, we turn our attention to the
evaluation of the speed and requirements of the on-
line monitoring module, as footprint generation can
be performed off-line and without demanding re-
quirements.

The evaluation is performed on a desktop PC
equipped with 16 GB of DDR3 memory and a 4
core Intel i5-3570K processor running at 3.40 GHz
on an ASUS P8H77-M LE motherboard.

4.2.1 Throughput rate

It is relevant to study DNSPRINTS performance on
different scenarios, as the throughput rate can vary
depending on the popularity of monitored websites.
Whenever a DNS packet is received, DNSPRINTS

needs to perform two independent tasks: decode
the DNS response packet and, should the decoded
domains correspond to any DNS footprint, apply
DNSPRINTS method to that packet. Therefore, for
each packet a time Tdec is required to parse the
DNS packet and, in some packets, a time Talg is also
required to apply the method. Consequently, the
more traffic corresponds to monitored websites and
the domains in its footprints, the lower throughput
rate will be obtained.

To evaluate this phenomenon, DNSPRINTS has
been executed over different proportions of traffic
of websites to monitor. Using the browsing robot
introduced in previous sections, the proportion of
traffic that corresponds to websites to monitor over
the total resolved domains has been progressively

18



modified to span all the range [0-100%]. This al-
lows calculating the throughput rate as a function
of the proportion of monitored websites, as shown
in Figure 14. It can be observed that throughput
rate depends linearly on this proportion ranging
between some 800,000 and 1 million DNS packets
per second. Interestingly, 1 million queries per sec-
ond is the workload of Cloudflare, one of the largest
authoritative DNS providers in the world [29].

With a similar illustrative purpose, the
DNSPRINTS’s analysis has been executed over
a DNS trace from a National Operator containing
more than 3.6 million DNS packets from 20,000
different users. In this case, we propose to touch up
operation by ruling out some of the most popular
domains worldwide. We refer to domains such
as Google, Apple, Facebook and Microsoft, for
example. Intuitively, these companies are not the
most likely clients of a ISP using DNSPRINTS as,
actually, they have already their own mechanisms
to create users analytics and exploit them.

Note that this approach has a negligible impact
on the analysis’ accuracy since the most popular
domains have a very low weight in footprints be-
cause of inversely proportional weighting, but rep-
resents a significant cut in the number of DNS pack-
ets that DNSPRINTS has to handle.

Table 1 shows the percentage of queries to the
set of ruled out domains found in the operator’s
trace. According to these figures, by filtering the
60% of DNS traffic corresponding to such top do-
mains, DNSPRINTS is able to handle more than 1.4
million DNS packets per second. To put all this
figure into perspective, and assuming that DNS
traffic may represent between 1% and 5% of the
traffic share [30], this result states the capacity of
DNSPRINTS in the range of links of several dozens
of Gb/s.

4.2.2 Memory requirements

DNSPRINTS’ memory consumption depends on
three variables, namely: the number of websites
being monitored, the number of domain names in
the footprints of such websites and the number of
users.

The operator trace has several thousand users,
hence DNSPRINTS’ needs in terms of memory con-
sumption are well below the capacity of our stan-
dard desktop PC (16 GB). To provide further nu-
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Figure 14: DNSPRINTS performance as a function
of the proportion of traffic that corresponds to the
list of websites to monitor.

Domains related to % of queries

Google 20%
Apple 18%

Facebook 8%
Whatsapp 8%
Microsoft 6%

Total 60%

Table 1: Distribution of domain groups in the
operator trace
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meric examples on more demanding scenarios, let
us extract from the dataset of Section 3.1 some em-
pirical figures, and then extrapolate. As it turns
out, a list of 300 websites to monitor would give in
mean, according to the dataset, roughly 4500 differ-
ent domains in the resulting set of footprints with
an average domain name length of 20 bytes. Be-
sides, the peak over time of the number of cached
domains per user (of the domains included in foot-
prints) would be 300 in the worst case.

