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Abstract

Many cloud applications (e.g., data backup and
replication, video distribution) require dissemina-
tion of large volumes of data from a source data-
center to multiple geographically distributed data-
centers. Given the high costs of wide-area band-
width, the overall cost of inter-data-center com-
munication is a major concern in such scenarios.
While previous works have focused on optimiz-
ing the costs of bulk transfer, most of them use
the charging models of Internet service providers,
typically based on the 95th percentile of band-
width consumption. However, public Cloud Ser-
vice Providers (CSP) follow very different models
to charge their customers. First, the cost for trans-
mission is flat and depends on the location of the
source and receiver data-centers. Second, CSPs of-
fer discounts once customer transfers exceed cer-
tain volume thresholds per data-center. We present
a systematic framework, CloudMPcast, that ex-
ploits these two aspects of cloud pricing schemes.
CloudMPcast constructs overlay distribution trees
for bulk-data transfer that both optimizes dollar
costs of distribution, and ensures end-to-end data

transfer times are not affected. CloudMPCast mon-
itors TCP throughputs between data-centers and
only proposes alternative trees that respect origi-
nal transfer times. After an extensive measurement
study, the cost savings range from 10% to 60% for
both Azure and EC2 infrastructures, which poten-
tially translates to millions of dollars a year assum-
ing realistic demands.

Index Terms: Cloud Service Providers; Data-
Center MultiCast; Volume Discounts; Heterogene-
ity Discounts.

1 Introduction

The past few years have witnessed an explosion in
the popularity of cloud computing services. A key
advantage of cloud computing is the ability to geo-
distribute data over multiple data-centers, both to
increase availability and reliability as well as pro-
vide lower user latency —low latencies are critical
to business revenues, for example, Amazon esti-
mated every 100 ms of latency costs 1% in sales [1].

There are numerous examples of research efforts
and successful commercial applications that dis-
tribute content across the globe to achieve good
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performance [2, 3, 4, 5]. Netflix is a prominent
example of an application that disseminates its
contents over a Cloud Service Provider (CSP) in-
frastructure to offer on-demand media services.
In addition to significant reductions in latencies,
geo-replication has become important to ensure
high availability despite failures —e.g., for disas-
ter recovery purposes. Further, other applications
including software distribution, virtual machines
cloning, distributed databases, and data warehous-
ing may require geo-replication.

The common denominator of all these applica-
tions is that a large amount of that data must be
disseminated to multiple data-centers. To get a
sense of data volumes involved, consider recent sur-
veys [6] which have shown that more than 77% of
data-center operators run both backup and replica-
tion applications among three or more sites. Fur-
ther, more than half of the interviewed operators
indicated that they had more than a PB of data in
their primary location. Specifically, 70% of the sur-
veyed IT firms have between 1 and 10 Gb/s running
between data-centers, nearly half having 5 Gb/s or
more —i.e., between 330 TB and 3.3 PB a month.
Disseminating these large volumes of data is pro-
hibitively expensive given the high costs of inter
data-center bandwidth [7, 8, 9].

There has been much effort in the research com-
munity directed at studying cost-effective bulk data
transfer over the Internet [10, 11, 12]. Most of
these works are in the context of popular Inter-
net Service Provider (ISP) pricing models which
bill clients based on the 95th percentile of band-
width usage. These works then focus on how to
schedule bulk data transfer so the 95th percentile
usage is not significantly increased. However, the
bandwidth pricing models of public CSPs’ radically
differs from ISPs. Most public CSPs charge clients
a flat cost per byte for traffic outbound from cloud
data-centers. Inbound traffic and intra-data-center
traffic is typically free. Optimization techniques
proposed under the 95th percentile usage model
therefore do not directly apply.

We make two observations about CSP pricing
policies. First, the cost per byte varies widely based
on the source data-center, and whether the recipi-
ent is an internal EC2 data-center, or an external
data-center —e.g., data may be replicated across
multiple cloud providers, or the Cloud and an on-
premise data-center. For example, within Amazon

EC2 infrastructure, the cost per GB ranges from
$0.02 to $0.16 based on the source data-center for
communication within EC2 —prices are more ex-
pensive for external receivers. Second, CSPs often
offer discounts once the outbound traffic of a cus-
tomer in a specific data center exceeds some fixed
threshold over a month. These two observations
open opportunities to define cheaper distribution
trees for multi-point transfers than the trivial one
of sending data from the data-center source to each
of the destinations. First, as pricing costs across
data-centers are heterogeneous, intuitively it would
be cheaper to transmit once from the source to the
lowest cost data-center, and then, retransmit to
other destinations. Secondly, as volume discount
are applied on a data-center basis, concentrating
routes in a subset of data-centers will increase the
likelihood of such discounts being applied.

In this paper, we present a systematic frame-
work, named CloudMPcast, that exploits the
above-mentioned unique aspects of pricing mod-
els of CSPs. CloudMPcast runs in each data-
center of a deployment and works as a routing
planner, that is, it constructs alternative distribu-
tion trees for bulk-data transfer to the trivial so-
lution. CloudMPcast formulates the problem of
finding such a cost-efficient distribution structure
as an optimization problem. The proposed frame-
work both reduces dollar costs of distribution and
ensures that end-to-end data transfer times are not
affected.

We conduct a detailed trace-driven simulation
study using pricing models and bandwidth data
obtained from Amazon EC2 and Microsoft Azure
infrastructures, two of the major CSPs [13]. The
bandwidth data was obtained through measure-
ments of inter-data-center bandwidth between all
EC2 and Azure data-centers. Our results show that
CloudMPcast’s savings range from 10% to 60% for
both Azure and EC2 infrastructures, which poten-
tially translate to savings of million dollars a year.
Our extensive sensitivity studies show the benefits
hold over a variety of data-center and traffic mod-
els. The results also point to the critical impor-
tance of exploiting both volume discounts and het-
erogeneity to work well in a variety of settings.
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2 Related work

The Internet community has proposed several
mechanisms to cut operational expenditures of on-
line service companies many of which may also ap-
ply to CSPs. In contrast to these works, our focus
is on reducing costs of customers of CSPs.

Prior work [14] has pointed out that the cost of
electricity varies with time of day and across loca-
tions, and explored moving computation to data-
centers that are cheaper at a given time. Similarly,
some studies focus on how ISP providers charge
wholesale clients for bandwidth [15]. Specifically,
researchers [10] have proposed to carry out data
backups and other bulk data transfer tasks during
off-peak hours when usage is lower. This approach
was further improved [16] by splitting backup ac-
tivity into chunks and leveraging software defined
networking (SDN).

