
Commodity Packet Capture Engines: tutorial, cookbook

and applicability

Victor Moreno, Javier Ramos, José Luis Garćıa-Dorado, Pedro M. Santiago del
Ŕıo, Francisco J. Gomez-Arribas, Javier Aracil

NOTE: This is a version of an unedited manuscript that was accepted for
publication. Please, cite as:
Victor Moreno, Javier Ramos, José Luis Garćıa-Dorado,
Pedro M. Santiago del Rı́o, Francisco J. Gomez-Arribas, Javier
Aracil. Commodity Packet Capture Engines: tutorial, cookbook
and applicability. IEEE Communications Surveys and Tutorials,
Vol. 17, No. 3, pp. 1364-1390, thirdquarter 2015.
The final publication is available at:
http://dx.doi.org/10.1109/COMST.2015.2424887

Abstract

Users’ demands have dramatically increased due to widespread availability of broadband
access and new Internet avenues for accessing, sharing and working with information. In
response, operators have upgraded their infrastructures to survive in a market as mature
as the current Internet. This has meant that most network processing tasks (e.g., routing,
anomaly detection, monitoring) must deal with challenging rates, challenges traditionally
accomplished by specialized hardware —e.g., FPGA. However, such approaches lack either
flexibility or extensibility —or both. As an alternative, the research community has pro-
posed the utilization of commodity hardware providing flexible and extensible cost-aware
solutions, thus entailing lower operational and capital expenditure investments. In this
scenario, we explain how the arrival of commodity packet engines has revolutionized the
development of traffic processing tasks. Thanks to the optimization of both NIC drivers
and standard network stacks and by exploiting concepts such as parallelism and memory
affinity, impressive packet capture rates can be achieved in hardware valued at a few thou-
sand dollars. This tutorial explains the foundation of this new paradigm, i.e., the knowledge
required to capture packets at multi-Gb/s rates on commodity hardware. Furthermore,
we thoroughly explain and empirically compare current proposals, and importantly explain
how apply such proposals with a number of code examples. Finally, we review successful
use cases of applications developed over these novel engines.

Keywords: Commodity hardware; packet capture engine; high-performance networking;
network traffic monitoring.

∗Authors are with High Performance Computing and Networking research group, Universidad Autónoma
de Madrid, Spain. Email: {victor.moreno, javier.ramos, jl.garcia, ivan.gonzalez, francisco.gomez,
javier.aracil}@uam.es

2

1 Introduction

Users’ demands and the capacity of both backbone and access links have played a daily game of
cat and mouse almost since the Internet was born. On the one hand, the widespread availability of
the Internet is a fact. Moreover, users tend to use the Net more intensively as new applications
gain significant popularity in a matter of weeks [1]. In line with such an increased demand,
users’ quality of service expectations have also strengthened turning the Internet into a truly
competitive and mature market.

On the other hand, the operators’ answer has been higher investments in terms of both capital
and operational expenditures (CAPEX and OPEX). That is, backbone links witness continuous
upgrades, and probes have been deployed across operators’ infrastructures to allow them to
perform measurement activities and careful monitoring, which helps satisfy quality demands
from users but also entails costly management.

Needless to say, it is not only operators who face the challenge of handling and monitoring
high-speed networks, but also other entities such as banking institutions, content providers, and
network application developers [2]. In these cases, the task may not only be to deliver bytes
but also to dig into applications’ behavior, achieve the best performance, or inspect what traffic
looks like. As an example, in a bank network where security is a key element, network managers
must collect and study huge sets of data often with aggregated rates of several Gb/s to identify
anomalous behavior and patterns. Indeed, things may be even worse as malicious traffic often
shows bursty profiles [3].

In short, the increment of the user’s demands and subsequent link capacities have forced the
different players in the Internet arena to deal with multi-Gb/s rates. To put this into perspective,
we note that, for instance, packet-traffic monitoring at rates ranging from 100 Mb/s to 1 Gb/s
was considered very challenging only a few years ago [4–6], whereas contemporary commercial
routers typically feature 10 Gb/s interfaces, reaching aggregated rates as high as 100 Tb/s [7].

As a consequence, network operators have entrusted specialized hardware (HW) devices such
as FPGA-based solutions [8, 9], TCAMs [10, 11], or high-end commercial solutions with their
network tasks [12]. These solutions respond to high performance needs for a very specific task,
e.g., lossless packet handling in a multi-Gb/s link while routing or classifying traffic [13].

However, the initial investment is high and such specialization, as with any custom-made
development, lacks both extensibility and flexibility, which in turn also have an indirect cost
impact. As an example, in the case of large-scale networks featuring numerous Points of Presence
(PoP), extensibility and ease of update are key. Equivalently, in the case of a smaller network, it
is desirable to have hardware flexible enough to carry out different tasks as specifications change.
Additionally, in any scenario, network managers must prevent their infrastructure from being
locked into a particular vendor. As a workaround to these limitations, some initiatives have
provided extra functionalities in network elements through supported Application Programming
Interfaces (APIs) that allow the extension of the software part of their products —e.g., OpenFlow
[14].

It has been only recently that the research community has proposed, as a real alternative,
the use of software-based solutions running on top of commodity general-purpose hardware to
carry out high-performance network tasks [15,16]. The key point is that this provides flexibility
and extensibility at a low cost. Additionally, leveraging commodity hardware to develop network
services and applications brings other advantages. All the components a commodity system is
based on are well known and popular hardware. This makes these systems both more robust,
due to extensive validation, easy to replace, and cheaper, as the development cost per unit is
lower thanks to the economies of scale of large-volume manufacturers.

Unfortunately, the use of commodity hardware in high-speed network tasks is not trivial

3

due to limitations on both hardware capacities and standard operating systems performance.
Essentially, commodity hardware is limited in terms of memory and internal bus throughputs,
while operating systems provide a general network stack that prioritizes protocol and hardware
compatibility.

To give some figures about the size of the challenge, in a fully-saturated 10 Gb/s link the
time gap between consecutive packets assuming an Ethernet link and minimum IP packet size
is lower than 68 ns, while an operating system may need more than half a microsecond to move
each packet from kernel to application layer [17]. This calls for a careful tuning of both hardware
and the operating system stack to improve the figures. Nonetheless, even using the best-tuned
hardware and operating system combination, there will be packet losses if the application layer
is not aware of the lower levels’ implementation.

The development of high-performance network services and applications over commodity
hardware typically follows a four-layer model. The first layer comprises the Network Interface
Card (NIC), that is, the hardware aimed at capturing the incoming packets. There are several
major NIC vendors but it is Intel, and especially its 10 GbE model with chipset 82599 controller,
that has received most attention from the community. This chipset provides performance at
competitive prices, and more importantly, it offers novel characteristics that turn out to be
fundamental in order to achieve multi-Gb/s rates at the application layer. The next layer includes
the driver. There are of two kinds: standard or vanilla drivers, i.e., as provided by Intel; or
user customized ones. The third layer moves packets from the kernel level to the application
layer. This includes the standard way operating systems work, i.e., by means of a socket and
network stack. In addition to this, there are different libraries that help application developers
to interact with traffic by means of a framework. Among all these libraries, PCAP is considered
the de facto standard [18]. The combination of a driver and a framework is known as a packet
capture engine and the literature gives several examples of high-quality engines using commodity
hardware [16]. These engines typically feature a new driver and performance-aware frameworks.
Finally, we have the application layer, which encompasses any service or functionality built on
top of a capture engine. As previously mentioned, examples can be found nowadays in software
routers, firewalls, traffic classification, anomaly and intrusion detection systems, and many other
monitoring applications [19].

Importantly, while the optimization of specific applications at the highest layer has already
receive significant attention. We note that there is a lack of a rigorous analysis and comparison
compendium that spans the three lower layers. For example, although the authors in [20] focus on
how to extract flow records in high-speed networks once packets are captured, they emphasize
the relevance of fully understanding the packet capture process to create and operate high-
performance reliable network applications. This tutorial aims at filling this gap.

Specifically, we present, in a tutorial-like fashion, all the knowledge required to build high-
performance network services and applications over novel capture engines running on commodity
hardware. Furthermore, we will show shortcuts to speed-up the development of such services
and applications, by explaining the hardware and software keys to implement a custom packet
capture engine, by detailing and illustrating with command prompt instructions how the capture
engines proposed in the literature work, as well as by carrying out a performance comparison
that allows users to select the capture engine best fitting their needs. In addition to this, we
present a state-of-the-art overview of current services and applications already benefiting from
this new network paradigm.

The rest of this tutorial is organized as follows. The next section explores the characteristics
of the hardware referred to as commodity hardware as well as how current operating systems’
network stacks work. Then Section 3 gives a strong background on the limitations of commodity
hardware, necessary to understand the keys to overcome them. This knowledge would suffice for

4

RX
RING

RX
RING

RX
RING

RSS
QUEUE 0

RSS
QUEUE 1

RSS
QUEUE N

Incoming Packet

Hash
module

Hash
value

LSB

Indirection
Table

queue x

Packet
dispatcher

5-tuple

Figure 1: RSS architecture

users to develop their own high-performance network drivers starting from vanilla ones. However,
there is the option of using one of the high performance packet capture engines proposed in the
literature. This is discussed in Section 4, thus enabling practitioners not interested in low-
level details but in developing applications on commodity hardware, to skip much of the effort to
master low-level interactions. Section 5 is devoted to evaluate the performance of capture engines.
First, we explain how to evaluate capture engines and then we present a fair comparison between
the engines in the literature in terms of packet losses and computational resource consumption
to allow potential users to choose the most suitable engine for their ultimate aims. After all
the theoretical knowledge has been introduced, Section 6 gives a cookbook on how to know
the system’s architecture, load a driver (customized or not), modify the driver’s characteristics,
optimize performance, essentially a practical tutorial on how to get started with packet capture
engines. After that, in Section 7, we survey applications that have leveraged packet capture
engines successfully since this novel paradigm emerged. This may awaken new ideas but the
reader can also view this as the current state-of-the-art bounds to beat. Finally Section 8
provides a list of lessons learned and some conclusions.

We believe that all this background, know-how, comparisons and practical lessons are what
practitioners and researchers need to develop high-performance network services and applications
on commodity hardware. In addition, advanced readers may find enriching unknown details,
benefit from the comparison of the different capture engines currently in the literature, which
itself is of great interest, and also find the applications other researchers are developing.

2 Commodity Hardware

The computational power required to cope with network data is always increasing. Traditionally,
when the requirements were tight an eye was turned to the use of ASIC designs, reprogrammable
FPGAs or network processors. Those solution offer great computational power at the expense
of high levels of specialization. Consequently, they only address the performance half of the
problem but they fail at solving the other half, which is the inexorably need to perform more

5

diverse, sophisticated and flexible forms of analysis.
Commodity hardware systems are computers that combine hardware with a common instruc-

tion set and architecture (memory, I/O and expansion capabilities) and open-source software.
Such computers contain industry-standard PCI slots that allow expansion and mechanical com-
patibility to provide a wide range of configurations at minimal cost. Such characteristics position
commodity hardware as a strong option in terms of economies of scale with reduced manufac-
turing costs per unit. Moreover, the widespread use of commodity NICs and multi-core CPUs
enables computers to capture and process network traffic at wire-speed reducing packet losses in
10 GbE networks [21].

Lately the number of CPU cores per processor has been increasing and nowadays quad-
core processors are likely to be found in home computers and even eight-core processors in
commodity servers. Along with this step-up, modern NICs have significantly evolved both in
terms of hardware design and capture paradigms. An example of this evolution is the technology
developed by Intel [22] and Microsoft [23] known as Receive Side Scaling (RSS). The main role
of RSS is to distribute network traffic load among the different cores of a multi-core system and
optimize cache utilization. Such a distribution overcomes the processing bottleneck produced by
single-core approaches. RSS traffic distribution among different receive queues is achieved by
using an indirection table and a hash value calculated over a configurable set of fields of received
packets. Each receive queue must be bound to a different core in order to balance the load
efficiently across the system resources.

As can be observed in Fig. 1, once the hash value has been calculated, its Least Significant
Bits (LSB) are used as index for the indirection table. Based on the values contained in the
indirection table the received data can be assigned to a specific processing core. The default
hash function used by RSS is a Toeplitz hash. This hash uses the IPv4/IPv6 source and des-
tination addresses and protocol field; TCP/UDP source and destination ports; and, optionally,
IPv6 extension headers. The resulting hash assigns traffic to queues maintaining unidirectional
flow-level coherency, that is, packets containing the same 5-tuple will be delivered to the same
processing core. Hash function can be changed to distribute the traffic in different ways. For in-
stance an approach for maintaining bidirectional flow-level (session-level) coherency is presented
in [24].

2.1 NUMA architectures

Besides new hardware improvements, the interaction between the software and the hardware is
an aspect of paramount importance in commodity hardware systems. For instance, Non-Uniform
Memory Access (NUMA) has become the de facto standard for multiprocessor architectures and
has been exploited for high-speed traffic capture and processing. Briefly, NUMA architecture
divides all available system memory into chunks and assigns each chunk to a different Symmetric
MultiProcessor (SMP). The combination of a processor and a memory chunk is known as a
NUMA node. Some topology examples of NUMA architectures are shown in Fig. 2.

In NUMA architectures each processor may access its own chunk of memory in parallel,
boosting system performance and reducing the CPU data starvation problem. Notwithstanding
that NUMA architecture increases performance in terms of both memory accesses and cache
misses [25], a careful process placement must be performed in order to avoid accessing memory
located on another NUMA node.

