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Abstract

The search for availability, reliability, and quality of service has led
cloud infrastructure customers to disseminate their services, contents, and
data over multiple cloud data centers, often involving several Cloud ser-
vice providers (CSPs). The consequence of this is that a large amount
of data must be transmitted across the public Cloud. However, little
is known about the bandwidth dynamics involved. To address this, we
have conducted a measurement campaign for bandwidth between eighteen
data centers of four major CSPs. This extensive campaign allowed us to
characterize the resulting time series of bandwidth as the addition of a
stationary component and some infrequent excursions (typically down-
times). While the former provides a description of the bandwidth users
can expect in the Cloud, the latter is closely related to the robustness of
the Cloud (i.e., the occurrence of downtimes is correlated). Both compo-
nents have been studied further by applying factor analysis, specifically
ANOVA, as a mechanism to formally compare data centers’ behaviors
and extract generalities. The results show that the stationary process is
closely related to the data center locations and CSPs involved in trans-
fers which, fortunately, makes the Cloud more predictable and allows the
set of reported measurements to be extrapolated. On the other hand, al-
though correlation in the Cloud is low, i.e., only 10% of the measured pair
of paths showed some correlation, we found evidence that such correla-
tion depends on the particular relationships between pairs of data centers
with little connection to more general factors. Positively, this implies that
data centers either in the same area or within the same CSP do not show
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qualitatively more correlation than other data centers, which eases the
deployment of robust infrastructures. On the downside, this metric is
scarcely generalizable and, consequently, calls for exhaustive monitoring.
Index Terms: Public Cloud, Inter-cloud, TCP Bandwidth, ANOVA,
Traffic Correlation.

1 Introduction

As an attempt to provide the best quality of service, Cloud service providers
(CSPs), e.g., Amazon EC2, Microsoft Azure, Rackspace, or Google Cloud, have
pointed to the dispersion of their data centers across the world. Such geo-
distribution ensures both high availability and reliability and also reduces the
final users’ latency, given its significant impact in business revenue. For example,
Amazon estimated that every 100 ms of latency costs 1% in sales [1].

There are numerous examples of research and industry efforts that exploit
this paradigm. Netflix is a significant example of an application that dissemi-
nates its contents over a CSP infrastructure to successfully provide on-demand
media services. Similarly, Cassandra [2] or Volley [3] applications deploy over-
lay architectures and distributed services in the Cloud to take shelter from both
network failures and congestion. Moreover, geo-distribution has become a high-
availability and safe way to store/backup data. Dropbox and Google Drive as
well as bank networks are good examples of this. In addition to these examples,
software distributions (such as popular operating system releases), distributed
databases [4], and virtual machine clones [5] also share the task of moving a
large amount of data to be disseminated over different data centers.

Importantly, while in the past the set of data centers where a Cloud cus-
tomer deployed a service or application typically belonged to the same CSP,
nowadays this scenario is becoming less commonplace. The deployment of both
applications and services over different CSPs has proven to be a fundamental
tool for providing the lowest latencies [6] and enhanced robustness [7] in the
Cloud. Essentially, the limitations a particular CSP can present, e.g., spatially
(a poorly covered geographical area) or temporally (a period of malfunction),
can be compensated by others, making multi-CSP deployments a better ap-
proach than their single-CSP counterparts.

To give some representative figures of the importance of traffic between dif-
ferent points of presence, some Internet use surveys [8] have shown that more
than 77% of data center operators run backup and replication applications
among three or more sites, whereas more than 50% ones report over 1 PB
of data in their primary data center. Furthermore, 70% of surveyed IT firms
had between 1 and 10 Gb/s running between data centers, nearly half having 5
Gb/s or more (between 330 GB and 3.3 PB per month).

However, while there has been much effort in the research community di-
rected at studying cost-effective bulk data transfers over data centers in the
public Cloud [9, 10], and the process of Cloud benchmarking has gained in rel-
evance [11, 12, 13], we emphasize that little is known about its bandwidth. In
particular, we refer to general results aiming at the identification of invariants
on this measure [14]. We believe that this lack of studies is due to the difficulties
in measuring bandwidth from a large number of data centers on several CSPs
over a significant period of time. This paper aims at filling this gap.
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We deployed a multi-point-of-presence testbed that included eighteen data
centers spread over four major CSPs, and measured the TCP bandwidth of
all the paths between them. We noticed that bandwidth in the Cloud can be
modeled by a principal Gaussian component and some infrequent excursions.
We related two such behaviors to a stationary process that represents the typical
state of a path, and a peak/downtime process that represents times when a
path behaves unusually. The characterization of the stationary state allows us
to answer questions related to what a user can expect of Cloud performance.
Meanwhile, the study of unusual behaviors allows us to delve into the robustness
of the Cloud. That is, bad performance at one data center can be alleviated by
regular behavior from another; in other words, if the Cloud is correlated.

We apply factor analysis on these two components with factors such as the
time of the day, the day of the week, the geographical area in which data cen-
ters are located, the CSP to which they belong, and the specific data centers
involved in the measurement of a path. While the latter factor accounts for the
peculiarities each data center or data center pair can have on behavior, other
factors allow us to find generalities to explain the phenomenon; for example,
how much of the bandwidth can be explained because a data center belongs to
a given CSP, depending on the time of day. Similarly, when we study down-
times, such factor analysis shows whether data centers either in the same area
or within the same CSP change their performance in unison, or whether per-
formance changes in data centers individually. This exerts a clear impact on
how to geo-distribute a deployment in the Cloud. For example, should all data
centers decrease their performance at the same time, availability would be at
risk; but if only data centers’ performance with a specific CSP or in a specific
area dip simultaneously, reliability can be found through other CSPs or areas.

In particular, we have applied the analysis of variance (ANOVA) as factor
analysis. Interestingly, it shows that the stationary behavior of a path between
data centers in the Cloud depends strongly on the CSP and the areas of the pair
(source/destination) of data centers involved, and depends qualitatively much
less on other factors such as the particular pair of data centers involved. This
supports the generalization and extrapolation of the results shown herein, and
even the use of smarter monitoring systems [15]. Similarly, other factors such
as the time of day and the day of the week only showed moderate significance.
That is, the Cloud is mostly insensitive to the time with some expanded capacity
during weekends, providing a clear conclusion as to the impact on scheduling of
bulk transfers in the Cloud [16].

On the other hand, we found no evidence of additional correlation of the
bandwidth time series within areas or CSPs. In general, time series are weakly
correlated and such correlation is only marginal, as explained by location and
CSP factors. In this way, the correlation exhibited by some paths is mostly
the result of particularities of the data centers involved. This points at sim-
pler Cloud deployments, as data centers in the same area or within the same
CSP may contribute in the search for availability and reliability equivalently to
distant nodes of other CSPs. Unfortunately, this also implies that the general-
ization of this metric is challenging, as similar data centers behave differently,
which calls for exhaustive and fine-grained monitoring.

We believe that a better understanding of the bandwidth dynamics in the
Cloud is useful for most of the players in the Internet arena. For CSPs, as we
provide them with a fair comparative description of bandwidth performance.
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Also for practitioners, as they can find the description of the regular perfor-
mance of the Cloud as a mechanism to choose between CSPs, areas and data
centers when updating their deployments as well to plan future ones (for exam-
ple, as parameter inputs for novel Cloud simulators [17]). And, importantly, the
factorial study allows them to both understand why certain performance was
achieved and estimate what can be expected if they modify their deployments.
Similarly, conclusions about correlations can enable them to make better deci-
sions in terms of both robustness and cost. Finally, for the research community,
we believe that this work represents a further step along the path of character-
izing the Internet, a task initiated by institutions such as RIPE and Caida years
ago. For our part, we focus specifically on an important fraction of the Internet,
the traffic within the Cloud (i.e, the wide-area traffic between CSPs’ premises
within the public Cloud, or, in other words, inter-cloud traffic), remarking on
invariants that potentially lead to new models and ideas.

The rest of this work is organized as follows: Section 2 presents the foun-
dations of the paper, including our testbed and how we measure and model
bandwidth time series in the Cloud. Sections 3 and 4 present the core results
of this work, where stationary and downtime processes are both described and
discussed. Section 5 is devoted to a review of related work, and, finally, Sec-
tion 6 concludes this paper by remarking on the main conclusions and pointing
out some lines of future work.