Several works [10, 11, 12] have designed bulk
data transfer schemes assuming ISPs charge their
clients for bandwidth following a 95th percentile us-
age model. That is, given a time series that repre-
sents the bandwidth used by clients, the bill corre-
sponds to the 95th percentile sample regardless of
traffic at lower percentiles. These works [10, 11, 12]
propose to transfer data when usage is below the
95th percentile as no additional charges would be
incurred. Moreover, the authors in [12] showed
that not only bulk transfers, but also multimedia
content with different quality requirements can be
forwarded over an overlay topology so as to min-
imize the probability of exceeding pre-estimated
percentiles. In contrast, we focus on bandwidth
pricing models employed by CSPs, which are very
different from ISP pricing models [15]. CSPs nei-
ther charge according to the time of day nor fol-
low a percentile charging model, but instead charge
based on the location of source and destination
data-centers, and provide volume discounts.

Trial-and-better [17] is a mechanism to improve
the operation of customers of CSPs. This work
found significant heterogeneity in CPU, network,
memory, and disk performance across instances of
the same VM size, and proposed a mechanism to
exploit this fact. The authors propose to identify
and retain the best performing VMs, and discard
the remaining ones. Thus, customers of a CSP may
reduce the total number of VMs used, and conse-
quently costs, while achieving desired performance.

In contrast, the focus of CloudMPcast is on dis-
tributing data across multiple cloud data-centers
in a manner that minimizes costs.

SPANStore [5] is a geo-replicated storage sys-
tem that seeks to minimize costs for multiple
consistency objectives. Among other techniques,
SPANStore leverages heterogeneity in pricing of
inter-data-center traffic based on source location.
Our work is distinguished by the fact we consider
volume discounts, which we are the first to explore
to our knowledge. In many scenarios where pric-
ing is relatively more homogeneous, use of volume
discounts is critical to ensuring better cost savings.
Volume discounts also ensures greater cost savings
even in scenarios where pricing heterogeneity ex-
ists.

Further, in contrast to SPANStore which tar-
gets latency-sensitive replication, our focus is bulk
transfers, TCP throughputs and transfer times. As
will be shown, CloudMPcast’s ILP formulations are
different and consider minimum bandwidth along a
path rather than the sum of latencies. Our eval-
uations include measurement studies of inter-data-
center bandwidth, and the results will show that
data-centers with lower network costs also exhibit
better network throughput which opens the pos-
sibility to exploit heterogeneity discounts without
impacting performance. Finally, our detailed trace
driven simulations helps to systematically explore
the benefits of pricing heterogeneity and volume
discounts in a variety of scenarios.

3 Problem statement

We begin by explaining how CSPs charge their
customers for data transmissions. We focus on
EC2 and Azure, although most CSPs follow simi-
lar schemes. Next, we detail the opportunities that
users have to reduce their data transfer bills in dis-
tributed and multi-cloud deployments.

3.1 CSP pricing policy for band-
width

CSPs charge their customers for data transfers both
to other data-center and the Internet by counting
the number of GBs each customer transmits per
data-center during a month and multiplying by its
cost. The cost rates are published in the terms and
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Table 1: EC2 and Azure pricing ($/GB on monthly basis) as of 2014. Internal refers to connections
inside EC2. For the rest, the header shows the volume discount thresholds

CSP Data-centers Internal 0/10/50/150/500 TB

EC2

Virginia,California
0.02 0.12/0.09/0.07/0.05

Oregon,Ireland

Tokyo 0.09 0.201/0.158/0.137/0.127

Singapore 0.09 0.19/0.15/0.13/0.12

Sydney 0.14 0.19/0.17/0.15/0.14

SaoPaulo 0.16 0.25/0.23/0.21/0.19

Amsterdam,Ireland · 0.12/0.09/0.07/0.05
Azure California,Virginia

HongKong,Singapore · 0.19/0.15/0.13/0.12

conditions sheets of each CSP. Table 1 shows Azure
and EC2 pricing in $/GB on a monthly basis as of
2014.

The rates depend on the location of the data-
center and on the total volume a customer trans-
mits in a month. The price per GB decreases
as customer volume increases. Transfers within a
data-center or inbound traffic to a data-center is
typically free. Additionally, EC2 makes a distinc-
tion between intra-EC2 traffic and traffic to the In-
ternet. Specifically costs are lower if destination is
another EC2 data-center and no volume discounts
apply here. Azure does not pay attention to des-
tinations and divides its data-centers into two re-
gions according to bandwidth costs. Region 1 data-
centers have lower outbound traffic costs than those
located in Region 2.

The volume discounts are triggered after a given
threshold has be exceeded. These thresholds are 10,
50 (after other 40 TB), 150, and 500 TB for both
providers. We remark that discount applies on a
data-center basis, not on the total traffic generated
by a given deployment.

3.2 Opportunities for customers

The trivial solution for multi-point transfers con-
sists of transmitting from the data-center source
to each of the destinations individually using the
CSP’s infrastructure. Consequently, charges are
the result of summing the transfer cost associated
with each source-destination pair. This transfer
cost for a pair is itself obtained by computing the
product of the total data transmitted and the cost
per GB for that pair.

We point out two opportunities to reduce the

dollar costs incurred by such a trivial approach:
heterogeneity and volume discounts. To illustrate
these opportunities, consider Fig. 1, which depicts a
four data-center topology of an EC2 customer. The
small boxes represent services running in different
data-centers that transmit data between them. The
largest boxes represent a software module or a VM
that runs CloudMPcast which communicates with
other processes in the same data-center for free and
at high rates [18]. The cost for transmitting is het-
erogeneous across data-centers as shown previously.
In this example, Virginia is cheaper than Singapore,
Singapore is cheaper than Tokyo, and Sao Paolo is
the most expensive data-center.