To get the most out of NUMA architectures the distribution of NUMA nodes must be known
in advance since it may vary depending on the hardware platform. To obtain the NUMA node
distance matrix the numactl1 command can be used. This matrix describes the distance from

1linux.die.net/man/8/numactl

6

M
e
m

o
ry

C
h

u
n

k
 1

M
e
m

o
ry

C
h

u
n

k
 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines

((a)) PCIe lines connected to one processor

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry
C

h
u

n
k

 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1
CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines PCIe Lines

((b)) PCIe lines connected to two processors

M
e
m

o
ry

C
h

u
n

k
 1

M
e
m

o
ry

C
h

u
n

k
 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines

IOHUB PCIe Lines

((c)) PCIe lines connected to one IOHUB

M
e

m
o

ry

C
h

u
n

k
 1

M
e

m
o

ry
C

h
u

n
k

 2

Processor

Interconnection
 Bus

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
1

CPU

1

CPU

2

CPU

N-1

CPU

N

Processor
2

PCIe Lines

IOHUB

PCIe Lines

IOHUB

((d)) PCIe lines connected to two IOHUB

Figure 2: NUMA architectures

each NUMA node memory chunk to the others. As expected, the lower the distance the lower
the access latency to other NUMA nodes.

Another aspect of paramount importance is the location and interconnection of devices.
Typically in commodity hardware network capture systems, NICs make use of PCI-Express
(PCIe) buses to connect to the processors. Connection may vary depending on the motherboard
used in the commodity hardware capture system. Fig. 2 shows the most common interconnection
patterns on current motherboards. In more detail, Fig. 2(a) shows an asymmetric architecture
with all PCIe lines directly connected to a processor in contrast to Fig. 2(b) showing a symmetric
scheme with PCIe lines distributed between two processors.

Figs. 2(c) and 2(d) show two topologies in which IO-hubs are used. The main difference
between them is the existence of PCIe lines connected to one or more IO-hubs. Such IO-hubs
interconnect PCIe buses as well as USB, standard PCI buses and other devices. Due to this
architecture the bus between the IO-hub and the processor is shared with the subsequent per-
formance problems. All these architectural issues must be considered when building a capture
system. For instance, if a NIC is attached to a PCIe slot assigned to a NUMA node, all cap-
turing threads should be executed on the corresponding cores of the NUMA node. If this is not
done, data transmission between processors using the Processor Interconnection Bus may occur,
degrading system performance.

For all the above reasons, modern commodity systems are highly attractive to accomplish
the demanding task of network traffic monitoring at high speeds as their performance is on
par with today’s specialized hardware, such as network processors [26–28], FPGAs [29], Endace
DAG cards [30] or commercial solutions provided by router vendors [31] while keeping down the

7

Physical link

NIC
RX

RING

Packet
arrival

DMA-able memory

DMA write
transfer

Network Stack

DMA
complete

IRQ

time

push into
buffer

User Application

pop from buffer

sock_recv()
memcpy()

Figure 3: Linux Network Stack RX scheme in kernels previous to 2.6

expense.

2.2 Current and past operating system network stacks

While network hardware has been rapidly evolving focusing on high-speed packet capture, soft-
ware has not followed the same trend. In the case of software, modern operating systems are
nowadays designed to provide compatibility rather than performance. Such operating systems
present a general-purpose network stack that provides a simple socket user-level interface for data
exchange and handles different hardware and network protocols. Nevertheless, such an interface
is not optimal in terms of high-speed traffic capture.

Particularly, Linux kernels prior to 2.6 presented an interrupt-driven approach in the network
stack. Focusing on behavior: whenever a packet arrives at the corresponding NIC, a descriptor
in a NIC’s receive (RX) queue is allocated and assigned to that packet. These queues are also
known as rings due to their circular topology. Each packet descriptor contains a pointer to
the memory region needed to perform the incoming packet transfer via Direct Memory Access
(DMA). In the case of packet transmission, DMA transfers are performed in the opposite direction
and an interrupt line is raised upon completion to allow the transmission of new packets. This
mechanism is common to all the different packet I/O commodity hardware solutions.

Fig. 3 shows the traditional Linux network stack behavior. When an incoming packet DMA
transfer from the NIC to the host’s memory (DMA-able memory region) is finished, an interrupt
is signaled. Then, the software interrupt routine copies the packet’s data into a local kernel
sk buff structure. This structure is typically called a kernel packet buffer. Once the packet has
been copied, the packet descriptor is released so the NIC can reuse it to receive new packets.
The sk buff structure with the received packet data traverses the system’s network stack until
delivered to a user application. Following this I/O scheme, an interrupt must be raised each
time a packet is received or transferred. This mechanism overcrowds the host system when the
network load is high [32].

To avoid such behavior, current network drivers implement NAPI (New API) [33] to increase

8

Physical link

NIC
RX

RING

Packet
arrival

DMA-able memory

DMA write
transfer

Network Stack

DMA
complete

IRQ

time

push into
buffer

User Application

pop from
buffer

sock_
recv()

memcpy()
napi_

schedule()

IRQ

push into
buffer

allocate new
memory

Figure 4: Linux NAPI RX scheme

performance. NAPI was included in Linux kernel 2.6 to boost packet processing in high-speed
scenarios. To speed up the packet capture, NAPI is based on two ideas:

(i) Interrupt mitigation: To reduce the overload produced by high-interrupt rate when
high-speed traffic is present, the NAPI-aware driver interrupt routine is launched when
RX/TX interrupts arrive. Unlike the traditional approach, the interrupt routine schedules
the execution of a poll() function and disables interrupts instead of copying and queuing
the packet. The poll() function checks if new packets are received, and copies and en-
queues them into the network stack when available in an interrupt-less way. The function
reschedules itself to be executed in the near future (without waiting for interruptions). If
no packets are available in this time period, packet interrupts are activated again. Note
that polling mode demands more CPU time than interrupt-driven mode when network load
is low but it becomes worthwhile as speed grows. Depending on the network load, NAPI
compliant drivers adapt themselves to increase the performance as shown in Fig. 4.

(ii) Packet throttling: Traditionally, when high-speed traffic surpassed system capacity, pack-
ets were dropped at kernel-level rendering the previous communication and copying between
drivers and kernel useless. NAPI compliant drivers drop traffic at network adapter level
using flow control mechanisms thus preventing unnecessary work.

In what follows, the GNU Linux operating system and NAPI mechanism will be used to
illustrate performance problems and limitations, as well as to explain proposed solutions. This
choice has been made as Linux is a widely used open-source operating system that allows full code
modification for instrumentation and performance analysis purposes. Although the vast majority
of the proposals in the literature have been developed for different flavors of the GNU Linux
distribution, some of them are also available for other operating systems such as FreeBSD [34].
We assume users to have a working knowledge of Linux-based operating systems otherwise the
reader is referred to [35,36] to obtain the background required to make the most of this tutorial.

9

Kernel SpaceKernel Space

NIC (HW)

RX
RING

RX
RING

N RSS
queues

Driver

DMA-able
memory
regions

Kernel
packet
buffers

User Space

copy

1 packet

copy

1 packet

copy

1 packet

OS

D
M

A
 t
ra

n
s
fe

r

Figure 5: Legacy Linux Network Stack (serialized paths)

3 Packet capturing

3.1 Limitations: wasting the potential performance

Although the way operating systems’ network stacks work has evolved, their robustness and flex-
ibility remain a burden in terms of packet processing rates. The NAPI technique by itself is not
enough to overcome the challenging task of very high-speed traffic capturing since other inher-
ent architectural problems degrade performance. After extensive code analysis and performance
tests, several problems have been identified [21,34, 37, 38]:

(i) Per-packet allocation and deallocation of resources: Whenever a new packet ar-
rives at a NIC, an sk buff data structure is allocated by the kernel to store the packet’s
information. Once the packet has been delivered to user-level, its descriptor is released.
This resource allocation and deallocation process generates a significant overhead, espe-
cially when receiving at high packet rates —as high as 14.88 million packets per second
(Mp/s) in 10 GbE. Additionally, this sk buff data structure is large because it may com-
prise information from many protocols on multiple layers, but most of this information is
not necessary for numerous networking tasks. Modern drivers tend to group this structure
allocation requests as a workaround in order to reduce the impact on performance of this
process. As shown in [37], sk buff conversion and allocation consume nearly 1200 CPU
cycles per packet, while buffer release needs 1100 cycles. Indeed, sk buff-related opera-
tions consume 63% of the CPU usage in the reception process of a single 64-byte sized
packet [21].

(ii) Serialized access to traffic: Modern NICs include multiple hardware (HW) RSS queues
which are used to distribute the incoming traffic using a hardware-based hash function
applied to the packet’s 5-tuple (Section 2). By exploiting this feature the capture process

10

can be parallelized, since different NAPI threads could be bound to different CPU cores
so each thread gathers the packets from a specific RSS queue. However, once packets are
fetched, the GNU Linux network stack merges all packets at a single point on network and
transport layers for analysis. Fig. 5 shows the architecture of the standard GNU Linux
network stack. As a result, two problems arise from the use of this philosophy: first, all
traffic is merged in a single point, which creates a processing bottleneck thus limiting overall
throughput; second, user processes are capable of receiving the traffic from a certain RSS
queue. Consequently, we cannot make the most of parallel capabilities of modern NICs
delivered to a specific queue associated with a socket descriptor. This serialization process
degrades the system’s performance regardless of any optimizations a particular network
driver might implement. Furthermore, merging traffic from different receive queues may
entail packet disordering [39] and affect upper-layer packet processing policies.

(iii) Multiple data copies from driver to user-level: Packets are transferred to system
memory through a DMA transaction. Until those packets are received from a user-level
application they are copied several times, at least twice: from the DMA-able memory region
in the driver to a packet buffer sk buff structure at kernel-level, and from the kernel packet
buffer to the user level. Each additional copy will obviously damage overall performance: a
single data copy consumes between 500 and 2000 cycles depending on the packet length [37].
Another important idea related to data copying is the fact that copying data packet-by-
packet is not efficient, and deteriorates when packets are small. This is caused by the
constant overhead inserted in each copy operation, which favors large data copies.

Modern drivers reduce in one the amount of data copies required by re-using the same
memory area containing the packet along the multiple layers traversed. However, this policy
has collateral effects: buffers can not be released until all the upper layers are finished with
them, and thus the driver must allocate new buffers or wait until some become available,
which may turn into performance losses. Note that, by applying this policy, modern drivers
do not need copying the data from the DMA buffer to kernel memory, but one more copy is
still needed when transferring the packet’s data (o a subset of its original data) to user-space
applications.

(iv) Kernel-to-userspace context switching: Every time a user-level network application
is to receive one packet, a system call must be performed. Each of these system calls will
entail a user-level to kernel-level context switch and vice versa, with the consequent CPU
time consumption. Such system calls and context switches may consume up to 1000 CPU
cycles per packet [37].

(v) No exploitation of memory locality: The first access to a recently written DMA-able
memory region entails cache misses, as DMA transactions invalidate cache lines. Such cache
misses represent 13.8% out of the total CPU cycles consumed in the reception of a single
64 byte packet [21]. Additionally, in a NUMA-based system the latency of memory access
depends on the memory node accessed. Thus, inefficient memory placement may entail
performance degradation due to greater memory access latencies each time a cache miss is
triggered.

3.2 How to overcome limitations

In the previous sections, we have shown that modern NICs are a great alternative to specialized
hardware for network traffic processing tasks at high speed. However, both the networking stack
of current operating systems and applications at user-level do not properly exploit their new

11

Kernel Space

NIC (HW)

RX
RING

RX
RING

N RSS
queues

Driver

DMA-able
memory
regions

Kernel
packet
buffers

User Space

copy

1 packet k packets
(mmap, one-copy)

k packets
(mmap, zero-copy)

D
M

A
 t
ra

n
s
fe

r

Figure 6: Optimized Linux Network Stack (independant parallel paths)

features. Here we present several proposed techniques to overcome limitations described above
in default operating system network stacks.

Such techniques may be applied either at driver level, kernel level or between kernel level and
user level, and are specifically applied to the data they exchange, as will be explained below.

(i) Pre-allocation and re-use of memory resources: This technique consists in allocating
all memory resources required to store incoming packets, i.e., data and metadata (packet
descriptors), before starting the packet reception process. Specifically, N rings of descrip-
tors (one for each HW RSS queue on each device) are allocated when the network driver is
loaded. Note that this means that the driver loading process will take some extra time, but
once the reception process begins the per-packet allocation overhead is suppressed. Like-
wise, once each packet has been processed and transferred to userspace, its corresponding
data structure will not be released, but it will be marked as available so it can be re-used to
store a new incoming packet. This policy eradicates the bottleneck produced by per-packet
allocation/deallocation. Additionally, the sk buff data structures in use may be simplified
to reduce memory requirements. These techniques must be applied at driver level.

(ii) Exploiting queue parallelism: This technique pretends to solve serialization in the
access to traffic, by creating direct parallel paths between the RSS queues and the network
applications as shown in Fig. 6. In order to achieve the best performance, specific and
independent cores must be assigned for taking packets from each RSS queue and forwarding
them to the user level. This technique supports the creation of new new parallel paths as
the number of cores and RSS queues grow, which is an advantage in terms of scalability. In
order to obtain such parallel direct paths, we have to modify the data exchange mechanism
between kernel and user levels.

On the downside, the use of this technique has two main limitations: First, each parallel
path will make use of a CPU core, which reduces the number of cores available for different

12

tasks. Second, RSS distributes traffic to each receive queue by means of a hash function. If
our process does not analyze packet interaction, we can maximize parallelism by creating
and linking one or more instances of this process to each capture core. However, if our
networking tasks require the analysis of related packets, flows or sessions, it will need
to fetch packets from different queues. For example, a Voice over IP (VoIP) monitoring
system, assuming that such a system is based on the SIP protocol, needs to monitor not
only the signaling traffic (i.e., SIP packets) but also calls themselves —typically, RTP
traffic. Obviously, SIP and RTP flows may not share either level 3 or 4 header fields that
the hash function uses to distribute packets to each queue, hence they might be assigned
to different queues and cores. The approach to circumvent this latter problem is that the
capture system performs itself some aggregation tasks. The idea is that before packets
are forwarded to userspace (for example to a socket queue), a block of the capture system
aggregates the traffic according to a given metric. However, this is of course at the expense
of performance.