2 Preliminaries

The goal of this section is to achieve a comprehensive characterization of Cloud
bandwidth and its dynamics. In this light, the first two practical questions
we pose are, first, for how much time a path between two data centers must
be measured to obtain a significant sample of bandwidth; and, second, how to
formally compare a number of bandwidth time series paths. Let us first explain
the testbed used to answer these questions.

2.1 Testbed

We borrowed the approach presented in [18] and [19] where some virtual ma-
chines (VM) were started and measurements were gathered between them.
Specifically, the authors in the former studied four CSPs, namely, Amazon EC2,
Microsoft Azure, Rackspace Cloud, and GoGrid (the germ of Google Cloud).
As of 2010, this set of CSPs comprised the two most popular ones and two
promising newcomers. Currently, they have become the four dominant players
in the Cloud arena [20]. In this work, the authors referred to CSPs as C1 · · ·C4
instead of using their names in an attempt to keep the focus on the conclusions
rather than on very specific values. Following such approach, we study these
same four major CSPs and use equivalent name terminology.

Specifically, in this set of CSPs, we started a VM in each of their eighteen
data centers available at 2015, Fig. 1 places such data centers. Table 1 details
different features (CSP, geographical area, and data center name) for each of
them. In what follows, such features will be used as explanatory factors for
bandwidth phenomena in the Cloud.
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Figure 1: Multi-CSP and multi-data-center testbed deployment.

Table 1: Description of data centers under study.
CSP Abrv. Geo. area Data center name

Amazon C1

Eastern US VirginiaC1

EC2

Western US CaliforniaC1

Northern Europe IrelandC1

East Asia SingaporeC1

Australia SydneyC1

South America Sao PauloC1

Microsoft
C2

Eastern US VirginiaC2

Azure

Western US CaliforniaC2

South America BrazilC2

Northern Europe DublinC2

East Asia SingaporeC2

Rackspace
C3

Eastern US VirginiaC3

Cloud

Northern Europe LondonC3

East Asia Hong KongC3

Australia SydneyC3

Google
C4

Central US IowaC4

Cloud
Northern Europe BelgiumC4

East Asia TaiwanC4

To automate the process of monitoring the bandwidth between data centers,
we developed CloudB: a scheduler and wrapper of other testing tools for Unix
systems. In particular, it executes a set of provided tools with configurable
duration and frequency between a list of IP addresses received as input. CloudB
creates scripts for each testing tool observing the particular parameters for each
of them. Then, it configures the task scheduler (UNIX’s cron) with the requested
frequency, and an auxiliary script to stop the tools execution according to the
requested duration. CloudB has been successfully used with tools such as iPerf,
hping3, wget, and Paris traceroute.

As we are interested in measuring bandwidth, our key measurement tool is
iPerf [21]. It is a well-tested software program to measure the TCP1 bandwidth
between two nodes. Note that iPerf measures the TCP bandwidth and not the
maximum capacity of the infrastructure [23]. This ties in with our approach to
unveil the capacity a user can effectively achieve in the Cloud.

In measuring TCP bandwidth in a wide-area sense, both TCP flow-control
and VM networking capacity (multiple tenants sharing a physical interface of a
limited capacity) can act as undesirable bottlenecks for the goal of measuring

1Specifically, TCP Cubic as the default flavor for Unix-based operating systems beyond
kernel 2.6.19, 2006 [22]
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the Cloud capacity itself. Both [18] and [19] studied the former bottleneck. The
send and receive windows sizes are set to 16 MB as larger window sizes did
not result in higher measurements. Our initial tests confirmed this threshold as
satisfactory.

The later bottleneck has not received so much attention as bandwidth out-
side data centers’ infrastructure was supposed to be lower, at 1 Gb/s (often
the virtualized VM-interface capacity for medium or large instances, but not
necessarily for the best available VM flavors). Our initial tests suggested that
this assumption is valid and, consequently, the VMs in our testbed were con-
figured with at least 1 Gb/s of dedicated network capacity. The specific names
for the flavors of VM used vary from one CSP to another (i.e., t2.xlarge in C1,
A3 in C2, General1-8 in C3 and n1-standard-8 in C4), for further details we
refer the reader to CSPs’ datasheets. Otherwise, the total budget may reach
prohibitive figures, as allocating better VMs (the best ones can even include
hardware such as FPGAs) represented a cost increase. In fact, the measure-
ments gathered throughout this paper have already incurred a cost of several
thousands of dollars.

However, in such tests, we observed a few samples for a few paths were
relatively closer to 1 Gb/s (but still several dozens of Mb/s below 1 Gb/s). For
these cases, it is difficult to conclude if the measurements were limited by the
TCP congestion control on the Internet (as desired), or by congestion on the
virtualized VM interface. As a precaution against the latter, those paths with
samples over 800 Mb/s were measured again with VMs resized by a higher level.
Although it is worth remarking that these paths were less than 3% of the total
number of paths. Specifically, this was done for an additional week after the
measurement campaign was carried out.

The differences in the measured bandwidths were marginal (even, slightly
better for cheaper units [19]). Later, the full measurement campaign confirmed
this point (Section 3.1). That is, the conclusions of the forthcoming analysis
did not change and the parameter estimates only varied in the least significant
digits. Therefore, suggesting that our testbed is adequate for our purposes and
that our initial concerns were excessive.

2.2 How to measure the bandwidth of a path

As TCP bandwidth oscillates with time, we focus on the duration of the pro-
cess of gathering a bandwidth sample. In our extensive testbed, we started
by measuring the TCP bandwidth between 100 randomly-chosen paths (this
helped to keep the cost of the measurement campaign at reasonable figures).
The duration was 15 minutes with 1-second granularity which could represent
a download of 100-10 GB at a 1 Gb/s-100 Mb/s rate, which ties in with our
scenario. Fig. 2 shows the results for four representative behaviors with 95%
confidence intervals for the mean. They are representative in terms of spanning
diverse coefficients of variation (CV) [24] for the bandwidth time series. The
figure depicts CVs ranging from 0.09 to 0.46 (minimum and maximum values)
and two intermediate examples.

Intuitively, the larger the CV, the more the duration of measurement must be
aggregated. Fortunately, Fig. 3(a) proves that CVs tend to be small. Essentially,
the empirical cumulative distribution function (ECDF) shows that all samples
are below the rule-of-thumb threshold of 0.5 for significance of the mean, and
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Figure 2: Examples of bandwidth time series behaviors according to their CV.
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Figure 3: CV and duration for measuring bandwidth of paths.

more than 80% of the paths are below 0.2. This indicates that most of the
paths’ behaviors resemble the first examples.

Let us consider how this translates to time. Note that we seek the smallest
interval of time (inter-cloud bandwidth is not cheap) that still provides a signif-
icant sample of the bandwidth a transfer achieves in the Cloud. By a transfer
in the Cloud, we refer to tasks such as those carried out by backup and repli-
cation, distributed storage and search-indexing, or VM cloning among others
tasks as the previous section remarked. In this light, to estimate the error in a
shorter measurement, we consider as the ground-truth bandwidth of a sample
its average throughput after the total duration of the measurement (as stated
before, 15 minutes of aggregation).

In this way, Fig. 3(b) shows the error ratio per path as the difference between
the average throughput after N seconds of aggregation (horizontal axis) and the
average after 15 minutes. We use a progressive gray-scale where ratios larger
than 0.25 are completely black. Assuming a ratio error threshold of 0.1-0.05, we
note that more than 50% of paths needed more than one minute worth of data.
Roughly 20% of paths required more than 200 seconds, and after 300 seconds
only 5% of samples still showed ratios over 0.1 but were, in any case, below
0.15. As a trade-off between time aggregation and cost, we deem 5 minutes to
be a good compromise. For the sake of completeness, we decided to compare
the results using the median [25] instead of the mean. The results showed
differences bounded by variations of 5% after 5 minutes of aggregation, making
both metrics equivalent in practical terms.

