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Jorge E. López de Vergara, Sergio Lopez-Buedo

High Performance Computing and Networking research group,
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Abstract

Internet Traffic measurements collected during the busy hour constitute
a key tool to evaluate the operation of networks under the heaviest-load case
scenarios, and further provide a means to network dimensioning and capac-
ity planning. In this light, this study provides a throughout analysis of the
busy-hour traffic measurements of an extensive set of universities, regional
networks and Internet exchange points collected from the Spanish Research
and Education Network, RedIRIS. After showing that the traffic volumes
observed in the busy hour over time can be modeled by a white Gaussian
process, this work takes one step further and examines the influence of the
networks’ intrinsic features, mainly population size and access link capac-
ity, on the busy-hour traffic. Well-known statistical methodologies, such as
ANOVA and ANCOVA, show that the network size in terms of number of
users justifies most of the busy-hour traffic information. We further pro-
vide a linear-regression model that adjusts the amount of traffic that each
network user contributes to the busy-hour traffic mean values, with a direct
application to the problem of link capacity planning of IP networks.
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1. Introduction

The characterization of Internet Traffic has received much attention from
both network operators and the research community over years [1]. Indeed,
there has been an intensive research effort in the characterization of the
packet and byte counting process at small time-scales (say milliseconds and
smaller), giving raise to a number of long-range dependence models [2, 3].
Also, the estimation of Internet bandwidth demands has been a subject
of study, either from a long-term [4] or a short-term [5, 6] point of view.
While these analyses and models serve to better understand the dynamics
of Internet traffic, it turns out that network operators often use a different
metric for capacity planning purposes: the total traffic volume observed in a
given link during its busiest hour [7, 8]. Obviously, network operators base
their capacity planning strategies on worst-case scenarios, that is, on mea-
surements collected when the network is most heavily loaded. This justifies
the interest by the research community on studying and characterizing the
busy-hour traffic, and its evolution over time. Typically, as noted by the
authors in [7], network operators use the following rule of thumb:

C = d · M (1)

where C is the target link capacity, M represents the bandwidth demand
over the link under study, and d is some constant. Clearly d ≥ 1, and is
often much greater than one to provide sufficient capacity C to satisfy the
burstiness of the bandwidth demand M .

The goal of this study is to characterize such bandwidth demand M for
university access links during the busy hour, and further study the impact of
intrinsic features [9] of the universities on such bandwidth demands. Exam-
ples of intrinsic features of networks comprise their population (i.e., number
of users) and access link capacity, among others. More specifically, this work
studies the busy-hour traffic observed in the access links of a numerous set
of large-size networks, focusing on its statistical properties and applicability
to network dimensioning tasks. To this end, RedIRIS, which is the Spanish
National Research and Education Network (NREN), has kindly donated the
traffic measurements of the access links to a large number of universities,
regional networks and Internet exchange points over a four-month period.

The remainder of this work is organized as follows: Section 2 briefly
reviews the state-of-the-art in the field, presents the goals of this work and
provides a detailed description of the measurement set under study. Sec-
tions 3 and 4 present the core results of this work, which are finally discussed
in Section 5. More specifically, Section 3 shows that the busy hour traffic
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can be accurately characterized by a pure Gaussian process, i.e., the average
traffic volume during the most loaded hour is independent from one day to
another, and it is further Gaussian distributed over time. Section 4 goes one
step further and examines the influence of intrinsic network features, such
as its population size (number of users) and its actual access link capacity,
on the mean and variance of such a Gaussian model. After performing an
Analysis of Variance (ANOVA) test, it is found that the influence of the link
capacity factor is limited, whereas by means of an Analysis of Covariance
(ANCOVA) test it is shown that the population size exerts a significant ef-
fect. Consequently, in the set of networks under study (which show high
capacity over-provisioning), it is only the population size that matters in
the characterization of the busy-hour Gaussian process.

2. Preliminaries

First, we present the related work, followed by several definitions, and
finally we detail the set of measurements used in this paper.

2.1. Related work and contributions
In spite of its paramount importance for capacity planning and network

design purposes, the network research community has paid relatively little
attention to the study of the busy-hour traffic observed in network links, on
the contrary to Plain Old Telephone System (POTS) designers. In fact, the
network research community has addressed the problem of capacity planning
by modeling the whole traffic process at different aggregation scales: packet,
flow, application and aggregated traffic volumes.

At the packet level, the classical queueing theory has provided a frame-
work for capacity planning, considering Markovian arrivals and service times.
However, such assumptions no longer apply in light of the observed self-
similar features of Internet traffic [10, 11, 12].

A flow-based approach is proposed in [13] whereby the authors base their
capacity planning models on flow metrics. In such work, the authors end
up with a model that considers the bandwidth mean and distribution tail
of simulated TCP flows. On the downside, such flow-based dimensioning
models are hardly feasible in practice and very sensitive to changes in the
profiles of flows. The use of aggregated busy-hour traffic values provides a
more robust approach to the process of traffic characterization.

The authors in [5] take one step further and propose a hybrid model
ρ+α

√
ρ which considers both aggregated (the network load ρ) and per-flow

(by means of α) metrics. Such parameter α is related to some characteristics
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of individual measured flows, for instance their size and peak rate. A further
refinement to this approach is proposed in [7] where the burstiness of traffic
is modeled from the variance of aggregated traffic, rather than following a
flow-based approach (parameter α).

In both approaches [5, 7], the estimation of average demands is kept
constant throughout the entire analysis, and the authors mostly focus on the
burstiness of traffic. However, given the assumption of traffic stationarity
(at small time-scales) these approaches are only valid for capacity planning
over short periods of time (in the order of few hours or so), which makes
them impractical for long term planning purposes (in the range of months,
as defined in [14]). In fact, such a stationarity assumption breaks with the
well-known fact that traffic patterns follow human behavior [15].