Heterogeneity discount: Assume that an ap-
plication in Tokyo (Node T in Fig. 1) needs to repli-
cate a piece of information of 1 GB to the other
three data-centers. The trivial routing consists of
transmitting once to each of the destinations which
results in a cost equal to three times the pricing for
outbound traffic in data-center T . This is shown in
the left part of Fig. 1. However, consider an over-
lay routing solution where T sends data to Virginia
(V ), and then V forwards to the other two desti-
nations. The cost of this operation is the sum of
transmitting once from T to V and twice the cost
of transmitting the same amount of data from V ,
since V in turn transmits to Sao Paulo (B) and Sin-
gapore (S). As the Virginia data-center is cheaper
than Tokyo, there is a net savings in data transmis-
sion costs. Similarly, assume that now the source
is Singapore and it is not necessary to replicate the
information to Virginia. With the trivial solution,
the costs are twice the cost for transmitting from
S. However, there is another possibility: S may
transmit to V , and then from V to both T and
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US East 
Virginia (V)

South America, 
Sao Paulo (B)

Asia Pacific, 
Singapore (S)

Asia Pacific, 
Tokyo (T)

US East 
Virginia (V)

South America, 
Sao Paulo (B)

Asia Pacific, 
Singapore (S)

Asia Pacific, 
Tokyo (T)

Figure 1: Trivial transfer solution (left) and CloudMPcast’s overlay transfer proposal (right) for an
example deployment

B. This option would be preferable if cost of two
transmissions from Virginia added to the costs of
a single transmission from Tokyo is cheaper than
the costs of a single transmission from Tokyo. This
is indeed the case in EC2. Nodes such as Virginia
which are not a destination but useful in reducing
the costs are often referred to as Steiner nodes as
we discuss in the following section. Note that when
the number of nodes and destinations increases the
opportunities to find discounts also increase. The
alternative solutions are shown in the right part of
Fig. 1.

Volume discount: The other opportunity that
arises from the pricing policies of Azure and EC2 is
related to volume discounts. The idea is to aggre-
gate as much data as possible in a given data-center
in order to achieve further volume discounts for fu-
ture transmissions. Assume a deployment similar
to that shown in Fig. 1 but comprising EC2 data-
centers in Virginia, California, Oregon and Ireland.
These data-centers have the same costs of transmis-
sion. Even in this case, the trivial approach can be
significantly improved upon. Specifically, we pro-
pose to have each source transmit its data to a hub
data-center, which in turn transmits data to other
receivers. By concentrating data in the hub data-
center, volume discounts may be triggered sooner
than with the trivial solution.

Minimizing costs without impacting trans-
fer times: In this paper, we seek to exploit these

two opportunities to reduce costs, but not at the
expense of performance. We consider overlay rout-
ing to reduce costs only if the estimated time to
complete a transmission is equivalent to the time
that the trivial solution requires to transfer to the
same destination. In practice, this means that a
data-center may act as a retransmitter if and only
if the bandwidth between the retransmitter and the
following data-center in a given path is comparable
to the direct bandwidth between the source and the
destination. This ensures that the required time of
transmission is equivalent to the trivial solution We
refer to this problem as multi-point transfers in the
Cloud with reliable transfer times.

4 CloudMPcast

We have developed CloudMPcast, a system that
leverages the opportunities for cost reduction de-
scribed in the previous section. We discuss the dif-
ferent modules of CloudMPcast, and the rationale
behind them in the rest of this section.

4.1 System overview

CloudMPcast is an overlay system that executes
in each data-center of an application deployment,
where each application/tenant instantiates its own
deployment of CloudMPCast. The key component
is a routing planner, which computes the most cost-
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efficient transmission plan (possibly the trivial so-
lution) while observing the transfer time, for any
given application request. Once a transmission
plan is generated, CloudMPcast contacts the other
instances of CloudMPcast in the data-centers in-
volved in the solution to configure the overlay rout-
ing topology.

Each CloudMPcast node monitors the TCP
throughput between itself and other data-centers in
the deployment. CloudMPcast periodically (every
5 minutes) updates its inter data-center bandwidth
matrix using well-known techniques [10, 19] to in-
form computations for future transfers. Our mea-
surements on real cloud deployments (Section 5)
indicate that inter data-center bandwidth is rela-
tively stable over time-scales longer than individual
bulk transfers. However, if significant throughput
changes are detected which indicates that an over-
lay distribution tree previously computed for an on-
going transfer is no longer performing well from a
transfer time perspective, CloudMPcast aborts the
rest of the transfer. The destination data-centers
directly contact the source data-center to obtain
data not yet received. To reduce system complex-
ity, CloudMPcast does not dynamically create al-
ternate overlay distribution plans for an ongoing
bulk transfer.

Since CloudMPcast may forward traffic to hub
data-centers, a potential concern is whether this
may induce network congestion at those data-
centers and wide-area network in general, result-
ing in a reduction in the real throughput. Since
CloudMPcast only manages requests of a given ap-
plication/tenant, the total number of flows man-
aged by CloudMPcast is small compared to the to-
tal number of flows competing for bandwidth in
the network core. Consequently, a TCP flow intro-
duced by CloudMPCast is unlikely to impact wide-
area network bottlenecks [10, 20, 5]. However, in
the unlikely case that this occurs, the adaptation
of the mechanisms above introduced can help to
handle the situation.

It is possible that the VMs corresponding to
CloudMPcast in the hub data-center itself may be
rate limited, resulting in a bottleneck at that VM.
CloudMPCast could deal with this by using larger
sized VMs, or allocating more VMs [19, 21]. In the
limit, CloudMPCast could use separate VMs per
transfer —e.g., separate source VMs in Virginia
could be used for transfers to Tokyo and Singa-

pore. Notice that VM costs are small compared to
the costs of inter data-center bandwidth, and hence
our formulations focus on bandwidth costs.

4.2 Abstraction and formulation

The problem faced by CloudMPcast’s planner when
addressing heterogeneity discounts is related to
the traditional Steiner Tree Problem [22]. Let
G=(V,E ,C) be a graph comprising a set of vertices
V, edges E , and cost per edge C. Given a sub-
set D ∈ V, the Steiner Tree Problem consists of
finding a tree T =(VT ,ET ,CT ) that spans D such
that

∑
CT is minimum. Variations of the Steiner

Tree Problem have been studied by the network-
ing community in the context of Internet multicast.
These problems typically differ from the Steiner
Tree problem in that edges are directed, costs are
not symmetric, and one vertex is considered the
source. Thus given a source s, and a set of destina-
tions D, the multicast problem is to find a subset
of edges S that provide a path between s and each
node in D such that the sum of the costs of edges
in S is minimum. This problem has been proven
to be NP-complete and the existence of an approx-
imation with a constant performance guarantee is
as unlikely as P = NP [22].

Problem: The problem that CloudMPcast
seeks to solve is a specific case of the multicast
problem in which (i) the solution has to guarantee
that end-to-end data transfer times are not affected
with respect to a given trivial solution; and (ii) edge
costs are not fixed as they depend on the volume
of data previously transmitted. Further CloudMP-
cast works on a full mesh network given that there
exists an edge from each data-center to the others.