2.3 How to model paths’ behavior

To tackle the comparison of the bandwidth time series by means of a model,
we measured another set of 100 randomly-chosen paths. This time, over three
working days every other 15 minutes for 300 seconds, which translates into 288
samples in each time series. Fig. 4 illustrates with representative examples the
four different patterns of behavior we found. Specifically, it shows the empirical
probability density function for the samples that make up the bandwidth time
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Figure 4: Examples of bandwidth time series behaviors.

series (after a Gaussian kernel softening process [26]).
The common denominator of all of these is a clear main component that is

fairly Gaussian [27] with slightly negative skewness. Roughly 60% of the paths
do not present any other component as in the first case of the figure. The other
three cases illustrate a progressive increase in negative skewness (cases II and
III) and the last one (IV), shows in addition a certain level of probability in the
tail. We classify evenly the remaining 40% of paths into cases of types II and
III, while less than 10% of cases exhibited a positive tail. Interestingly, we note
that the percentage of samples falling into the Gaussian component for the full
set of measured paths is over 85%. That is, most of the time the bandwidth time
series follows a Gaussian distribution, oscillating softly over the mean; then, as
an unusual event, bandwidth dips during a period (or, even more infrequently,
it peaks). We will refer to the Gaussian component as the stationary behavior
of the phenomenon, which represents what can be expected from a transfer in
the Cloud from a path. On the other hand, excursions from the mean represent
changes in regular behavior. Especially of interest is when a time series dips, to
which we often refer as a downtime.

To formally split data into these two components, we simply apply a goodness-
of-fit test on normality for the mean Gaussian component. In particular, we
entrust Lilliefor’s test at the 5% significance level with this task. Those samples
that do not pass the test are considered as excursions.

2.4 The Measurement Campaign

So far, we have devised a testbed of eighteen data centers which, grouped in
pairs, makes up 306 paths to measure. Also, some initial measurements allowed
us to estimate how long to measure and how we can model bandwidth time
series for subsequent comparisons. With these findings in mind, we executed
CloudB for the full set of 306 paths parameterized with samples of 5-minute
duration and sampling frequency of one sample per hour to balance cost and
thoroughness [18]. Finally, the measurement campaign took place during the
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first three weeks of June, 2015.
In the rest of the paper, by elaborating on this resulting set of data, we

describe the main Gaussian component of an extensive set of bandwidth time
series in the Cloud and then relate such components to data centers’ locations,
CSPs, and peculiarities of specific data centers. Moreover, we assess how down-
times (and peaks) of bandwidth time series are correlated. The two following
sections focus on these two issues.

3 Stationary behavior

This section focuses on the stationary behavior of bandwidth in the Cloud.
First, we pay attention to the mean of its principal Gaussian component. Then,
we study the factors that explain this behavior. In other words, we first describe
the performance and then generalize the results.

3.1 Overview

Figure 5(a) shows the TCP bandwidth mean for the 306 paths under study,
as well as the mean by data center source (last column) and destination (last
row), and overall mean in the Cloud (right- and bottom-most square). Next
to it, Fig. 5(b) depicts the width of the 95% confidence interval for the mean
to illustrate its significance. Several observations arise. On the large scale,
the overall mean in the Cloud ranges between 150 and 300 Mb/s, specifically,
roughly 250 Mb/s on average. However, the heterogeneity between different
paths is clearly significant. On the one hand, some paths achieved rates close
to 1 Gb/s, although none of the them achieved a mean over 750 Mb/s. In fact,
no single measurement exceeded 930 Mb/s, which supports the idea that the
capacity of the VMs in the testbed was adequate. On the other hand, several
paths did not exceed a rate of 150 Mb/s. After a more detailed inspection, we
assessed that all of the means surpassed 50 Mb/s.

We found some homogeneity by inspecting data centers as sources. Three
data centers of C1 exhibit the best performance, with averages of roughly 400
Mb/s, whereas the data center of C3 located in East Asia is below 100 Mb/s.
Regarding destinations, we identified more heterogeneity. C2 and C4 data cen-
ters stand out, and Brazilian and Australian data centers of C1 as well as the
data center of C3 in East Asia obtained modest results. By observing the figure
from a distance, some clusters (i.e., close squares with similar intensity) become
apparent. To mention some of them: the good relationship between C1 and
C4 (top right part of the figure), the good overall performance of C2 and C3
(columns 7-13), and the better performance of C1 outside its own infrastructure
(rows 1-6, columns 7-18). To formally identify these interactions, next we apply
factor analysis to the data. Regarding the confidence intervals, C1 shows narrow
intervals which denotes flatter bandwidth time series. The other CSPs behave
similarly with larger intervals, although even the broadest interval, VirginiaC2

as data center destination, exhibits a width below 25 Mb/s.
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Figure 5: TCP bandwidth mean and its 95%-confidence-interval width per path
between source (vertical) and destination (horizontal) data centers.

3.2 Factor analysis of bandwidth time series: Applying
ANOVA to the data

We entrusted the analysis of variance (ANOVA) with factor analysis of the
data [28]. ANOVA is a widely used statistical methodology whereby the ob-
served variance of a given response variable is described in terms of explanatory
factors, specifically as an addition of terms that account for the effect of such
factors (or their interaction). In this way, ANOVA provides a mechanism to
determine whether such factors have any statistical importance in explaining
the response variable (if so, to what extent), and estimates the parameters for
each of the different values a factor can take (levels) for each significant factor.
The reader is referred to the appendix for further details and intuitions behind
the application of ANOVA.

As a main objective of this paper, we pursue the identification of common-
alities in the Cloud, allowing that the most particular factors participate only
for variance that is not otherwise explained. Then, we propose to follow an
ANOVA iterative approach whereby the most general factors are first used to
explain variance, and the most specific ones are considered progressively (often
named as ANOVA Type I).

Formally, in this study, general factors are the geographical location or area
(factor Area) and the CSP (CSP ) as Table 1 details, and also the interaction
between a pair of well-connected areas (factor AreaS ∗AreaD) or CSPs (factor
CSPS ∗CSPD). The interactions between factors allow us to evaluate whether
the performance depends on the proximity of the source and destination (Area),
whether connectivity is better inside CSPs’ infrastructures (CSP ) or, otherwise,
whether each data center behaves somewhat independently. On the other hand,
the most particular factors or interactions are those related to data center level:
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factors that explain a time series according to the specific source data center
(factor DCS) or destination data center (factor DCD), as well as factors that
account for both ends (factor DCS ∗DCD).

In addition to these factors, we also add two intrinsic ones [29]. Specifically,
the time (UTC) when the sample was gathered (factor Time) and the day of the
week (factor Weekday). In fact, we consider these as the most general factors,
as they apply to all the measurements. Note that they allow us to investigate
whether the capacity in the Cloud is better at certain times and days of the
week.

By ordering factors from more general to more specific, we construct the
following ANOVA model:

BWtwijki′j′k′p = µ+ Timet +Weekdayw +AreaSi + CSPS
j +DCS

k +AreaDi′ + CSPD
j′ +DCD

k′

+AreaSi ∗AreaDi′ + CSPS
j ∗ CSPD

j′ +DCS
k ∗DCD

k′ + εtwijki′j′k′p

(1)

where BW•p represents the pth observation (a bandwidth sample) that results
from the addition of terms according to the tth level of factor Time (e.g., 0 a.m.,
. . . 12 p.m.), the wth level of factor Weekday (e.g., Mon, . . . Sun), the ith level
of factor Area as the source (e.g., a data center source is located in the Eastern
US, Western US, . . ., East Asia; see Table 1), the jth level of factor CSP being
the source (e.g., C1, C2, C3, and C4), the kth level of factor DC being the
source (e.g., VirginiaC1, CaliforniaC1, . . . TaiwanC4), and so forth for the levels
for factors as destinations (i′j′k′). In addition, the two-way factors (represented
by ∗) account for the impact that interactions exert: for example, the variance
explained because of the source being in the Eastern US and the destination
being in the Western US (including levels where both source and destination are

the same). In more detail, an additional term for the interaction of ith and i′
th

levels of factor Area (source and destination, respectively), for the interaction

of jth and j′
th

levels of factor CSP (again, source and destination) and, finally,

another for the interaction of kth and k′
th

levels of factor DC (also, source and
destination).

In other words, BW represents each of the samples (p), samples that are
indexed using t and w by the time and day of the week, as well as i, j, k and
i′, j′, k′ to index the geographical area, CSP, and data center, both source (S)
and destination (D) of the path, respectively. The intercept term µ represents
the overall mean response; that is, a constant figure over which the rest of the
factors add terms. Finally, the difference between a sample p and the addition
of the factor terms according to the levels of such a sample (often named the
model value), is typified by εijki′j′k′p (often named the random or experimental
error). In our case, ε is linked to the variance of the Gaussian component, as
Fig. 4 illustrated.