(iii) Memory mapping: This feature supported by Linux’s memory management model allows
user-level applications to map kernel memory regions. Thus, applications are capable of
directly reading and writing those memory areas without intermediate copies. This tech-
nique can be used to map from user-space those memory areas containing the data from
the incoming packets and thus saving one kernel-to-user copy operation. Note that, if the
memory areas mapped at user level are not those DMA-able regions where the NIC copies
the packet data into, a copy is sill required so will refer to this configuration as one-copy.
This approach is implemented on current GNU Linux as a standard raw socket when opened
with the RX RING/TX RING socket options. Conversely, if the memory areas mapped by user
applications are the DMA-able regions, no data copies are needed to access the packets’
data, and thus the term zero-copy is used. As an inconvenient, a zero-copy driver can
not re-use the DMA-able buffers until user applications are done with them. Additionally,
exposing NIC rings and register memory areas to user-level access may entail risks for the
systems stability [34], which must be properly handled. However, this is considered a minor
issue as the APIs provided typically protect the critical regions from incorrect access. In
fact, graphic cards make use of memory mapping techniques without major concerns.

Fig. 6 illustrates two different approaches in which memory mapping techniques is used
to achieve packet reception with one-copy or zero-copy. Applying these methods requires
either driver-level or kernel-level modifications as well as in the data exchange mechanism
between kernel and user levels. The use of memory mapping techniques to share data
between kernel and user spaces allows reducing the amount of context switches in the
packet capture process and thus improve overall performance. That is the case of modern
versions of the libpcap library.

(iv) Batch processing: This technique is based on processing several packets at the same
time, in order to reduce the overhead of per-packet operations. Packets are grouped into
a buffer and copied to the target memory region in groups called batches. This technique
reduces the number of system calls made by network applications, with their related context
switches. This minimizes the overhead of processing and copying packets individually. In
the NAPI architecture, there are two points where batches can be intuitively used. First,
if packets are fetched via polling requests, more than one packet can be processed per
poll request. Alternatively, if the packet fetcher works on an interrupt-driven basis, an
intermediate buffer can be used to collect traffic until upper layers ask for it. However, the
use of batching techniques may entail issues such as an increase in latency and jitter, and
timestamp inaccuracy on received packets because packets have to wait until a batch is full

13

or a timer expires [40]. In order to implement batch processing, we must modify the data
exchange between kernel and user levels.

(v) Byte-stream oriented: One step further than packet capture lies packet storage in non-
volatile devices. In order to accomplish such task, a packet-by-packet policy issues many
write operations and may not perform optimally. To mitigate this effect, some packet
capture engines offer access to a byte-stream for user-level applications so they can work in
terms of big blocks of bytes.

(vi) Affinity issues: In NUMA architectures, in order to increase performance and exploit
memory locality, processes must allocate their memory in such a way that it is assigned to
the processor (or NUMA node) in which it is being executed. This is known as memory
affinity, but CPU and interrupt affinities must also be considered by software designers.
CPU affinity allows control of the processors and cores where a given process (process
affinity) or thread (thread affinity) is to be executed. Process affinity may be performed
using Linux taskset2 utility, and the thread affinity can be managed by means of the
pthread setaffinity np3 function inside the POSIX pthread library. On the other hand,
software and hardware interrupts can also be bound for handling by specific cores or pro-
cessors using a similar approach known as interrupt affinity. This can be done by writing a
binary mask to the file /proc/irq/IRQ#/smp affinity. The importance of setting capture
threads and interrupts to the same core lies in the exploitation of cached data and load
distribution. Whenever a thread accesses the incoming packets, finding them in the local
cache will be more likely if they have been received by an interrupt handler assigned to the
same core. Another affinity issue that must be taken into account is to map the capture
threads to the NUMA node attached to the PCIe slot the NIC has been plugged into.
This PCI affinity allows maximum throughput to be obtained in DMA transfer operations.
To accomplish this, the system information provided by the sysctl interface (shown in
Section 2) may be useful.

(vii) Prefetching: Additionally, in order to eliminate inherent cache misses, the driver may
prefetch the next packet (both packet data and packet descriptor) while the current packet
is being processed. The idea behind prefetching is to load the memory locations that will
be potentially used in the near future in the processor cache in order to access them faster
when required. Some drivers, such as Intel’s ixgbe, apply several prefetching strategies to
improve performance. Thus, any capture engine making use of such a vanilla driver, will
see its performance benefit from the use of prefetching. Further studies such as [21, 41]
have shown that more aggressive prefetching and caching strategies may boost network
throughput performance.

(viii) Capture and process isolation: although we restrict this tutorial to the packet cap-
ture process, it is important to remark that any network processing task carried out on
top of any of the explained packet capture engines will likely require additional per-packet
computation, e.g., packet filtering, protocol classification, flow record extraction, ... Im-
portantly, depending on the packet capture engine in use, this computation may have to
be added into the packet capture process and thus increment per-packet processing latency
and potentially damage capture performance. However, if the packet capture and process-
ing processes are isolated one from the other and properly pipelined, this performance loss
effect can be mitigated.

2linux.die.net/man/1/taskset
3linux.die.net/man/3/pthread_setaffinity_np

14

Table 1: Comparison of the various proposals (D=Driver, K=Kernel, K-U=Kernel-User interac-
tion)

Characteristics/ PF RING
PacketShader netmap PFQ

Intel
HPCAP

Techniques DNA DPDK

Memory pre-allocation � � � � � �
and re-use

Parallel direct paths � � � � � �
Memory mapping � � � � � �

Zero-copy � × � × � ×
One-copy × � × � × �

Batch processing × � � � � ×
Byte-stream × × × × × �
processing

Capture & process × × × � × �
isolation

CPU and interrupt � � � � � �
affinity

Memory affinity � � × � � �
Aggressive prefetching × � × × � �

Multiple listeners × × × � � �
Accurate × × × × × �

timestamping

Level D,K, D, D,K, D (minimal), D, D,
modifications K-U K-U K-U K,K-U K-U K-U

API libpcap custom
standard socket-like/C, C++,

custom libpcap-like
libc Haskell, pcap

Supported
Intel Intel

Intel,
Any

Intel, Emulex
Intel

10Gb NICs Mellanox Cisco, Mellanox

Supported
Intel Intel

Intel, Realtek,
Any Intel ×

1Gb NICs nVidia

15

4 Capture Engine Implementations

In what follows, we present six proposed capture engines, namely: PF RING DNA [17, 42, 43],
PacketShader [21], netmap [34, 44, 45], PFQ [46, 47], Intel DPDK [48] and HPCAP [49, 50], all
of which have achieved significant performance levels. For each engine, we describe the system
architecture (noting differences from the other proposals), which of the optimization techniques
mentioned above have been applied, the API provided for client applications to develop network
applications, and what additional functionality it may offer, while the following section will
evaluate their performance. Table 1 shows a summarized qualitative comparison between the
proposals under study. We have not included some capture engines, previously proposed in
the literature, because they are obsolete or unable to be installed in current kernel versions
(Routebricks [51], UIO-IXGBE [52]) or where a newer version of these proposals has been released
(PF RING TNAPI [53]).

Specifically, Table 1 illustrates which of the packet capture engines under study implement
which of the diverse techniques explained in Subsection 3.2. Two features appearing in Table 1
are not purely performance-related and for this reason they were not mentioned in Subsection 3.2:
accurate timestamping and multiple listeners. The first one refers to the ability of the packet
capture engine to accurately assign to each incoming packet a timestamp with the moment the
packet arrived to the CPU. The latter refers to the ability of the capture engine to feed the same
incoming traffic to different user-level applications. Those features will be explicitly remarked in
the following subsections when an engine implements them.

4.1 PF RING DNA

PF RING Direct NIC Access (DNA) [17,54] is a framework and engine to capture packets based
on Intel 1/10 Gb/s cards. This engine implements pre-allocation and re-use of memory in all
its processes. PF RING DNA also allows building parallel paths from hardware receive queues
to user processes, i.e., it allows a CPU core to be assigned to each receive queue whose memory
can be allocated observing NUMA nodes, thus permitting the exploitation of memory affinity
techniques.

Unlike the other proposals, PF RING implements full zero-copy, i.e., PF RINGmaps userspace
memory into the DMA-able memory region of the driver allowing users’ applications to access to
card registers and data directly in a DNA fashion. This avoids the intermediation of the kernel
packet buffer and reduces the number of copies. As previously noted, however, this is at the
expense of a slight weakness to errors from user applications not following the PF RING DNA
API (which explicitly does not allow incorrect memory accesses) and this may potentially cause
system crashes. In the rest of the proposals, direct accesses to the NIC are protected. PF RING
DNA behavior is shown in Fig. 7, where it can be observed that some of the steps that the NAPI
approach follows disappear due to the use of the zero-copy technique.

PF RING’s API provides a set of functions for managing network devices and capturing
incoming traffic. It works as follows: first, the network application must be registered with
pfring set application name(). Before starting the capture process, the socket descriptor can
be configured via several functions, such as pfring set {direction|mode|duration}(). Once
the socket is properly configured, traffic reception is enabled using the pfring enable ring()

call. After this initialization process, user applications can receive new packets by calling the
pfring recv() function. Finally, when the user finishes capturing traffic pfring shutdown()

and pfring close() functions are called. This process has to be replicated for each receive
queue, as each user application will only receive the traffic corresponding to the RX queue the
socket was configured for.

16

Physical link

NIC
RX

RING

Packet
arrival

DMA-able memory

DMA write
transfer

DMA
complete

time

User Application

pfring_
recv()

packets
available?

memory mapping
(no copy)

Figure 7: PF RING DNA’s RX scheme

As one of the major advantages of this solution, PF RING’s API comes with a set of wrappers
for the above-mentioned functions providing extensive flexibility and ease of use, essentially
following the de facto standard of the libpcap library. Additionally, the API provides a set
of functions for applying filtering rules (for example, BPF filters), network bridging, and IP
reassembly.

4.2 PacketShader

The authors of PacketShader (PS) [21, 55] developed their own packet capture engine to highly
optimize the traffic capture module as a first step in the process of developing a software router
based on General-Purpose Graphic Processing Units (GPGPU) able to work at multi-10 Gb/s
rates. However, their efforts are applicable to any generic task that involves capturing and
processing packets. They apply memory pre-allocation and re-use: specifically, two consecutive
large memory regions are allocated: one for the packet data, and another for its metadata. Each
buffer has fixed-size cells corresponding to the data and metadata for one packet. The size for
each cell of packet data is set to 2048 bytes, which corresponds to the next highest power of two
for the standard Ethernet MTU. Metadata structures are compacted from 208 bytes (as used by
Linux’s kernel) to only 8 bytes (96%) removing fields unnecessary for many networking tasks.

Additionally, PS implements memory mapping to those data and metadata buffers, thus
allowing users to avoid additional copies when accessing the information. In this regard, the
authors highlight the importance of NUMA-aware data placement in the performance of its
engine. Similarly, it provides parallelism between different RX queues, as their data may be
independently processed at user level.

To reduce the per-packet processing overhead, batching techniques are used when a user-
level application asks for new packets. For each batch requested, the driver copies data from the
hardware descriptors to the above-mentioned packet data region and completes the corresponding
metadata information. Once those copies are finished, the driver returns control to the user-
level application which can now process the new packets without additional copies. In order to
eliminate inherent cache misses, the modified device driver tries to prefetch the next packet’s
associated memory while still processing the previous one.

PS’s API works as follows: (i) a user application opens a character device to communicate

17

Physical link

NIC
RX

RING

Packet
arrival

DMA-able memory

DMA write
transfer

DMA
complete

time

User Application

ps_
recv()

packets
available?

memory mapping
(no copy)

Kernel driver

copy_rx_
packets()

memcpy()

Figure 8: PacketShader’s RX scheme

with the driver using the ps init handle() function, (ii) the application is attached to a given
reception device (queue) using an ioctl() call, namely ps attach rx device(), and (iii) kernel
memory is allocated and mapped to userspace, in order to exchange data with the driver, using
ps alloc chunk(). Then, when the user application requests new packets by means of an
ioctl(), ps recv chunk(), PS driver copies a batch of them, if available, to the kernel packet
buffer. PS kernel-user interaction during the reception process is summarized in Fig. 8.

4.3 netmap

The netmap [34, 56] proposal shares most of the characteristics of PacketShader’s architecture.
It applies memory pre-allocation during the initialization phase, buffers of fixed sizes (also 2048
bytes), batch processing and parallel direct paths. It also implements memory mapping tech-
niques to allow users’ applications to access kernel packet buffers (direct access to NIC is pro-
tected) with a simple and optimized data structure. Its similarities with PacketShader also apply
to the user-kernel interaction policy (see Fig. 8), except that netmap implements zero-copy from
the NIC to buffers that will later be mapped from user level. Differently from other zero-copy
solutions, netmap makes an emphasis on system’s security and scalability by making sure no
critical kernel structure is mapped by user applications and thus entail a potential threat.

This simple data structure is referred to as a netmap memory ring and contains information
such as the ring size, a pointer to the current position of the buffer (cur), the number of received
packets in the buffer or the number of empty slots for each reception or transmission buffer
(avail), a set of flags related to the status, the memory offset of the packet buffer, and the array
with the metadata information; it has also one slot per packet that includes the length of the
packet, the index in the packet buffer and some flags. Note that there is a netmap ring for each
RSS queue, for both reception and transmission directions, to allow exploiting parallel direct
paths.