Definitions: Let Oij denote a direct connec-
tion between data-centers i and j using the CSP’s
infrastructure. Let E2Esd denote an end-to-end-
path between data-centers s and d, i.e., a sequence
of direct connections, Oij , starting at s and ending
at d such that i 6= j, and there are no repeated con-
nections. Then, a distribution tree, DT {s,D,V}, is
defined as a set of end-to-end paths between data-
center s and a set of destinations D, {s,D} ∈ V,
such that for each destination d ∈ D there exists
an end-to-end-path between s and d.

The trivial solution to our problem is one where
the source data-center transfers directly to each
of destinations. Thus, we define the solution to
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the multi-point transfers in the Cloud with reliable
transfer times problem, MPT RT , as any distri-
bution tree such that it offers comparable end-to-
end transfer times to the trivial solution for each of
the destinations. Note that it is possible that the
only solution to this problem is the trivial one.

Let Wd denote the measured bandwidth from s
to destination using the direct connection Osd. A
distribution tree, DT {s,D,V}, is a solution to the
MPT RT problem if for each of the destinations,
∀d ∈ D, the TCP throughput of each link Oij in the
end-to-end path from s to d (E2Esd), is comparable
to Wd. Specifically, we require that the throughput
of Oij is at least α ·Wd, where (0 < α ≤ 1).

Our aim is to find the solution to theMPT RT
that minimizes the cost. We first present an
ILP [23] for the problem assuming only heteroge-
neous costs. Volume discounts are considered in
the next section.

ILP formulation: Let xijd and eij be two
binary LP variables. Then, the formulation to
MPT RT with minimal cost is as follows:

Minimize
∑
i∈V

∑
j∈V

eij · f c(i, j) with respect to e, x

(1)

subject to
∑
j∈V

xijd −
∑
j∈V

xjid = 1, i = s, ∀d ∈ D

(2)∑
j∈V

xijd −
∑
j∈V

xjid = −1, i = d, ∀d ∈ D

(3)∑
j∈V

xijd −
∑
j∈V

xjid = 0, i ∈ V \ {s, d},

∀d ∈ D (4)

xijd ≤ eij , ∀{i, j} ∈ V,∀d ∈ D (5)

αWd · xijd ≤ Lij , ∀{i, j} ∈ V,∀d ∈ D
(6)

xijd ∈ {0, 1}, eij ∈ {0, 1} (7)

where xijd indicates if the direct connection Oij

is used as part of the E2Esd path. Intuitively, if a
given Oij is part of at least one E2Esd ∀d ∈ D, eij
would be one indicating that such Oij belongs to
the DT solution. If Oij is not part of any E2E path,
Oij does not belong to the solution and eij is zero.
f c(i, j) represents the function that returns the cost
per GB taking into account CSP’s pricing policies

for transmitting from data-center i to j. As f c(i, j)
is multiplied by eij in Eq. 1, a cost is added by each
Oij included in the solution. Note that the cost
is only considered once regardless of the number
of E2E paths that include a given Oij . Finally,
Lij represents the TCP capacity as measured by
CloudMPcast’ probe module from data-center i to
j.

Constraints: Constraints (2–4) ensure that
there exists a E2E path between data-center
source, s, and each of destinations d. Constraint (5)
ensures that if at least one pair s-d uses a direct
connection Oij for an E2E path, this connection is
used by the distribution tree, and it will represent a
cost. Constraint (6) ensures that delivery transfer
times per destination are met. Specifically, it en-
sures that if Oij is used as part of an E2Esd path,
its TCP capacity Lij is at least α ·Wd.

4.3 Volume discounts

When volume discounts come into play, the costs
incurred for a given request depend on both the
routing decisions made for prior requests and the
current volume to transmit. Specifically, the cost
per GB may be represented as f c(i, j, B,C,T, Pi)
where B accounts for the traffic volume to transmit,
and Pi is the amount of data sent from node i in the
past. T and C respectively are the volume thresh-
olds for different source and destination pairs, and
the cost per GB for different thresholds. More con-
cretely, Tijt ∈ T denotes the tth threshold interval
in TBs for transmissions from data-center i to j,
and Cijt denotes the per-GB costs for the corre-
sponding threshold levels. As an example, assume
a deployment that involves the two data-centers lo-
cated in Virginia, one of EC2 (i) and the other of
Azure (j). According to Table 1, Tij is (10 50 150
500 ∞) in TBs and Cij is (0.12 0.09 0.07 0.05) in
$.

An optimal solution to the problem with volume
discounts requires knowledge of all future requests,
which is not realistic [24]. Therefore, we propose a
simple greedy heuristic that adapts our solution for
heterogeneity discounts, with a bias towards those
data-centers that have served most traffic in the
past. The rationale behind this approach is that
by concentrating traffic in data-centers that pre-
viously sent more traffic, there may be a better
chance of incurring bulk discounts at some nodes
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in the future.

We propose to add a term to Eq. 1 that repre-
sents this fact. This term g(i) is a weight (between
0 and 1) assigned to i based on how much data i has
transmitted in the past. In particular, we define

g(i) as
(

1− Pi∑
i∈V Pi

)
, which ensures nodes that

sent more in the past (Pi) are assigned a lower cost.
In other words, those data-centers with the lowest
previously transmitted volumes receive a penalty
inversely proportional to its total contribution to
the traffic.

Intuitively, a trade-off exists between choosing an
optimal cost tree for the current set of costs, and
using nodes that may have a better likelihood of
triggering volume discounts in the future. Thus,
we add a parameter to control the importance of
volume discounts, β (β ≥ 0), resulting in a final
term to add to Eq.1 equal to β · g(i). An ade-
quate value of β depends directly on the pricing
policies from CSPs. For scenarios where volumes
discounts are significant, better results would be
achieved with higher β values. Section 6 will study
β parametrization based on an extensive set of real
measurements on both EC2 and Azure.

Thus, the function to minimize (Eq. 1) is re-
placed by:

∑
i∈V

∑
j∈V

eij ·
(
f c(i, j, B,C,T, Pi)

max(f c(·))
+ β

(
1− Pi∑

i∈V Pi

))
(8)

where the first term has been also normalized to
make it easier comparable to the second term (i.e.,
it also ranges between 0 and 1), and the function
cost has changed as it needs to consider the thresh-
olds and previously transmitted volumes.

The resulting f c(·) can be easily and analyti-
cally calculated by assuming requests fall entirely
between two thresholds —i.e., all GBs of a given
request cost the same. This is by far the most
common case as the volume of individual requests
(order of GBs) is typically much smaller than the
thresholds at which volume discounts are triggered
(order of tens to hundreds of TBs). The cost per

GB may then be expressed formally as:

f c(i, j, B,C,T, Pi) =

Cij0 −

|Tij |∑
t=1

(Cij[t−1] − Cijt) ·H(B + Pi − Tijt)


(9)

where H(·) is the Heaviside step function [25]
(H(x) = 1 if x > 0, H(x) = 0 if x < 0), which
helps to decide if a threshold was exceeded (and a
discount applies), or not. If requests are compara-
ble in size to thresholds, the Heaviside step function
can be also used to relate the fraction of a request
that falls into each interval and its cost.