3.3 Results and discussion

Table 2 shows the results after applying the ANOVA test using SPSS [30] soft-
ware over bandwidth time series measurements. First of all, the R2 term is close
to 1, so we can conclude that model explains the response variable (the band-
width, in our case) with high accuracy. In this line, the last column exhibits the
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Table 2: ANOVA table with Time, Weekday, Area, CSP , and DC (data
center) and significant interactions as fixed factors, with bandwidth time series
as the response variable (R̄2=0.92).

Factor Sum of Squares %Total %Factors df Mean Square F p-value

µ 1009168371 49.2 · 1 1009168371 169459 0.00
T ime 1105358 0.0 0.1 23 48059 8 0.01
WeekDay 7991054 0.4 0.8 6 1331842 224 0.00
AreaS 41652076 2.0 4.0 6 6942013 1166 0.00
AreaD 125808840 6.1 12.1 6 20968140 3521 0.00
CSPS 80548490 3.9 7.7 3 26849497 4509 0.00
CSPD 176277823 8.6 16.9 3 58759274 9867 0.00
DCS 8274219 0.4 0.8 8 1034277 174 0.00
DCD 40486106 2.0 3.9 8 5060763 850 0.00
AreaS ∗AreaD 192441930 9.4 18.5 35 5498341 923 0.00
CSPS ∗ CSPD 125439547 6.1 12.0 9 13937727 2340 0.00
DCS ∗DCD 75897282 3.7 7.3 226 335829 56 0.00
Error 167088766 8.1 16.0 41491 4027
Total 2052179862 100 100 41825

p-value for the null hypothesis that supports the homogeneity of means; such a
hypothesis can be rejected with significant confidence, i.e., all factors are able
to explain some variance.

However, not all of them explain variance to a similar extent. The sec-
ond column (sum of squares, in ANOVA terminology) represents the explained
variance in absolute terms, while the third column shows these figures as per-
centages. This latter column can be interpreted as the percentages of variance
that each factor or interaction helps to explain. To make the data easier to
contrast, the fourth column shows the percentage for which each row accounts
when the intercept term is not considered. Note that percentage in which the
intercept term represents a significant fraction of the bandwidth of each path
(the next section will estimate this term as roughly 40 Mb/s).

Next, we find that factors such as sources, AreaS and CSPS , depict modest
significance in comparison to their destination counterparts AreaD and CSPD,
which account for larger figures. This implies that the bandwidth is especially
sensitive to where the path is destined. Moreover, the two-way factors involving
pairs of Area and CSP levels account for more than 30% of the explained
variance apart from the intercept term.

So far, before even considering the data center ends, almost 88% of the total
variance is explained. This highlights that the bandwidth behavior depends
strongly on data center location and CSP rather than on specific behavior of
data centers themselves. We speculate that this is due to the diverse routing
agreements that govern the Internet, and to the well-known relationship of la-
tency/TCP bandwidth. The closer two nodes are, the lower the latency and
the higher the TCP bandwidth. The data center factors themselves explain less
than 5% of variance, and only when both source and destination data centers
are considered does this figure increase to roughly 6% of the total variance.

Finally, the factor Time only exhibited marginal significance and no qual-
itative importance (less than 0.0%). This implies that the Cloud is almost
insensitive to time; this is reasonable in the Cloud as it encompasses users and
nodes widespread in the world. The Weekday factor shows modest qualita-
tive importance (0.4%), although, as will be shown, according to the parameter
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estimates, the difference between weekends and working days is clear. This con-
trasts with other commercial and academic networks with both strong daily and
weekly patterns [31].

Given these results, the idea of extrapolating the bandwidth for non-measured
paths based on factors makes sense. This is useful both for estimating perfor-
mance of undeployed nodes and avoiding gathering measurements for each of
the paths in a large deployment. This results in potential savings by reducing
monitoring systems’ costs.

3.3.1 Inspecting the levels

While the ANOVA table has unraveled how factors influence bandwidth time
series, parameter estimates shed light on how their different levels interact. That
is, ANOVA identified that the factors Area and CSP can explain much of the
bandwidth time series, but what specific values such factors take to increase
or decrease the bandwidth is a matter of the parameter estimates. Intuitively,
performance should peak when a path encompasses the same area and same
CSP. Let us see to what extent this is true.

Table 3 summarizes the parameter estimates for the set of general factors
µ, Time, Weekday, Area, CSP , and these two latter factors’ interactions.
The parameter estimates for such general factors allow us not only to discuss
the interaction between levels, but their explicit inclusion provides the Internet
community with an extrapolated set of data to consider in their research and
commercial tasks with the appropriate adjustments to the particularities of each
deployment in the Cloud. We do not include data center factors as there are 306
possible combinations, and because the addition of all the terms of the model
is simply equal to the values depicted in Fig. 5(a).

The parameters for the factor Time’s levels unveil that the Cloud is practi-
cally insensitive to the time of day, with a minimum at 3 p.m. (UTC) and peaks
at 2 a.m. and 11 p.m. It is difficult to relate this to properties of human activity
as multiple time zones are involved; indeed, this is likely because the influence is
low. By turning the focus on the day of the week, the homogeneity between two
groups, working days and weekends, becomes apparent. The largest values (i.e.,
more capacity and intuitively less use of the Cloud infrastructure) are those from
weekends with an additional term of about 30 Mb/s. It is worth remarking that
Mondays behave similarly to weekends, likely because they include a fraction of
the previous Sunday in some parts of the world at UTC time.

The Area factor as a source and a destination represents an additional term
of 85 Mb/s in some cases, among which the data centers located on both coasts
of US stand out. On the other hand, the data centers in South America exhibit
the lowest parameters. Regarding CSPs, C4 data centers share the largest
capacities in both directions of traffic, and C1 and C3 show more moderate
rates.

Some interesting conclusions arise out of the two-way factors, specifically
when we pay attention to those rows where levels are equal (e.g., C1∗C1). They
represent the additional terms for paths whose ends are either in the same CSP
or in the same area. The pairs within the same CSP do not show larger values;
even for C1*C1 and C4*C4 pairs, the sum represented by such combinations
is zero (i.e., no additional bandwidth because of such combinations). On the
contrary, paths from C1 to C4 have an increment of more than 300 Mb/s,
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Table 3: Parameter estimates for the bandwidth time series model.

Factor Level Mb/s F Level Mb/s F Level Mb/s

Intercept µ 40

A
r
ea

S

Western US 69

A
r
ea

S
∗
A
r
ea

D

Western US * Western US 368

T
im
e

0h 12 Northern Europe 30 Western US * Northern Europe 110
1h 13 Central US 43 Western US * Australia 109
2h 19 Eastern US 41 Western US * Central US 137
3h 18 Australia 55 Western US * Eastern US 123
4h 15 South America 0 Western US * South America 114
5h 11 East Asia 20 Western US * East Asia 0
6h 13 Northern Europe * Western US 124
7h 9

A
r
ea

D

Western US 16 Northern Europe * Northern Europe 337
8h 11 Northern Europe 24 Northern Europe * Australia 94
9h 16 Central US 35 Northern Europe * Central US 125
10h 14 Eastern US 60 Northern Europe * Eastern US 157
11h 10 Australia 23 Northern Europe * South America 130
12h 11 South America 0 Northern Europe * East Asia 0
13h 5 East Asia 40 Central US * Western US 164
14h 2 Central US * Northern Europe 145
15h 0

C
S
P

S

C1 7 Central US * Australia 67
16h 5 C2 14 Central US * Eastern US 182
17h 11 C3 0 Central US * South America 141
18h 11 C4 24 Central US * Asia 0
19h 10 Eastern US * Western US 169
20h 13

C
S
P

D

C1 0 Eastern US * Northern Europe 177
21h 14 C2 75 Eastern US * Australia 93
22h 8 C3 49 Eastern US * US 119
23h 19 C4 78 Eastern US * Eastern US 365

Eastern US * South America 186

W
ee
k
d
a
y

Mon. 35

C
S
P

S
∗
C
S
P

D

C1 * C1 0 Eastern US * East Asia 0
Tu. 0 C1 * C2 109 Australia * Western US 57
Wed. 2 C1 * C3 42 Australia * Northern Europe 57
Thu. 3 C1 * C4 308 Australia * Australia 275
Fri. 4 C2 * C1 35 Australia * Central US 98
Sat. 20 C2 * C2 62 Australia * Eastern US 57
Sun. 34 C2 * C3 6 Australia * South America 73

C2 * C4 85 Australia * East Asia 0
C3 * C1 28 South America * Western US 132
C3 * C2 30 South America * Northern Europe 120
C3 * C3 30 South America * Australia 122
C3 * C4 27 South America * Central US 140
C4 * C1 71 South America * Eastern US 136
C4 * C2 61 South America * South America 433
C4 * C3 49 South America * East Asia 0
C4 * C4 0 East Asia * Western US 16

East Asia * Northern Europe 0
East Asia * Australia 12
East Asia * Central US 8
East Asia * Eastern US 20
East Asia * South America 10
East Asia * East Asia 105
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although the increment in the inverse direction is much lower. In summary, we
conclude that the pair of CSP involved in a transfer is important but, somewhat
counter-intuitively, not because data centers belong to the same CSP.