Assume as well that at busy hours 50% of users
are connected (again, as a worst case [31]) and a
network with a million users. Then the memory
for the footprints table is the addition of the cache
table 300 · 4500 · 20 =27 MB (20 bytes as aver-
aged footprint size), the priority queue would be
500, 000 · 300 · 40 =6 GB (40 bytes per entry) and
the Si weight counters 100, 0000 ·300 ·8 =2.4 GB (8
bytes as a floating point number), totaling approx-
imately 8.5 GB. This is a number that a typical
desktop PC can handle.

Even in a challenging scenario such as an ISP’s
DNS server serving to 50 million users and 300
websites to monitor, memory requirement remains
well below 1 TB, available as of today in high-end
servers. And all this, in a single machine without
resorting to parallelism (i.e., sharing the burden,
for example, per sets of IP addresses) among sev-
eral machines.

5 Related Work

The typical mechanisms for measuring the relative
popularity of websites are based on intrusive soft-
ware and tracker addons installed on clients’ web
browsers such as toolbars. Between these propos-
als, Alexa [5] stands out although the number of
users is also remarkable in ComScore [32] and Ne-
tRatings [33]. Unfortunately, the information this
approach provides is much aggregated and, impor-
tantly, is only based on volunteers’ traffic, which
does not guarantee a representative population. Al-
ternatively, Google with its AdWords service [3]
analyses the searches users carry out on its interface
and exploits this information commercially. This
approach is limited by the fact that users tend to
search for website only the first times they visit it.
After that, tools such as recent-history suggestions
or bookmarks are used for subsequent accesses to

those websites. In addition, our focus is on the op-
portunities that ISPs have in this area, instead of
the ones from search-engine companies’ as they are
in fact monetizing their queries since years ago.

The natural approach from ISPs is to sniff HTTP
traffic [34, 30] and interpret it. However, this ap-
proach comes together with limitations such as the
proliferation of traffic encryption and the difficulty
of storing, capturing and analyzing traces (espe-
cially for HTTP traffic, given its relevance in vol-
ume in the current Internet).

The answer from the research community was
to turn to DNS protocol. The analysis of both
DNS traffic and resolvers has been a research topic
for long, whereby its performance, security, au-
thenticity and behavior have been extensively stud-
ied [35, 36].

There are several tools for displaying and analyz-
ing DNS traffic such as TreeTop [8] or dnstop [37].
However, none of these tools provide an accurate
method for relating web traffic and user behav-
ior. The same applies to the Cisco Umbrella Net-
work [38]. Cisco makes use of DNS traffic to gener-
ate a one-million-domain popularity list similar to
the one provided by Alexa. The information is ob-
tained from its pool of DNS servers (OpenDNS net-
work) but, unfortunately, apart from the worldwide
popularity list itself and available reports, Cisco
does not provide details of its processing algorithm
nor specific software. Thus, limiting its usefulness
for other members of the Internet community with
access to DNS traffic.

In this regard, we remark several efforts to
link ephemeral IP addresses and users on traffic
captures apart from resorting to ISPs’ RADIUS
records. Specifically, Herrmann et al. [39] devel-
oped several DNS traffic analysis techniques for
tracking users based on their daily behavior. In
particular, using the previous day traffic records,
it was possible to re-identify the users the day af-
ter by recognizing their browsing habits on a daily-
changing dynamic IP addressing environment. We
note that the problem we face is almost the op-
posite. Instead that the users’ habits permit us to
track them, we pursue to identify the web browsing
user behavior.

Rajab et al. [40] related the probability of a host
name to be in a DNS server’s cache to the way
users’ access to websites. The result is an estima-
tion of the density of users accessing to certain do-
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mains. As positive points, this method does not
need access to the DNS traffic (but periodically
polling DNS servers, although many servers are not
vulnerable to such cache snooping) and users pri-
vacy is respected. However, the temporal scale, im-
possibility of relating popularity and types of users,
and precision of the information that this mecha-
nism provides is not enough for most of the com-
mercial analysis we introduced before.