Consider again the example involving an EC2
data-center located in Virginia (i) and an Azure
data-center (j). For the first transmission (Pi is
zero), the cost per GB is Cij0 ($0.12) because ev-
ery term inside the summation of Eq. 9 is zero.
When Pi + B exceeds the first threshold (10 TB),
the summation evaluates to Cij0 −Cij1, which im-
plies a discount of $0.03 ($0.12 - $0.09) on the initial
cost. The same applies when the second threshold
is exceeded. Here, the discounts are ($0.12−$0.09)
and ($0.09 − $0.07) which implies a total discount
of $0.05 on the initial cost. A similar process is
used when other thresholds are exceeded. Finally,
max(f c(·)) is equal to the highest rate per trans-
mitted GB as fixed by the CSP’s pricing policy, in
this example, $0.25.

Note that this heuristic assumes that the relative
cost of data-centers stays the same across different
volume thresholds. That is, if Cijt < Cpqt then
Cij(t+1) < Cpq(t+1) ∀ i, j, p, q ∈ V and 0 ≤ t <
k. We believe this assumption is reasonable. In
fact, all current CSPs that apply volume discounts
including EC2 and Azure (see Table 1) meet this
premise (to the best of our knowledge), as discounts
tend to be a fraction of the original pricing.

4.4 Implementation issues

The implementation of CloudMPCast comprises of
two modules: retransmitter and routing planner.
The former was implemented using raw sockets for
port forwarding. The latter codes the optimiza-
tion problem in Java (Eqs. 1-8) following a matrix
approach and solves the problem using the IBM
CPLEX optimizer. An important consideration is
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Figure 2: Computation time of routing planner

the execution time associated with the planner,
since it must respond to requests for alternative
routes in an on-line fashion. Fig. 2 shows the time
required to solve a request according to the number
of destinations. The measurements were conducted
on a host with a 2.0 GHz Xeon processor, similar
in capabilities to EC2 and Azure medium instance
VMs. The figure shows the mean along with the
upper outliers. Upper outliers are defined as sam-
ples larger than the third quartile plus 1.5 times the
difference between the third and first quartile. The
results show that even for largest requests involving
14 nodes, the execution time is below 500 ms, which
demonstrates the run time efficiency of CloudMP-
cast. The computation time with the planner was
not sensitive to the choice of α and β parameters.

5 Evaluation Methodology

In this section, the methodology used to evaluate
CloudMPcast is described. We begin by describ-
ing our data-center and traffic models, and next
describe how we collected real inter data-center
throughput and latencies.

5.1 Data-center and traffic models

Modeling cloud data-center locations: We
modeled our data-center locations by considering
all available data-center locations with EC2 and
Azure. As of 2014, EC2 and Azure offer eight

and six locations respectively spread over the world.
Fig. 3 shows the location of these data-centers. We
consider a variety of deployments:
• EC2-only and Azure-only: These respectively

consider data-centers corresponding only to EC2,
or only to Azure.
• Azure-subset: This deployment includes the

data-centers of Azure located in Europe and North
America, a common scenario in practice. Note that
in this deployment, pricing is homogeneous across
all data-centers —hence, this scenario helps us to
evaluate the potential opportunities in exploiting
volume discounts even in the absence of pricing het-
erogeneity.
• Multi-cloud: This is a deployment that com-

bines data-centers corresponding to both provid-
ers together. Multi-cloud deployments could be of
interest for customers who seek to increase avail-
ability through use of multiple providers, and have
been suggested as a useful mechanism to enhance
quality of service in some areas of the South Amer-
ica and Asia which are not well covered by a given
CSP in isolation [3].

Modeling source/destination demands: A
key factor that impacts our evaluations is the prob-
ability that different nodes serve as sources, and
the destinations to which data are sent, for any in-
dividual bulk transfer request. We use a random
number of destination data-centers between 2 and
D − 1, where D is the total number of available
data-centers of the deployment, and pick the spe-
cific set of source and destinations following these
models:
• Homog: Both source data-center and data-

centers that serve as destinations are picked at ran-
dom.
• Bias-Src: The probability that a data-center

is chosen as the source node for a given request is
proportional to the popularity of the data-center
region. We base our popularity model on a re-
port [26] that reviewed several cloud traffic trends
by geographical region. In 2012, North America led
the generation of cloud traffic with 469 EB, Asia
Pacific held the second place with 319 EB, West-
ern Europe represented 225 EB and Latin Amer-
ica about 77 EB. For the Bias-Src model, we pick
sources with probability proportional to the mea-
surements above —e.g., nodes in North America
are more likely to be picked as sources.
• Spread-Rcv: In many disaster recovery deploy-
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Figure 3: Multi-cloud testbed deployment

ments, it is desirable to replicate data to data-
centers that are as geographically spread out as
possible to minimize the likelihood of correlated
failures. Consequently, in the Spread-Rcv model,
once the source data-center is fixed, the set of des-
tinations is chosen proportional to the latency be-
tween the source and the possible destination data-
centers —higher the latency, higher the likelihood
of being a destination.

• Hetero: This deployment simply combines the
Bias-Src and Spread-Rcv models.

5.2 Measurements of inter-data-
center bandwidth and latency

To drive the evaluation of CloudMPcast, realistic
data that captures typical inter-data-center band-
width and latency is needed. Such data is not read-
ily available today. To remedy this, we have con-
ducted extensive measurements on EC2 and Azure
(Az).

To measure TCP bandwidth between data-
centers, we started a medium instance VM in each
of eight available locations that EC2 offered. We
chose medium instances as smaller ones showed er-
ratic behavior in terms of inter-network measure-
ments [18]. These instances have compute capacity
equivalent to a 2.0 GHz Intel Xeon processor. Sim-
ilarly, we launched six medium VMs in each of the
locations offered by Azure —each having 2 virtual
cores with a capacity of 1.6 GHz. We actively mea-
sured the TCP throughput between each pair of
data-centers among this total set of 14 data-centers
during one day using Iperf [27]. Measurements were
conducted every hour with each measurement last-
ing two minutes. Fig. 4 depicts the mean through-
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Figure 4: Measured TCP throughput for each pair
of data-centers (in Mb/s)

put in Mb/s for each data-center pair during the
measurement campaign. We also characterized the
variability in TCP throughput over time. Overall,
low variations on the measured throughputs were
found —the coefficient of variation was less than 0.2
for 80% of the paths, and less than 0.43 for all the
paths over the period of measurement. Generally,
those links with high mean bandwidth exhibited
the lowest variability.