At the application level, the authors in [16] characterize the traffic de-
mand of individual users as a combination of the typical application sessions
started by them: web browsing, P2P, Instant Messaging and email. How-
ever, such an application-based model requires network operators to cor-
rectly identify each application (which is not straightforward [17]). Addi-
tionally, this model is extremely sensitive to changes in user request patterns
and hardly viable for forecasting purposes.

Finally, the authors in [4] have addressed the problem of capacity plan-
ning and network dimensioning by modeling the whole traffic measurement
plot. Essentially, they apply Auto-Regressive Integrated Moving Average
(ARIMA) models to the measurements collected on attempts to infer future
network load values. Such a model is further applied in [18] to characterize
the end-to-end traffic demands between each pair of POPs in a backbone
network. Interestingly, such work shows that the bandwidth overprovision-
ing could be lower than usually assumed for a given QoS requirements. For
instance, only about 15% of extra bandwidth (that is, d = 1.15 parameter
of Eq. (1)) is required to ensure less than 3 ms of queuing delay.

Given the large size of measurements involved in such studies (one mea-
surement every five minutes), the authors in [4] firstly aggregate the data to
90-minute intervals and then, they apply wavelets and ANOVA to further
reduce the data volume. In contrast, using the busy-hour traffic as an ap-
proach to summarize the traffic only requires one measurement per day (the
throughput value during the most loaded hour) and data preprocessing is
barely required. This first simplifies the process of data collection, storage,
management, and analysis, and secondly considers the worst case scenario
for capacity planning purposes.

The model proposed in this work tries to overcome the above limitations
found in the literature. More precisely, our model studies only the traf-
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fic volumes during the busy hour over a relatively long period of time (in
the range of several months), and finds that such busy-hour traffic charac-
terization is accurately modeled with a Gaussian process. Additionally, the
model only requires one aggregated traffic-related value to be collected every
day: the busy-hour traffic mean, which makes it more practical and robust
(less sensitive to fine-grain measurements). Moreover, the model relates the
bandwidth demand results to the intrinsic characteristics of networks, such
as its population size, which is novel.

Concerning traffic Gaussianity, the authors in [19, 20] test whether or
not aggregated traffic follows a Gaussian distribution at different aggrega-
tion levels in terms of number of users and time-scales. Both studies find
Gaussian behavior from 5-ms to 5 seconds of time-granularity. It is worth
noticing that we are facing a different problem: The Gaussian modeling of
the busy-hour traffic over a number of consecutive days, i.e., as an stochastic
process, rather than characterizing the aggregated traffic sample itself.

2.2. Definition of busy-hour traffic
Let A(t) be the instantaneous network throughput measured (for in-

stance, in units of Mb/s) on a given access link. Here, t spans a day of
throughput measurements, that is, t ∈ [0, 24) hours. Also, let HT (t) denote
an average throughput metric computed over a given range [t− T

2 , t + T
2 ] of

length T , typically one hour:

HT (t) =
1
T

∫ t+T
2

t−T
2

A(τ)dτ (2)

According to this, the busy-hour traffic X is the value that maximizes
the above equation, i.e.,:

X = max
t

HT (t), t ∈ [0, 24) hours

T = 1 hour (3)

which gives the average throughput (in Mb/s) during the busiest hour of a
given day, and such value occurs at time t that maximizes HT (t).

Additionally, let V be the variance of A(t) during the busy hour [t −
T
2 , t + T

2 ], that is

V =
1
T

∫ t+T
2

t−T
2

(A(τ) − X)2dτ (4)
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Since the traffic is collected in intervals of five minutes the above equa-
tions are discretized accordingly.

Thus, for each data unit (either university, regional network or Internet
exchange point as explained below), the above equations define the time-
series {Xi, i = 1, . . . , N} and {Vi, i = 1, . . . , N} which comprise the average
traffic volume observed during the busy hour and its variance for different
days i = 1, . . . , N . In addition, it is also interesting to study the time of day
ti at which the traffic busiest hour occurs. This is given by the time-series
{ti, i = 1, . . . , N}. Fig. 1 illustrates how these metrics are computed for a
given network over three days.

A(t)

(Mbps)

t1 t2 t3

Day 1

50

150

250
X1

V1

X2
V2

X3
V3

Day 3Day 2

Figure 1: A three-day example of traffic measurements to illustrate Xi, Vi and ti

Finally, with daily values of Xi and Vi, it is also possible to compute the
coefficient of variation CV as defined by:

CVi =

√
Vi

X2
i

, i = 1, . . . , N (5)

which gives a measure of the variability of the busy-hour traffic volume with
respect to its mean.

2.3. Measurement set description
The Spanish National Research and Education Network, RedIRIS, kindly

provided the measurements to carry out this study. RedIRIS spans more
than 350 institutions, mainly universities and research centers, and it has
several Internet exchange points with the European Research and Education
Network GEANT, and with other ISPs (Telia, Level3, Cogent, etc.). The
traffic capture process lasted four months, ranging from January to April
2009, in which traffic was monitored in both directions of the access link,
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DOWNLOAD

Networks under 

study: IXPj, RNj

and Uj

Internet

Figure 2: Upload and Download directions of network traffic

say download (from the Internet to the network under study) and upload
(sourced on the network under study and destined to the Internet), as shown
in Fig. 2.

The traffic trace collected is based on Multi Router Traffic Grapher
(MRTG) logs [21] and Cisco’s Netflow data [22]. The former comprises
a measured sample per five minutes that represents the uploaded and down-
loaded traffic volume during such a five-minute period of time; the latter
comprises the summaries of flow records traversing a given access link, which
typically includes the values of bytes transferred, flow starting and finishing
times, protocol, etc. As explained in [23, 24], such netflow data provides an-
other means to obtain the uploaded and downloaded traffic volumes, which
were shown to validate the traffic values given by the MRTG data. Both
these data provide an approximation to the instantaneous network through-
put A(t) defined previously, and consequently have been used to calculate
the daily busy-hour traffic volume mean X and variance V as stated in
Eqs. (3) and (4) for each access link.