Netmap’s API usage is intuitive: first, a user process opens a netmap device and maps kernel

18

buffers with an ioctl() call. To receive packets, the process polls the driver about the number
of available packets with another ioctl() and, when the system call is over, the lengths and
payloads of the packets are available for reading in the slots of the netmap ring data structure.
Note that this operation mode makes a batch of packets accessible for reading in each operation.
Additionally, netmap supports blocking mode through standard system calls, such as poll()

or select(), using the corresponding netmap file descriptors as arguments for those standard
system calls. In addition, netmap comes with a library that maps libpcap functions to their
netmap equivalents, thus allowing user applications to exploit netmap features without needing
to be recompiled. A distinctive feature of netmap is that it works in an extensive set of hardware
solutions: Intel 10 Gb/s adapters and several 1 Gb/s adapters (Intel, RealTek and nVidia), and
even Mellanos’s infiniband adapters.

4.4 PFQ

PFQ [46, 57] is a novel packet capture engine that enables packet sniffing in user applications
with a tunable degree of parallelism. The approach of PFQ is different from the previous ones
studied. Instead of carrying out major modifications to the driver in order to skip the interrupt
scheme of NAPI or mapping DMA-able memory and kernel packet buffers to user space, PFQ
implements a general architecture supporting any NIC driver.

PFQ has been designed so that it benefits from the vanilla network driver managing the
NIC’s hardware details. Those drivers connect with PFQ by redefining those functions that
previously connected them with the operating system’s network stack. In the latest version,
those redefinitions are automatically made by a set of scripts, so users are isolated from those
low-level details.

PFQ’s kernel module implements a new layer, named Functional Engine, where packets are
delivered by the NIC’s driver. This layer distributes the traffic across different active receive
sockets, without limits on the number of queues than can receive a given packet. The distri-
bution tasks are carried out by independent packet fetcher threads. Importantly, those fetcher
threads are executed in parallel and push the incoming packets’ data in the Functional Engine
with minimal overhead due to lockless access control policy. PFQ’s architecture allows several
fetcher to push the same packet to different sockets, which may imply more that one packet copy.
However, those additional packet copies have low impact due to the use of caching mechanisms.
Note that, as each receive socket has an independent lock-free queue, the packet capture per-
formance is not limited by the slowest application fetching traffic from a common source. This
functionality circumvents one of the drawbacks of using the parallel paths technique, namely
scenarios where packets of different flows or sessions must be analyzed by different applications
as explained in Subsection 3.2. Fig. 9 shows a temporal scheme of the process of requesting a
packet in this engine.

PFQ’s API defines a pfq class which contains methods for device initialization and packet
reception. Whenever a user wants to capture traffic: (i) a pfq object must be created using the
provided C++ constructor, (ii) devices must be added to the object by calling its add device()

method, (iii) timestamping can be enabled using the toggle time stamp() method, and (iv)
packet capture must be enabled using the enable() method. After initialization, each time a
user wants to read a batch of packets, the read() method must be invoked. Using a custom C++
iterator provided by PFQ, users can read each packet in the received batch. When a user-level
application has finished working with the pfq object, it is destroyed by means of its defined C++
destructor. A stats() method is also provided in order to obtain statistics about the received
network traffic.

Moreover, PFQ supports high-level programming via functional programming languages,

19

Physical link

NIC
RX

RING

Packet
arrival

DMA-able memory

DMA write
transfer

Kernel driver

DMA
complete

IRQ memcpy()

time

push in
buffer

Packet steering
block

napi_
schedule()

memcpy()

push in
buffer

User Application

IF buffer IS full
memcpy()

memcpy()

Figure 9: PFQ’s RX scheme

PFQ-Lang [47]. By using PFQ-Lang, developers can rapidly develop network processing ap-
plications in a flexible way while coping with high-speed rates.

4.5 Intel DPDK

Intel’s Data Plane Development Kit (DPDK) [48, 58] was created with the goal of providing
a simple and complete framework for fast packet processing network application operating on
the data plane. DPDK implements a new model for packet processing, following a modular
approach. This way, users instantiate a set of worker threads, or listeners as we previously called
them, which will be able to receive and send packet from/to a certain distributor, as shown in
Fig. 10. Users will place their logic inside the worker modules, and will be able to configure the
distributor thread connected to each worker for RX and TX purposes. Those connections are
made by means of packet rings, and they are managed automatically by the library provided.

Intel’s DPDK optimizes communications between the NIC and the distributor cores by pre-
allocating and reusing data structures. These data structures are mapped from the user-level
distributor threads and both memory and CPU affinity is carefully planned. Moreover, the
multi-producer multi-consumer packet rings used to communicate the different threads in a
DPDK-based application are generated using hugepages, which ensures these rings are always
available on main memory and reduces the page fault overhead when accessing such regions.
Note that each distributor thread will be in charge of dispatching the packets corresponding to a
certain RSS queue from a certain NIC. Intel’s DPDK architecture allows several worker threads
to fetch packets from the same distributor, but each thread will only receive the set of packets
previously requested. Additionally, a single worker thread may receive packets from different
distributors.

An application making use of Intel DPDK has to initialize its resources by calling the

20

RX
RING

distributor
thread

TX
RING

worker
thread 0

worker
thread 1

worker
thread N

RX

TX

Figure 10: Intel DPDK’s architecture

rte eal init() function. Distributor threads will call the rte distributor process() func-
tion to begin capturing packets from the NIC. Meanwhile, worker threads make use of the
rte distributor get pkt()() call to request a new packet once it has finished processing the
previous one (see [59]). These library calls isolate users from operating with the intermediate
packet rings used to communicate with the different modules. In order to optimize packet-transfer
operations, local cache lines are shared between the distributor and worker threads. This feature
makes it impossible for two worker threads to process the same packet simultaneously. Thus,
every time a worker thread is done with a packet, it must notify the distributor via the final
parameter of the rte distributor get pkt()() function, so the distributor knows this packet
can be sent to another worker if requested. Note that the packets are distributed to the diverse
worker threads using meta-structures pointing to the corresponding NIC’s packet descriptor,
which are the ones cloned when several workers ask for the same packet. This allows sharing
packet data without additional copies at the expense of potentially locking the descriptors for a
longer period.

In order to keep packets ordered they are identified via a tag (the 5-tuple hash calculated
by the NIC), thus packets with the same tag will be orderly processed by all worker threads
processing them. Note that this policy may include latency in the processing of some packets
and packet order is only guaranteed between packets with the same tag. Additionally, workers
can temporally stop processing packets by using the rte distributor return pkt() function
and resume their execution afterwards, which may be interesting in order to save CPU power
depending on network load.

Finally, Intel DPDK comes with a set of libraries to ease the user’s work with packets at the
different network layers, and extra functionalities to manage issues such as IP fragmentation and
TCP re-assembly.

4.6 HPCAP

HPCAP [49, 60] is a novel packet capture engine designed, unlike other approaches, to optimize
incoming traffic storage into non-volatile storage devices. The design of HPCAP has also focused
on using just one receive queue in order to avoid packet reordering issues.

To do so, for each NIC to be monitored, HPCAP instantiates an independent kernel-level
thread assigned to a different RSS queue. Once the kernel threads are launched, they will

21

Physical link

NIC
RX

RING

Packet
arrival

DMA-able memory

DMA write
transfer

DMA
complete

time

User Application

packets
available?

memory mapping
(no copy)

Kernel driver

hpcap_
poll() memcpy()

hpcap_read_packet()

hpcap_
poll()

Figure 11: HPCAP’s RX scheme

constantly poll their corresponding descriptor ring for incoming packets. If a new packet is
detected, the thread copies it to a kernel-level packet buffer together with a header containing
the packet’s timestamp (second and nanosecond), capture length (packets may be capped) and
actual length. The kernel-level packet buffers behave as a circular queue, which is allocated
before the capture begins, avoiding dynamic per-packet allocations. Its size may be configured,
with a default value of 1 GB, the maximum size for static buffers at kernel level. This limit will
be surpassed in future versions by allocating memory using Linux’s hugepages. A 1 GB size is
convenient for providing robustness against traffic burstiness that may appear either at wire-level
or when processing data in upper-layers.

The kernel buffers are mapped by user level applications and so are capable of accessing the
data on it avoiding additional intermediate copies. These applications can be executed in any
core not in use by a kernel polling thread, but in order to maximize performance, they should be
executed in a core belonging to the same NUMA node as the core where the corresponding kernel
polling thread is executed. A read pointer updated by the user application and a write pointer
updated from the kernel polling thread control access to the buffers to prevent invalid read/write
operations. Note that, if there are several user applications, or listeners, when accessing the
packets from the same buffer, the packet read throughput will limited by the slowest listener.
HPCAP provides an API for the listeners to manage devices and access packet data in isolation
from the management of the read and write pointers.

As the packet capture and packet processing tasks are isolated, see Fig. 11, both tasks can
be overlapped in order to maximize the system’s throughput. This also means that user-level
applications can access packets in the active region of the buffer following a byte-stream oriented
policy. That is, user applications can operate with blocks of bytes instead of following a per-
packet basis. Both the packet buffer memory alignment and the byte-stream oriented data format
are crucial in order to maximize performance when storing data in a non-volatile volume.

Another design goal of HPCAP has been to provide certain additional features. First, incom-
ing packets captured by HPCAP are timestamped when the kernel polling thread copies them

22

into the intermediate buffer [40]. Second, each of the said kernel-level buffers can be mapped
by several user-level applications, multiple-listeners, but differently from other approaches with-
out additional copies. This is achieved as HPCAP updates a general write pointer while each
upper-layer application updates its own read pointer. Finally, a framework called M3Omon [61]
is provided together with HPCAP, which was constructed based on HPCAP’s API. This frame-
work makes network data accessible for end-applications with three different granularities, namely
Multi-Router Traffic Grapher (MRTG) time series for incoming packets and bytes as well as con-
current active flows; incoming packets; and expired flow registers. All these data are accessible to
any number of applications via loop methods, receiving a callback function pointer as argument,
similar to the pcap loop() method.

5 Testing traffic capture performance

A quantitative comparison between capture engines based on the literature is not possible for
two reasons: first, the hardware used by the different studies is not equivalent —in terms of type
and clock speed of the CPU, amount and clock speed of main memory, server architecture and
number of network cards. Second, the performance metrics used in the different studies are not
the same —with differences in the type of traffic and in the measurement of the burden on CPU
or memory.

Consequently, let us first elaborate a fair basis for comparison of capture engines at 10 Gb/s
rates. And, then, let us carry out our own quantitative comparison based on such a common
basis using the same hardware.

5.1 General concerns

The first metric to be considered is the amount of traffic that an engine may process. We assume
a fully-saturated link of 10 Gb/s, and both constant-sized packets and real trace with variable
packet sizes are injected. The constant-size oriented tests aim at evaluate worst case scenarios.
As the effort to capture a packet is almost constant but small packets have smaller time gap
between consecutive packets and consequently less time to carry out any subsequent task, those
scenarios with small-size packets are the most challenging. Unfortunately, small-sized packet
traffic profiles are not uncommon on the Internet as for example Voice over IP (VoIP) traffic,
distributed databases or even anomalous traffic [62].

According to 10GbE standard, 60-byte packets in a 10 Gb/s fully-saturated link gives a
throughput in Mp/s of 14.88: 1010 / ((60 + 4 (CRC) + 8 (Preamble) + 12 (Inter-Frame Gap)) ·
8), and an effective throughput of 7.14 Gb/s (due to the preamble and inter-frame gap overheads).
Equivalently, if packet sizes grow to 64 bytes, the throughput in Mp/s decreases to 14.22 and the
effective throughput rises to 7.27 Gb/s. Table 2 shows how those values evolve for the packet
sizes used in our test experiments. In order to avoid dealing with these values that depend on
packet sizes, we find it more intuitive to evaluate this metric in terms of the percentage of packets
received for each scenario.

Similarly, it is important to agree if the four Ethernet CRC bytes are considered in the
packet size or not. In the following analysis, when referring to X-byte packets, those X bytes will
not take Ethernet’s CRC into account. In order to avoid Ethernet management mechanisms to
contaminate network measurements, pause frame negotiation and hardware offload capabilities
must be disabled as shown in Section 6. If pause frame negotiation is enabled the receiver side
could send a pause frame when it is congested and prevent the sender from transmitting new
frames. On the other hand, offload mechanisms allow NICs to merge small packets belonging to
the same flow into bigger ones and may affect network diagnosis algorithms.

23

Table 2: Maximum throughput in terms of packets and bits for different packet sizes in a fully-
saturated 10GbE link

Max. Packet size (bytes, CRC excluded)
throughput 60 64 128 256 512 750 1024 1250 1514

Gb/s 7.14 7.27 8.42 9.14 9.55 9.69 9.77 9.81 9.84
Mp/s 14.88 14.21 8.22 4.46 2.33 1.62 1.19 0.98 0.82

It is worth remarking that extremely positive results may arise in short duration experiments
due to caching effects. Thus experiments regarding packet capture performance must be carried
out for a period of time such that the amount of traffic processed does not fit in system mem-
ory. Thus, all the experiments carried out in this section have been obtained by replaying the
corresponding traffic over a period of 30 minutes.

In order to provide a comparison as fair as possible, capture performance results refer only
to a simple packet receive and update counters application developed for each engine, without
any additional characteristic except from timestamping when it was possible (see Table 1). In
all cases, we have paid attention to NUMA affinity by executing capture threads in the processor
the NIC is connected to, which is only possible when there are less concurrent threads than cores
available in the target NUMA node. In fact, ignoring NUMA affinity entails extremely significant
performance losses, especially in the case of the smallest packet size where performance may be
halved.

Another metric that must be considered is the number of CPUs and usage made by a solution.
More computational power is available for additional tasks if the number of CPUs and usage are
low. However using more than a couple of CPU and RSS queue may cause collateral effects such
as packets belonging to the same session or flow to be processed by different CPUs. This may
be a vital drawback for certain monitoring applications. Instant CPU usage measurements are
obtained using the pidstat4 command, instead of ps5 command that provides the amount of
time that the process has been using the processor since it started.

The amount of system memory used is the third main metric to take into account. High
memory requirements may increment the cost of the monitoring system, and limit the number
of additional processes that can be simultaneously executed. Memory usage for a certain process
can be obtained by means of the Linux ps command.