Alternating with the bandwidth measurements,
we also measured RTTs by conducting pings be-
tween all pairs of data-centers —needed for the
Spread-Rcv model. Given that Azure blocks ICMP
traffic, we circumvented this by developing a simple
UDP ping server. Fig. 5 shows these measurements
for completeness and comparison purposes.
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Figure 5: Measured RTTs for each pair of data-
centers (in milliseconds)

6 Results

This section evaluates the impact of CloudMPcast
on both transfer times and cost savings. First, re-
sults are presented using the Multi-cloud deploy-
ment that involves 14 data-centers in all EC2 and
Azure locations, and assuming the Homog traffic
demand model. Then, sensitivity results to both
data-center location and traffic demand models are
presented. The bandwidth pricing summarized in
Table 1 is used, and the inter-data-center band-
width and latency are as described previously.

6.1 Impact on transfer times

The use of CloudMPcast alters the dissemination
paths but thanks to its design, it only chooses paths
that can provide equivalent transfer times. To val-
idate this claim, we conducted experiments using
a real Multi-cloud deployment. Specifically, we
started VMs in each of the data-centers under eval-
uation and measure the bandwidth between them
periodically as explained in Section 5. 1000 re-
quests were generated following the Homog model.
Then, for each request, the times required to repli-
cate a 5 GB file using the trivial (direct trans-
mission from the source to each destination) and
CloudMPcast solutions (generated assuming an α
value of 1, which implied transfer times must match
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0.2

0.4
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Figure 6: Impact of CloudMPcast on transfer times

the trivial solution) are measured for each destina-
tion iteratively.

Fig. 6 shows the increase in transfer time with
CloudMPcast. Each point corresponds to the in-
crease in transfer time with CloudMPcast com-
pared to the trivial solution for each destination
in every request. A negative value indicates that
CloudMPcast reduced transfer times compared to
the trivial solution. As shown, the time required
for CloudMPcast is lower in more than 50% of the
transfers. This is because bandwidth using an over-
lay approach can sometimes outperform bandwidth
of direct transfers [28]. While CloudMPcast pro-
poses alternative paths which are at least as fast as
the trivial solution, such alternative paths are often
not only fairly equivalent but also much faster. In
about 40% of the cases, CloudMPcast has similar
performance to the trivial solution – these are cases
in which it is not possible to reduce cost while main-
taining transfer times. Finally, in a small fraction
of cases (roughly 5-10%) transfer time increased —
these cases corresponded to ongoing bulk transfers,
where throughput on some of the links changed
unpredictably during the transfer. However, note
that this latter group not only represents a small
fraction of the total, but also their impact in ab-
solute terms is modest compared to the gain that
more than half of the transfers obtained. Overall,
these results show the effectiveness of CloudMPcast
in ensuring comparable and often better transfers
than the trivial solution.
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6.2 Cost savings with CloudMPcast

The cost savings with CloudMPcast is sensitive to
the amount of data exchanged between each pair of
data-centers, given that volume discounts are trig-
gered at different thresholds. We study the cost
savings in three scenarios: (i) low-volume scenar-
ios where no volume discounts are involved since
data-centers generate less traffic than the first vol-
ume discount threshold; (ii) middle-volume scenar-
ios where each data-center pair exchanges up to
10 TB worth of data. Note that volume discounts
start kicking in these regimes since the total traffic
out-bound from a source data-center (cumulative
over all destination data-centers) may exceed vol-
ume thresholds, especially with CloudMPcast; and
(iii) large-volume scenarios, which extend up to a
regime where all volume discounts have been ex-
ceeded. For each scenario, we generated 100,000
bulk-transfer requests to evaluate savings per sce-
nario. We begin by presenting results with the Ho-
mog and Multi-cloud models. The next section will
extend the study to other models.

Low-volume scenario: Fig. 7 shows the dis-
tribution of the savings ratio for low-volume sce-
narios. Specifically, if TSc

r and CloudMPcastcr are
the costs of the trivial solution and solution with
CloudMPcast for a given request r, we measure the
savings ratio for each request as follows:

TSc
r − CloudMPcastcr

TSc
r

The figure is a box-plot with boxes representing
25th and 75th percentile of cost savings over dif-
ferent runs. The line in the center is the median.
Additionally, the mean is also included. Given
that volume discounts do not apply, note that the
amount of data in absolute terms per request is
irrelevant. We consider different values for α (con-
straint 6), the performance tolerance. With α = 1,
transfer times are required to be the same as (or
better than) the trivial solution. Lower α values
indicate that lower transfer times are acceptable.
The results show that the savings are over 20% even
with α = 1, and grow even higher with smaller α
values. In the rest of the simulations, we use α = 1
unless otherwise mentioned.

Middle-volume/Large-volume scenarios:
We turn our attention to the performance of
CloudMPcast as volumes increase and eventually
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Figure 7: Impact of α on savings ratios in low-
volume scenarios
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Figure 8: Impact of β for different values of average
traffic exchanged between pairs of data-centers

exceed volume discount thresholds. To evaluate
these scenarios, we use bulk-transfer requests
involving 5 GB of data each, which is representa-
tive of scenarios that include the distribution of
MPEG-2 movies or the cloning of small VMs [29].
We stopped the simulation when the average
data exchanged between each pair of data-centers
reached the desired target for each scenario.

Impact of β: We focus on the impact of the
parameter β on the performance of CloudMPcast.
Larger β values tend to bias delivery trees towards
using data-centers that have transmitted more data
in the past, so volume discounts could be triggered
sooner. Fig. 8 shows the aggregate savings ratio for
different values of mean data exchanged between
data-center pairs (1, 5, 10 and 20 TB), for α fixed
to 1. It is worth remarking that 20 TB a month
is equivalent to a constant throughput of about 60
Mb/s between data-centers, not an unreasonable
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Figure 9: Aggregate savings ratio by averaged traffic volume per source and destination, for large (left)
and middle (right) volume scenarios (with α = 1 and β = 0.01)

figure —possibly even a conservative estimate of
real traffic volumes [6]. The aggregate savings ra-
tio for each aggregate is calculated as:∑

r TS
c
r −

∑
r CloudMPcastcr∑
r TS

c
r

Again, TSc
r and CloudMPcastcr are the cost of in-

dividual requests with the trivial solution and with
CloudMPcast respectively.