The impact of the two-way Area factor is just the opposite. The terms to
add when two data centers are in the same area are large figures: specifically,
they range from 105 to 433 Mb/s (East Asia and South America, respectively).
In between, the rest of the areas connect internally with an addition term of
about 300 Mb/s. By inspecting the cross relationships, it becomes apparent
that East Asia is in some way isolated. Terms that represent paths to/from
East Asia hardly have any additional bandwidth, while the other cross terms
(connections between areas apart from East Asia) are above the range of 100
Mb/s. In conclusion, the bandwidth-delay product seems to play an import role
in the Cloud, as proximity between data centers boosts performance.

Finally, regarding data center factors, we note that in all cases the additional
term that represents such factors is lower than 100 Mb/s and is typically closer
to zero than the 100 Mb/s rate. After ordering these factors by impact, pairs of
data centers that stand out are those in Ireland and pairs of data centers where
one is located in the Central US and the other is on one of the US coasts. In
these cases, a term only slightly below 100 Mb/s is added.

3.3.2 The impact of routing in the findings

The rationale behind these findings may be explained by the routing policies
and agreements each CSP follows. Intuitively, if CSPs tend to use the same or
equivalent transit providers (ISP) regardless if source or destination belong to
certain CSP, the fact that bandwidth between data centers of a same CSP does
not show better results becomes coherent.

To assess this, we have analyzed one day of traceroute measurements gath-
ered in parallel to the bandwidth measurement campaign, and extracted the
transit hops of paths (i.e., those hops that interconnect the exit and enter of the
CSP infrastructure where data centers are placed). Note that we did not con-
sider C2 here as it blocks ICMP packets. Then per each path, we have manually
identified if the transit hops belong to the own CSP infrastructure (working as
a traffic carrier) or to public ISPs. To do so, we have exploited public database
where IP addresses, Autonomous Systems and locations are related [32].

The results of this analysis are summarized in Table 4, where for each pair
of data centers is shown the ISPs that carried the traffic between them (in bold,
when the carrier is a CSP). To give an example, the route between IrelandC1

and SydneyC1 used the infrastructure of Level3 and NTT. Interestingly, we
found significant heterogeneity. C4 has an extensive transit infrastructure: C4

carries all its internal traffic, most of its incoming traffic from other CSPs, and
a significant fraction of its outgoing traffic to other CSPs). In contrast, C1 only
carries a few paths (partially, those involving Virgina, California, London and
Dublin), and C3 uses public ISPs.

The immediate conclusion is that the homogeneity between inter and in-
tra CSP traffic, previously founded, cannot be explained because of the use of
similar routes by CSPs. Most likely, it is because those CSPs that own infras-
tructure (C4 and C1) did not give priority to internal traffic with respect to
traffic sourced/destination to other CSPs. This may also suggest that the dif-
ferences in terms of infrastructures, equipment or load between public transit
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Table 4: Transit ISPs used for paths per source/destination (vertical/horizontal)
data-centers (asterisks represent marginal contribution as carrier, and ? several
non-responding routers in the path).
Cn represents CSPs working as carriers (in bold). CTL is CenturyLink. EQ
is Equinix. GTT is Global Telecom & Technology’s Tinet. L3 is Level 3
Communications. NTT is Nippon Telegraph and Telephone. TAT is Tata Com-
munications. TEF is Telefonica Wholesale. TIT is Telecom Italia’s Seabone.
TLS is Telstra global including Asia Netcom. TLSN is Telia Company. TPG is
TPG Telecom. VOC is Vocus Communications. ZAY is Zayo Group including
AboveNet. OT means other carriers.

C1
Virginia California Ireland Singapore Sydney Sao Paulo

Virginia C1 C1 NTT NTT L3
California C1 NTT NTT TLS NTT/TIT

C1
Ireland C1 GTT C1 */NTT L3/NTT GTT/TEF
Singapore NTT NTT TLS/GTT NTT NTT/TIT
Sydney TLS/CTL NTT TLS/GTT NTT TLS/TEF
Sao Paulo TEF/NTT TIT/TEF/OT TEF/NTT TIT TEF/TLS/OT
Virginia C1? C1? L3 TAT TEF/TLS/OT TIT

C3
London ZAY L3 C1 TAT TAT TEF
Hong Kong TLS TLS TLS TLS TLS TLS
Sydney TLS VOC TLS VOC TPG TLS
Iowa C4/L3 C4*/GTT C4*/L3 C4/OT* CT/TLS C4/TIT

C4 Belgium C4/ZAY C4/GTT C4/C1 C4/OT* C4/OT C4/TIT
Taiwan C4/OT* C4/GTT* C4/L3 C4/TLS C4/OT* C4/TIT

C3 C4
Virginia London Hong Kong Sidney Iowa Belgium Taiwan

Virginia C1 ZAY TLS OT/TPG C4 C4 C4
California C1 TLS TLS VOC C4 C4 C4

C1
Ireland TLSN C1 C1*/TLS C1*/TLS C4 C4 C4
Singapore NTT/L3 NTT/L3 TLS/EQ TLS/EQ* C4 /OT C4/EQ* C4 /OT
Sydney TLS/TAT NTT/L3 TLS/EQ* TPG C4/EQ* C4 C4
Sao Paulo TEF/TAT TEF/TAT L3 TIT/TLS C4/OT* C4/OT* C4/OT*
Virginia TLSN/L3 TAT VOC L3 L3 L3

C3
London L3/TLSN TLS TAT/TPG C4 C4 C4
Hong Kong TAT TLSN/L3 TLS C4 C4 C4
Sydney VOC TAT TLS VOC C4 VOC*/C4
Iowa C4*/L3 C4 TLS TLS C4? C4?

C4 Belgium TLS C4 C4/OT* C4/TLS C4? C4?
Taiwan C4/L3 C4 C4/OT C4*/TLS C4? C4?
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and CSP transit are little. Although such difference exists as the cells CSPS

and CSPD in Table 3 indicate that C4, which exploits its own infrastructure,
has extra terms simply because a path starts/ends on it.

4 Correlation between paths

We turn our attention to the correlation between the full set of measured paths.
In other words, while the previous section focused on the principal Gaussian
component in a stationary viewpoint, we now focus especially on the excur-
sions. To this end, we have calculated the Pearson correlation coefficient (ρ) [24]
between all the bandwidth time series (respecting the synchronism between sig-
nals).

Should excursions occur at the same time, ρ is significant; otherwise, the
coefficient tends to be close to zero, indicating that bandwidth changes inde-
pendently between paths. We note that a positive ρ implies that two time series
change in the same way. That is, when one path performance peaks, the other
does the same, and when one works poorly the other does, as well. On the other
hand, non-significant coefficients and, especially, negatives ones, signify paths
that can provide availability and reliability to others in the Cloud. Essentially,
a downtime in a path can be resolved by good performance, or at least regular
performance, of an alternative path.

In this light, we pose two questions: (i) whether or not the performance
between data centers in the same area is correlated, which would support the
approach of achieving redundancy by disseminating data in different areas; (ii)
whether data centers in the same CSP are correlated, which would entail addi-
tional advantages (apart from lower latencies [6]) for multi-CSP deployments.
To answer these questions, we follow an equivalent approach to that in the
previous section.