5.2 Captures engines performance evaluation

Our testbed setup consists of two machines (one for traffic generation purposes and another
for receiving traffic and evaluation) directly connected through a 10 Gb/s fiber optic link. The
receiver side is based on Intel Xeon with two 6-core processors each running at 2.30 GHz, with
128 GB of DDR3 RAM at 1,333 MHz and fitted with a 10 GbE Intel NIC based on the 82599 chip.
The server motherboard model is Supermicro X9DR3-F with two processor sockets and three
PCIe 3.0 slots per processor, directly connected to each processor, following a scheme similar to
that depicted in Fig. 2(b). The NIC is connected to a slot corresponding to the first processor
or NUMA node. The system runs an Ubuntu server 12.10 with a 3.8.0.29-generic kernel.

The sender uses a HitechGlobal HTG-V5TXT-PCIe card with a Xilinx Virtex-5 FPGA
(XC5VTX240) and four 10 GbE SFP+ ports. Using such a hardware-based sender guaran-
tees accurate packet interarrivals and 10 Gb/s throughput regardless of packet size. The sender

4http://linux.die.net/man/1/pidstat
5http://linux.die.net/man/1/ps

24

server also has an Intel 82599 NIC and a software traffic generator, which has been developed as
a tool on top of PacketShader’s [21] API capable of replaying PCAP traces at variable rates.

For our experiments, we have used both synthetic and real traffic. Synthetic traffic is sent by
using the FPGA generator and consists of TCP segments encapsulated into fixed-sized Ethernet
frames, forged with incremental IP addresses and TCP ports. Note that synthetic traffic allows
us to test worst-case scenarios in terms of byte and packet throughput, but they are not useful for
testing the flow-related modules. Real traffic is generated using a software generator replaying a
trace consisting of a packet-level trace sniffed on an OC192 backbone link of a Tier-1 ISP located
between San Jose and Los Angeles (both directions), available from CAIDA [63]. Replaying the
backbone trace at line-rate leads to a throughput of 9.59 Gb/s6, and 1.65 Mp/s.

In addition to the capture engines presented in this paper, we have considered it interesting
to evaluate the packet capture performance offered by the traditional solution, i.e., the ixgbe

driver following a NAPI approach plus the use of the PCAP library. It is worth pointing out that
the behavior of the Linux version of netmap is to set the number of RSS queues to match the
number of cores. Thus, we have had to modify the number of queues used in netmap by writing
a 1 or a 0 in the /sys/devices/system/cpu/cpuX/online file to respectively enable or disable
CPUs. Regarding netmap and PFQ, we evaluated their performance by respectively installing
the netmap-aware ixgbe driver and the ixgbe vanilla driver compiled with a script shipped with
PFQ. We wanted to evaluate each capture engine using a number of queues ranging from 1 to
12 (as our system has 12 CPUs). It is worth noting that in the case of Intel DPDK 11 is the
maximum amount of queues reached, because the capture system needs one core to be reserved
for management purposes, reducing by 1 the number of cores eligible for packet capture.

First, Fig. 12 aims to show both the worst-case scenario of a fully-saturated 10 GbE link
(packets with a constant size of 60 bytes) and an average scenario. Note that the worst case
represents an extremely demanding scenario, 14.88 Mp/s, but probably not very realistic given
that the average Internet packet size is clearly larger [64].

In the worst-case scenario (left-hand side of Fig. 12) the traditional solution (ixgbe + PCAP
library) reaches peak performance with 5 queues, capturing over 24.4% of the incoming packets.
PF RING DNA and Intel DPDK are the only capture engines that achieve line rate if fewer than 4
receive queues are used. PacketShader is also able to handle nearly the total throughput when the
number of queues ranges between 1 and 4, after which point the performance declines. Netmap
has a performance level similar to PacketShader with one queue, but capture performance worsens
as more receive queues are used. Conversely, PFQ increases its performance while the number of
queues rises to a maximum with four queues, when improvement stalls. Finally, HPCAP shows
peak performance, capturing 97.6% of the traffic, when using two queues but this figure reduces
as the number of queues increases.

In the average scenario shown on the left-hand side of Fig.12, capture with ixgbe shows the
best performance using four or five queues, with 0.1% of incoming packets lost. In that same
scenario, PF RING, PacketShader, PFQ (with two or more queues), Intel DPDK and HPCAP
are capable of working with 0% packet loss. Netmap suffers a slight packet loss ranging from 1%
to 0.1% (reached with four queues).

In conclusion, our tests have confirmed that all capture engines suffer from scalability issues
in the worst-case scenario. This effect becomes more relevant when the number of cores in use
needs more than one NUMA node. To further investigate this phenomenon, Fig. 13 depicts the
results for the packet sizes shown in Table 2 using one, six and twelve queues respectively.

PF RING DNA shows the best results with one and six queues. It does not show packet
losses for any scenarios except for those with packet sizes of 64 bytes and, even in this case,

6This is the maximum achievable speed due to the preamble and inter-frame gaps that the Ethernet protocol
requires.

25

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

#Queues

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

Worst−case scenario (60+4 bytes sized packets)

ixgbe+libpcap

PF_RING

PS

netmap

PFQ

DPDK

HPCAP

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

#Queues

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

Average scenario (CAIDA trace)

Figure 12: Engines’ performance for worst and average scenarios

the figure is very low (about 4% with six queues and lower than 0.5% with one). Surprisingly,
increasing packet sizes from 60 to 64 bytes entails a degradation in the PF RING DNA perfor-
mance, although the performance recovers 0% loss rates beyond these packet sizes. Note that, as
stated before, larger packet sizes imply lower throughputs in terms of Mp/s. According to [34],
investigation in this regard has shown that this behavior is due to the design of NICs and I/O
bridges that make certain packet sizes fit better with their architectures.

In a scenario where one single user-level application is unable to handle all received traffic, it
may be of interest to use more than one receive queue (with one user-level application per queue).
With the maximum number of queues, PacketShader and HPCAP have shown comparatively the
best result, although, like PF RING DNA, they perform better with a smaller number of queues.
Specifically, for packet sizes larger or equal to 128 bytes, they achieve full packet received rates
regardless of the number of queues. Conversely, Intel DPDK shows the worst results for the
maximum number of queues, showing packet losses for packets below 750 bytes.

Analyzing PFQ’s results, we note that this engine also achieves 100% received packet rates
but, conversely to the other approaches, works better with several queues. It requires at least
three to achieve no losses with packets of 128 bytes or more, whereas with one queue, packets
must be larger or equal to 256 bytes to achieve full rates. This behavior was not unexpected due
to the importance of parallelism in the implementation of PFQ.

We have found that these engines may cover different scenarios, even the most demanding
ones, distinguishing them on the basis of two criteria: whether or not we may assume the
availability of multiple cores, and whether or not the traffic intensity (in Mp/s) is extremely high
(for example, packet size averages smaller than 128 bytes, which is not very common). In other
words, if the number of queues is not relevant, given that the capture machine has many cores
available, or no other process is executing except for the capture process itself and the traffic
is not maximal, PFQ seems to be a suitable option. On the other hand, if traffic intensity is
near to maximum, PF RING, PacketShader, netmap, Intel DPDK and HPCAP present a good
compromise between the number of queues used and the performance offered.

26

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

ixgbe 1 queue

ixgbe 6 queues

ixgbe 12 queues

((a)) NAPI scheme

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

PF_RING 1 queue

PF_RING 6 queues

PF_RING 12 queues

((b)) PF RING DNA

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

PS 1 queue

PS 6 queues

PS 12 queues

((c)) PacketShader

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

netmap 1 queue

netmap 6 queues

netmap 12 queues

((d)) netmap

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a
c
k
e
ts

 r
e
c
e
iv

e
d
 (

%
)

PFQ 1 queue

PFQ 6 queues

PFQ 12 queues

((e)) PFQ

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

DPDK 1 queue

DPDK 6 queues

DPDK 11 queues

((f)) Intel DPDK

0 500 1000 1500
0

20

40

60

80

100

Pkt size (Bytes, CRC excluded)

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 (

%
)

HPCAP 1 queue

HPCAP 6 queues

HPCAP 12 queues

((g)) HPCAP

Figure 13: Performance in terms of packets received for different numbers of queues and constant
packet sizes for a fully-saturated 10 Gb/s link

27

Table 3: Memory and CPU usage in a 10Gb/s average scenario

Capture Number of Memory Number of Average CPU usage
engine RSS queues in use (MB) cores used (per active core)

ixgbe 5 9.2 6 5×3.4% (kernel) + 82.7% (user)

PF RING 1 110.3 1 75.8% (user)

PS 1 12.6 1 77.4% (user)

netmap 1 351.8 1 66.2 (user)

PFQ 1 425.2 1 99.9% (user)

DPDK 1 2192.4 2 99.2 (distributor) + 99.3 (worker)

HPCAP 1 1054.9 2 99.7 (kernel) + 99.8 (user)

Nonetheless, multi-queue scenarios are often not adequate. For example, accurate times-
tamps may be necessary [40], packet disorder may be a significant drawback (depending on the
application running on top of the engine) [39], or it may simply be of interest to save cores for
other tasks. In such a scenario, PF RING DNA and Intel DPDK are great options, as they
show (almost) full rates regardless of packet size even with only one queue (thus, avoiding any
objections due to parallel paths).

In addition to the packet capture performance figures that each capture engine offers, users
may also need to decide which solution they can use in terms of resource consumption. Table 3
shows the results for each capture engine in terms of CPU and memory usage. The table shows
the resource consumption of each capture engine with the least resource-consuming configuration
capable of capturing all packets (99.9% of the packets for ixgbe) mentioned previously: a CAIDA
trace replayed at line-rate. Note that PF RING, PacketShader, netmap and PFQ use as many
cores as there are RSS queues. On the other hand, the default usage of ixgbe and Intel DPDK
use one more core than the number of CPUs used. In the case of ixgbe the reason is that the
kernel fetches packets from each queue into a different core, and a user-level application in a
different core aggregates the traffic received by each queue. Intel DPDK uses one core to receive
traffic from each RSS queue, where the distributor cores will be executed, and one additional
core for each worker thread instantiated. HPCAP, on the other hand, uses two cores per RSS
queue, as it instantiates one kernel-level thread to fetch the packets from the network and copy
them to the intermediate buffer, and a user-level thread to process the packets already stored in
that buffer.

6 How to use the packet capture engines

6.1 Getting started

Prior to setting up capture engines, some knowledge of the system architecture must be obtained
in advance to exploit NUMA capabilities and perform and optimize scheduling.

The first step consists in getting an overview of the NUMA architecture and the devices
attached to each node. To this end, the lstopo command should be used.

The command returns a text output with a tree scheme describing each NUMA node and
the devices attached to it. Note that each output line containing L# references a processing
core.In our case, two processors are present and each processor is assigned to a NUMA node

28

with 6 processing cores and 64 GB of memory. Focusing on the NICs, two different NICs with
two interfaces each are attached to the NUMA node 0.

Our system presents an architecture similar to Fig. 2(b) where PCIe lines are directly con-
nected to one processor. In this scenario, our 10 GbE NIC corresponds to the interfaces eth2
and eth3 which are assigned to NUMA node 0. Capturing and processing tasks must be assigned
to processing cores 0 to 5 in order to exploit memory locality.

The numactl command can be used to get an idea of how expensive this data transfer is
in processing terms. Listing 1 shows the execution and output of this command. The output
shows the available NUMA nodes specifying the processing cores and memory assigned as well
as the distance matrix. Note that the figures shown in the distance matrix do not correspond
to CPU cycles nor time measurements. Such numbers only provide a priority relationship where
the higher value the slower the processor’s access to that memory chunk.

numactl − −hardware

a v a i l a b l e : 2 nodes (0−1)
node 0 cpus : 0 1 2 3 4 5
node 0 s i z e : 65503 MB
node 0 f r e e : 61844 MB
node 1 cpus : 6 7 8 9 10 11
node 1 s i z e : 65536 MB
node 1 f r e e : 60506 MB
node d i s t an c e s :
node 0 1

0 : 10 21
1 : 21 10

Listing 1: Usage example of the numactl command

Taking this memory access latency matrix into account, the memory allocation of the pro-
cesses can be adjusted. Focusing on this example, if a capture or a processing task is assigned to
cores 0 to 5, memory should be allocated in NUMA node 0. This configuration can be achieved
by either using the numactl command or using the libnuma C API. Listing 2 gives an example
of the former. In this case using the option --membind followed by a list of NUMA nodes, the
memory used by the my program application will be allocated on NUMA node 0 until no more
memory is available and then subsequent allocations will use NUMA node 1. If no memory is
available in either node 0 or 1, the application will terminate. Note that the execution of a
program with numactl --membind does not guarantee CPU affinity.

numactl − −membind=0,1 . / my program

Listing 2: Usage example of the numactl command to allocate memory

Using libnuma7, memory allocation can be assigned to a specific NUMA node via programing
by using the C API shown in Listing 3

void ∗ numa a l l o c l o c a l (s i z e t s i z e) ;
void ∗numa al loc on node (s i z e t s i z e , i n t node) ;

Listing 3: Libnuma memory allocation API

Another task of paramount importance when running captures or processing applications is
assigning tasks to processing cores. These can be assigned with the taskset command. As can be
seen in Listing 4, using the parameter -c followed by the number of a processing core assigns the
execution of my program to the core indicated. If multiple processing cores are needed, a comma
separated list can be defined. Additionally, the assignment process can be done programmatically
by means of the pthread library as shown in Listing 5.