Choosing small β values shows better perfor-
mance than when β is zero. This is because when β
is zero, CloudMPcast chooses retransmitter nodes
randomly when their costs are the same (e.g., four
EC2 data-centers tie for the cheapest cost, and any
of them may be chosen with equal likelihood). This
tends to distribute traffic uniformly across the re-
transmitter nodes with equivalent costs (subject to
transfer time considerations). Small β values serve
to break the tie and make CloudMPcast aggregate
data towards only one data-center, resulting in vol-
ume discounts being triggered sooner.

For intermediate beta values (0 < β < 0.5) the
savings ratio remains stable, whereas for larger β
values, the savings ratio is small. This is because
the bias to data-centers that have previously trans-
mitted overwhelms the current transmission costs.
A more expensive data-center that sent more of the
initial requests at the start of the simulation would

result in a bias towards it. In the future, our heuris-
tic could be refined to ensure a minimum volume of
traffic has been sent by a given data-center before
biasing traffic towards it. Finally, in deployments
where transmission costs are homogeneous, larger
β values have more benefit (Sec 6.3). In the rest
of the simulations, we have used β = 0.01 unless
otherwise mentioned.

Savings Ratio: Fig. 9 (left) shows the aggregate
savings ratio as traffic volume increases. Interest-
ingly, the savings grows from 35% to about 45% as
total data volume increases. At this latter point,
all the volume thresholds have been exceeded, and
savings are entirely attributable to pricing hetero-
geneity. Fig. 9 (right) shows the savings when the
volume discounts begin to get triggered. The top
curve shows the savings ratio assuming volume dis-
counts. The bottom curve shows the savings ratio
assuming no volume discounts. In this case, the
mean traffic exchanged between data-center pairs
is limited to 10 TB, which translates to an equiv-
alent constant throughput between data-centers of
30 Mb/s.

Several observations can be made. First, while
the savings ratio grows overall with aggregate data,
the trend is neither linear nor monotonic. The
reason is that the trivial solution and CloudMP-
cast incur volume discounts at different times. In
this figure, the vertical dotted lines represent pric-
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Figure 10: CloudMPcast savings in dollar terms as
a function of average monthly traffic between pairs
of data-centers (with α = 1 and β = 0.01)

ing reductions for a data-center because of traf-
fic volumes exceeding discount thresholds for the
CloudMPcast approach. On the other hand, semi-
continuous lines indicate similar pricing reductions
for the trivial solution. Observe that when vol-
umes transmitted are low enough, the savings ratio
with and without volume discounts are the same.
Then, CloudMPcast exceeds the first threshold and
incurs discounts, causing the savings ratio to peak
when the aggregate traffic is about 1.5 TB. Around
that point, the volumes with even the trivial solu-
tion are also sufficient for discounts to apply, and
hence the savings ratio dips slightly. It increases
again when the next volume threshold is reached
with CloudMPCast, and so on. Overall, the re-
sults show that CloudMPCast is very effective in
exploiting discounts.

Savings in dollar terms: Fig. 10 translates
the previous savings ratio into dollars in absolute
terms. It reflects the savings for middle and large
volume scenarios in terms of thousands of dollars
(k$) and millions of dollars (M$) respectively. It
is worth remarking that none of the curves are
straight lines but they have different positive slopes
according to the volume discounts that apply at a
particular moment, although it is not easily appre-
ciated visually. For a constant rate between data-
centers of 10 Mb/s, which roughly equals 3 TB a

month, CloudMPcast can achieve a monthly saving
of about one hundred thousand dollars, driving up
savings to over a million dollars a year. Note that
at transmission rates of 100 Mb/s or 1 Gb/s, not
unrealistic figures, these savings increase by one to
two orders of magnitude which translates into mil-
lions of dollars.

Characterizing data dissemination trees:
Let us drill into the features of the trees and paths
CloudMPcast is proposing. Specifically, we study
how CloudMPcast changes the routing matrices
(utilization of each direct connection) and the dis-
tribution of tree depth (maximum number of hops
from source to any of the destinations for a given
distribution tree) with respect to the trivial solu-
tion. The depth of the distribution trees for the
trivial solution is basically one, as only one hop is
utilized for transmitting directly from the source
to each of the destinations. We illustrate the rout-
ing matrices in terms of variation with respect to
the trivial solution. Specifically, we use a grey
scale such that if a given direct connection has in-
cremented the volume traversing it, the square in
the routing matrix that represents such connection
(source-destination pair) will turn a lighter grey.
Conversely, if the connection has lost importance
the color will be darker. The trivial solution uses
all the connections homogeneously. Hence the ini-
tial color is the darkest grey equivalent to ratio 1
in all the cases. This allows us to visually assess
changes in the importance of a data-center.

Fig. 11 (left) shows the routing matrix assum-
ing no volume discounts. The clearest change from
the trivial solution is that EC2’s data-centers in
Virgina, California, Oregon and Ireland as well as
California in Azure have gained relevance. The
volume traversing the direct connections between
these sources and the total set of destinations has
increased by a factor between 2 and 5. CloudMP-
cast produces longer trees, and concentrates traffic
through a few data-centers compared to the trivial
solution because it is desirable to exploit pricing
heterogeneity by routing data through lower cost
data-centers

When we consider requests over time, Fig. 11
(right), volume discounts apply, and the concen-
tration of traffic becomes even more noticeable.
The California EC2 data-center increases all its di-
rect connections by a factor of 5 or larger, while
other previously popular data-centers in EC2 in-
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Figure 11: Routing matrices for the low-volume scenario (left), and the large-volume scenario (right), in
terms of variation with respect to the trivial solution (with α = 1 and β = 0.01). X axis represents the
source data-center, while Y axis is the destination data-center for all possible pairs of direct connections

frastructure decrease their number of connections.
Similarly, Virginia in Azure has its relevance in-
creased by a factor of 4. The intuition behind this
is that when volume discounts apply, it is cheaper
to choose one data-center as hub to make the most
of the volume discounts.