4.1 Data analysis

Our testbed is comprised of 18 data centers with 306 paths between them, which
in turn translates into 93,330 possible coefficients: one per each possible pair of
paths in the set of 306 paths.

To provide an overview, Fig. 6 shows ρ as an ECDF for the full set of co-
efficients. Considering that values between -0.25 and 0.25 as uncorrelated, the
figure shows that about 80% of the pairs of paths are not correlated. Roughly
10% of the tests yielded clearly positive correlations; for instance, figures lower
than -0.5 and higher than 0.5. As an attempt to identify those paths, Fig. 7(a)
shows the mean of ρ per each path indexed by source and destination data cen-
ters, and Fig. 7(b) depicts their corresponding 95% confidence interval widths.

For example, given the path from VirginiaC1 to CaliforniaC1, the cell (1,2)
represents the average ρ of this path relative to the rest of the paths. In turn,
the last column and row show average ρ by source and destination data center,
respectively. In the figure, the coefficients are separated into five classes that
we relate to strong correlation, significant correlation (both in the negative and
positive directions), and marginal/no correlation. In general, these initial results
suggest that the correlation is low and slightly positive.
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Figure 6: Empirical cumulative distribution function of ρ for all pairs of paths
under study.
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Figure 7: Average ρ and its 95%-confidence-interval width per path (vertical:
source data center, horizontal: destination data center).
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By paying attention to the last column, on average it is apparent that none
of the data centers stands out as particularly sensitive to other path changes.
That is, in the larger picture there is no evidence that bandwidth changes in
unison in the Cloud. However, the same figure shows that some paths had
correlations, and importantly, the effect of averaging may have hidden details.
Factor analysis highlights what the pair of correlated paths has in common. We
note that a full-factorial approach to this problem would include 4-way factors,
making the model hardly tractable (i.e., interaction of four factors, specifically
both the source and destination of the path under study, and also both source
and destination of the path to be compared). However, our focus is to shed light
on whether a data center may expect correlation between the set of paths it can
potentially use. That is, if a path in use is working poorly, another path can
compensate for it, and this is only possible if the source of the paths share the
same node. In other words, we study the correlation between paths in which
the sources are at the same node in contrast to comparing all paths including
disjoint ones.

We then simplify the problem, resulting in the following model:

CORRijki′j′k′i′′j′′k′′p = µ+AreaSi + CSPS
j +DCS

k +AreaD1
i′ + CSPD1

j′ +DCD1
k′ +AreaD2

i′′ + CSPD2
j′′ +DCD2

k′′

+AreaSi ∗AreaD1
i′ +AreaSi ∗AreaD2

i′′ +AreaD1
i′ ∗AreaD2

i′′

+ CSPS
j ∗ CSPD1

j′ + CSPS
j ∗ CSPD2

j′′ + CSPD1
j′ ∗ CSPD2

j′′

+DCS
k ∗DCD1

k′ +DCS
k ∗DCD2

k′′ +DCD1
k′ ∗DCD2

k′′

+AreaSi ∗AreaD1
i′ ∗AreaD2

i′′ + CSPS
j ∗ CSPD1

j′ ∗ CSPD2
j′′ +DCS

k ∗DCD1
k′ ∗DCD2

k′′

+ εijki′j′k′i′′j′′k′′p (2)

where the same terminology as in Equation 1 is followed, apart from the
fact that we are modeling correlation coefficients (CORR) and that we are now
considering three data center ends: a source data center (S) and the two desti-
nation data centers (D1 and D2). Then the correlation coefficient is calculated
between the paths S-D1 and S-D2, for all possible combinations of data centers
(or levels), where ′ and ′′ are used to index levels within the two destination
factors, respectively. Finally, the 2-way factors account for the correlation to
add because of interactions of data center levels taken in pairs, and the 3-way
factors for additional terms because of the combinations of levels as trios of data
centers.

4.2 Results and discussion

Many observations arise by inspection of the percentage of variance that each
factor explains, as in Table 5 (third column). First, the Area and CSP as
destinations are not significant whereas these factors understood as sources are
clearly significant. This implies that certain areas and CSPs are less sensitive
to changes in the Cloud (i.e., more robust).

However, the explained variance of 2-way and 3-way factors that involve
Area and CSP factors, some of which are statistically significant, is qualitatively
marginal. In practical terms, we have found no evidence of that data centers
within the same area or CSP present different correlations between them with
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Table 5: ANOVA table with Area, CSP , DC, and significant interactions as
fixed factors, and the correlation coefficient per pair of paths as the response
variable (R̄2=0.99).

Factor Sum of Squares %Total df Mean Square F p-value

µ 51.9 9.7 1 51.9 752 0.00
AreaS 20.2 3.8 6 3.4 49 0.00
AreaD1 0.8 0.2 6 0.1 2.0 0.06
AreaD2 0.9 0.2 6 0.2 2.3 0.35
CSPS 89.0 16.6 3 29.7 430 0.00
CSPD1 1.6 0.3 3 0.5 7.8 0.00
CSPD2 1.8 0.3 3 0.6 8.9 0.00
DCS 40.9 7.6 8 5.1 74 0.00
DCD1 2.6 0.5 8 0.3 4.6 0.00
DCD2 2.9 0.5 8 0.4 5.3 0.00
AreaS ∗AreaD1 4.6 0.9 35 0.1 1.9 0.00
AreaS ∗AreaD2 5.3 1.0 35 0.2 2.2 0.00
AreaD1 ∗AreaD2 8.3 1.5 35 0.2 3.4 0.00
CSPS ∗ CSPD1 9.3 1.7 9 1.0 15 0.00
CSPS ∗ CSPD2 10.5 2.0 9 1.2 17 0.00
CSPD1 ∗ CSPD2 4.1 0.8 9 0.5 6.6 0.00
DCS ∗DCD1 40.7 7.6 227 0.2 2.6 0.00
DCS ∗DCD2 56.6 10.6 236 0.2 3.5 0.00
DCD1 ∗DCD2 40.7 7.6 236 0.2 2.5 0.00
AreaS ∗AreaD1 ∗AreaD2 12.1 2.3 197 0.1 0.9 0.85
CSPS ∗ CSPS ∗ CSPS 3.3 0.6 27 0.1 1.8 0.01
DCS ∗DCD1 ∗DCD2 141.8 26.5 3807 0.0 0.5 0.00
Error 0.0 0.0 0
Total 535.5 100.0 4896

respect to other data centers in the Cloud. In this way, the search for availability
and reliability (note that latency or other QoS metrics are a different matter)
in the Cloud can be achieved in the same manner by close and far-away data
centers, and is only moderately improved by spreading data between different
CSPs rather than relying on the same CSP.

On the other hand, the factors and interactions related to data centers are
qualitatively very significant. In conclusion, each pair of paths is correlated on
a data center basis with little contribution from the pair of locations and CSPs
involved. The impact of this on current or future deployments arises in terms
of simplifying reliability. Unfortunately, it also makes it more complex to infer
the interactions between paths based on general factors, as we did with the
bandwidth, as, in this case, pairs of similar paths behave heterogeneously. In
general, however, the correlation between paths is relatively low in the Cloud,
as the figures 6 and 7 proved.

Let us now pay attention to the parameter estimates of the subset of quanti-
tatively significant factors or interaction of them. The parameter estimates for
the factors AreaS and CSPS are shown in Table 6 as the only general factors
with some qualitative importance. We found that both US costs present the
smallest measured ρ, which translates into greater robustness to overall changes
in the Cloud. Additionally, Australia and Northern Europe showed low esti-
mates for ρ, while East Asia and Central US areas exhibited an additional term
of more than 0.3. That is, these latter areas comprise data centers more sensitive
to oscillation of bandwidth capacity in the Cloud, on the whole. Similarly, while
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Table 6: Intercept, AreaS , and CSPS parameter estimates in the correlation
parameter model.

Factor Level ρ Factor Level ρ
Intercept µ 0.10

CSPS

C1 0.27

AreaS

Asia 0.37 C2 0.26
Brazil 0.02 C3 0.38
Western US 0.00 C4 0.00
Northern Europe 0.09
Central US 0.32
Eastern US 0.00
Australia 0.09

CSP C4 presented an estimated additional correlation of zero when transfers
are sourced in one of its data centers, C3 showed the largest positive ρ figure.