After the time-series {Xi, i = 1, . . . , N} for each access link was calcu-
lated over different days, it is worth mentioning that the values obtained
on both local and bank holidays as well as other non-teaching periods were
removed from all time-series. The reason is that only the working-day values
are of interest since the network operators work with worst-case scenarios for
capacity planning purposes. In addition to this, note that both network up-
grades and configuration changes, for instance infrastructure improvements,
new filtering policies, new killer applications appraisal, etc. may also have
a negative effect on the long/mid term characterization of the busy-hour
throughput, yielding to a non-stationary process. Hence, we have carefully
removed those networks that have been upgraded or whose configuration
have changed in 2009. Such a refined measurement set comprises data from
four regional networks (MRTG data), in what follows RNj , which aggregate
traffic from several universities, hospitals, computing and research centers;
five Internet exchange points (MRTG data), namely IXPj ; and 22 university
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Networks
Capacity Population size max (Xi) Max. utilization
(Mb/s) (thousand) (Mb/s) (Mb/s)

U1 1000 60 236 / 299 0.25 / 0.30
U2 1000 57 220 / 244 0.22 / 0.12
U3 1000 48 137 / 144 0.14 / 0.14
U4 1000 30 131 / 128 0.13 / 0.13
U5 1000 28 137 / 131 0.14 / 0.13
U6 1000 28 129 / 140 0.13 / 0.14
U7 1000 25 123 / 136 0.12 / 0.14
U8 1000 14 44 / 75 0.04 / 0.08
U9 1000 11 50 / 88 0.05 / 0.09
U10 1000 8 38 / 66 0.04 / 0.07
U11 1000 6 16 / 25 0.02 / 0.03
U12 300 58 195 / 175 0.65 / 0.58
U13 200 37 105 / 144 0.53 / 0.72
U14 200 35 140 / 148 0.70 / 0.74
U15 200 20 70 / 88 0.35 / 0.44
U16 200 19 120 / 110 0.60 / 0.55
U17 200 15 64 / 78 0.32 / 0.39
U18 100 14 49 / 74 0.49 / 0.74
U19 100 13 20 / 68 0.20 / 0.68
U20 100 9 30 / 36 0.30 / 0.36
U21 100 7 24 / 17 0.24 / 0.17
U22 100 5 22 / 23 0.22 / 0.23

Table 1: Description of universities, their intrinsic features and maximum utilization in
upload / download direction

networks (Netflow data), generically labeled as Uj for privacy reasons.
This data set was completed with the so-called network intrinsic features

for the university networks (Uj), that is, the values of their population size
and access link capacity. There exist well-documented central repositories
which describe the university networks’ user population, Internet access ca-
pacity and organization [25]. This information has allowed us to select a
representative set of universities regarding such intrinsic features (see Ta-
ble 1), and rank them by means of both population size and access link
capacity.

Finally, the capping effect, as introduced in [26], states that the traffic
demands may be affected (bounded) by a limiting bandwidth capacity. In
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this light, Table 1 details the access link capacity CUj for each university
network Uj (third column), along with the maximum average busy-hour
traffic over the N days of measurement (last column). The reader should
note that all links show low-levels of utilization even at highly-loaded days,
typically below 40%. Indeed, such over-provisioning of access links is a
common practice by network operators, as noted in [27, 28]. Actually, the
average utilization during the busy hour in our set of measurements was
typically under 25%, and the most loaded network, U14 showed a maximum
utilization lower than 75%. Such low levels of utilization make the capping
effect negligible in this data, since the maximum busy hour traffic volumes
found in the measurements are far from reaching the maximum capacity of
access links [29, Chapter 4]. Obviously, in other under-provisioned scenarios
with higher levels of utilization, the capping effect cannot be ignored.

3. Characterization and dynamics of the busy-hour traffic process

The following experiments firstly study the marginal distribution of the
busy-hour traffic volume or throughput, and then focus on its correlation
structure. The results obtained for all IXPs, RNs and Us are summarized
in Table 2.

3.1. Gaussian marginal distribution
The first two columns of Table 2 show the estimated mean μ̂ and stan-

dard deviation σ̂ of the busy-hour throughput distribution over time, mea-
sured at each monitored point in both upload and download directions.
Essentially, for a given university Uj , whose busy-hour traffic over N days is
defined in the set {XUj

1 , . . . , X
Uj

N }, such mean and standard deviation values
are computed as:

μ̂Uj =
1
N

N∑
i=1

X
Uj

i (6)

σ̂Uj =
1

N − 1

√√√√ N∑
i=1

(XUj

i − μ̂Uj )2 (7)

The fourth column in the table shows the maximum coefficient of vari-
ation during each busy hour, calculated following Eq. (8). Essentially, for
each university Uj , we compute its Coefficient of Variation for each day i
and take its maximum value over all N days:
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Networks Lilliefors
Shapiro- Anderson- Correlation

(upload / download)
μ̂Uj (Mb/s) σ̂Uj (Mb/s) CV max

Uj
Wilk Darling Test

(α = 0.05) (α = 0.05) (α = 0.05) (R > 0.9)