7http://linux.die.net/man/3/numa

29

t a s k s e t −c=1 . / my program
ta sk s e t −c=1 ,3 ,5 . / my program

Listing 4: Usage example of the taskset command

i n t p t h r e a d s e t a f f i n i t y np (pthread t thread , s i z e t cpu s e t s i z e , const c pu s e t t ∗
cpuset) ;

Listing 5: pthread process assignment API

The isolcpus kernel option may be used to maximize the efficiency of the assignment of
tasks to processing cores. This option allows a set of processing cores to be isolated from the
general kernel SMP balancing and scheduler algorithms. Thus, the only way a process can be
assigned to such a set of cores is by explicitly attaching it through the taskset command or
similar. With this approach, a capture or processing application can be exclusively assigned to
a processing core. Listing 6 shows a sample kernel boot configuration in which processing cores
0,1,2,3,4,5 are isolated.

l i nux /boot/vmlinuz−3.8.0−29− g ene r i c root=UUID=b11691e7−f968−4023−aa28−3
f5a4d831fa5 i s o l c p u s =0 ,1 ,2 ,3 ,4 ,5 ro

Listing 6: Usage example of the isolcpus option

6.2 Setting up capture engines

The goal of this subsection is to provide a quick reference guide for the commands and applications
used to configure the driver and receive traffic for each capture engine. All commands shown in
this section except compilation-related ones must be executed with superuser privileges.

First, we describe how the affinity-aware tests have been used in the default mechanism, i.e.,
the ixgbe driver plus the PCAP library. The ixgbe driver version used is 3.11.33-k, and the
version of the PCAP library is 1.1.1-10. With regard to the number of queues to be used, this
value can be modified by means of the RSS parameter at driver load time (insmod command),
as shown in Listing 7. The next step is to wake up the network interface and using the ethtool
utility to disable pause frames (we do not want the network probe to stop the other side’s
transmission) and the offload options (in order to prevent the NIC from merging incoming packets
into bigger ones and polluting our sampling of the network). Once the number of desired queues
has been set, a different core must be assigned to fetch packets from each queue in order to
obtain maximum performance. An example of how this can be done using the system /proc

interface is shown the usage example. In the scenario shown, we have set 5 RSS queues to be
used, assigning them to cores 0 to 4. Finally, we have developed a simple application that fetches
incoming packets and counts them using the PCAP library and we have called it test. This
application has been scheduled to run on core 5 (still in the same NUMA node as the 5 cores
fetching packets from the different queues) via the taskset Linux command.

insmod ixgbe . ko MQ=1,1 RSS=5,5
i f c o n f i g eth1 up promisc
e th t oo l −A eth1 rx o f f tx o f f
e t h t oo l −K eth1 t so o f f gso o f f gro o f f l r o o f f
#con f i gu r e IRQ a f f i n i t y
core=0
cat /proc / i n t e r r up t s | grep eth1 |

awk ’{ s p l i t ($1 , a , ” : ”) ; p r i n t a [1] } ’ |
whi le read i r q
do

30

echo $core > /proc /${ i r q }/ smp a f f i n i t y l i s t
core=$ (($core + 1))

done
t a s k s e t −c 5 . / t e s t eth1

Listing 7: Usage example of the ixgbe driver in an affinity-aware scenario

In the case of PF RING, we used version 6.0.0.1. Once we have entered the downloaded
folder, we must compile both the pf ring and the PF RING-aware version of our NIC driver
(see Listing 8). When both drivers have been compiled, they can be installed using the script
provided: load dna driver.sh. Changing the number of receive queues must be done by editing
the driver load script, changing the RSS parameter in the line inserting the ixgbe driver into the
system. The load dna driver.sh script also adjusts all interrupt affinity issues for each receive
queue. To receive traffic using PF RING, we executed the pfcount multichannel command.
The arguments of this program are as follows: -i indicates the device name, -a enables active
packet waiting, -e sets reception only mode and -g specifies the thread affinity for the different
queues. In the example, only one receive thread mapped to core 0 is used; if more threads are
to be used, the core affinity for each one must be separated using ’:’.

. / l o ad dna d r i v e r . sh
p f count mul t i channe l − i dna0 −a −e 1 −g 0

Listing 8: PF RING usage example

With respect to PacketShader, its version 0.2 was used. We installed the driver using the
install.py script provided, whose arguments are the number of RX and TX queues to be
used by each NIC controlled by PacketShader. As Listing 9 shows, the engine provides an
installation script to decide the number of receive queues, and it configures the interrupt affinity
schedule. The bundle downloaded includes a sample application named rxdump, designed to
dump incoming packet information through the standard output just as tcpdump would do. We
have slightly modified this sample program so it only receives and counts incoming packets and
launched it with the desired network device as its argument. The execution of this sample
program was attached to core 0 via the taskset utility as the installation script set the receive
queue management to this core.

. / i n s t a l l . py 1 1
t a s k s e t −c 0 . / rxdump <args>

Listing 9: PacketShader usage example

We downloaded the latest version of netmap from the authors’ github repository, specifically,
we downloaded the version committed on April 1, 2014. In order to use it, first both the netmap
kernel module and the netmap-aware ixgbe driver must be compiled. Before inserting any
of those modules, the user must disable or enable CPUs in the system to accommodate the
number of receive queues desired to be used. Note that netmap’s default behavior is to use all
available CPUs. The sample code shown in Listing 10 shows a way of doing that for one CPU
(num cpus=1). Once the corresponding CPUs have been disabled/enabled, the netmap.ko and
ixgbe.ko drivers must be inserted in that order. Now it is time to wake up our interface, disable
pause frames and offload settings, and configure interrupt affinity. Finally, the pkt-gen sample
application can be used to receive network traffic. The -i parameter tells the program which
device to receive traffic from, and the -f rx parameter indicates that the program is to work in
rx-only mode. When using this application, the core affinity must be set via the taskset utility.
Note that the program should be scheduled on the cores the queues’ interrupts were previously
mapped to. It is important to remember to re-enable all CPUs once you have finished using
netmap.

31

#Set the number o f a c t i v e CPUs
t o t a l l c p u s=12
num cpus=1
f o r i in $ (seq 0 $ (($ t o t a l c pu s − 1)))
do

i f [$ i −ge $num cpus]
then

echo 0 | t e e / sys / dev i c e s / system/cpu/cpu${ i }/ on l i n e
e l s e

echo 1 | t e e / sys / dev i c e s / system/cpu/cpu${ i }/ on l i n e
f i

done
insmod netmap l in . ko
insmod ixgbe . ko
#wake up i n t e r f a c e in promisc mode
#d i s ab l e pause n ego t i a t i on and o f f l o a d s e t t i n g s
. . .
#con f i gu r e IRQ a f f i n i t y as with p l a i n ixgbe
. . .
t a s k s e t −c 0 . / pkt−gen − i eth1 −f rx

Listing 10: netmap usage example

The version of PFQ, used is the 3.7. First we install the pfq driver and then the custom
version of ixgbe setting the desired amount of queues, which is set to 2 in the example shown
in Listing 11. We must then wake up the interface, disable pause frame and offload setting and
set interrupt affinity, just as shown before in Listing 7. To receive packets from eth1 using
two queues with the right CPU affinity, we run the pfq-counters sample application. This
application allows to instantiate different socket groups, each receiving all or a fraction of the
traffic assigned to a certain interface. Those groups must be defined with their CPU binding via
the -t parameter with the following syntax: sock id.core.iface[.queue.queue...]. Where
core is the CPU in which the thread receiving this socket’s traffic will be executed, this core
should be mapped not to collide with those configured to run the interface’s interrupt code. Note
that if no queues are specified, the traffic from all queues belonging to the specified interface will
be processed.

modprobe ioatdma
modprobe dca
nqueues=2
pfq−load −q $ −c pfq . conf
#wake up i n t e r f a c e in promisc mode
#d i s ab l e pause n ego t i a t i on and o f f l o a d s e t t i n g s
. . .
#con f i gu r e IRQ a f f i n i t y as with p l a i n ixgbe
. . .
co re=$nqueues
pfq−counter s −c 1514 −t 0 . ${ core } . eth1

Listing 11: PFQ usage example

We used version 1.6.0r2 of Intel DPDK. As mentioned in the previous section, DPDK uses
hugepages in order to gain performance, so the user must boot their system with the proper
hugepages options. The example shown in Listing 12 allocates 4 hugepages each of 1 GB. Note
that hugepages are evenly distributed between the different NUMA nodes of your system, which
in our case means two hugepages per node. After booting the system, a hugetlbfs must be
mounted for use by DPDK-based applications. Once the user has compiled DPDK’s driver, both
the system’s uio and the compiled igb uio.ko drivers must be loaded in that order. Intel’s

32

documentation encourages DPDK users to disable CPU frequency scaling governor in order to
avoid performance losses due to power saving adjustments. Listing 12 shows a way of disabling
it. Finally, the testpmd application is executed in interactive mode. Its invocation requires a
large set of parameters which includes CPU affinity masks, queue configuration, the number of
hugepages and mount point, number of memory channels, ... After properly launching testpmd,
we must set the rx-only mode and give the capture start order.

add to the grub boot l i n e o f your ke rne l
. . . d e f au l t hugepage s z=1G hugepagesz=1G hugepages=4
mount −t huge t l b f s −o page s i z e=1G, s i z e=4G none /mnt/huge

modprobe uio
insmod i gb u i o . ko
#proper ly s e t CPU’ s s c a l i n g governor
f o r g in / sys / dev i c e s / system/cpu/∗/ cpuf req / s c a l i n g gov e rno r
do

echo performance >$g
done
. / testpmd < . . . parameter l i s t . . . >
testpmd> s e t fwd rxonly
testpmd> s t a r t

Listing 12: Intel DPDK usage example

Finally, we have used the version 4 of the HPCAP capture engine. This solution comes
with a configuration file that the user may edit to change the engine’s settings. A complete
documentation of this file can be found in HPCAP’s github repository. Once the parameters
have been properly set, the user launches the install hpcap.bash script which compiles the
code, installs the driver, and configures the interface settings (interrupt affinity included). After
running the installation script, users can use the hpcapdd sample application to receive traffic
from the network, as shown in Listing 13. This application receives both the interface and queue
indexes to receive traffic from (in the example, the application will receive traffic from interface
hpcap0’s queue 0). The third argument is a directory path the program will write the incoming
traffic to, but a null value means that nothing will be written (packets will only be captured
from the network). CPU-affinity scheduling must be done with the taskset command. In our
example, the hpcapdd application was scheduled in core 1 because the kernel-level thread was
being executed in core 0 (which was set in the configuration file).

. / i n s t a l l h p c ap . bash
t a s k s e t −c 1 . / hpcapdd 1 0 nu l l

Listing 13: HPCAP usage example

7 Use cases of novel capture engines

Thus far, we have reviewed the first three layers of commodity high-performance network systems,
NIC, driver and framework, paying special attention to the combination of the last two in a
capture engine. In this section, we turn our attention to the upper layer: the final services or
applications that are built on top of such engines.

Although the optimization of network drivers and capture engines is required to reach high
performance, it has been shown to be insufficient in a final system [65]. In other words, if
the high-level application is not capable of processing all traffic captured and provided by the
capture engine, then we will only have shifted the bottleneck to the upper layer and we will
not have solved the problem. Thus, regardless of the capture engine chosen to capture packets,

33

application developers must follow ideas equivalent to those presented in Section 3.2: memory
pre-allocation and reuse [66], tailored memory structures [67], exploiting inherent parallelism [68]
and affinity-aware planning [61].

Table 4: Summary of the performance and characteristics of a set of high-performance network
applications using commodity hardware

System Name Category Capture Engine Application Throughput Comments

PacketShader [21] PacketShader

IPv4 forwarding 39 Gb/s

Packets of 64B
Software IPv6 forwarding 38 Gb/s
Routers OpenFlow Switch 32 Gb/s

IPSec gateway 10.2 Gb/s

Ad-hoc version Software
netmap IPv4 forwarding 6-8 Gb/s Packets of 64B

Click router [66] Routers

MIDeA [68] NID Snort NID
7.2 Gb/s Packets of 1500B

PF RING Below 2 Gb/s Packets of 200B
5.7 Gb/s Real traces

Szabó et al. [69] Traffic classification
DPI

6.7 Gb/s Real tracesPF RING Connection pattern
Port based

Santiago et al. [70] Traffic classification PacketShader Statistical classification 10 Gb/s Packets of 64B

hpcapdd [50] Monitoring HPCAP Packet storage 10 Gb/s Packets of 64B

ffProbe [71] Monitoring PF RING DNA Netflow construction
10 Gb/s Packets of 500B
7 Gb/s Packets of 60B

VoIPCallMon [67] Monitoring HPCAP VoIP tracker 10 Gb/s Codec G.711

Blockmon [72] Monitoring PFQ
Heavy hitters 3.8 Gb/s
SYN flooding 5.5 Gb/s
VoIP anomaly 10 Gb/s Codec G.711

We have found in the literature a number of final systems whose high performance is achieved
by applying the techniques exposed along this tutorial. The rest of this section is devoted to
survey them. Such survey may serve as the state-of-the-art bounds that any novel application
should overcome to be of interest. Moreover, we believe the service examples reviewed may
awaken new ideas and utilities in both the research community and practitioners. Table 4
summarizes the performance and characteristics of some of these applications as described by
their authors. Through being based on commodity hardware, their costs are less than a few
thousand dollars, apart from the cost of the common 10 Gb/s NICs.

Importantly, we note that some approaches are based on systems whose first step lies in the
distribution of the load between several subsystems or clusters [73]. These subsystems may also
work in isolation but at a lower rate. Thus, in order to show a fair performance comparison,
we include the results for isolated systems instead of sets of distributed ones. Note that, in
all cases leveraging an external traffic splitter (at higher cost) or with ad-hoc traffic balancing
schemes, the load could be distributed over different machines to increase overall performance
nearly linearly.

34

7.1 Software Routers

The use of commodity hardware to perform high-speed tasks started with the significant increase
in popularity achieved by software routers in recent years. Software routers present some inter-
esting advantages with respect to hardware-designed ones, essentially cost and flexibility. This
increase has been strengthened by multiple examples of successful implementations and by the
appearance of GPGPUs [74] which multiply the parallelism between processes while the cost
remains low.