Finally, the parameter estimates for data center, pairs of data centers, and
source and pairs of destination data centers, span several thousands of parame-
ters. In the case of factor DCS ∗DCD1 ∗DCD2 involves, potentially, 18 · 17 · 17
possibilities which renders its enumeration difficult. Moreover, note that the
relevant finding here is not the set of specific values for each possible ρ given
the significant heterogeneity founded in these levels. This calls for a fine and
tailored monitoring for particular paths of interest in each deployment.

Even so, the most significant parameter estimates, after inspecting the data-
center factors and their interactions, are the low ρ for data centers within Ireland
and the high estimates for BelgiumC4 and Hong KongC3. Also the low correla-
tion between data centers located in Virginia, and a generally high correlation
of data centers located in Singapore stand out.

5 Related work

In this section, we first review studies that measured the bandwidth of infras-
tructures comparable to the public Cloud. Then, studies that reported some
Cloud measurements or focused on measuring the Cloud from different points of
view (among other metrics, VM flavors, storage capacities, latency, popularity,
and CPU) are reviewed.

Regarding other infrastructures, the authors in [33] measured the bandwidth
between most of the nodes of the Planetlab platform. Planetlab is a distributed
federation where members can take control of probes across the world to test
any novel algorithm or idea. In this case, the authors leveraged the platform to
measure the bandwidth between different parts of the world: specifically, 250
probes were deployed and their connectivity tested. They entrusted this task to
Pathrate, which is tool that estimates the maximum capacity of a path and not
the available TCP bandwidth, as we devised. Unfortunately, they found a set of
stricter bandwidth limits on probes that polluted the measurement campaign.
That is, some of the measurements are simply bounded by limits without any
link to the real capacity between end nodes. This justifies the careful selection
of VM probes in our testbed. Apart from the capped samples, they found that
paths typically range between 80 and 120 Mb/s, clearly below our measurements
in the Cloud.
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With the final aim of finding overlay routes in the Cloud to improve the
quality of multimedia services, the authors in [34] showed some figures regarding
TCP throughput measurements in the Cloud. Their solution was to disseminate
contents but, importantly, with the constraint of not increasing costs. To do
this, they limited the throughput of the processes to distribute data to the
original 95th percentile of the network (typically, the metric used to charge
CSP). To test their ideas, they measured the bandwidth between data centers
in Amazon’s infrastructure (i.e., remote data centers of a CSP, here equivalent to
intra-cloud). Specifically, between data centers in Northern California, Oregon,
Virginia, Sao Paulo, Ireland, Singapore, and Tokyo. This set differs from ours
in several data centers with Amazon apart from all the data centers of the other
CSPs we study. They measured bandwidths for 3 minutes per path, but they
did not specify which tool was used nor any other details, limiting the utility of
comparison. In general, they found lower bandwidths than in our study.

Amazon’s cloud infrastructure was also studied in [35], a paper that spans
metrics such as latency and CPU performance using benchmarks. In contrast,
in [36], such infrastructure was examined from the perspective of end users.
Specifically, they found that many current deployments on Amazon are not
yet exploiting the geo-distribution of contents for better quality of service. As
an example, users from Italy are mostly served by the data center located in
Virginia instead of its counterpart in Ireland, so the perceived quality for end
users in Italy was considered poor.

Paying attention to the careful selection of probe capacities, the authors
in [37] studied the impact of virtualization on TCP throughput at the data cen-
ters of Amazon located in the Eastern US. They found that virtualization exerts
an impact when several VMs share the same CPU, as the sender is periodically
taken out of the CPU and throughput decreases. To reach this conclusion, they
compared at low-scale the TCP throughput of both small and medium instances.
After this experiment, they found that a small number of instances achieved up
to 500 Mb/s of TCP throughput, whereas medium probes achieve almost 900
Mb/s.

Similarly, the authors in [38] also paid attention to the relevance of VMs’
capacities focusing on intra-region measurements (here equivalent to intra-data-
center). Specifically, they measured inside Azure’s data centers and, then,
turned their attention to data centers of EC2 [25]. They reported bandwidth
rates ranging from some hundreds to one thousand Mb/s, depending on the
VMs’ flavors. Interestingly, the authors remarked that short-duration captures
of TCP bandwidth are useless, and defined thresholds of 5 and 8 minutes us-
ing the mean and median, respectively. We have checked that both mean and
median present similar results for intervals of 5 minutes worth of data, and, in
practice, their intervals are equivalent to ours.

For their part, the authors in [19] studied how to systematically pick a com-
bination of CPU and VMs flavors to match the requirements of applications in
the Cloud. They considered that bandwidth is one of the possible requirements
an application must meet, and measured the bandwidth between different VM
flavors at Amazon EC2 both inside and outside the same data center. Their re-
sults concluded that medium and large VMs achieve bandwidths close to 1 Gb/s
when both ends are in the same data center. On the other hand, intra-cloud
bandwidths exhibited far lower bandwidths typically bounded by 200 Mb/s. We
found larger bounds for EC2, in general, 300 Mb/s, well below the capacity of
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the VM interface.
Then, the technical report this paper is based on was released [39] and

some other Cloud measurement analyses have been carried out. Interestingly,
this illustrates the still-increasing attention of the research community in the
bandwidth in the Cloud. In particular, the authors in [40] extended their intra-
region approach to include also intra-cloud measurements, specifically 12 paths
between EC2 data centers and other 12 paths inside Azure’s infrastructure.
Several points arise. They empirically stated that assuming intra-cloud mea-
surements, the impact of VM sizes, beyond certain level, can be considered
negligible, differently from the intra-data center case also, previously, studied
by them [38]. This level is below the VM sizes we used in our inter-cloud mea-
surement campaign. In contrast with our approach, they measured both TCP
and UDP capacities. Their results for TCP show lower numbers, none of the
measured paths exceeded 300 Mb/s on average whereas samples over 800 Mb/s
were gathered in our campaign. However, it is worth remarking that such sam-
ples often involved inter-cloud paths to/from Rackspace and Google Cloud that
were not measured in their study. By comparing, specifically, results inside EC2
and Azure, in the case of EC2 they are fairly similar but in the case of Azure,
the differences are still significant. Regarding UDP, they found far higher values
with respect to TCP for both EC2 and Azure, i.e., with means over 600 Mb/s.
Finally, as a later extension [41], the authors further studied the intra-cloud
latency (not highly correlated with bandwidth but geographical distance), the
impact of the availability zones inside regions (concluding that such impact is
low), and the routing between EC2 data centers. Regarding this latter issue,
we found similar conclusions reinforcing the discussion of Section 3.3.2 for the
set of four CSPs we are studying.

An extensive effort to benchmark the Cloud was presented in [18]. The
authors presented the results of applying the monitoring tool CloudCmp with
several CSPs in 2010. They focused significant attention on metrics such as stor-
age performance, CPU capacity, latency between different CSPs, and intra-data-
center networking. However, they did not study the inter-data-center bandwidth
between different CSPs across different areas. Specifically, they paid attention
to pairs of data centers located in the US and belonging to the same CSP. They
reported bandwidths ranging between 100 Mb/s and 500 Mb/s. Finally, as a
further step in the same direction, the authors in [13] studied metrics such as
CPU capacity, memory latency, java benchmarks [42] and disk I/O capacities
following a more systematic approach after a deep measurement campaign.

In this paper, we have followed this later benchmarking-study so extending
our study to a diverse set of data centers from several geographical areas and
with various CSPs in attempt to provide general results for the public Cloud.
But as a distinguishing characteristic from it, we note that we focused on the
bandwidth in terms of available TCP throughput, as an approximation to the
quality perceived by transfers, and, as a novelty, in both intra and inter-cloud
scenarios. Moreover, we shed light on how to characterize the Cloud in order to
provide not only a significant description but also a model for the phenomenon.
Indeed, by leveraging a full-factorial approach (not so common in the Internet
community), we were able to provide a novel comparison between data centers’
behaviors based on specific factors (especially general ones). These factors re-
vealed interesting interactions otherwise hidden in the data. Specifically, they
explain why and how changes on Cloud deployments may impact on their per-
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formance instead of only describing such performance.
Finally, to the best of our knowledge, the study of the correlation of band-

width time series has not been previously addressed despite its clear link to
availability and reliability in the Cloud.