IXP1 1243 / 599 78 / 33 0.14 / 0.12 � / � � / � � / � � / �
IXP2 1841 / 1021 93 / 55 0.23 / 0.18 � / � � / � � / � � / �
IXP3 2335 / 3763 71 / 102 0.07 / 0.04 � / � � /� � / � � / �
IXP4 32 / 30 2.7 / 2.9 0.18 / 0.21 � / � × / � × / � � / �
IXP5 1252 / 1166 99 / 86 0.24 / 0.33 � / � � / � × / � � / �
RN1 545 / 1107 32 / 65 0.13 / 0.16 � / � � / � � / � � / �
RN2 1365 / 1287 42 / 33 0.08 / 0.06 � / � � / � � / � � / �
RN3 101 / 355 10 / 19 0.23 / 0.18 � / � � / � × / � � / �
RN4 80 / 241 5.1 / 14 0.22 / 0.23 � / � � / � � / � � / �
U1 209 / 262 9.2 / 11 0.13 / 0.09 � / � � / � � / � � / �
U2 140 / 151 20 / 15 0.25 / 0.13 � / � � / � � / � � / �
U3 100 / 107 6.2 / 21 0.16 / 0.29 � / � � / � � / × � / �
U4 65 / 88 14 / 10 0.26 / 0.15 × / � × / � × / � � / �
U5 79 / 112 12 / 6.4 0.13 / 0.13 � / � � / � � / � � / �
U6 64 / 107 14 / 9.7 0.20 / 0.09 � / � � / � � / � � / �
U7 85 / 83 8.6 / 9.5 0.19 / 0.11 × / � × / � � / × � / �
U8 19 / 42 3.6 / 4.1 0.28 / 0.09 � / � � / � � / � � / �
U9 33 / 50 2.9 / 6.5 0.46 / 0.28 × / � × / � � / × � / �
U10 13 / 26 3.7 / 5.9 0.34 / 0.21 � / � � / � � / � � / �
U11 5.0 / 9.1 1.7 / 1.6 0.31 / 0.26 � / × � / × � / × � / �
U12 109 / 106 14 / 10 0.17 / 0.11 � / � � / � � / � � / �
U13 47 / 96 11 / 9.0 0.12 / 0.14 � / � � / � � / � � / �
U14 100 / 105 14 / 14 0.19 / 0.21 � / � � / � � / � � / �
U15 31 / 52 7.9 / 5.1 0.25 / 0.15 × / � � / � � / � � / �
U16 86 / 51 7.0 / 8.0 0.20 / 0.16 � / � � / � � / � � / �
U17 23 / 49 4.5 / 4.4 0.18 / 0.17 � / � � / � � / � � / �
U18 31 / 60 3.9 / 3.7 0.26 / 0.23 � / � � / � × / � � / �
U19 10 / 28 1.3 / 5.4 0.27 / 0.30 � / × � / × � / � � / �
U20 13 / 24 2.9 / 1.1 0.10 / 0.21 � / � × / � × / � � / �
U21 3.5 / 8.2 1.6 / 1.0 0.40 / 0.33 � / � × / � × / � � / �
U22 5.1 / 6.6 2.0 / 2.9 0.46 / 0.25 � / � � / � × / × � / �

Table 2: Gaussian characterization of busy-hour traffic N(μ̂, σ̂) and goodness-of-fit test
results in both upload / download directions of traffic
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CV max
Uj

= max
i

√
Vi

X2
i

, i = 1, . . . , N (8)

This value represents the ratio of the variance V to the mean X, and it
is very useful for comparing the degree of variation of the busy hour traffic
over different days. This maximum considers the worst possible case: the
day which shows highest variability ratio (highest bursty behavior). This
result is discussed at the end of this section.

Finally, the last columns in Table 2 provide the results of different Gaus-
sian goodness-of-fit tests applied to the measurements. Essentially, the null
hypothesis assumes that the busy hour traffic follows a Gaussian distribution
with parameters μ̂Uj and σ̂Uj for university network Uj . The easiest way
to visually assess on the validity of the null hypothesis is via the Quantile-
Quantile plot [30, Chapter 2], which plots the pairs x(i) versus Q(i/n)),
whereby x(i) is the order statistics of the empirical sample and Q(·) is the
Quantile function (inverse of the cumulative distribution function). If in-
deed the measured data follows the Gaussian distribution N(μ̂Uj , σ̂Uj ), the
points depicted overlap the angle bisector (line y = x). This is the case
of Fig. 3, where the QQ-plot technique is applied to the busy-hour mea-
surements of IXP1, RN1 and U1, respectively in both upload and download
directions. The same experiment has been applied to all other measurement
sets, showing linear QQ-plots in all cases.

Besides visual matches, it is desirable to assess Gaussianity objectively
following the most common goodness-of-fit tests found in the literature,
say: Lilliefors [31], Shapiro-Wilk [30, Chapter 9], Anderson-Darling [30,
Chapter 9] and correlation-based [19]. Basically, the correlation test consists
in checking whether or not the linear correlation coefficient R computed
between the pairs x(i) and Q(i/n)) in the QQ-Plot gives a relatively high
value, say 0.9 [20].

Table 2 gives the results obtained after applying such tests. As shown,
all empirical distributions pass the correlation test. Also, we observe that
the goodness-of-fit tests support the null hypothesis (Gaussianity) for most
of the cases and further show visual Gaussianity too. However, as noted
in [20], conventional goodness-of-fit tests are usually excessively demanding
with traffic measurements. Note that certain outliers may arise from events
such as network misuse, power cuts, temporal malfunctioning, etc. instead
of typical network behavior, hence making the tests fail. For this reason,
we conclude that the busy-hour traffic measurements for the access links
of all universities, regional networks and Internet exchange points can be

11
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Figure 3: QQ-Plot for IXP1, RN1 and U1
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considered “fairly Gaussian”, borrowing the term from [20].

3.2. Autocorrelation experiments
This section studies the correlation between consecutive busy-hour traffic

measurements, that is, whether or not the busy-hour traffic experienced
on one day depends on the values measured the previous days. To this
end, the autocorrelation function was calculated for all data items (Us, RNs
and IXPs) together with their confidence intervals (with significance level
α = 0.05) as described by the Bartlett test [32] for the autocorrelation
of a pure white Gaussian process, i.e., a Dirac delta at the origin of the
autocorrelation function. Fig. 4 shows the autocorrelation (solid line) and
the confidence intervals (dashed lines) applied again to IXP1, RN1 and U1,
respectively. Interestingly, all networks pass this test, which proves the
independence of the busy-hour traffic values from one day to another after
removing both weekends and holidays.