Fig. 12 shows the distribution trees CloudMP-
cast proposes without (top) and with (bottom) vol-
ume discounts after each data-center has received
50 TB worth of data. In both cases, trees have
higher depth than the trivial solution (depth equal
to one), with the depth being larger than 5 in
some cases. Some of this may be attributed to
the ability of CloudMPcast to lower costs through
deeper distribution trees. Specifically, we ob-
served that many cases of higher depth trees cor-
responded to cases where Azure’s Singapore and
Hong Kong data-centers were the sources. In par-
ticular, (i) transmission from these data-centers to
other Azure data-centers often involved traversing
other EC2 data-centers, given the high transmis-
sion costs from these Azure data-centers, and given
that internal data transfers within Azure are not
charged at a lower rate; and (ii) transmission from
these data-centers to other EC2 data-centers typi-
cally involved traversing the Singapore EC2 data-
center for performance reasons —these Azure data-
centers have good bandwidth to the Singapore EC2
data-center which in turn is well connected to other

EC2 data-centers as shown in Fig. 4.
When volume discounts do not apply, the higher

depth in some cases could be attributed to the op-
timization framework not explicitly favoring lower
depth trees in the case where there are several feasi-
ble and equal cost solutions. For instance, in some
cases trees had a chain of US EC2 data-centers
when an alternative shorter tree may have been fea-
sible with the same cost. This could potentially be
addressed in the future by adding a small bias in
our cost function to favor lower depth trees when
there are multiple equal-cost feasible solutions. In-
terestingly, note that when CloudMPcast consid-
ers volume discounts (even with low values for β),
there is a natural preference for shorter trees since
there is incentive to concentrate traffic through a
small number of hub nodes. That said, paths may
also sometimes increase in length since it may be
desirable to go through a hub node to reach a re-
ceiver data-center which did not previously require
intermediate hops.

6.3 Sensitivity to data-center and
traffic demand models

While previous results have shown the benefits of
CloudMPcast, the evaluation focused only on the
Multi-cloud data-center location and Homog traffic
demand models. In this section we conduct sensi-
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Figure 12: Tree depth distribution in number of hops (identified by colors) per source data-center
(assuming α = 1 and β = 0.01), first for the low-volume scenario (no volume discounts) and then for the
large-volume one (discounts)

tivity analysis to other models. Similar to the ex-
perimental design shown previously, we generated
100,000 new requests per scenario assuming that
each request has a size of 5 GB.

Sensitivity to data-center model: Fig. 13
shows the aggregate savings ratio, as well as sav-
ings in dollar terms, for EC2-only, Azure-only, and
Azure-subset, for both large-volume and middle-
volume scenarios. The X-Axis extends to a larger
value for Azure-only and Azure-subset because
there are fewer data-centers and it takes a higher
traffic volume exchanged between data-center pairs
to exceed the largest threshold for volume dis-
counts.

Several observations may be made. First, 10-
15% cost savings are achieved in the Azure-subset
model. Note that this cost savings arises entirely
from the ability of CloudMPcast to exploit volume
discounts, as in this setting transmission costs are
homogeneous across all data-centers.

Second, the savings ratio of EC2-only (60%) is
higher than with Multi-cloud. This is because the
heterogeneity in costs between EC2 data-centers
is larger than when all data-centers in Multi-cloud
are considered. In addition, Fig. 4 shows that the
cheapest EC2 data-centers are also the most well-
connected, which provides greater optimization po-

tential for CloudMPcast. The absolute dollar sav-
ings is smaller with EC2-only because it has fewer
data-centers. However, the dollar savings is still
significant.

Finally, the savings ratio with the Azure-only
model is lower than with the Multi-cloud model.
This is because pricing in Azure shows less hetero-
geneity across data-centers. Azure divides its data-
centers into two regions with homogeneous pricing
within each region. Further, Fig. 4 shows that com-
munication between the two regions is limited in
terms of throughput. This makes it even more diffi-
cult to find a path that extends across these regions
that fulfills the bandwidth requirements. Neverthe-
less, significant cost savings is still achieved because
CloudMPcast is able to leverage volume discounts.

Sensitivity to traffic demand model: Fig. 14
shows the aggregate savings ratio and savings in
dollar terms for different traffic demand models.
We make several observations. First, the savings
ratio with Bias-Src decreases by about 5% com-
pared to Homog. This is because with Bias-Src, a
greater fraction of requests originate in US data-
centers. These requests do not benefit from pricing
heterogeneity discounts since the transmission costs
of US data-centers are the lowest. However, savings
is still achieved because of volume discounts. Sec-
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Figure 13: Results for data-center location models: EC2-only, Azure-only and Azure-subset (with α = 1
and β = 0.01)

ond, the savings ratio with Spread-Rcv is about 5%
higher compared to Homog. This is because data-
centers which are not as well connected are also
the most expensive opening further opportunities
for discounts. Finally, the performance with Hetero
which is a combination of Bias-Src and Spread-Rcv
is similar to Homog.

Summary: Overall, our results show that
CloudMPcast can achieve significant discounts in
a rich and varied set of scenarios. A key reason is
because CloudMPcast leverages both heterogeneity
and volume discounts.

7 Conclusion and future work

We have presented CloudMPcast, a systematic ap-
proach to constructing multi data-center distribu-
tion trees for bulk transfers. CloudMPcast op-
timizes dollar costs of distribution taking public
cloud charging models into account, while ensur-
ing end-to-end data transfer times are not affected.

Extensive evaluations of CloudMPcast leverag-
ing an extensive set of inter-data-center bandwidth
and latency measurements from both Azure and
EC2 have shown significant benefits. Cost savings
range from 10% to 60% across a wide variety of
scenarios, which translates to millions of dollars a

year. Further, the results also point to the criti-
cal importance of exploiting both volume discounts
and pricing heterogeneity across a variety of set-
tings. This ensures savings can be achieved even
when only one class of discount is applicable —
e.g., Rackspace only offers volume discounts. When
both discounts are applicable, considering them to-
gether provides even better results.

We have primarily designed CloudMPcast from a
cloud customer perspective. However, a CSP may
also benefit from its operation. CloudMPcast for-
wards traffic to lower cost data-centers which may
translate to lower revenue for the CSP. However,
the bandwidth costs incurred by the CSP in these
locations is usually substantially lower as well —
as a result, the profit margins for CSPs tend to be
higher at US and European data-centers [30, 31].
Exploring this issue is an interesting direction for
future work.

While our results are promising, some CloudMP-
cast’s functionalities can be improved. One po-
tential future opportunity for further cost savings
is to consider splitting data along multiple paths.
Each path could potentially have less bandwidth
than the trivial solution, but considering multiple
paths could ensure the overall transmission time
does not suffer. Another opportunity we are explor-
ing is how CloudMPcast can exploit some partial
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Figure 14: Results for traffic demand models: Bias-Src, Spread-Rcv and Hetero demands (with α = 1
and β = 0.01)

knowledge of future requests in a computationally
effective manner, and the impact of this on further
savings. As other future extensions, we also plan to
consider a wider range of applications beyond bulk
transfer, consider pricing schemes of more CSPs,
and consider the impact of changes in current cloud
pricing schemes.
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