Interestingly, Krishnan and Monrose [41] showed
that it was possible to estimate the keywords some
users introduce at search engines by analyzing their
DNS traffic. The authors observed that in the pres-
ence of full prefetching mechanisms, when users re-
ceive a list of websites related to the introduced
keywords, some of such websites’ addresses are pre-
resolved. Those words that appear more frequently
as part of resolved domain names can be consid-
ered as search terms’ candidates. They compared
50 search queries and predictions over a day with
results ranged between TPR of 85% and 73%, and
FPR of 3% and 15%. In any case, we note that this
approach is complementary to ours, while they fo-
cus on users’ search terms, similarly to how search
engines work with the limitations previously re-
marked, we analyze actual visits to websites.

As a further step, the research community turned
its attention to tag flow records according to
the DNS answers triggered by such flows. This
approach, followed by Plonka et al. [8, 9] and
Bermudez et al. [10], outputs a set of flows whose
destination addresses are labeled by the host name
servers derived from the DNS. This approach was
further improved by Mori et al. [42] who paid spe-
cial attention to the local cache problem when a
DNS query is triggered by a final client. Essen-
tially, much DNS traffic was missing due to such
local caches which impeded flows from being la-
beled. They introduced a domain name graph rep-
resentation whereby the relationship between ad-
dresses and real host names was stored and shared
between different queries over time. Hence, previ-
ous resolved queries were used as a replacement for
other queries missing. With respect to such pre-
vious works, DNSPRINTS only needs access to the
DNS traffic instead of HTTP/HTTPS which signif-
icantly simplifies and cheapens the regular opera-
tion, especially on large and distributed networks.

Moreover, as a key distinguishing feature,
DNSPRINTS exploits self-triggered traffic in two

ways. First, it is used to ensure that a website
was intentionally visited and second, to mitigate
cache impact. Note that unintentional visits do
not generate the set of resolved domains that web-
sites’ footprints require, and that, although caches
may prevent the query of root domain from being
performed, some of the rest of domains in the foot-
prints (likely, with lower TTLs) will be effectively
resolved.

We remark that these characteristics are key for
constructing accuracy and marketable web-profiles,
otherwise such profiles would lead to erroneous con-
clusions, e.g., a user is interested in some service in
a certain extent when it is not true.

6 Conclusion and future work

We have presented a method for identifying ac-
cesses to websites using DNS footprinting of inter-
est for web analytics. The method exploits the fact
that current websites contain a set of contents such
as ads, banners, other services of the owner of the
website and social networks, as well as that some
contents are prefetched and preloaded by browsers
although not intentionally requested. Such con-
tents must be downloaded in order to fully load
the website that the user introduced in the address
bar, in other words they are self-triggered.

Our proposal takes advantage of such entangle-
ment on websites to create a DNS footprint that
allows identifying an access to a website not by
analyzing only the DNS response for such web-
site but also considering a fraction of the generated
DNS responses resulting from visiting such website.
This way, both cache problems and misidentifica-
tion of self-triggered visits as intentional ones are
avoided. Additionally, as our method only inspects
DNS traffic we can surpass the HTTPS monitoring
restriction providing user web-profiling even when
encryption is present.

The proposed DNSPRINTS method has been eval-
uated in terms of accuracy with satisfactory results,
i.e., obtaining false positive rates between 2 and 9%
and true positive rates in between 90% and 95%
in diverse scenarios. Then, the method has been
implemented in a namesake system whose perfor-
mance ranges between some 800,000 and 1.4 mil-
lion packets per second, which translates into multi-
Gb/s rates, in a single desktop PC.
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To conclude, as future work we plan to measure
the impact of ads or social media blockers such as
Adblock or Ghostery browser addons may have in
the generation of footprints. Although such re-
sources tend to have low TTLs and, given that
they are very common in the set of websites un-
der study, their relevance in footprints should be
low. In addition, DNSPRINTS has been tested with
some ISP’s traces from a DNS machine serving
some 20,000 users, however its theoretical bound,
even in a unique machine, is over a million users,
we plan to contrast such figures with other larger
ISP traces.
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