3.3. Distribution of the busy-hour times
Fig. 5 shows the cumulative distribution function (CDF) of the time in-

stants when the daily busy hour occurs, that is, the value of t in Eq. (3). For
the sake of clarity, only the results for six universities are shown, although
similar behaviors were observed for the rest of the networks under study. As
shown, the CDFs for all six universities behave in a similar manner in each
direction of traffic. In the download direction of traffic, the busiest hour
typically occurs in the range from 10:00 a.m. to 2:00 p.m. However, the
upload direction shows a bimodal behavior with its busiest hour typically
found either around 12:00 p.m. or around 5:00 p.m.

These results are consistent with the “Daily traffic pattern” invariant
defined in [15]. Essentially, the authors in [15] expose that some traffic
patterns follow strictly the human behavior which, in the case of an academic
network, this seems to show two peaks of traffic: one in the morning and
another one in the afternoon.

As shown, the busiest hour t never occurs at night, which gives at least
12 hours between any two consecutive busy-hour traffic measurements X.
Intuitively, this can be the reason that explains why the correlation structure
in the busy-hour traffic time-series {Xi, i = 1, . . . , N} vanishes since there
is a gap of at least 12 hours between any two consecutive busy-hour traffic
measurements X (see Fig. 5).
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Figure 4: Autocorrelation function and Bartlett Test (dashed lines) for IXP1, RN1 and
U1

14



���+�+ ����+�+ ����+�+ ���+�+ 	��+�+ $��+�+ ���+�+ ����+�+
�

�+�

�+�

�+�

�+	

�+&

�+$

�+'

�+�

�+�

�

.��/�0����1���

2
#
3

�� !"#

��
��
��
�	
�&
�$

���+�+ ����+�+ ����+�+ ���+�+ 	��+�+ $��+�+ ���+�+ ����+�+
�

�+�

�+�

�+�

�+	

�+&

�+$

�+'

�+�

�+�

�

.��/�0����1���

2
#
3

#!%� !"#

��
��
��
�	
�&
�$

Figure 5: Busy-hour time CDF in both upload and download directions of traffic

3.4. Discussion
On the one hand, the above results show that the busy-hour traffic sam-

ples {X1, . . . , XN} are both uncorrelated and Gaussian distributed. Hence,
the busy-hour traffic process can be modeled by a white Gaussian process.

Additionally, the maximum coefficient of variation, which gives the max-
imum ratio of the variance V to the mean X over different days i is always
smaller than one, hence showing sub-exponential behavior in all cases. In
other words, the traffic during the busy hour is close to the average value
(small variation with respect to the mean), which is of clear importance for
capacity planning purposes.

Having found that the process is white and Gaussian, network opera-
tors can apply the conventional sample mean and variance estimator to a
measurement set. With such parameters at hand, operators can use the
following formula to derive the access link capacity C required such that the
busy-hour traffic volume is met with probability 1 − ε (typically ε ≤ 0.1):

CUj such that Prob(d · XUj < CUj ) ≥ 1 − ε,

with XUj ∼ N(μ̂Uj , σ̂Uj ) (9)

This constitutes a first refinement of Eq. (1).
Finally, it is worth noticing that this section’s conclusions are derived

based on measured busy-hour traffic volumes only. This capacity planning
application is not valid for designing new networks over which no mea-
surements have already been taken. For this reason, the next section is
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devoted to extracting how much information of the busy-hour traffic is di-
rectly related to the number of users (population size) for a given network,
on attempts to refine the dimensioning rule above Eq. (9).

4. Factor analysis of access link capacity and population size

The previous tests have shown that the busy-hour traffic distribution of
university networks can be accurately characterized by a Gaussian distribu-
tion N(μ, σ), whereby its characteristic parameters μ and σ can be estimated
from measurements. The next set of experiments aim to study whether or
not the intrinsic features of the networks (population size and access link
capacity), which are denoted as explanatory variables in what follows, have
any influence on such parameters μ and σ, which are denoted as response
variables. Note that we are able to compare the traffic of an extensive set
of network by means of only two parameters.

To do so, the Analysis of Variance (ANOVA) and Covariance (ANCOVA)
methodologies are first reviewed, and then applied to the measurement set.
Before that, we remark that this section only takes into account the mea-
surements collected at university access links Uj , with j = 1, . . . , 22. The
IXPs and RNs measurements are not considered in these experiments since
their population size is unknown.

Both the ANOVA and ANCOVA methodologies require the data to meet
a few requirements: First, the samples must be independent and Gaussian
distributed; and second, they must share the same intra-group variance
(exhibit homoscedasticity). However, the results of ANOVA and ANCOVA
are generally accepted provided that the number of elements in each group
are similar and there is a non-excessive deviation from the homoscedasticity
assumption [33, 34]. This is the case for our measurements. Additionally,
the ANCOVA model assumes a linear relationship between the response and
the explanatory variables. For further details see, for instance, [35, 36].