The authors of PacketShader [21], as stated in Section 4, developed their own network ap-
plications with both novel and optimized packet capture characteristics, but, in fact, their final
target was to develop a software router able to work at multi-10 Gb/s rates. To this end, they
proposed to move the routing process from the CPU to GPGPUs, where hundreds of threads can
be executed in parallel. As most software routers operate on packet headers, the use of GPGPUs
and parallel threads fits perfectly. Therefore, it is intuitive to bind each received packet to a
thread in a GPGPU, multiplying the capacity of the router by the number of concurrent threads
in each GPGPU. The results are astonishing given the use of commodity hardware and software
solutions. IPv4 forwarding service achieves a throughput of 39 Gb/s with 64 byte packets, and
even better results for larger packet sizes in a unique machine. The results for IPv6 forwarding
are only slightly lower: 38 Gb/s. In addition to IP routing, the authors also evaluated the per-
formance of their approach working as an OpenFlow Switch and an IPSec gateway. The results
show that they are able to switch at 32 Gb/s, and they obtained a throughput of 10.2 Gb/s for
IPSec overcoming commercial solutions.

Similarly to PacketShader’s approach, the authors that proposed netmap illustrated their en-
gine’s functionality with a router software application [66], specifically, a Click Modular Router
developed about fifteen years ago [65]. Conversely to PacketShader system, they neither use
GPGPUs to parallelize tasks nor any further code optimization, thus the performance at application-
level was lower, about 2 Gb/s with 64 byte packets although the capture engine worked at much
higher rates. However thanks to this road block in the study of capture engines, they found that
the capacities these novel devices achieved was far superior to many of the applications developed
decades ago. In the specific case of Click, the authors pinpointed that the process of allocating
memory in the C++ code was not ideal. In the original version, two blocks of memory were
reserved per packet: one for the payload and another for its descriptor. However, this was not
necessary as the memory can be recycled inside the code to avoid the allocation of new blocks
and using fixed-size objects. The improvement ranges between 3x and 4x depending on the size
of the batches, which represents a significant gain.

7.2 Network Intrusion Detection (NID) Systems

NID has become one of the most active research topics in the field of monitoring given its
importance in network security. There are essentially two approaches to implement NID systems:
those based on identifying (anomalous) characteristics of the traffic (for example, the distribution
of port numbers’ popularity) and those related to Deep Packet Inspection (DPI), which basically
consists in searching for a given signature in the traffic payload. While the former typically
results in faster speeds, the use of DPI approaches tends to be more accurate.

The authors in [68] evaluated this latter option proposing a full software implementation
(called MIDeA) based on the PF RING as capture engine. As application, they present a pro-
totype implementation of a NID system based on Snort, the de facto standard software for this
purpose, which includes more than 8,192 rules and 193,000 strings for string matching purposes.
Similar to the previously explained PacketShader application, the key to its implementation is
the use of GPGPUs. Especially, they optimized the way the application loaded data from/to the

35

GPGPU by adjusting data transfers to multiples of the minimum size for memory transaction on
the GPGPU used. The results show that their system is able to achieve 7.2 Gb/s for synthetic
traces in the ideal scenario of 1,500 byte packets. This represented an improvement of more than
250% over traditional multi-core implementations. However, the performance remains below 2
Gb/s in the case of packet sizes of 200 bytes. While this presents a significant reduction, it is
worth noting that the average Internet packet size is clearly larger than such 200 bytes. In fact,
when the system is evaluated with real traces, it achieves rates of 5.7 Gb/s.

7.3 Traffic Classification Technology

Traffic classification technology has gained in importance in recent years, as it has proved useful
in tasks such as accounting, security, service differentiation policies, network design and re-
search [75]. Since its inception to date, the research community has paid special attention to
improving the accuracy of this technology, but it has not been until recently that the evaluation
of their performance has gained relevance. Thus, some of the most accurate mechanisms have
seen that their execution on high-speed networks is hardly likely. This has increased the interest
in mechanisms to reduce the application burden required by classification. These mechanisms are
essentially DPI and Machine Learning (ML) tools [76], once port-based classification has been
ruled out because of the widespread use of random port numbers by P2P and VoIP applications.

In this regard, the authors in [69] show a system to classify traffic by leveraging both DPI
and connection patterns (i.e., analyzing the interaction in terms of number of connections or
ports involved in inter-host communications). The capture engine is implemented as a part of
the system, but its foundations are equivalent to PF RING. To deal with PF RING’s packet
rates, the authors also exploit the parallelism provided by GPGPUs. In this case, the authors
pay attention to the fact that GPGPUs’ fast-cache memory tends to be too small to allocate
the state machines that their traffic classification system requires. Thus, the authors propose
to implement such state machines using the Zobrist hashing algorithm. Basically, this reduces
memory requirements of state machines, which enables their allocation in cached memory. The
throughput achieves a rate of 6.7 Gb/s with real traces —packet sizes of approximately 500 bytes.
Again, this example shows that adapting applications to the capacities of novel hardware, in this
case GPGPUs, is an essential step in obtaining the best performance.

The authors in [70] present a software-based statistical traffic classification engine that ex-
ploits the size of the first few packets of every observed flow. The application uses PacketShader
as the packet engine. Unlike the previously explained application proposed in [69], this classifica-
tion engine is not based on the utilization of GPGPUs, but runs only on commodity multi-core
hardware. In addition to the use of PacketShader as capture engine and the lightweight sta-
tistical technique as classifier, the remarkable classification rates achieved are made possible by
a careful tuning of critical parameters of both the hardware environment and the software ap-
plication itself. In particular, the proposed system properly sets memory and CPU affinity of
different threads composing it, processes packets in a batch-oriented fashion (replicating batch
processing ideas from PacketShader at user level), reuses memory structures for flow storing,
exploits multi-core parallelism overlapping the different tasks (namely, reception, flow-handling
and classification) while asynchronously communicating them by means of intermediate buffers
(chunk and job rings). The system achieves wire-speed classification in the worst-case scenario
of 64 byte packets (10 Gb/s and even reaches 20 Gb/s when using two 10 GbE NICs and real
traces (average packet size about 750 bytes).

36

7.4 Other monitoring tasks

The authors in [50] dig into the most intuitive service to build over a packet capture engine,
packet storage in non-volatile drives. They present an application named hpcapdd, that running
on the HPCAP engine that is able to store packets in commodity hard-drives at 10 Gb/s rates
for all packet sizes. The contributions of this application are to exploit affinity by automatically
executing threads in the same NUMA node, accessing hard drives to store packets as a stream of
consecutive bytes instead of following a packet-by-packet fashion and using a huge intermediate
buffer to handle the irregular throughput of mechanical hard drives.

ffProbe [71] is an implementation of a NetFlow probe [77], i.e., a probe that constructs a
flow register for any consecutive set of packets sharing header information, e.g. the same IP
addresses, port numbers and layer-4 protocol. These registers typically comprise the number of
packets and bytes. NetFlow has become a fundamental tool for any network manager. ffProbe
runs over the PF RING DNA engine and has been proved to sustain 10 Gb/s rates with packets
of about 500 bytes and rates over 7 Gb/s in the worst-case scenario of minimal packet size. The
keys of the implementation of ffProbe is to leverage the concurrence capacity that PF RING
DNA provides by applying a hash function to packet headers and forwarding each of them to
different concurrent processes. Note that this is possible as all packets comprising a flow share
header fields used to construct flows. Additionally, ffProbe divides the work of constructing
flows, looking for expired ones and the work of exporting to different processes. Due to the use
of prefetching flow and memory caches the total latency is reduced.

The authors in [67] focus their attention on how HPCAP engine may turn out useful to
monitor VoIP networks. They proposed the system, VoIPCallMon, which is able to track IP
calls at aggregate rates of 10 Gb/s assuming codec G.711 with a packet size of 200 bytes. The
heart of this proposal is dealing with the high rates served by bottom layers as well as the fast
construction of flow records. To this end, the authors designed several tailored data-structures
so that after any flow insertion and exportation, the active-flow list remained sorted.

Finally, we mention Blockmon [72,78] which is neither an application nor a system by itself but
a framework to implement monitoring applications bearing in mind flexibility and re-usability,
without losing sight of high performance. For example, reading packets, applying a level-4
filter and exporting a NetFlow registers. The authors leveraged PFQ as capture engine, and
provided several sample applications running on it. Specifically, heavy hitter statistics (flows
whose number of packets or bytes are over given thresholds), SYN flooding detection and VoIP
anomaly detection. The authors do not provide many details of the implementations but report
rates ranging between 3.8 and 10 Gb/s. These figures represent a 15% cut in performance
compared to PFQ’s capture process.

8 Summary, Lessons Learned and Conclusion

The use of commodity hardware on high-performance network tasks has opened an exciting
scenario where even the hardest task can be carried out by a flexible, extensible, adaptable and
even inexpensive system. Examples of these tasks that have been enriched by this novel paradigm
are applications such as software routers, anomaly and intrusion detection, traffic classification,
and VoIP monitoring.

Unfortunately, the process of developing a high-performance networking task on commodity
hardware from scratch may turn out to be a non-trivial process composed of a set of thorny
sub-tasks, each of which presents fine-tuned configuration details. In this light, this work has
aimed at providing practitioners and researchers with a road-map to the exploration of this useful
paradigm.

37

Such road-map can be summarized by means of the following lessons learned and pieces of
advice sprinkled throughout this tutorial:

• Both default NIC drivers and network stack are shown to be insufficient to provide appli-
cation layer with packets at multi-Gb/s rates. Depending on the scenario, bounds can be
as low as 1 Gb/s.

• We have reviewed the main driver and stack limitations, and explained their respective
countermeasures a capture engine should follow:

– Dramatic cost of performing any operation at packet level:
→ Preallocating at driver load-time and reuse of memory during execution time.
→ Increasing packet data’s access time by prefetching its contents while predecessor
packets are still being processed.
→ Carrying out any task over a group of packets, not one-by-one, when possible.

– Serialized access to traffic:
→ Exploiting parallel capacities of modern NICs by assigning a core to each RSS
queue.

– Multiple data copies from the wire to the user-level:
→ Mapping memory kernel regions at user-level.

– Random placement of threads (or processes) across the available processors, leading
to higher memory access latencies and cache inefficiency:
→ Carefully planning the thread-processor pair —threads must allocate memory in a
chunk assigned to the NUMA node on top of which it is being executed.
→ Leveraging CPU and Interrupt affinity by setting both capture and interrupt
threads to the same processor —thus exploiting cached data and load distribution.

– Heavy kernel-to-userspace context switches:
→ Accessing as many packets as possible in a single system call: batches, streams.

• The industry and academia have applied most of these solutions giving rise to different and
prominent off-the-shelf capture engines:

– PF RING DNA, PacketShader, netmap, PFQ, Intel DPDK and HPCAP.

• Practitioners and researchers interested in running applications over commodity hardware
may base their development on one of these engines and skip most of the low-level details.
They may make a decision based on both the additional features and the performance level
offered by each engine.

In terms of features we have identified:

– Different APIs, some of them are similar to de facto standard, libpcap, and socket-
alike.

– Different level of timestamping precision and concurrent application support.

– Different levels of compatibility with 1Gb NICs or NICs different from the Intel’s
82598/82599 —which has become the de facto reference for all approaches.

In terms of performance:

– We have assessed that all engines surpass default NIC drivers and networking stacks’
performance by far.

38

– A certain scenario’s defiance depends on both the available machine’s topology and
the traffic intensity in terms of Mp/s —essentially, the smallest packets are the most
challenging ones.

As take-away messages:

– We have found that PFQ spans several advantages such as flexibility and ease of use.

– PF RING DNA, PacketShader, and netmap achieve full rates regardless of packet size
and low resource utilization even with only one queue.

– HPCAP provides accurate timestamping and enhanced packet storage.

– Finally, Intel DPDK stands out given its extensive compatibility with NICs from
several manufacturers.

• Finally, we remark the success of the explained capture engines by means of real-world
applications, and state their significant state-of-the-art bounds. To illustrate this, we
highlight that contemporary software routers based on commodity achieve rates above 30
Gb/s in tasks such as IP forwarding and OpenFlow switching. Moreover, flow construction,
VoIP monitoring and packet storage applications achieve rates of 10 Gb/s, and even DPI
and Snort-based applications can operate at rates higher than 5 Gb/s.

To conclude, we believe these lessons learned and pieces of advice may serve as a catalyst
for the arrival of new high-performance network applications based on the pair of commodity-
hardware and open software. We hope this also serves to stimulate further ideas and proposals
to face the near and demanding future, paving the way for 40 Gb/s or even 100 Gb/s interfaces.

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive and enriching
comments. This research was carried out with the support of the Spanish National I+D Packtrack
project (TEC2012-33754).

Selected References

[1] J. L. Garćıa-Dorado, A. Finamore, M. Mellia, M. Meo, and M. Munafò, “Characterization
of ISP traffic: Trends, user habits, and access technology impact,” IEEE Transactions on
Network and Service Management, vol. 9, no. 2, pp. 142–155, 2012.

[2] B. Li, J. Springer, G. Bebis, and M. H. Gunes, “A survey of network flow applications,”
Journal of Network and Computer Applications, vol. 36, no. 2, pp. 567 – 581, 2013.

[3] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. Hong, “A flow-based method for
abnormal network traffic detection,” in Proceedings of IEEE/IFIP Network Operations and
Management Symposium, 2004.

[4] M. Mellia, R. Lo Cigno, and F. Neri, “Measuring IP and TCP behavior on edge nodes with
tstat,” Computer Networks, vol. 47, no. 1, pp. 1–21, 2005.

[5] M. Polychronakis, E. Markatos, K. Anagnostakis, and A. Oslebo, “Design of an application
programming interface for IP network monitoring,” in Proceedings of IEEE/IFIP Network
Operations and Management Symposium, 2004.

39

[6] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and
S. Diot, “Packet-level traffic measurements from the Sprint IP backbone,” IEEE Network,
vol. 17, pp. 6–16, 2003.