6 Conclusions and future work

Throughout this paper, we have shed light on the bandwidth within the public
Cloud. We believe that we have provided Cloud customers with formal in-
dications and generalizations of what they can expect when opening a TCP
connection in their deployments and, importantly, both in terms of regular and
malfunction behaviors.

That is, we have proposed a two-component approach to model time series
of bandwidth in the Cloud. These components account for, on the one hand,
the stationary behavior of data centers (i.e., how data centers tend to work)
and, on the other hand, unexpected excursions (typically downtimes, but also
peaks). While the importance of stationary behavior is immediate, the study
of downtimes is no less transcendental. The question of whether changes in
bandwidth capacity across the Cloud tend to be a synchronized process or if,
conversely, data centers operate on their own has a dramatic impact on the
robustness of any deployment in the Cloud.

After applying factor analysis in an extensive testbed, we concluded that
the behavior of the stationary component can be considered as a homogeneous
phenomenon, whereas the same does not apply to the other component. That
is, while most of the bandwidth time series’ variance can be described according
to the locations and CSPs involved as source and destination in a transfer,
the correlation between such time series (where the excursions are especially
important) is a process that depends qualitatively on the specific data center
ends involved.

By examining the specific parameters that increase the bandwidth of paths,
we have found that transfers inside the same geographical area receive a sig-
nificant additional term while the same does not apply inside CSPs. In more
detail, the source CSP is significant in explaining the bandwidth of a path, but
a path that involves the same CSP as both source and destination is of only
marginal importance. As other interesting conclusions, we have found that the
time of day during which the Cloud is measured is of little significance and that
the day of the week is only marginally significant. That is, behavior differs
from weekends to working days but not between days in these sets. This has an
impact on how bulk transfers should be scheduled in the Cloud.

The study of correlations also exerts a direct impact on the planning of Cloud
deployments. Fortunately, the low correlations found and the moderate signifi-
cance of CSP and location data center interaction factors makes the achievement
of robustness easier, as close data centers and data centers inside same CSP did
not show greater correlation that those located far away or belonging to other
CSPs. However, the peculiarities of data centers play an important role, so
the generalization of results is more limited in respect of specific data centers.
Consequently, continuous fine-grained monitoring at multiple probes is needed
to estimate this metric.

We believe that all these lessons learned and measurements reported and
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made available upon request are of interest to both practitioners and researchers.
The measurements and their descriptions are useful in making decisions for cur-
rent and future deployments, and even to extrapolate figures to non-measured
data center pairs with a certain confidence. Similarly, we see these conclusions
and the identification of invariants as a step toward better knowledge of the
dynamics of the Cloud and, consequently, of the Internet.

As future work, we plan to carry out a formal evaluation of error entailed by
the extrapolation of measurements to non-monitored data centers. We will also
assess the impact that can be exerted by potential heterogeneous performance,
even for equally equipped VMs within the same CSPs, on the generalization of
measurements in the Cloud. Finally, we plan to study the relationship between
performance and routing changes on paths in more detail and especially over
time.

Appendix. Analysis of Variance: ANOVA

ANOVA performs a contrast test using the ratio of the sum of squares within
each factor (this is typically termed variance ’explained’ by a factor or interac-
tion) and between factors. Such a ratio follows a Snedecor-F distribution under
the null hypothesis, which considers that the total sum of squares is due to the
randomness of measurements (often experimental error), and not to differences
in the population when grouped by factors and levels. However, if the null
hypothesis is not accepted, it means that the factor used to build the groups
is statistically significant according to the F -test. By comparing the percent-
age of variation that can be explained by the factors and interactions to the
error, we obtain a notion of both the importance of each factor and the good-
ness of the model. The overall explained percentage is named the coefficient of
determination, R̄2, which is typically considered relevant if above 0.85.

More intuitively, ANOVA compares the mean of a set of observations after
and before they are grouped into factors and their interactions. If the differ-
ence is relatively large, the factor (or interaction) is considered significant, and
otherwise it is irrelevant (simple experimental error). With the relevant factors
ANOVA, poses a model where any observation is result of the addition of a
constant plus the effect of any of the factors plus the effect of the interactions
of factors and, finally, plus an experimental error. Hence, the simplest ANOVA
univariate model for a response variable y with only one significant factor α is
given by:

yip = µ+ αi + εip, (3)

where yip represents the pth observation on the ith level (i = 1, 2, . . . , I levels)
and µ represents a constant for all the samples (often the overall mean or the
smallest value of the sample). On the other hand, αi refers to the effect due to
the ith level of factor α and εip is the deviation, random or experimental error,

in the pth sample on the ith level. We also note that
∑I

i=1 αi = 0.
Similarly, The resulting model in the case of two significant factors, often

referred to as 2-way, is:

yijp = µ+ αi + βj + (αi ∗ βj) + εijp, (4)

where, αi and βj represent the effect due to the ith and jth levels of factors α
and β, respectively. Similarly, (αi ∗ βj) represents the interactions between ith
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level of factor α and jth level of factor β. Finally, εijp represents the deviation in
the pth sample from the overall mean of the samples within the ith level of factor
α and the jth level of factor β. Again, note that

∑I
i=1 αi = 0 and

∑J
j=1 βj = 0

with J being the total number of levels of factor β.
This is extended similarly in the case of more than two factors. According to

this, by replacing y by the samples of bandwidth time series we can determine
how factors influence the bandwidth in the Cloud and to what extent. Assume
a two-factor model where α represents the factor data center source and β the
destination data center of a path. Then, each factor has a set of levels, as the
last column of Table 1 details. This way, the value of αi represents the overall
effect for samples whose data center source is i, βj represents the effect for paths
destined to the j data center, and αi ∗ βj the effect for paths sourced on i and
destined to j, specifically.

As an example, let i be VirginiaC1 and j be VirginiaC2; then a bandwidth
sample p from VirginiaC1 to VirginiaC2 results from the addition of the fol-
lowing values: First a constant term, then a second a term that accounts for
the difference between the samples sourced at VirginiaC1 and the constant.
Then, a term to account for the difference in mean between samples destined to
VirginiaC2 and the two previous values. Fourth, a term that represents the dif-
ference between the addition so far and the samples for paths specifically from
VirginiaC1 to VirginiaC2 (e.g., the bandwidth between these two data centers
is higher/lower than between the rest of the pairs). Finally, the specific error of
each sample, i.e., the difference of the specific sample and the previous addition
is included. If such error can be considered statistically small (R̄2), ANOVA
provides a simple regression based on the mean per factor and their interaction.
Note that, in this simplified explanation, the order of application of factors may
result in different conclusions and parameter estimates. This is called ANOVA
Type I (also known as sum of squares of Type I); alternatively, Type II and III
estimate all possible combinations, preserving those with lowest error.

Finally, ANOVA methodology requires the data to meet several require-
ments: first, the samples must be independent; second, data must be Gaussian-
distributed; and third, data must fairly share the same intra-group variance
(i.e., exhibit homoscedasticity). However, the results of ANOVA are generally
accepted, provided that the number of elements in each group is large and similar
between them and that there is not a large deviation from the homoscedasticity
assumption in terms of mean-variance rate [43].

In this paper, the data under study meet the first two requirements, as we
are characterizing the main Gaussian component of the bandwidth time series as
described in Section 2.3, and a simple auto-correlation test proved that samples
were independent. Regarding homoscedasticity, it is clear from the same section
that the width of the Gaussian component differs between paths, which was
confirmed by the Levene’s test. However, note that the number of samples is
large, the sample is balanced, and CVs are low, as the third assumption requires.
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throughput in the cloud: The case of amazon EC2,” Computer Networks,
vol. 93, no. 3, pp. 408–422, 2015.

[26] A. W. Bowman and A. Azzalini, Applied smoothing techniques for data
analysis. Oxford University Press Inc., 1997.

29

http://www.alexa.com/topsites/category/Top/Computers/Internet/Cloud_Computing
http://www.alexa.com/topsites/category/Top/Computers/Internet/Cloud_Computing
https://github.com/esnet/iperf
https://github.com/esnet/iperf


[27] R. van de Meent, M. Mandjes, and A. Pras, “Gaussian traffic everywhere?”
in IEEE ICC, 2006, pp. 573–578.

[28] O. J. Dunn and V. A. Clark, Applied statistics: Analysis of variance and
regression. John Wiley and Sons Inc., 1974.
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