Table 3 summarizes the factors (access link capacity CUj and population
size PUj ) for each university under study. As noted from the table, the
universities have been split into two groups depending on the capacity of
their access links: The universities with 1 Gb/s of capacity belong to group
Ghigh (which stands for high-speed access link), thus leaving Glow to the
universities with low access capacity (lower than 1 Gb/s). This classification
is important to apply ANOVA, as shown in the following.
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Networks
Capacityaccess Population size (users)
Group (Mb/s) Group (Thousands)

U1 1000 60
U2 1000 Large 57
U3 1000 48
U4 1000 30
U5 1000 Medium 28
U6 Ghigh 1000 28
U7 1000 25
U8 1000 14
U9 1000 Small 11
U10 1000 8
U11 1000 6
U12 300 58
U13 200 Large 37
U14 200 35
U15 200 20
U16 200 Medium 19
U17 Glow 200 15
U18 100 14
U19 100 13
U20 100 Small 9
U21 100 7
U22 100 5

Table 3: Set of universities grouped by access link capacity and population size
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4.1. Effect of access link capacity: ANOVA
This section studies the effect of the access link capacity only on the

busy-hour traffic volumes for each university characterized by N(μUj , σUj ).
Remark that, for each university Uj , its access link capacity CUj and popu-
lation size PUj are known but, for this former experiment, PUj is ignored.

ANOVA is a widely used statistical methodology whereby the observed
variance of a given response variable is split into explanatory factors or cate-
gories and provides a means to determine if the factors have any importance
in explaining such a response variable, and how much this accounts for.

In our example, ANOVA proceeds as follows: it first splits the response
variable μUj into two categories: Ghigh and Glow. Then, it computes the
adjusted mean squares for each category and for the total. The difference
between both is due to the experimental error.

Finally, ANOVA performs a contrast test using the ratio between the ad-
justed mean square of each factor and the total, which follows a Snedecor-F
distribution under the null hypothesis; which considers that the total ad-
justed mean square is due to the experimental error, and not to differences in
the population when grouped by categories. However, if the null hypothesis
is not accepted, this means that the factor used to build the groups (access
link capacity) is statistically significant according to the F -test. Moreover,
the ANOVA test provides a p-value which determines if the null hypothe-
sis should be accepted or not, according to a given pre-defined significance
level α (typically α = 0.05). Basically, if p > α, then the null hypothesis
is accepted (non-significant factor), and rejected otherwise. Furthermore,
ANOVA also quantifies the amount of variance explained by the factors
(explained variance) and the amount of variance that remains unexplained
(non-explained or residual variance).

It is worth noticing that this test will be applied to both μ and σ in both
upload and download directions of traffic. For now, let us refer to them as
a generic response variable y. The ANOVA model for response variable y
with the access link capacity as its only factor is given by:

ygroup
Uj

= ky + αgroup + εgroup
Uj

(10)

Here, ky is the overall means response for the response variable under
study (y), typically named as μ but, in this case, to avoid confusion with
the response variable μUj we have renamed this term as k. ygroup

Uj
refers to

the mean or variance (in upload or download direction) value of university
Uj which belongs to a given group (either Ghigh or Glow). The value of
αgroup represents the effect because of a given network Uj belongs to a given
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Response Source Sum Adj.
variable of of df mean F p-value

(direction) variation squares square
U

pl
oa

d μ
Capacity 5664 1 5664 2.12 0.156

Error 52042 (90%) 20 2602
Total 57706 21

σ
Capacity 30.9 1 30.9 1.03 0.323

Error 604 (95%) 20 30.2
Total 634 21

D
ow

nl
oa

d μ
Capacity 9266 1 9266 2.99 0.099

Error 62029 (87%) 20 3101
Total 71296 21

σ
Capacity 64.1 1 64.1 2.62 0.121

Error 488 (88%) 20 24.439
Total 553 21

Table 4: ANOVA table with access link capacity as factor and μ and σ parameters as
response variables (in both directions)

group. Finally, the value of εgroup
Uj

refers to the experimental error introduced
above. Clearly, large values of εgroup

Uj
means that the link access capacity

factor explains little variance and, perhaps, other factors that explain more
variance must be included in the model given by Eq. (10).

Table 4 shows the results after applying the ANOVA test to the busy-
hour traffic mean μ and standard deviation σ in both upload and download
directions of the university access routers under study. The third column
gives the sum of squares for each source of variation: Capacity and Error ε.
According to the results only the access link capacity factor shows moderate
significance (that is, p ≈ α = 0.05) in the test for the mean in the download
direction. On the other hand, the access link capacity factor has no influence
for the case of mean and standard deviation in the upload direction of traffic
nor for the standard deviation in the download direction.

Finally, the third column also shows the percentage that the error repre-
sents of the total variance (inside brackets). It can be noted that the amount
of unexplained variance remains high after the test is applied. More specif-
ically, these values are 90%, 95%, 87% and 88%, of the total variance for
μ and σ in the upload and download directions, respectively. Indeed, such
large values of error reinforce the conclusion that the access capacity barely
influences the measurements, namely the measurements are not distorted by
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capping effects. Following this, the next section checks whether or not the
other intrinsic network parameter, population size, explains more variance
than that of the access link capacity.

4.2. Combined effect of the access link capacity and population size: AN-
COVA

This section aims to repeat the previous experiment but taking into ac-
count both intrinsic network factors: the access link capacity and population
size. In this case, the model of Eq. (10) is extended to:

ygroup
Uj

= ky + αgroup + βgroupPUj + εgroup
Uj

(11)

where the term βgroupPUj has been included with respect to Eq. (10) to deal
with the population size factor.

In this case, such factor appears as a quantitative variable rather than
a categorical group as it is the case for the access link capacity. When this
occurs, it is recommended to use the Analysis of Covariance (ANCOVA)
methodology instead of ANOVA. Additionally, ANCOVA is recommended
when the two factors are strongly correlated since it helps to separate the
amount of variance explained by each factor.

Basically, the Analysis of Covariance is the result of removing the vari-
ance for which some covariates or quantitative variables (in this case, the
population size) account by means of a linear regression and, after this,
applying a regular ANOVA with the access link capacity as unique factor.
Note that such a linear regression does not assume that the value of the
slopes βgroup in Eq. (11) for groups Ghigh and Glow are equal.