[7] J. Yu and X. Zhou, “Ultra-high-capacity DWDM transmission system for 100G and beyond,”
IEEE Communications Magazine, vol. 48, no. 4, pp. S56–S64, 2010.

[8] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep packet inspection
using parallel bloom filters,” IEEE Micro, vol. 24, no. 1, pp. 52–61, 2004.

[9] G. Antichi, S. Giordano, D. Miller, and A. Moore, “Enabling open-source high speed network
monitoring on NetFPGA,” in Proceedings of IEEE/IFIP Network Operations and Manage-
ment Symposium, 2012.

[10] F. Yu, R. Katz, and T. Lakshman, “Gigabit rate packet pattern-matching using TCAM,”
in Proceedings of IEEE Conference on Network Protocols, 2004.

[11] C. Meiners, J. Patel, E. Norige, E. Torng, and A. Liu, “Fast regular expression matching
using small TCAMs for network intrusion detection and prevention systems,” in Proceedings
of USENIX Conference on Security, 2010.

[12] Endace, “Packet capture performance evaluation,” 2014, http://www.emulex.com, [15
February 2015].

[13] C. Systems, “Cisco network convergence system,” 2013, http://www.cisco.com/en/US/
products/ps13132/index.html, [15 February 2015].

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

[15] L. Braun, A. Didebulidze, N. Kammenhuber, and G. Carle, “Comparing and improving
current packet capturing solutions based on commodity hardware,” in Proceedings of ACM
Internet Measurement Conference, 2010.

[16] J. L. Garćıa-Dorado, F. Mata, J. Ramos, P. M. Santiago del Ŕıo, V. Moreno, and J. Aracil,
“High-performance network traffic processing systems using commodity hardware,” in Data
Traffic Monitoring and Analysis. Springer Berlin Heidelberg, 2013, ch. 1, pp. 3–27.

[17] L. Rizzo, L. Deri, and A. Cardigliano, “10 Gbit/s line rate packet processing using
commodity hardware: survey and new proposals,” 2012, online: http://luca.ntop.org/10g.
pdf [15 February 2015]. [Online]. Available: http://luca.ntop.org/10g.pdf

[18] S. Alcock, P. Lorier, and R. Nelson, “Libtrace: A packet capture and analysis library,” ACM
SIGCOMM Computer Communication Review, vol. 42, no. 2, pp. 42–48, 2012.

[19] S. Lee, K. Levanti, and H. Kim, “Network monitoring: Present and future,” Computer
Networks, vol. 65, no. 1, pp. 84–98, 2014.

[20] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto, and A. Pras, “Flow
monitoring explained: From packet capture to data analysis with netflow and IPFIX,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[21] S. Han, K. Jang, K. S. Park, and S. Moon, “PacketShader: a GPU-accelerated software
router,” in Proceedings ACM SIGCOMM, 2010.

40

[22] Intel, “82599 10 Gbe controller datasheet,” 2012, http://www.intel.com/content/www/us/
en/ethernet-controllers/82599-10-gbe-controller-datasheet.html, [15 February 2015].

[23] Microsoft, “Receive Side Scaling,” http://msdn.microsoft.com/en-us/library/windows/
hardware/ff567236(v=vs.85).aspx [15 February 2015].

[24] S. Woo and K. Park, “Scalable TCP session monitoring with Symmetric Receive-Side Scal-
ing,” Technical report KAIST, http://www.ndsl.kaist.edu/∼shinae/ papers/TR-symRSS.
pdf , 2012.

[25] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable performance in software
packet-processing platforms,” in Proceedings of USENIX Symposium on Networked Systems
Design and Implementation, 2012.

[26] A. Lucent, “FP3: Breakthrough 400G network processor,” 2014, http://www3.
alcatel-lucent.com/products/fp3/, [15 February 2015].

[27] LSI, “APP3000 Network,” 2014, http://www.lsi.com/products/
mobile-communication-processors/pages/app-network-processors.aspx, [15 February
2015].

[28] Intel, “IXP4XX Product Line of Network Processors,” 2014, http://www.intel.com/p/en
US/embedded/hwsw/hardware/ixp-4xx, [15 February 2015].

[29] NetFPGA, “NetFPGA Project,” 2014, http://www.netfpga.org, [15 February 2015].

[30] Endace, “Endace EMULEX,” 2014, http://www.endace.com/, [15 February 2015].

[31] Cisco, “Network Analysis Module (NAM) Products,” 2014, http://www.cisco.com/go/nam,
[15 February 2015].

[32] L. Zabala, A. Ferro, and A. Pineda, “Modelling packet capturing in a traffic monitoring sys-
tem based on Linux,” in Proceedings of Performance Evaluation of Computer and Telecom-
munication Systems, 2012.

[33] L. Foundation, “NAPI,” 2014, http://www.linuxfoundation.org/collaborate/workgroups/
networking/napi, [15 February 2015].

[34] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in Proceedings of USENIX
Annual Technical Conference, 2012.

[35] C. Schroder, Linux networking cookbook, ser. O’Reilly Media, 2007.

[36] C. Benvenuti, Understanding Linux Network Internals, ser. O’Reilly Media, 2005.

[37] G. Liao, X. Znu, and L. Bnuyan, “A new server I/O architecture for high speed networks,”
in Proceedings of Symposium on High-Performance Computer Architecture, 2011.

[38] A. Papadogiannakis, G. Vasiliadis, D. Antoniades, M. Polychronakis, and E. Markatos, “Im-
proving the performance of passive network monitoring applications with memory locality
enhancements,” Computer Communications, vol. 35, no. 1, pp. 129–140, 2012.

[39] W. Wenji, P. DeMar, and M. Crawford, “Why can some advanced Ethernet NICs cause
packet reordering?” IEEE Communications Letters, vol. 15, no. 2, pp. 253–255, 2011.

41

[40] V. Moreno, P. M. Santiago del Ŕıo, J. Ramos, J. Garnica, and J. L. Garćıa-Dorado, “Batch
to the future: Analyzing timestamp accuracy of high-performance packet I/O engines,”
IEEE Communications Letters, vol. 16, no. 11, pp. 1888–1891, 2012.

[41] W. Su, L. Zhang, D. Tang, and X. Gao, “Using direct cache access combined with integrated
NIC architecture to accelerate network processing,” in Proceedings of IEEE Conference on
High Performance Computing and IEEE Conference on Embedded Software and Systems,
2012.

[42] L. Deri, “Improving passive packet capture: Beyond device polling,” in Proceedings of Sys-
tem Administration and Network Engineering Conference, 2004.

[43] ——, “nCap: wire-speed packet capture and transmission,” in Proceedings of IEEE/IFIP
Workshop on End-to-End Monitoring Techniques and Services, 2005.

[44] L. Rizzo, “Revisiting network I/O apis: The netmap framework,” ACM Queue, vol. 10,
no. 1, pp. 30–39, 2012.

[45] ——, “Portable packet processing modules for OS kernels,” IEEE Network, vol. 28, no. 2,
pp. 6–11, 2014.

[46] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “On multi-gigabit packet capturing
with multi-core commodity hardware,” in Proceedings of Passive and Active Measurement
Conference, 2012.

[47] N. Bonelli, S. Giordano, G. Procissi, and L. Abeni, “A purely functional approach to packet
processing,” in Proceedings of ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, 2014.

[48] Intel, “Intel Data Plane Development Kit (Intel DPDK) Release Notes,” 2014,
http://www.intel.com/content/dam/www/public/us/en/documents/release-notes/
intel-dpdk-release-notes.pdf, [15 February 2015].

[49] V. Moreno, “Development and evaluation of a low-cost scalable architecture for network
traffic capture and storage for 10Gbps networks,” Master’s thesis, Universidad Autónoma
de Madrid, 2012, http://www.ii.uam.es/∼vmoreno/Publications/morenoTFM2012.pdf, [15
February 2015].

[50] V. Moreno, P. M. Santiago del Ŕıo, J. Ramos, J. L. Garćıa-Dorado, I. Gonzalez, F. J.
Gomez-Arribas, and J. Aracil, “Packet storage at multi-gigabit rates using off-the-shelf
systems,” in Proceedings of IEEE International Conference on High Performance Computing
and Communications, 2014.

[51] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies, M. Manesh,
and S. Ratnasamy, “Routebricks: exploiting parallelism to scale software routers,” in Pro-
ceedings of ACM SIGOPS Symposium on Operating Systems Principles, 2009.

[52] M. Krasnyansky, “UIO-IXGBE,” Online. https://opensource.qualcomm.com/wiki/
UIO-IXGBE, 2012. [Online]. Available: https://opensource.qualcomm.com/wiki/
UIO-IXGBE

[53] F. Fusco and L. Deri, “High speed network traffic analysis with commodity multi-core
systems,” in Proceedings of ACM Internet Measurement Conference, 2010.

42

[54] ntop, “Libzero for DNA,” 2014, http://www.ntop.org/products/pf ring/libzero-for-dna, [15
February 2015].

[55] PacketShader, “Packet I/O Engine,” 2012, http://shader.kaist.edu/packetshader/io engine/
index.html, [15 February 2015].

[56] netmap, “The fast packet I/O framework,” 2014, http://info.iet.unipi.it/∼luigi/netmap, [15
February 2015].

[57] PFQ, “PFQ homepage,” 2015, http://netserv.iet.unipi.it/software/pfq, [15 February 2015].

[58] DPDK, “Data plane development kit,” 2015, http://dpdk.org, [15 February 2015].

[59] Intel, “Intel Data Plane Development Kit (Intel DPDK) Programmer’s Guide,”
2014, http://www.intel.com/content/dam/www/public/us/en/documents/guides/
intel-dpdk-programmers-guide.pdf, [15 February 2015].

[60] HPCAP, “High-performance 10G network capture engine,” 2015, http://github.com/
hpcn-uam/HPCAP, [15 February 2015].

[61] V. Moreno, P. M. Santiago del Ŕıo, J. Ramos, D. Muelas, J. L. Garćıa-Dorado, F. J.
Gomez-Arribas, and J. Aracil, “Multi-granular, multi-purpose and multi-Gb/s monitoring
on off-the-shelf systems,” International Journal of Network Management, vol. 24, no. 4, pp.
221–234, 2014.

[62] M.-S. Kim, Y. J. Won, and J. W. Hong, “Characteristic analysis of Internet traffic from the
perspective of flows,” Computer Communications, vol. 29, no. 10, pp. 1639–1652, 2006.

[63] C. Walsworth, E. Aben, k. Claffy, and D. Andersen, “The CAIDA anonymized 2009 Internet
traces,” http://www.caida.org/data/passive/passive 2009 dataset.xml, [15 February 2015].

[64] CAIDA, “Traffic analysis research,” http://www.caida.org/research/traffic-analysis/.

[65] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The Click modular router,”
ACM Transactions on Computer Systems, vol. 18, no. 3, pp. 263–297, 2000.

[66] L. Rizzo, M. Carbone, and G. Catalli, “Transparent acceleration of software packet forward-
ing using netmap,” in Proceedings of IEEE INFOCOM, 2012.

[67] J. L. Garćıa-Dorado, P. M. Santiago del Ŕıo, J. Ramos, D. Muelas, V. Moreno, J. E.
Lopez de Vergara, and J. Aracil, “Low-cost and high-performance: VoIP monitoring and
full-data retention at multi-Gb/s rates using commodity hardware,” International Journal
of Network Management, vol. 24, no. 3, pp. 181–199, 2014.

[68] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “MIDeA: a multi-parallel intrusion detec-
tion architecture,” in Proceedings of ACM Conference on Computer and Communications
Security, 2011.

[69] G. Szabó, I. Gódor, A. Veres, S. Malomsoky, and S. Molnár, “Traffic classification over
Gbit speed with commodity hardware,” Journal of Communications Software and Systems,
vol. 5, no. 3, 2010.

[70] P. M. Santiago del Ŕıo, D. Rossi, F. Gringoli, L. Nava, L. Salgarelli, and J. Aracil, “Wire-
speed statistical classification of network traffic on commodity hardware,” in Proceedings of
ACM Internet Measurement Conference, 2012.

43

[71] M. Danelutto, L. Deri, and D. De Sensi, “Network monitoring on multicores with algorithmic
skeletons,” 2011.

[72] A. Di Pietro, F. Huici, N. Bonelli, B. Trammell, P. Kastovsky, T. Groleat, S. Vaton, and
M. Dusi, “Toward composable network traffic measurement,” in Proceedings of IEEE IN-
FOCOM, 2013.

[73] F. Schneider, J. Wallerich, and A. Feldmann, “Packet capture in 10-Gigabit Ethernet envi-
ronments using contemporary commodity hardware,” in Proceedings of Passive and Active
Measurement Conference, 2007.

[74] J. Nickolls and W. Dally, “The GPU computing era,” IEEE Micro, vol. 30, no. 2, pp. 56–69,
2010.

[75] A. Callado, C. Kamienski, G. Szabo, B. Gero, J. Kelner, S. Fernandes, and D. Sadok,
“A survey on Internet traffic identification,” IEEE Communications Surveys & Tutorials,
vol. 11, no. 3, pp. 37–52, 2009.

[76] T. Nguyen and G. Armitage, “A survey of techniques for Internet traffic classification using
machine learning,” IEEE Communications Surveys & Tutorials, vol. 10, no. 4, pp. 56–76,
2008.

[77] C. Systems, “White paper: Introduction to Cisco IOS NetFlow,” 2012, http://www.cisco.
com/c/en/us/products/ios-nx-os-software/ios-netflow/white-paper-listing.html, [15 Febru-
ary 2015].

[78] M. Dusi, N. d’Heureuse, F. Huici, A. di Pietro, N. Bonelli, G. Bianchi, B. Trammell, and
S. Niccolini, “Blockmon: Flexible and high-performance big data stream analytics platform
and its use cases,” NEC Technical Journal, vol. 7, no. 2, pp. 102–106, 2012.

44