Following this, Table 5 shows the results obtained after applying AN-
COVA to the whole set of universities. The table shows a new row that
quantifies the adjusted sum of squares of the explained variance by the
population size as covariate. As shown, including the population size in
the analysis brings two important conclusions: (i) the amount of total un-
explained variance reduces very significantly with respect to the previous
experiment; and (ii) the amount of variance explained by the access link
capacity factor becomes clearly negligible. Concerning the former conclu-
sion, note that the amount of variance that remains unexplained for the
mean busy-hour traffic μ has been reduced to 17% and 19% for the upload
and download directions, respectively. Remark that, in the previous model
which only took into account the access link capacity, the unexplained vari-
ance was much higher, up to 90% and 87% (see Table 4) for the upload and
download directions, respectively.
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Response Source Sum Adj.
variable of of df mean F p-value

(direction) variation squares square
U

pl
oa

d

μ

Popula. 42015 1 42015 79.6 0.000
Capacity 814 1 814 1.54 0.229

Error 10027 (17%) 19 528
Total 57706 21

σ

Popula. 360 1 360 28.1 0.000
Capacity 1.62 1 1.62 0.126 0.727

Error 243 (38%) 19 12.833
Total 635 21

D
ow

nl
oa

d μ

Popula. 48407 1 48407 67.5 0.000
Capacity 2091 1 2091 2.92 0.104

Error 13623 (19%) 19 717
Total 71296 21

σ

Popula. 314 1 314 34.1 0.000
Capacity 15.5 1 15.5 1.68 0.210

Error 175 (32%) 19 9.21
Total 553 21

Table 5: ANCOVA table with access link capacity as factor, population size as covariate
and μ and σ parameters as response variables (in both directions)

Indeed, the amount of variance explained by the access link capacity
was due to the correlation between the population size and the access link
capacity of universities, rather than on the latter factor only. This null effect
of access link capacity is consistent with the premise of negligible capping
effect explained in Section 2.3.

Given that the access link capacity is not significant, the following section
is focused on a simplified model that only takes into account the population
size via linear regression.

4.3. Focusing on the population size: Linear Regression
As stated before, ANCOVA performs a linear regression in order to re-

move the variance explained by the covariates. Next, we assess whether such
a linear regression can be useful to estimate the busy hour traffic distribution
N(μ, σ) based on the university’s population size only.

Note that the previous model (Eq. (11)) assumes a different βgroup for
each group of universities Ghigh and Glow. The next model simplifies this
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issue assuming a common slope β for all universities. Such assumption is
known as the homogeneity of regression coefficients [37, chapter 31]. We
did not find any evidence that such assumption is violated, consequently we
can use the same β parameter for all groups (Ghigh and Glow), given by the
following simplified model:

yUj = ky + βPUj + εUj (12)

which only takes into account the university’s population size PUj as the
only source of influence in the busy-hour traffic distribution N(μ, σ). We
remark that the value of β represents the slope in the linear regression
model, and can be viewed as the amount of traffic that each network user
contributes to the average busy-hour traffic value μUj . This is a parameter
of key importance in the capacity planning of university access links based
on their population size.

After applying the linear regression, Table 6 shows the regression coef-
ficients for each response variable, together with their 95% confidence in-
tervals. The fourth column in the table provides the coefficient of deter-
mination (R2) which gives the amount of variance explained by the linear
regression model. The results show that the population size explains 81%
and 78% of the variance of the busy-hour process mean μ in the upload and
download directions of traffic, respectively. For σ, the experiment results
give 61% and 66% of explained variance, again in the upload and download
directions, respectively.

Response
Coefficients 95% confidence

variable
(Mb/s) intervals

R2

(direction)

U
pl

oa
d μ

k = -8.448 -26.632 / 9.735
81.21%

β = 0.0027 0.0021 / 0.0033

σ
k = 1.707 -1.028 / 4.442

61.34%
β = 0.00024 0.00015 / 0.00033

D
ow

nl
oa

d

μ
k = 1.695 -20.197 / 23.586

77.96%
β = 0.0029 0.0022 /0.0036

σ
k = 1.863 -0.547 / 4.273

65.55%
β = 0.00024 0.00016 / 0.00032

Table 6: Regression coefficients for μ and σ in both directions

Furthermore, Fig. 6 shows the regression lines estimated by ANCOVA
for each parameter along with the data, on attempts to provide a visual
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contrast of the results.
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Figure 6: ANCOVA linear regression for the μ and σ parameters in the upload (left) and
download (right) directions of traffic

Concerning capacity planning, a given university Uj with population
size PUj requires a capacity in the download direction of k = 1.69 Mb/s
constant plus 2.9 Kb/s (and depending on the selected significance level
an extra addend that takes into account the deviation) per user, as given
by Table 6, since the error ε is zero-mean Gaussian distributed (modeled
with N(0, σε)). This provides a simple rule for dimensioning the access link
capacity of a new university based on its expective population (number of
users), as:
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CUj such that Prob (d · XUj > CUj ) ≤ ε,

with XUj ∼ N(μUj , σUj )
where μUj = kμ + βμPUj ,

and σUj = kσ + βσPUj

for each of the directions (13)

This constitutes a further refinement of Eqs. (1) and (9).
This methodology makes it possible to estimate the demand for band-

width for new universities, over which no previous measurement experiments
have been carried out, in contrast with Eq. (9) which requires a set of busy-
hour daily traffic measurements. Furthermore, Eq. (13) can be used to
estimate the bandwidth demands for a university network whose population
changes with time, that is, whose student body either increases or decreases
every academic year.

4.4. Validation model
This section checks whether or not the bandwidth dimensioning model

of Eq. 13 is valid for a set of eight new universities, which were not in-
cluded in the model characterization. This set of new universities were not
originally considered in the ANCOVA analysis because of the following rea-
sons: (i) The access link capacity changed during the measurement period
(January, 2009 to April, 2009), or (ii) the measurement process failed dur-
ing several days of the measurement period for those universities. As the
previous section showed the access capacity is not a significant factor for
the RedIRIS’ users demand, and all the universities have at least 2 months
worth of data, we regain such discarded set of universities and use them as
validation set. The features of this new set are summarized in Table 7. In
this light, Fig. 7 shows the measured values of μ and σ in upload and down-
load directions for the eight new universities. Additionally, the model data
and regression for μ and σ in both directions, together with the model 95%
prediction intervals are depicted. The results show that, in most cases, such
values fall within the model’s 95% prediction intervals, which supports the
applicability of the model. There are two universities (V2 and V3) whose
measured values fall outside the prediction intervals. These two universities
are technical universities which are exclusively devoted to engineering de-
grees. This may be the reason why they generate much more traffic than
other less-technical universities. In the original set of 22 universities used
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Networks
Population size Capacity μ̂Uj σ̂Uj

(thousand) (Mb/s) (Mb/s) (Mb/s)
V1 50 2000 148 / 165 13 / 16
V2 37 1000 163 / 162 14 / 16
V3 33 2000 140 / 190 19 / 19
V4 29 1000 65 / 69 8.5 / 7.1
V5 28 155 25 / 65 9.2 / 9.7
V6 22 1000 82 / 101 13 / 12
V7 12 155 11 / 35 3.7 / 4.0
V8 9 100 4.1 / 10 1.1 / 2.0

Table 7: Description of the validation set of universities and measured values for μ and σ
parameters in upload / download direction

to build the model, only one was a technical university, which, in turn, also
showed the same behavior (higher traffic demands per user than expected).
This result suggests that the model may underestimate traffic demands per
user for technical universities, which calls for a future model refinement that
accounts for such phenomenon (i.e, including a factor, type of university).

4.5. On the relationship between heavy-hitters and population size
Previous studies have pointed out that most of the Internet traffic is

generated by a small fraction of network users [23, 38, 39], often referred
to as heavy-hitters. As shown in Figs. 8 and 9, there is a clear correlation
between the population size of a given university and the number of heavy-
hitters observed during its busiest hour. Fig. 8 considers as heavy-hitters
all those IP addresses which account for 90% of the total traffic, and Fig. 9
defines heavy hitters as those users who exchange more than 1 Gb (about
100 times the average) of traffic, both measured in the busy hour. The
points depicted are computed as the average number of heavy-hitters per
day found during the busy hour over the four-month experiment. In the
plots, we have removed those university networks in which the use of NAT
is a common practice, resulting in a set of eleven networks under study.

These results give support to the idea that heavy-hitters are homoge-
neously distributed with respect to the population across the universities.
In other words, the larger a university is in terms of population size, the
more heavy-hitters are expected to be found in its busy-hour traffic mea-
surements. Nevertheless, it is more interesting to define link dimensioning
rules based on well-documented intrinsic characteristics such as the popula-
tion size of universities rather than on measurement-based metrics such as
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Figure 7: Validation and model set of universities along with model regression and 95%-
prediction intervals

the number of heavy-hitters since the latter requires extensive measurement
experiments and computational analysis.

5. Summary and conclusions

This work provides an in-depth analysis of the traffic volumes observed
during the busy hour of the access links of universities, regional networks,
and Internet exchange points in the Spanish Research and Education Net-
work from a long/mid term point of view. First, it is shown that such
busy-hour traffic is Gaussian distributed, and shows no correlation between
measurements over different days, hence accurately characterized by a white
Gaussian process. Therefore, the traffic of a network during several months
can be summarized by means of only two parameters (i.e., the mean and
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Figure 8: Average number of different IP addresses per day that account for 90% of the
total upload/download traffic during the busy hour
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Figure 9: Average number of different IP addresses per day that send/receive more than
1 Gb during the busy hour

standard deviation of such a white Gaussian model) which is useful for ca-
pacity planning purposes.

Nevertheless, the network operator must use this methodology only af-
ter proving that the stationarity of the measurement set remains, that is,
with no infrastructure upgrades, new killer applications appraisal, P2P fil-
tering policy changes, etc. Otherwise, the operator must restart the traffic
measurement experiments. Specifically, in this study, we have shown that
the stationarity assumption holds in the range of several months for an ex-
tensive set of academic networks. As future work, we plan to repeat the
proposed methodology with measurements collected on different scenarios,
for instance Small-Office/Home-Office (SOHO) networks, and compare the
results.

Additionally, this work goes one step further and aims to characterize
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the mean and variance of such white Gaussian process based on the popu-
lation of the network for which the measured access link gives service. The
ANOVA and ANCOVA methodology are applied over the Gaussian mod-
els that characterize the busy-hour traffic volumes measured for different
universities on attempts to check whether or not the universities’ intrinsic
features (population size and access link capacity) explains part of the busy-
hour traffic volume generated. The experiments show that the access link
capacity feature show little influence on the busy-hour traffic for networks
whose maximum utilization are far from reaching the maximum available
capacity. On the other hand, the population size accounts for the majority
of explained variance in the ANCOVA test. Furthermore, the test provides
a linear regression model and estimates its parameters, making it possible
to perform capacity planning for university networks based on their pop-
ulation size. However, after applying ANCOVA the unexplained variance
still accounted for some percentage. The use of more features may improve
the results that we have shown obtaining more accurate estimations. To
this end, we are currently working on finding and analyzing other features
such as the type of university under study (technical versus non-technical)
as shown in Section 4.4, or the ratio between staff members and students.
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2007, pp. 86–97.

[8] R. McGorman, J. Almhanaa, V. Choulakian, Z. Liua, Empirical band-
width provisioning models for high speed Internet traffic, in: Proceed-
ings of Annual Communication Networks and Services Research Con-
ference, Moncton (Canada), 2006, pp. 188–195.
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